Home | History | Annotate | Line # | Download | only in x86
x86_xpmap.c revision 1.65
      1 /*	$NetBSD: x86_xpmap.c,v 1.65 2016/11/11 11:34:51 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2006 Mathieu Ropert <mro (at) adviseo.fr>
      5  *
      6  * Permission to use, copy, modify, and distribute this software for any
      7  * purpose with or without fee is hereby granted, provided that the above
      8  * copyright notice and this permission notice appear in all copies.
      9  *
     10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     17  */
     18 
     19 /*
     20  * Copyright (c) 2006, 2007 Manuel Bouyer.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the above copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  *
     31  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     32  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     34  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     37  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     38  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     39  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     40  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     41  *
     42  */
     43 
     44 /*
     45  * Copyright (c) 2004 Christian Limpach.
     46  * All rights reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that the following conditions
     50  * are met:
     51  * 1. Redistributions of source code must retain the above copyright
     52  *    notice, this list of conditions and the following disclaimer.
     53  * 2. Redistributions in binary form must reproduce the above copyright
     54  *    notice, this list of conditions and the following disclaimer in the
     55  *    documentation and/or other materials provided with the distribution.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     61  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     62  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     63  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     64  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     65  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     66  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.65 2016/11/11 11:34:51 maxv Exp $");
     72 
     73 #include "opt_xen.h"
     74 #include "opt_ddb.h"
     75 #include "ksyms.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/systm.h>
     79 #include <sys/mutex.h>
     80 #include <sys/cpu.h>
     81 
     82 #include <uvm/uvm.h>
     83 
     84 #include <x86/pmap.h>
     85 #include <machine/gdt.h>
     86 #include <xen/xenfunc.h>
     87 
     88 #include <dev/isa/isareg.h>
     89 #include <machine/isa_machdep.h>
     90 
     91 #undef	XENDEBUG
     92 /* #define XENDEBUG_SYNC */
     93 /* #define XENDEBUG_LOW */
     94 
     95 #ifdef XENDEBUG
     96 #define	XENPRINTF(x) printf x
     97 #define	XENPRINTK(x) printk x
     98 #define	XENPRINTK2(x) /* printk x */
     99 static char XBUF[256];
    100 #else
    101 #define	XENPRINTF(x)
    102 #define	XENPRINTK(x)
    103 #define	XENPRINTK2(x)
    104 #endif
    105 #define	PRINTF(x) printf x
    106 #define	PRINTK(x) printk x
    107 
    108 volatile shared_info_t *HYPERVISOR_shared_info;
    109 /* Xen requires the start_info struct to be page aligned */
    110 union start_info_union start_info_union __aligned(PAGE_SIZE);
    111 unsigned long *xpmap_phys_to_machine_mapping;
    112 kmutex_t pte_lock;
    113 
    114 void xen_failsafe_handler(void);
    115 
    116 #define HYPERVISOR_mmu_update_self(req, count, success_count) \
    117 	HYPERVISOR_mmu_update((req), (count), (success_count), DOMID_SELF)
    118 
    119 extern volatile struct xencons_interface *xencons_interface; /* XXX */
    120 extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
    121 
    122 static void xen_bt_set_readonly(vaddr_t);
    123 static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, int);
    124 
    125 vaddr_t xen_locore(void);
    126 
    127 /*
    128  * kcpuset internally uses an array of uint32_t while xen uses an array of
    129  * u_long. As we're little-endian we can cast one to the other.
    130  */
    131 typedef union {
    132 #ifdef _LP64
    133 	uint32_t xcpum_km[2];
    134 #else
    135 	uint32_t xcpum_km[1];
    136 #endif
    137 	u_long xcpum_xm;
    138 } xcpumask_t;
    139 
    140 void
    141 xen_failsafe_handler(void)
    142 {
    143 
    144 	panic("xen_failsafe_handler called!\n");
    145 }
    146 
    147 void
    148 xen_set_ldt(vaddr_t base, uint32_t entries)
    149 {
    150 	vaddr_t va;
    151 	vaddr_t end;
    152 	pt_entry_t *ptp;
    153 	int s;
    154 
    155 #ifdef __x86_64__
    156 	end = base + (entries << 3);
    157 #else
    158 	end = base + entries * sizeof(union descriptor);
    159 #endif
    160 
    161 	for (va = base; va < end; va += PAGE_SIZE) {
    162 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
    163 		ptp = kvtopte(va);
    164 		XENPRINTF(("xen_set_ldt %#" PRIxVADDR " %d %p\n",
    165 		    base, entries, ptp));
    166 		pmap_pte_clearbits(ptp, PG_RW);
    167 	}
    168 	s = splvm();
    169 	xpq_queue_set_ldt(base, entries);
    170 	splx(s);
    171 }
    172 
    173 #ifdef XENDEBUG
    174 void xpq_debug_dump(void);
    175 #endif
    176 
    177 #define XPQUEUE_SIZE 2048
    178 static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
    179 static int xpq_idx_array[MAXCPUS];
    180 
    181 #ifdef i386
    182 extern union descriptor tmpgdt[];
    183 #endif /* i386 */
    184 void
    185 xpq_flush_queue(void)
    186 {
    187 	int i, ok = 0, ret;
    188 
    189 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    190 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    191 
    192 	XENPRINTK2(("flush queue %p entries %d\n", xpq_queue, xpq_idx));
    193 	for (i = 0; i < xpq_idx; i++)
    194 		XENPRINTK2(("%d: 0x%08" PRIx64 " 0x%08" PRIx64 "\n", i,
    195 		    xpq_queue[i].ptr, xpq_queue[i].val));
    196 
    197 retry:
    198 	ret = HYPERVISOR_mmu_update_self(xpq_queue, xpq_idx, &ok);
    199 
    200 	if (xpq_idx != 0 && ret < 0) {
    201 		struct cpu_info *ci;
    202 		CPU_INFO_ITERATOR cii;
    203 
    204 		printf("xpq_flush_queue: %d entries (%d successful) on "
    205 		    "cpu%d (%ld)\n",
    206 		    xpq_idx, ok, curcpu()->ci_index, curcpu()->ci_cpuid);
    207 
    208 		if (ok != 0) {
    209 			xpq_queue += ok;
    210 			xpq_idx -= ok;
    211 			ok = 0;
    212 			goto retry;
    213 		}
    214 
    215 		for (CPU_INFO_FOREACH(cii, ci)) {
    216 			xpq_queue = xpq_queue_array[ci->ci_cpuid];
    217 			xpq_idx = xpq_idx_array[ci->ci_cpuid];
    218 			printf("cpu%d (%ld):\n", ci->ci_index, ci->ci_cpuid);
    219 			for (i = 0; i < xpq_idx; i++) {
    220 				printf("  0x%016" PRIx64 ": 0x%016" PRIx64 "\n",
    221 				   xpq_queue[i].ptr, xpq_queue[i].val);
    222 			}
    223 #ifdef __x86_64__
    224 			for (i = 0; i < PDIR_SLOT_PTE; i++) {
    225 				if (ci->ci_kpm_pdir[i] == 0)
    226 					continue;
    227 				printf(" kpm_pdir[%d]: 0x%" PRIx64 "\n",
    228 				    i, ci->ci_kpm_pdir[i]);
    229 			}
    230 #endif
    231 		}
    232 		panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
    233 	}
    234 	xpq_idx_array[curcpu()->ci_cpuid] = 0;
    235 }
    236 
    237 static inline void
    238 xpq_increment_idx(void)
    239 {
    240 
    241 	if (__predict_false(++xpq_idx_array[curcpu()->ci_cpuid] == XPQUEUE_SIZE))
    242 		xpq_flush_queue();
    243 }
    244 
    245 void
    246 xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
    247 {
    248 
    249 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    250 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    251 
    252 	XENPRINTK2(("xpq_queue_machphys_update ma=0x%" PRIx64 " pa=0x%" PRIx64
    253 	    "\n", (int64_t)ma, (int64_t)pa));
    254 
    255 	xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
    256 	xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
    257 	xpq_increment_idx();
    258 #ifdef XENDEBUG_SYNC
    259 	xpq_flush_queue();
    260 #endif
    261 }
    262 
    263 void
    264 xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
    265 {
    266 
    267 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    268 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    269 
    270 	KASSERT((ptr & 3) == 0);
    271 	xpq_queue[xpq_idx].ptr = (paddr_t)ptr | MMU_NORMAL_PT_UPDATE;
    272 	xpq_queue[xpq_idx].val = val;
    273 	xpq_increment_idx();
    274 #ifdef XENDEBUG_SYNC
    275 	xpq_flush_queue();
    276 #endif
    277 }
    278 
    279 void
    280 xpq_queue_pt_switch(paddr_t pa)
    281 {
    282 	struct mmuext_op op;
    283 	xpq_flush_queue();
    284 
    285 	XENPRINTK2(("xpq_queue_pt_switch: 0x%" PRIx64 " 0x%" PRIx64 "\n",
    286 	    (int64_t)pa, (int64_t)pa));
    287 	op.cmd = MMUEXT_NEW_BASEPTR;
    288 	op.arg1.mfn = pa >> PAGE_SHIFT;
    289 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    290 		panic("xpq_queue_pt_switch");
    291 }
    292 
    293 void
    294 xpq_queue_pin_table(paddr_t pa, int lvl)
    295 {
    296 	struct mmuext_op op;
    297 
    298 	xpq_flush_queue();
    299 
    300 	XENPRINTK2(("xpq_queue_pin_l%d_table: %#" PRIxPADDR "\n",
    301 	    lvl + 1, pa));
    302 
    303 	op.arg1.mfn = pa >> PAGE_SHIFT;
    304 	op.cmd = lvl;
    305 
    306 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    307 		panic("xpq_queue_pin_table");
    308 }
    309 
    310 void
    311 xpq_queue_unpin_table(paddr_t pa)
    312 {
    313 	struct mmuext_op op;
    314 
    315 	xpq_flush_queue();
    316 
    317 	XENPRINTK2(("xpq_queue_unpin_table: %#" PRIxPADDR "\n", pa));
    318 	op.arg1.mfn = pa >> PAGE_SHIFT;
    319 	op.cmd = MMUEXT_UNPIN_TABLE;
    320 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    321 		panic("xpq_queue_unpin_table");
    322 }
    323 
    324 void
    325 xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
    326 {
    327 	struct mmuext_op op;
    328 
    329 	xpq_flush_queue();
    330 
    331 	XENPRINTK2(("xpq_queue_set_ldt\n"));
    332 	KASSERT(va == (va & ~PAGE_MASK));
    333 	op.cmd = MMUEXT_SET_LDT;
    334 	op.arg1.linear_addr = va;
    335 	op.arg2.nr_ents = entries;
    336 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    337 		panic("xpq_queue_set_ldt");
    338 }
    339 
    340 void
    341 xpq_queue_tlb_flush(void)
    342 {
    343 	struct mmuext_op op;
    344 
    345 	xpq_flush_queue();
    346 
    347 	XENPRINTK2(("xpq_queue_tlb_flush\n"));
    348 	op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
    349 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    350 		panic("xpq_queue_tlb_flush");
    351 }
    352 
    353 void
    354 xpq_flush_cache(void)
    355 {
    356 	int s = splvm();
    357 
    358 	xpq_flush_queue();
    359 
    360 	XENPRINTK2(("xpq_queue_flush_cache\n"));
    361 	asm("wbinvd":::"memory");
    362 	splx(s); /* XXX: removeme */
    363 }
    364 
    365 void
    366 xpq_queue_invlpg(vaddr_t va)
    367 {
    368 	struct mmuext_op op;
    369 	xpq_flush_queue();
    370 
    371 	XENPRINTK2(("xpq_queue_invlpg %#" PRIxVADDR "\n", va));
    372 	op.cmd = MMUEXT_INVLPG_LOCAL;
    373 	op.arg1.linear_addr = (va & ~PAGE_MASK);
    374 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    375 		panic("xpq_queue_invlpg");
    376 }
    377 
    378 void
    379 xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
    380 {
    381 	xcpumask_t xcpumask;
    382 	mmuext_op_t op;
    383 
    384 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    385 
    386 	/* Flush pending page updates */
    387 	xpq_flush_queue();
    388 
    389 	op.cmd = MMUEXT_INVLPG_MULTI;
    390 	op.arg1.linear_addr = va;
    391 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    392 
    393 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    394 		panic("xpq_queue_invlpg_all");
    395 	}
    396 
    397 	return;
    398 }
    399 
    400 void
    401 xen_bcast_invlpg(vaddr_t va)
    402 {
    403 	mmuext_op_t op;
    404 
    405 	/* Flush pending page updates */
    406 	xpq_flush_queue();
    407 
    408 	op.cmd = MMUEXT_INVLPG_ALL;
    409 	op.arg1.linear_addr = va;
    410 
    411 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    412 		panic("xpq_queue_invlpg_all");
    413 	}
    414 
    415 	return;
    416 }
    417 
    418 /* This is a synchronous call. */
    419 void
    420 xen_mcast_tlbflush(kcpuset_t *kc)
    421 {
    422 	xcpumask_t xcpumask;
    423 	mmuext_op_t op;
    424 
    425 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    426 
    427 	/* Flush pending page updates */
    428 	xpq_flush_queue();
    429 
    430 	op.cmd = MMUEXT_TLB_FLUSH_MULTI;
    431 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    432 
    433 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    434 		panic("xpq_queue_invlpg_all");
    435 	}
    436 
    437 	return;
    438 }
    439 
    440 /* This is a synchronous call. */
    441 void
    442 xen_bcast_tlbflush(void)
    443 {
    444 	mmuext_op_t op;
    445 
    446 	/* Flush pending page updates */
    447 	xpq_flush_queue();
    448 
    449 	op.cmd = MMUEXT_TLB_FLUSH_ALL;
    450 
    451 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    452 		panic("xpq_queue_invlpg_all");
    453 	}
    454 
    455 	return;
    456 }
    457 
    458 /* This is a synchronous call. */
    459 void
    460 xen_vcpu_mcast_invlpg(vaddr_t sva, vaddr_t eva, kcpuset_t *kc)
    461 {
    462 	KASSERT(eva > sva);
    463 
    464 	/* Flush pending page updates */
    465 	xpq_flush_queue();
    466 
    467 	/* Align to nearest page boundary */
    468 	sva &= ~PAGE_MASK;
    469 	eva &= ~PAGE_MASK;
    470 
    471 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    472 		xen_mcast_invlpg(sva, kc);
    473 	}
    474 
    475 	return;
    476 }
    477 
    478 /* This is a synchronous call. */
    479 void
    480 xen_vcpu_bcast_invlpg(vaddr_t sva, vaddr_t eva)
    481 {
    482 	KASSERT(eva > sva);
    483 
    484 	/* Flush pending page updates */
    485 	xpq_flush_queue();
    486 
    487 	/* Align to nearest page boundary */
    488 	sva &= ~PAGE_MASK;
    489 	eva &= ~PAGE_MASK;
    490 
    491 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    492 		xen_bcast_invlpg(sva);
    493 	}
    494 
    495 	return;
    496 }
    497 
    498 /* Copy a page */
    499 void
    500 xen_copy_page(paddr_t srcpa, paddr_t dstpa)
    501 {
    502 	mmuext_op_t op;
    503 
    504 	op.cmd = MMUEXT_COPY_PAGE;
    505 	op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
    506 	op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
    507 
    508 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    509 		panic(__func__);
    510 	}
    511 }
    512 
    513 /* Zero a physical page */
    514 void
    515 xen_pagezero(paddr_t pa)
    516 {
    517 	mmuext_op_t op;
    518 
    519 	op.cmd = MMUEXT_CLEAR_PAGE;
    520 	op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
    521 
    522 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    523 		panic(__func__);
    524 	}
    525 }
    526 
    527 int
    528 xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
    529 {
    530 	mmu_update_t op;
    531 	int ok;
    532 
    533 	xpq_flush_queue();
    534 
    535 	op.ptr = ptr;
    536 	op.val = val;
    537 	if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
    538 		return EFAULT;
    539 	return (0);
    540 }
    541 
    542 #ifdef XENDEBUG
    543 void
    544 xpq_debug_dump(void)
    545 {
    546 	int i;
    547 
    548 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    549 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    550 
    551 	XENPRINTK2(("idx: %d\n", xpq_idx));
    552 	for (i = 0; i < xpq_idx; i++) {
    553 		snprintf(XBUF, sizeof(XBUF), "%" PRIx64 " %08" PRIx64,
    554 		    xpq_queue[i].ptr, xpq_queue[i].val);
    555 		if (++i < xpq_idx)
    556 			snprintf(XBUF + strlen(XBUF),
    557 			    sizeof(XBUF) - strlen(XBUF),
    558 			    "%" PRIx64 " %08" PRIx64,
    559 			    xpq_queue[i].ptr, xpq_queue[i].val);
    560 		if (++i < xpq_idx)
    561 			snprintf(XBUF + strlen(XBUF),
    562 			    sizeof(XBUF) - strlen(XBUF),
    563 			    "%" PRIx64 " %08" PRIx64,
    564 			    xpq_queue[i].ptr, xpq_queue[i].val);
    565 		if (++i < xpq_idx)
    566 			snprintf(XBUF + strlen(XBUF),
    567 			    sizeof(XBUF) - strlen(XBUF),
    568 			    "%" PRIx64 " %08" PRIx64,
    569 			    xpq_queue[i].ptr, xpq_queue[i].val);
    570 		XENPRINTK2(("%d: %s\n", xpq_idx, XBUF));
    571 	}
    572 }
    573 #endif
    574 
    575 
    576 #if L2_SLOT_KERNBASE > 0
    577 #define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
    578 #else
    579 #define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
    580 #endif
    581 
    582 #ifdef PAE
    583 /*
    584  * For PAE, we consider a single contigous L2 "superpage" of 4 pages, all of
    585  * them mapped by the L3 page. We also need a shadow page for L3[3].
    586  */
    587 static const int l2_4_count = 6;
    588 #elif defined(__x86_64__)
    589 static const int l2_4_count = PTP_LEVELS;
    590 #else
    591 static const int l2_4_count = PTP_LEVELS - 1;
    592 #endif
    593 
    594 /*
    595  * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
    596  * tables.
    597  */
    598 vaddr_t
    599 xen_locore(void)
    600 {
    601 	size_t count, oldcount, mapsize;
    602 	vaddr_t bootstrap_tables, init_tables;
    603 
    604 	xen_init_features();
    605 
    606 	memset(xpq_idx_array, 0, sizeof(xpq_idx_array));
    607 
    608 	xpmap_phys_to_machine_mapping =
    609 	    (unsigned long *)xen_start_info.mfn_list;
    610 
    611 	/* Space after Xen boostrap tables should be free */
    612 	init_tables = xen_start_info.pt_base;
    613 	bootstrap_tables = init_tables +
    614 	    (xen_start_info.nr_pt_frames * PAGE_SIZE);
    615 
    616 	/*
    617 	 * Calculate how much space we need. First, everything mapped before
    618 	 * the Xen bootstrap tables.
    619 	 */
    620 	mapsize = init_tables - KERNTEXTOFF;
    621 	/* after the tables we'll have:
    622 	 *  - UAREA
    623 	 *  - dummy user PGD (x86_64)
    624 	 *  - HYPERVISOR_shared_info
    625 	 *  - early_zerop
    626 	 *  - ISA I/O mem (if needed)
    627 	 */
    628 	mapsize += UPAGES * PAGE_SIZE;
    629 #ifdef __x86_64__
    630 	mapsize += PAGE_SIZE;
    631 #endif
    632 	mapsize += PAGE_SIZE;
    633 	mapsize += PAGE_SIZE;
    634 #ifdef DOM0OPS
    635 	if (xendomain_is_dom0()) {
    636 		mapsize += IOM_SIZE;
    637 	}
    638 #endif
    639 
    640 	/*
    641 	 * At this point, mapsize doesn't include the table size.
    642 	 */
    643 #ifdef __x86_64__
    644 	count = TABLE_L2_ENTRIES;
    645 #else
    646 	count = (mapsize + (NBPD_L2 -1)) >> L2_SHIFT;
    647 #endif
    648 
    649 	/*
    650 	 * Now compute how many L2 pages we need exactly. This is useful only
    651 	 * on i386, since the initial count for amd64 is already enough.
    652 	 */
    653 	while (mapsize + (count + l2_4_count) * PAGE_SIZE + KERNTEXTOFF >
    654 	    (count << L2_SHIFT) + KERNBASE) {
    655 		count++;
    656 	}
    657 
    658 #ifndef __x86_64__
    659 	/*
    660 	 * One more L2 page: we'll allocate several pages after kva_start
    661 	 * in pmap_bootstrap() before pmap_growkernel(), which have not been
    662 	 * counted here. It's not a big issue to allocate one more L2 as
    663 	 * pmap_growkernel() will be called anyway.
    664 	 */
    665 	count++;
    666 	nkptp[1] = count;
    667 #endif
    668 
    669 	/*
    670 	 * Install bootstrap pages. We may need more L2 pages than will
    671 	 * have the final table here, as it's installed after the final table.
    672 	 */
    673 	oldcount = count;
    674 
    675 bootstrap_again:
    676 
    677 	/*
    678 	 * Xen space we'll reclaim may not be enough for our new page tables,
    679 	 * move bootstrap tables if necessary.
    680 	 */
    681 	if (bootstrap_tables < init_tables + ((count + l2_4_count) * PAGE_SIZE))
    682 		bootstrap_tables = init_tables +
    683 		    ((count + l2_4_count) * PAGE_SIZE);
    684 
    685 	/* Make sure we have enough to map the bootstrap tables. */
    686 	if (bootstrap_tables + ((oldcount + l2_4_count) * PAGE_SIZE) >
    687 	    (oldcount << L2_SHIFT) + KERNBASE) {
    688 		oldcount++;
    689 		goto bootstrap_again;
    690 	}
    691 
    692 	/* Create temporary tables */
    693 	xen_bootstrap_tables(init_tables, bootstrap_tables,
    694 	    xen_start_info.nr_pt_frames, oldcount, 0);
    695 
    696 	/* Create final tables */
    697 	xen_bootstrap_tables(bootstrap_tables, init_tables,
    698 	    oldcount + l2_4_count, count, 1);
    699 
    700 	/* Zero out free space after tables */
    701 	memset((void *)(init_tables + ((count + l2_4_count) * PAGE_SIZE)), 0,
    702 	    (UPAGES + 1) * PAGE_SIZE);
    703 
    704 	/* Finally, flush TLB. */
    705 	xpq_queue_tlb_flush();
    706 
    707 	return (init_tables + ((count + l2_4_count) * PAGE_SIZE));
    708 }
    709 
    710 /*
    711  * Build a new table and switch to it.
    712  * old_count is # of old tables (including PGD, PDTPE and PDE).
    713  * new_count is # of new tables (PTE only).
    714  * We assume the areas don't overlap.
    715  */
    716 static void
    717 xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
    718     size_t new_count, int final)
    719 {
    720 	pd_entry_t *pdtpe, *pde, *pte;
    721 	pd_entry_t *bt_pgd;
    722 	paddr_t addr;
    723 	vaddr_t page, avail, map_end;
    724 	int i;
    725 	extern char __rodata_start;
    726 	extern char __data_start;
    727 	extern char __kernel_end;
    728 	extern char *early_zerop; /* from pmap.c */
    729 	pt_entry_t pg_nx;
    730 	u_int descs[4];
    731 
    732 	/*
    733 	 * Set the NX/XD bit, if available. descs[3] = %edx.
    734 	 */
    735 	x86_cpuid(0x80000001, descs);
    736 	pg_nx = (descs[3] & CPUID_NOX) ? PG_NX : 0;
    737 
    738 	/*
    739 	 * Size of RW area after the kernel image:
    740 	 *     xencons_interface (if present)
    741 	 *     xenstore_interface (if present)
    742 	 *     table pages (new_count + l2_4_count entries)
    743 	 * Extra mappings (only when final is true):
    744 	 *     UAREA
    745 	 *     dummy user PGD (x86_64 only) / GDT page (i386 only)
    746 	 *     HYPERVISOR_shared_info
    747 	 *     early_zerop
    748 	 *     ISA I/O mem (if needed)
    749 	 */
    750 	map_end = new_pgd + ((new_count + l2_4_count) * PAGE_SIZE);
    751 	if (final) {
    752 		map_end += (UPAGES + 1) * PAGE_SIZE;
    753 		HYPERVISOR_shared_info = (shared_info_t *)map_end;
    754 		map_end += PAGE_SIZE;
    755 		early_zerop = (char *)map_end;
    756 		map_end += PAGE_SIZE;
    757 	}
    758 
    759 	/*
    760 	 * We always set atdevbase, as it's used by init386 to find the first
    761 	 * available VA. map_end is updated only if we are dom0, so
    762 	 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
    763 	 * this case.
    764 	 */
    765 	if (final)
    766 		atdevbase = map_end;
    767 #ifdef DOM0OPS
    768 	if (final && xendomain_is_dom0()) {
    769 		/* ISA I/O mem */
    770 		map_end += IOM_SIZE;
    771 	}
    772 #endif
    773 
    774 	__PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
    775 	__PRINTK(("console %#lx ", xen_start_info.console_mfn));
    776 	__PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
    777 
    778 	/*
    779 	 * Create bootstrap page tables. What we need:
    780 	 * - a PGD (level 4)
    781 	 * - a PDTPE (level 3)
    782 	 * - a PDE (level 2)
    783 	 * - some PTEs (level 1)
    784 	 */
    785 
    786 	bt_pgd = (pd_entry_t *)new_pgd;
    787 	memset(bt_pgd, 0, PAGE_SIZE);
    788 	avail = new_pgd + PAGE_SIZE;
    789 
    790 #if PTP_LEVELS > 3
    791 	/* Per-cpu L4 */
    792 	pd_entry_t *bt_cpu_pgd = bt_pgd;
    793 	/* pmap_kernel() "shadow" L4 */
    794 	bt_pgd = (pd_entry_t *)avail;
    795 	memset(bt_pgd, 0, PAGE_SIZE);
    796 	avail += PAGE_SIZE;
    797 
    798 	/* Install L3 */
    799 	pdtpe = (pd_entry_t *)avail;
    800 	memset(pdtpe, 0, PAGE_SIZE);
    801 	avail += PAGE_SIZE;
    802 
    803 	addr = ((u_long)pdtpe) - KERNBASE;
    804 	bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
    805 	    xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
    806 #else
    807 	pdtpe = bt_pgd;
    808 #endif
    809 
    810 #if PTP_LEVELS > 2
    811 	/* Level 2 */
    812 	pde = (pd_entry_t *)avail;
    813 	memset(pde, 0, PAGE_SIZE);
    814 	avail += PAGE_SIZE;
    815 
    816 	addr = ((u_long)pde) - KERNBASE;
    817 	pdtpe[pl3_pi(KERNTEXTOFF)] =
    818 	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
    819 #elif defined(PAE)
    820 	/* Our PAE-style level 2: 5 contigous pages (4 L2 + 1 shadow) */
    821 	pde = (pd_entry_t *)avail;
    822 	memset(pde, 0, PAGE_SIZE * 5);
    823 	avail += PAGE_SIZE * 5;
    824 	addr = ((u_long)pde) - KERNBASE;
    825 
    826 	/*
    827 	 * Enter L2 pages in L3. The real L2 kernel PD will be the last one
    828 	 * (so that pde[L2_SLOT_KERN] always points to the shadow).
    829 	 */
    830 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    831 		/*
    832 		 * Xen doesn't want RW mappings in L3 entries, it'll add it
    833 		 * itself.
    834 		 */
    835 		pdtpe[i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    836 	}
    837 	addr += PAGE_SIZE;
    838 	pdtpe[3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    839 #else
    840 	pde = bt_pgd;
    841 #endif
    842 
    843 	/* Level 1 */
    844 	page = KERNTEXTOFF;
    845 	for (i = 0; i < new_count; i ++) {
    846 		vaddr_t cur_page = page;
    847 
    848 		pte = (pd_entry_t *)avail;
    849 		avail += PAGE_SIZE;
    850 
    851 		memset(pte, 0, PAGE_SIZE);
    852 		while (pl2_pi(page) == pl2_pi(cur_page)) {
    853 			if (page >= map_end) {
    854 				/* not mapped at all */
    855 				pte[pl1_pi(page)] = 0;
    856 				page += PAGE_SIZE;
    857 				continue;
    858 			}
    859 			pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
    860 			if (page == (vaddr_t)HYPERVISOR_shared_info) {
    861 				pte[pl1_pi(page)] = xen_start_info.shared_info;
    862 			}
    863 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    864 			    == xen_start_info.console.domU.mfn) {
    865 				xencons_interface = (void *)page;
    866 				pte[pl1_pi(page)] = xen_start_info.console_mfn;
    867 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    868 			}
    869 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    870 			    == xen_start_info.store_mfn) {
    871 				xenstore_interface = (void *)page;
    872 				pte[pl1_pi(page)] = xen_start_info.store_mfn;
    873 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    874 			}
    875 #ifdef DOM0OPS
    876 			if (page >= (vaddr_t)atdevbase &&
    877 			    page < (vaddr_t)atdevbase + IOM_SIZE) {
    878 				pte[pl1_pi(page)] =
    879 				    IOM_BEGIN + (page - (vaddr_t)atdevbase);
    880 				pte[pl1_pi(page)] |= pg_nx;
    881 			}
    882 #endif
    883 
    884 			pte[pl1_pi(page)] |= PG_k | PG_V;
    885 			if (page < (vaddr_t)&__rodata_start) {
    886 				/* Map the kernel text RX. */
    887 				pte[pl1_pi(page)] |= PG_RO;
    888 			} else if (page >= (vaddr_t)&__rodata_start &&
    889 			    page < (vaddr_t)&__data_start) {
    890 				/* Map the kernel rodata R. */
    891 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    892 			} else if (page >= old_pgd &&
    893 			    page < old_pgd + (old_count * PAGE_SIZE)) {
    894 				/* Map the old page tables R. */
    895 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    896 			} else if (page >= new_pgd &&
    897 			    page < new_pgd + ((new_count + l2_4_count) * PAGE_SIZE)) {
    898 				/* Map the new page tables R. */
    899 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    900 #ifdef i386
    901 			} else if (page == (vaddr_t)tmpgdt) {
    902 				/*
    903 				 * Map bootstrap gdt R/O. Later, we will re-add
    904 				 * this page to uvm after making it writable.
    905 				 */
    906 				pte[pl1_pi(page)] = 0;
    907 				page += PAGE_SIZE;
    908 				continue;
    909 #endif
    910 			} else if (page >= (vaddr_t)&__data_start &&
    911 			    page < (vaddr_t)&__kernel_end) {
    912 				/* Map the kernel data+bss RW. */
    913 				pte[pl1_pi(page)] |= PG_RW | pg_nx;
    914 			} else {
    915 				/* Map the page RW. */
    916 				pte[pl1_pi(page)] |= PG_RW | pg_nx;
    917 			}
    918 
    919 			page += PAGE_SIZE;
    920 		}
    921 
    922 		addr = ((u_long)pte) - KERNBASE;
    923 		pde[pl2_pi(cur_page)] =
    924 		    xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
    925 
    926 		/* Mark readonly */
    927 		xen_bt_set_readonly((vaddr_t)pte);
    928 	}
    929 
    930 	/* Install recursive page tables mapping */
    931 #ifdef PAE
    932 	/*
    933 	 * We need a shadow page for the kernel's L2 page.
    934 	 * The real L2 kernel PD will be the last one (so that
    935 	 * pde[L2_SLOT_KERN] always points to the shadow).
    936 	 */
    937 	memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
    938 	cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
    939 	cpu_info_primary.ci_kpm_pdirpa =
    940 	    (vaddr_t) cpu_info_primary.ci_kpm_pdir - KERNBASE;
    941 
    942 	/*
    943 	 * We don't enter a recursive entry from the L3 PD. Instead, we enter
    944 	 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
    945 	 * have to enter the shadow after switching %cr3, or Xen will refcount
    946 	 * some PTEs with the wrong type.
    947 	 */
    948 	addr = (u_long)pde - KERNBASE;
    949 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    950 		pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_k | PG_V |
    951 		    pg_nx;
    952 		__PRINTK(("pde[%d] va %#" PRIxVADDR " pa %#" PRIxPADDR
    953 		    " entry %#" PRIxPADDR "\n",
    954 		    (int)(PDIR_SLOT_PTE + i), pde + PAGE_SIZE * i,
    955 		    addr, pde[PDIR_SLOT_PTE + i]));
    956 	}
    957 #if 0
    958 	addr += PAGE_SIZE; /* point to shadow L2 */
    959 	pde[PDIR_SLOT_PTE + 3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    960 	__PRINTK(("pde[%d] va 0x%lx pa 0x%lx entry 0x%" PRIx64 "\n",
    961 	    (int)(PDIR_SLOT_PTE + 3), pde + PAGE_SIZE * 4, (long)addr,
    962 	    (int64_t)pde[PDIR_SLOT_PTE + 3]));
    963 #endif
    964 	/* Mark tables RO, and pin the kernel's shadow as L2 */
    965 	addr = (u_long)pde - KERNBASE;
    966 	for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
    967 		xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
    968 #if 0
    969 		if (i == 2 || i == 3)
    970 			continue;
    971 		__PRINTK(("pin L2 %d addr 0x%" PRIx64 "\n", i, (int64_t)addr));
    972 		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    973 #endif
    974 	}
    975 	if (final) {
    976 		addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
    977 		__PRINTK(("pin L2 %d addr %#" PRIxPADDR "\n", 2, addr));
    978 		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    979 	}
    980 #if 0
    981 	addr = (u_long)pde - KERNBASE + 2 * PAGE_SIZE;
    982 	__PRINTK(("pin L2 %d addr 0x%" PRIx64 "\n", 2, (int64_t)addr));
    983 	xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    984 #endif
    985 #else /* PAE */
    986 
    987 	/* Recursive entry in pmap_kernel(). */
    988 	bt_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_pgd - KERNBASE)
    989 	    | PG_k | PG_RO | PG_V | pg_nx;
    990 #ifdef __x86_64__
    991 	/* Recursive entry in higher-level per-cpu PD. */
    992 	bt_cpu_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_cpu_pgd - KERNBASE)
    993 	    | PG_k | PG_RO | PG_V | pg_nx;
    994 #endif
    995 	__PRINTK(("bt_pgd[PDIR_SLOT_PTE] va %#" PRIxVADDR " pa %#" PRIxPADDR
    996 	    " entry %#" PRIxPADDR "\n", new_pgd, (paddr_t)new_pgd - KERNBASE,
    997 	    bt_pgd[PDIR_SLOT_PTE]));
    998 
    999 	/* Mark tables RO */
   1000 	xen_bt_set_readonly((vaddr_t)pde);
   1001 #endif
   1002 #if PTP_LEVELS > 2 || defined(PAE)
   1003 	xen_bt_set_readonly((vaddr_t)pdtpe);
   1004 #endif
   1005 #if PTP_LEVELS > 3
   1006 	xen_bt_set_readonly(new_pgd);
   1007 #endif
   1008 
   1009 	/* Pin the PGD */
   1010 	__PRINTK(("pin PGD: %"PRIxVADDR"\n", new_pgd - KERNBASE));
   1011 #ifdef __x86_64__
   1012 	xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1013 #elif PAE
   1014 	xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1015 #else
   1016 	xpq_queue_pin_l2_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1017 #endif
   1018 
   1019 	/* Save phys. addr of PDP, for libkvm. */
   1020 #ifdef PAE
   1021 	PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
   1022 #else
   1023 	PDPpaddr = (u_long)bt_pgd - KERNBASE;
   1024 #endif
   1025 
   1026 	/* Switch to new tables */
   1027 	__PRINTK(("switch to PGD\n"));
   1028 	xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
   1029 	__PRINTK(("bt_pgd[PDIR_SLOT_PTE] now entry %#" PRIxPADDR "\n",
   1030 	    bt_pgd[PDIR_SLOT_PTE]));
   1031 
   1032 #ifdef PAE
   1033 	if (final) {
   1034 		/* Save the address of the L3 page */
   1035 		cpu_info_primary.ci_pae_l3_pdir = pdtpe;
   1036 		cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
   1037 
   1038 		/* Now enter the kernel's PTE mappings */
   1039 		addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
   1040 		xpq_queue_pte_update(
   1041 		    xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
   1042 		    xpmap_ptom_masked(addr) | PG_k | PG_V);
   1043 		xpq_flush_queue();
   1044 	}
   1045 #elif defined(__x86_64__)
   1046 	if (final) {
   1047 		/* Save the address of the real per-cpu L4 pgd page */
   1048 		cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
   1049 		cpu_info_primary.ci_kpm_pdirpa = ((paddr_t) bt_cpu_pgd - KERNBASE);
   1050 	}
   1051 #endif
   1052 	__USE(pdtpe);
   1053 
   1054 	/* Now we can safely reclaim space taken by old tables */
   1055 
   1056 	__PRINTK(("unpin old PGD\n"));
   1057 	/* Unpin old PGD */
   1058 	xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
   1059 	/* Mark old tables RW */
   1060 	page = old_pgd;
   1061 	addr = (paddr_t)pde[pl2_pi(page)] & PG_FRAME;
   1062 	addr = xpmap_mtop(addr);
   1063 	pte = (pd_entry_t *)((u_long)addr + KERNBASE);
   1064 	pte += pl1_pi(page);
   1065 	__PRINTK(("*pde %#" PRIxPADDR " addr %#" PRIxPADDR " pte %#lx\n",
   1066 	    pde[pl2_pi(page)], addr, (long)pte));
   1067 	while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
   1068 		addr = xpmap_ptom(((u_long) pte) - KERNBASE);
   1069 		XENPRINTK(("addr %#" PRIxPADDR " pte %#lx "
   1070 		   "*pte %#" PRIxPADDR "\n",
   1071 		   addr, (long)pte, *pte));
   1072 		xpq_queue_pte_update(addr, *pte | PG_RW);
   1073 		page += PAGE_SIZE;
   1074 		/*
   1075 		 * Our PTEs are contiguous so it's safe to just "++" here.
   1076 		 */
   1077 		pte++;
   1078 	}
   1079 	xpq_flush_queue();
   1080 }
   1081 
   1082 
   1083 /*
   1084  * Bootstrap helper functions
   1085  */
   1086 
   1087 /*
   1088  * Mark a page readonly
   1089  * XXX: assuming vaddr = paddr + KERNBASE
   1090  */
   1091 
   1092 static void
   1093 xen_bt_set_readonly(vaddr_t page)
   1094 {
   1095 	pt_entry_t entry;
   1096 
   1097 	entry = xpmap_ptom_masked(page - KERNBASE);
   1098 	entry |= PG_k | PG_V;
   1099 
   1100 	HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
   1101 }
   1102 
   1103 #ifdef __x86_64__
   1104 void
   1105 xen_set_user_pgd(paddr_t page)
   1106 {
   1107 	struct mmuext_op op;
   1108 	int s = splvm();
   1109 
   1110 	xpq_flush_queue();
   1111 	op.cmd = MMUEXT_NEW_USER_BASEPTR;
   1112 	op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
   1113 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
   1114 		panic("xen_set_user_pgd: failed to install new user page"
   1115 			" directory %#" PRIxPADDR, page);
   1116 	splx(s);
   1117 }
   1118 #endif /* __x86_64__ */
   1119