Home | History | Annotate | Line # | Download | only in x86
x86_xpmap.c revision 1.67
      1 /*	$NetBSD: x86_xpmap.c,v 1.67 2016/11/15 17:01:12 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2006 Mathieu Ropert <mro (at) adviseo.fr>
      5  *
      6  * Permission to use, copy, modify, and distribute this software for any
      7  * purpose with or without fee is hereby granted, provided that the above
      8  * copyright notice and this permission notice appear in all copies.
      9  *
     10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     17  */
     18 
     19 /*
     20  * Copyright (c) 2006, 2007 Manuel Bouyer.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the above copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  *
     31  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     32  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     34  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     37  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     38  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     39  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     40  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     41  */
     42 
     43 /*
     44  * Copyright (c) 2004 Christian Limpach.
     45  * All rights reserved.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.67 2016/11/15 17:01:12 maxv Exp $");
     70 
     71 #include "opt_xen.h"
     72 #include "opt_ddb.h"
     73 #include "ksyms.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/mutex.h>
     78 #include <sys/cpu.h>
     79 
     80 #include <uvm/uvm.h>
     81 
     82 #include <x86/pmap.h>
     83 #include <machine/gdt.h>
     84 #include <xen/xenfunc.h>
     85 
     86 #include <dev/isa/isareg.h>
     87 #include <machine/isa_machdep.h>
     88 
     89 #undef	XENDEBUG
     90 /* #define XENDEBUG_SYNC */
     91 
     92 #ifdef XENDEBUG
     93 #define	XENPRINTF(x) printf x
     94 #define	XENPRINTK2(x) /* printk x */
     95 static char XBUF[256];
     96 #else
     97 #define	XENPRINTF(x)
     98 #define	XENPRINTK2(x)
     99 #endif
    100 
    101 volatile shared_info_t *HYPERVISOR_shared_info;
    102 /* Xen requires the start_info struct to be page aligned */
    103 union start_info_union start_info_union __aligned(PAGE_SIZE);
    104 unsigned long *xpmap_phys_to_machine_mapping;
    105 kmutex_t pte_lock;
    106 
    107 void xen_failsafe_handler(void);
    108 
    109 #define HYPERVISOR_mmu_update_self(req, count, success_count) \
    110 	HYPERVISOR_mmu_update((req), (count), (success_count), DOMID_SELF)
    111 
    112 extern volatile struct xencons_interface *xencons_interface; /* XXX */
    113 extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
    114 
    115 static void xen_bt_set_readonly(vaddr_t);
    116 static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
    117 
    118 vaddr_t xen_locore(void);
    119 
    120 /*
    121  * kcpuset internally uses an array of uint32_t while xen uses an array of
    122  * u_long. As we're little-endian we can cast one to the other.
    123  */
    124 typedef union {
    125 #ifdef _LP64
    126 	uint32_t xcpum_km[2];
    127 #else
    128 	uint32_t xcpum_km[1];
    129 #endif
    130 	u_long xcpum_xm;
    131 } xcpumask_t;
    132 
    133 void
    134 xen_failsafe_handler(void)
    135 {
    136 
    137 	panic("xen_failsafe_handler called!\n");
    138 }
    139 
    140 void
    141 xen_set_ldt(vaddr_t base, uint32_t entries)
    142 {
    143 	vaddr_t va;
    144 	vaddr_t end;
    145 	pt_entry_t *ptp;
    146 	int s;
    147 
    148 #ifdef __x86_64__
    149 	end = base + (entries << 3);
    150 #else
    151 	end = base + entries * sizeof(union descriptor);
    152 #endif
    153 
    154 	for (va = base; va < end; va += PAGE_SIZE) {
    155 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
    156 		ptp = kvtopte(va);
    157 		XENPRINTF(("xen_set_ldt %#" PRIxVADDR " %d %p\n",
    158 		    base, entries, ptp));
    159 		pmap_pte_clearbits(ptp, PG_RW);
    160 	}
    161 	s = splvm();
    162 	xpq_queue_set_ldt(base, entries);
    163 	splx(s);
    164 }
    165 
    166 #ifdef XENDEBUG
    167 void xpq_debug_dump(void);
    168 #endif
    169 
    170 #define XPQUEUE_SIZE 2048
    171 static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
    172 static int xpq_idx_array[MAXCPUS];
    173 
    174 #ifdef i386
    175 extern union descriptor tmpgdt[];
    176 #endif
    177 
    178 void
    179 xpq_flush_queue(void)
    180 {
    181 	int i, ok = 0, ret;
    182 
    183 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    184 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    185 
    186 	XENPRINTK2(("flush queue %p entries %d\n", xpq_queue, xpq_idx));
    187 	for (i = 0; i < xpq_idx; i++)
    188 		XENPRINTK2(("%d: 0x%08" PRIx64 " 0x%08" PRIx64 "\n", i,
    189 		    xpq_queue[i].ptr, xpq_queue[i].val));
    190 
    191 retry:
    192 	ret = HYPERVISOR_mmu_update_self(xpq_queue, xpq_idx, &ok);
    193 
    194 	if (xpq_idx != 0 && ret < 0) {
    195 		struct cpu_info *ci;
    196 		CPU_INFO_ITERATOR cii;
    197 
    198 		printf("xpq_flush_queue: %d entries (%d successful) on "
    199 		    "cpu%d (%ld)\n",
    200 		    xpq_idx, ok, curcpu()->ci_index, curcpu()->ci_cpuid);
    201 
    202 		if (ok != 0) {
    203 			xpq_queue += ok;
    204 			xpq_idx -= ok;
    205 			ok = 0;
    206 			goto retry;
    207 		}
    208 
    209 		for (CPU_INFO_FOREACH(cii, ci)) {
    210 			xpq_queue = xpq_queue_array[ci->ci_cpuid];
    211 			xpq_idx = xpq_idx_array[ci->ci_cpuid];
    212 			printf("cpu%d (%ld):\n", ci->ci_index, ci->ci_cpuid);
    213 			for (i = 0; i < xpq_idx; i++) {
    214 				printf("  0x%016" PRIx64 ": 0x%016" PRIx64 "\n",
    215 				   xpq_queue[i].ptr, xpq_queue[i].val);
    216 			}
    217 #ifdef __x86_64__
    218 			for (i = 0; i < PDIR_SLOT_PTE; i++) {
    219 				if (ci->ci_kpm_pdir[i] == 0)
    220 					continue;
    221 				printf(" kpm_pdir[%d]: 0x%" PRIx64 "\n",
    222 				    i, ci->ci_kpm_pdir[i]);
    223 			}
    224 #endif
    225 		}
    226 		panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
    227 	}
    228 	xpq_idx_array[curcpu()->ci_cpuid] = 0;
    229 }
    230 
    231 static inline void
    232 xpq_increment_idx(void)
    233 {
    234 
    235 	if (__predict_false(++xpq_idx_array[curcpu()->ci_cpuid] == XPQUEUE_SIZE))
    236 		xpq_flush_queue();
    237 }
    238 
    239 void
    240 xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
    241 {
    242 
    243 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    244 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    245 
    246 	XENPRINTK2(("xpq_queue_machphys_update ma=0x%" PRIx64 " pa=0x%" PRIx64
    247 	    "\n", (int64_t)ma, (int64_t)pa));
    248 
    249 	xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
    250 	xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
    251 	xpq_increment_idx();
    252 #ifdef XENDEBUG_SYNC
    253 	xpq_flush_queue();
    254 #endif
    255 }
    256 
    257 void
    258 xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
    259 {
    260 
    261 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    262 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    263 
    264 	KASSERT((ptr & 3) == 0);
    265 	xpq_queue[xpq_idx].ptr = (paddr_t)ptr | MMU_NORMAL_PT_UPDATE;
    266 	xpq_queue[xpq_idx].val = val;
    267 	xpq_increment_idx();
    268 #ifdef XENDEBUG_SYNC
    269 	xpq_flush_queue();
    270 #endif
    271 }
    272 
    273 void
    274 xpq_queue_pt_switch(paddr_t pa)
    275 {
    276 	struct mmuext_op op;
    277 	xpq_flush_queue();
    278 
    279 	XENPRINTK2(("xpq_queue_pt_switch: 0x%" PRIx64 " 0x%" PRIx64 "\n",
    280 	    (int64_t)pa, (int64_t)pa));
    281 	op.cmd = MMUEXT_NEW_BASEPTR;
    282 	op.arg1.mfn = pa >> PAGE_SHIFT;
    283 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    284 		panic("xpq_queue_pt_switch");
    285 }
    286 
    287 void
    288 xpq_queue_pin_table(paddr_t pa, int lvl)
    289 {
    290 	struct mmuext_op op;
    291 
    292 	xpq_flush_queue();
    293 
    294 	XENPRINTK2(("xpq_queue_pin_l%d_table: %#" PRIxPADDR "\n",
    295 	    lvl + 1, pa));
    296 
    297 	op.arg1.mfn = pa >> PAGE_SHIFT;
    298 	op.cmd = lvl;
    299 
    300 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    301 		panic("xpq_queue_pin_table");
    302 }
    303 
    304 void
    305 xpq_queue_unpin_table(paddr_t pa)
    306 {
    307 	struct mmuext_op op;
    308 
    309 	xpq_flush_queue();
    310 
    311 	XENPRINTK2(("xpq_queue_unpin_table: %#" PRIxPADDR "\n", pa));
    312 	op.arg1.mfn = pa >> PAGE_SHIFT;
    313 	op.cmd = MMUEXT_UNPIN_TABLE;
    314 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    315 		panic("xpq_queue_unpin_table");
    316 }
    317 
    318 void
    319 xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
    320 {
    321 	struct mmuext_op op;
    322 
    323 	xpq_flush_queue();
    324 
    325 	XENPRINTK2(("xpq_queue_set_ldt\n"));
    326 	KASSERT(va == (va & ~PAGE_MASK));
    327 	op.cmd = MMUEXT_SET_LDT;
    328 	op.arg1.linear_addr = va;
    329 	op.arg2.nr_ents = entries;
    330 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    331 		panic("xpq_queue_set_ldt");
    332 }
    333 
    334 void
    335 xpq_queue_tlb_flush(void)
    336 {
    337 	struct mmuext_op op;
    338 
    339 	xpq_flush_queue();
    340 
    341 	XENPRINTK2(("xpq_queue_tlb_flush\n"));
    342 	op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
    343 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    344 		panic("xpq_queue_tlb_flush");
    345 }
    346 
    347 void
    348 xpq_flush_cache(void)
    349 {
    350 	int s = splvm();
    351 
    352 	xpq_flush_queue();
    353 
    354 	XENPRINTK2(("xpq_queue_flush_cache\n"));
    355 	asm("wbinvd":::"memory");
    356 	splx(s); /* XXX: removeme */
    357 }
    358 
    359 void
    360 xpq_queue_invlpg(vaddr_t va)
    361 {
    362 	struct mmuext_op op;
    363 	xpq_flush_queue();
    364 
    365 	XENPRINTK2(("xpq_queue_invlpg %#" PRIxVADDR "\n", va));
    366 	op.cmd = MMUEXT_INVLPG_LOCAL;
    367 	op.arg1.linear_addr = (va & ~PAGE_MASK);
    368 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    369 		panic("xpq_queue_invlpg");
    370 }
    371 
    372 void
    373 xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
    374 {
    375 	xcpumask_t xcpumask;
    376 	mmuext_op_t op;
    377 
    378 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    379 
    380 	/* Flush pending page updates */
    381 	xpq_flush_queue();
    382 
    383 	op.cmd = MMUEXT_INVLPG_MULTI;
    384 	op.arg1.linear_addr = va;
    385 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    386 
    387 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    388 		panic("xpq_queue_invlpg_all");
    389 	}
    390 
    391 	return;
    392 }
    393 
    394 void
    395 xen_bcast_invlpg(vaddr_t va)
    396 {
    397 	mmuext_op_t op;
    398 
    399 	/* Flush pending page updates */
    400 	xpq_flush_queue();
    401 
    402 	op.cmd = MMUEXT_INVLPG_ALL;
    403 	op.arg1.linear_addr = va;
    404 
    405 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    406 		panic("xpq_queue_invlpg_all");
    407 	}
    408 
    409 	return;
    410 }
    411 
    412 /* This is a synchronous call. */
    413 void
    414 xen_mcast_tlbflush(kcpuset_t *kc)
    415 {
    416 	xcpumask_t xcpumask;
    417 	mmuext_op_t op;
    418 
    419 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    420 
    421 	/* Flush pending page updates */
    422 	xpq_flush_queue();
    423 
    424 	op.cmd = MMUEXT_TLB_FLUSH_MULTI;
    425 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    426 
    427 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    428 		panic("xpq_queue_invlpg_all");
    429 	}
    430 
    431 	return;
    432 }
    433 
    434 /* This is a synchronous call. */
    435 void
    436 xen_bcast_tlbflush(void)
    437 {
    438 	mmuext_op_t op;
    439 
    440 	/* Flush pending page updates */
    441 	xpq_flush_queue();
    442 
    443 	op.cmd = MMUEXT_TLB_FLUSH_ALL;
    444 
    445 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    446 		panic("xpq_queue_invlpg_all");
    447 	}
    448 
    449 	return;
    450 }
    451 
    452 /* This is a synchronous call. */
    453 void
    454 xen_vcpu_mcast_invlpg(vaddr_t sva, vaddr_t eva, kcpuset_t *kc)
    455 {
    456 	KASSERT(eva > sva);
    457 
    458 	/* Flush pending page updates */
    459 	xpq_flush_queue();
    460 
    461 	/* Align to nearest page boundary */
    462 	sva &= ~PAGE_MASK;
    463 	eva &= ~PAGE_MASK;
    464 
    465 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    466 		xen_mcast_invlpg(sva, kc);
    467 	}
    468 
    469 	return;
    470 }
    471 
    472 /* This is a synchronous call. */
    473 void
    474 xen_vcpu_bcast_invlpg(vaddr_t sva, vaddr_t eva)
    475 {
    476 	KASSERT(eva > sva);
    477 
    478 	/* Flush pending page updates */
    479 	xpq_flush_queue();
    480 
    481 	/* Align to nearest page boundary */
    482 	sva &= ~PAGE_MASK;
    483 	eva &= ~PAGE_MASK;
    484 
    485 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    486 		xen_bcast_invlpg(sva);
    487 	}
    488 
    489 	return;
    490 }
    491 
    492 /* Copy a page */
    493 void
    494 xen_copy_page(paddr_t srcpa, paddr_t dstpa)
    495 {
    496 	mmuext_op_t op;
    497 
    498 	op.cmd = MMUEXT_COPY_PAGE;
    499 	op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
    500 	op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
    501 
    502 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    503 		panic(__func__);
    504 	}
    505 }
    506 
    507 /* Zero a physical page */
    508 void
    509 xen_pagezero(paddr_t pa)
    510 {
    511 	mmuext_op_t op;
    512 
    513 	op.cmd = MMUEXT_CLEAR_PAGE;
    514 	op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
    515 
    516 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    517 		panic(__func__);
    518 	}
    519 }
    520 
    521 int
    522 xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
    523 {
    524 	mmu_update_t op;
    525 	int ok;
    526 
    527 	xpq_flush_queue();
    528 
    529 	op.ptr = ptr;
    530 	op.val = val;
    531 	if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
    532 		return EFAULT;
    533 	return (0);
    534 }
    535 
    536 #ifdef XENDEBUG
    537 void
    538 xpq_debug_dump(void)
    539 {
    540 	int i;
    541 
    542 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    543 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    544 
    545 	XENPRINTK2(("idx: %d\n", xpq_idx));
    546 	for (i = 0; i < xpq_idx; i++) {
    547 		snprintf(XBUF, sizeof(XBUF), "%" PRIx64 " %08" PRIx64,
    548 		    xpq_queue[i].ptr, xpq_queue[i].val);
    549 		if (++i < xpq_idx)
    550 			snprintf(XBUF + strlen(XBUF),
    551 			    sizeof(XBUF) - strlen(XBUF),
    552 			    "%" PRIx64 " %08" PRIx64,
    553 			    xpq_queue[i].ptr, xpq_queue[i].val);
    554 		if (++i < xpq_idx)
    555 			snprintf(XBUF + strlen(XBUF),
    556 			    sizeof(XBUF) - strlen(XBUF),
    557 			    "%" PRIx64 " %08" PRIx64,
    558 			    xpq_queue[i].ptr, xpq_queue[i].val);
    559 		if (++i < xpq_idx)
    560 			snprintf(XBUF + strlen(XBUF),
    561 			    sizeof(XBUF) - strlen(XBUF),
    562 			    "%" PRIx64 " %08" PRIx64,
    563 			    xpq_queue[i].ptr, xpq_queue[i].val);
    564 		XENPRINTK2(("%d: %s\n", xpq_idx, XBUF));
    565 	}
    566 }
    567 #endif
    568 
    569 
    570 #if L2_SLOT_KERNBASE > 0
    571 #define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
    572 #else
    573 #define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
    574 #endif
    575 
    576 #ifdef PAE
    577 /*
    578  * For PAE, we consider a single contiguous L2 "superpage" of 4 pages, all of
    579  * them mapped by the L3 page. We also need a shadow page for L3[3].
    580  */
    581 static const int l2_4_count = 6;
    582 #elif defined(__x86_64__)
    583 static const int l2_4_count = PTP_LEVELS;
    584 #else
    585 static const int l2_4_count = PTP_LEVELS - 1;
    586 #endif
    587 
    588 /*
    589  * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
    590  * tables.
    591  */
    592 vaddr_t
    593 xen_locore(void)
    594 {
    595 	size_t count, oldcount, mapsize;
    596 	vaddr_t bootstrap_tables, init_tables;
    597 
    598 	xen_init_features();
    599 
    600 	memset(xpq_idx_array, 0, sizeof(xpq_idx_array));
    601 
    602 	xpmap_phys_to_machine_mapping =
    603 	    (unsigned long *)xen_start_info.mfn_list;
    604 
    605 	/* Space after Xen boostrap tables should be free */
    606 	init_tables = xen_start_info.pt_base;
    607 	bootstrap_tables = init_tables +
    608 	    (xen_start_info.nr_pt_frames * PAGE_SIZE);
    609 
    610 	/*
    611 	 * Calculate how much space we need. First, everything mapped before
    612 	 * the Xen bootstrap tables.
    613 	 */
    614 	mapsize = init_tables - KERNTEXTOFF;
    615 	/* after the tables we'll have:
    616 	 *  - UAREA
    617 	 *  - dummy user PGD (x86_64)
    618 	 *  - HYPERVISOR_shared_info
    619 	 *  - early_zerop
    620 	 *  - ISA I/O mem (if needed)
    621 	 */
    622 	mapsize += UPAGES * PAGE_SIZE;
    623 #ifdef __x86_64__
    624 	mapsize += PAGE_SIZE;
    625 #endif
    626 	mapsize += PAGE_SIZE;
    627 	mapsize += PAGE_SIZE;
    628 #ifdef DOM0OPS
    629 	if (xendomain_is_dom0()) {
    630 		mapsize += IOM_SIZE;
    631 	}
    632 #endif
    633 
    634 	/*
    635 	 * At this point, mapsize doesn't include the table size.
    636 	 */
    637 #ifdef __x86_64__
    638 	count = TABLE_L2_ENTRIES;
    639 #else
    640 	count = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
    641 #endif
    642 
    643 	/*
    644 	 * Now compute how many L2 pages we need exactly. This is useful only
    645 	 * on i386, since the initial count for amd64 is already enough.
    646 	 */
    647 	while (KERNTEXTOFF + mapsize + (count + l2_4_count) * PAGE_SIZE >
    648 	    KERNBASE + (count << L2_SHIFT)) {
    649 		count++;
    650 	}
    651 
    652 #ifndef __x86_64__
    653 	/*
    654 	 * One more L2 page: we'll allocate several pages after kva_start
    655 	 * in pmap_bootstrap() before pmap_growkernel(), which have not been
    656 	 * counted here. It's not a big issue to allocate one more L2 as
    657 	 * pmap_growkernel() will be called anyway.
    658 	 */
    659 	count++;
    660 	nkptp[1] = count;
    661 #endif
    662 
    663 	/*
    664 	 * Install bootstrap pages. We may need more L2 pages than will
    665 	 * have the final table here, as it's installed after the final table.
    666 	 */
    667 	oldcount = count;
    668 
    669 bootstrap_again:
    670 
    671 	/*
    672 	 * Xen space we'll reclaim may not be enough for our new page tables,
    673 	 * move bootstrap tables if necessary.
    674 	 */
    675 	if (bootstrap_tables < init_tables + ((count + l2_4_count) * PAGE_SIZE))
    676 		bootstrap_tables = init_tables +
    677 		    ((count + l2_4_count) * PAGE_SIZE);
    678 
    679 	/*
    680 	 * Make sure the number of L2 pages we have is enough to map everything
    681 	 * from KERNBASE to the bootstrap tables themselves.
    682 	 */
    683 	if (bootstrap_tables + ((oldcount + l2_4_count) * PAGE_SIZE) >
    684 	    KERNBASE + (oldcount << L2_SHIFT)) {
    685 		oldcount++;
    686 		goto bootstrap_again;
    687 	}
    688 
    689 	/* Create temporary tables */
    690 	xen_bootstrap_tables(init_tables, bootstrap_tables,
    691 	    xen_start_info.nr_pt_frames, oldcount, false);
    692 
    693 	/* Create final tables */
    694 	xen_bootstrap_tables(bootstrap_tables, init_tables,
    695 	    oldcount + l2_4_count, count, true);
    696 
    697 	/* Zero out free space after tables */
    698 	memset((void *)(init_tables + ((count + l2_4_count) * PAGE_SIZE)), 0,
    699 	    (UPAGES + 1) * PAGE_SIZE);
    700 
    701 	/* Finally, flush TLB. */
    702 	xpq_queue_tlb_flush();
    703 
    704 	return (init_tables + ((count + l2_4_count) * PAGE_SIZE));
    705 }
    706 
    707 /*
    708  * Build a new table and switch to it.
    709  * old_count is # of old tables (including PGD, PDTPE and PDE).
    710  * new_count is # of new tables (PTE only).
    711  * We assume the areas don't overlap.
    712  */
    713 static void
    714 xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
    715     size_t new_count, bool final)
    716 {
    717 	pd_entry_t *pdtpe, *pde, *pte;
    718 	pd_entry_t *bt_pgd;
    719 	paddr_t addr;
    720 	vaddr_t page, avail, map_end;
    721 	int i;
    722 	extern char __rodata_start;
    723 	extern char __data_start;
    724 	extern char __kernel_end;
    725 	extern char *early_zerop; /* from pmap.c */
    726 	pt_entry_t pg_nx;
    727 	u_int descs[4];
    728 
    729 	/*
    730 	 * Set the NX/XD bit, if available. descs[3] = %edx.
    731 	 */
    732 	x86_cpuid(0x80000001, descs);
    733 	pg_nx = (descs[3] & CPUID_NOX) ? PG_NX : 0;
    734 
    735 	/*
    736 	 * Layout of RW area after the kernel image:
    737 	 *     xencons_interface (if present)
    738 	 *     xenstore_interface (if present)
    739 	 *     table pages (new_count + l2_4_count entries)
    740 	 * Extra mappings (only when final is true):
    741 	 *     UAREA
    742 	 *     dummy user PGD (x86_64 only) / GDT page (i386 only)
    743 	 *     HYPERVISOR_shared_info
    744 	 *     early_zerop
    745 	 *     ISA I/O mem (if needed)
    746 	 */
    747 	map_end = new_pgd + ((new_count + l2_4_count) * PAGE_SIZE);
    748 	if (final) {
    749 		map_end += (UPAGES + 1) * PAGE_SIZE;
    750 		HYPERVISOR_shared_info = (shared_info_t *)map_end;
    751 		map_end += PAGE_SIZE;
    752 		early_zerop = (char *)map_end;
    753 		map_end += PAGE_SIZE;
    754 	}
    755 
    756 	/*
    757 	 * We always set atdevbase, as it's used by init386 to find the first
    758 	 * available VA. map_end is updated only if we are dom0, so
    759 	 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
    760 	 * this case.
    761 	 */
    762 	if (final) {
    763 		atdevbase = map_end;
    764 #ifdef DOM0OPS
    765 		if (xendomain_is_dom0()) {
    766 			/* ISA I/O mem */
    767 			map_end += IOM_SIZE;
    768 		}
    769 #endif
    770 	}
    771 
    772 	__PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
    773 	__PRINTK(("console %#lx ", xen_start_info.console_mfn));
    774 	__PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
    775 
    776 	/*
    777 	 * Create bootstrap page tables. What we need:
    778 	 * - a PGD (level 4)
    779 	 * - a PDTPE (level 3)
    780 	 * - a PDE (level 2)
    781 	 * - some PTEs (level 1)
    782 	 */
    783 
    784 	bt_pgd = (pd_entry_t *)new_pgd;
    785 	memset(bt_pgd, 0, PAGE_SIZE);
    786 	avail = new_pgd + PAGE_SIZE;
    787 
    788 #if PTP_LEVELS > 3
    789 	/* Per-cpu L4 */
    790 	pd_entry_t *bt_cpu_pgd = bt_pgd;
    791 	/* pmap_kernel() "shadow" L4 */
    792 	bt_pgd = (pd_entry_t *)avail;
    793 	memset(bt_pgd, 0, PAGE_SIZE);
    794 	avail += PAGE_SIZE;
    795 
    796 	/* Install L3 */
    797 	pdtpe = (pd_entry_t *)avail;
    798 	memset(pdtpe, 0, PAGE_SIZE);
    799 	avail += PAGE_SIZE;
    800 
    801 	addr = ((u_long)pdtpe) - KERNBASE;
    802 	bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
    803 	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
    804 #else
    805 	pdtpe = bt_pgd;
    806 #endif
    807 
    808 #if PTP_LEVELS > 2
    809 	/* Level 2 */
    810 	pde = (pd_entry_t *)avail;
    811 	memset(pde, 0, PAGE_SIZE);
    812 	avail += PAGE_SIZE;
    813 
    814 	addr = ((u_long)pde) - KERNBASE;
    815 	pdtpe[pl3_pi(KERNTEXTOFF)] =
    816 	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
    817 #elif defined(PAE)
    818 	/* Our PAE-style level 2: 5 contigous pages (4 L2 + 1 shadow) */
    819 	pde = (pd_entry_t *)avail;
    820 	memset(pde, 0, PAGE_SIZE * 5);
    821 	avail += PAGE_SIZE * 5;
    822 	addr = ((u_long)pde) - KERNBASE;
    823 
    824 	/*
    825 	 * Enter L2 pages in L3. The real L2 kernel PD will be the last one
    826 	 * (so that pde[L2_SLOT_KERN] always points to the shadow).
    827 	 */
    828 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    829 		/*
    830 		 * Xen doesn't want RW mappings in L3 entries, it'll add it
    831 		 * itself.
    832 		 */
    833 		pdtpe[i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    834 	}
    835 	addr += PAGE_SIZE;
    836 	pdtpe[3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    837 #else
    838 	pde = bt_pgd;
    839 #endif
    840 
    841 	/* Level 1 */
    842 	page = KERNTEXTOFF;
    843 	for (i = 0; i < new_count; i ++) {
    844 		vaddr_t cur_page = page;
    845 
    846 		pte = (pd_entry_t *)avail;
    847 		avail += PAGE_SIZE;
    848 
    849 		memset(pte, 0, PAGE_SIZE);
    850 		while (pl2_pi(page) == pl2_pi(cur_page)) {
    851 			if (page >= map_end) {
    852 				/* not mapped at all */
    853 				pte[pl1_pi(page)] = 0;
    854 				page += PAGE_SIZE;
    855 				continue;
    856 			}
    857 			pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
    858 			if (page == (vaddr_t)HYPERVISOR_shared_info) {
    859 				pte[pl1_pi(page)] = xen_start_info.shared_info;
    860 			}
    861 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    862 			    == xen_start_info.console.domU.mfn) {
    863 				xencons_interface = (void *)page;
    864 				pte[pl1_pi(page)] = xen_start_info.console_mfn;
    865 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    866 			}
    867 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    868 			    == xen_start_info.store_mfn) {
    869 				xenstore_interface = (void *)page;
    870 				pte[pl1_pi(page)] = xen_start_info.store_mfn;
    871 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    872 			}
    873 #ifdef DOM0OPS
    874 			if (page >= (vaddr_t)atdevbase &&
    875 			    page < (vaddr_t)atdevbase + IOM_SIZE) {
    876 				pte[pl1_pi(page)] =
    877 				    IOM_BEGIN + (page - (vaddr_t)atdevbase);
    878 				pte[pl1_pi(page)] |= pg_nx;
    879 			}
    880 #endif
    881 
    882 			pte[pl1_pi(page)] |= PG_k | PG_V;
    883 			if (page < (vaddr_t)&__rodata_start) {
    884 				/* Map the kernel text RX. */
    885 				pte[pl1_pi(page)] |= PG_RO;
    886 			} else if (page >= (vaddr_t)&__rodata_start &&
    887 			    page < (vaddr_t)&__data_start) {
    888 				/* Map the kernel rodata R. */
    889 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    890 			} else if (page >= old_pgd &&
    891 			    page < old_pgd + (old_count * PAGE_SIZE)) {
    892 				/* Map the old page tables R. */
    893 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    894 			} else if (page >= new_pgd &&
    895 			    page < new_pgd + ((new_count + l2_4_count) * PAGE_SIZE)) {
    896 				/* Map the new page tables R. */
    897 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    898 #ifdef i386
    899 			} else if (page == (vaddr_t)tmpgdt) {
    900 				/*
    901 				 * Map bootstrap gdt R/O. Later, we will re-add
    902 				 * this page to uvm after making it writable.
    903 				 */
    904 				pte[pl1_pi(page)] = 0;
    905 				page += PAGE_SIZE;
    906 				continue;
    907 #endif
    908 			} else if (page >= (vaddr_t)&__data_start &&
    909 			    page < (vaddr_t)&__kernel_end) {
    910 				/* Map the kernel data+bss RW. */
    911 				pte[pl1_pi(page)] |= PG_RW | pg_nx;
    912 			} else {
    913 				/* Map the page RW. */
    914 				pte[pl1_pi(page)] |= PG_RW | pg_nx;
    915 			}
    916 
    917 			page += PAGE_SIZE;
    918 		}
    919 
    920 		addr = ((u_long)pte) - KERNBASE;
    921 		pde[pl2_pi(cur_page)] =
    922 		    xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
    923 
    924 		/* Mark readonly */
    925 		xen_bt_set_readonly((vaddr_t)pte);
    926 	}
    927 
    928 	/* Install recursive page tables mapping */
    929 #ifdef PAE
    930 	/*
    931 	 * We need a shadow page for the kernel's L2 page.
    932 	 * The real L2 kernel PD will be the last one (so that
    933 	 * pde[L2_SLOT_KERN] always points to the shadow).
    934 	 */
    935 	memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
    936 	cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
    937 	cpu_info_primary.ci_kpm_pdirpa =
    938 	    (vaddr_t) cpu_info_primary.ci_kpm_pdir - KERNBASE;
    939 
    940 	/*
    941 	 * We don't enter a recursive entry from the L3 PD. Instead, we enter
    942 	 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
    943 	 * have to enter the shadow after switching %cr3, or Xen will refcount
    944 	 * some PTEs with the wrong type.
    945 	 */
    946 	addr = (u_long)pde - KERNBASE;
    947 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    948 		pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_k | PG_V |
    949 		    pg_nx;
    950 	}
    951 #if 0
    952 	addr += PAGE_SIZE; /* point to shadow L2 */
    953 	pde[PDIR_SLOT_PTE + 3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    954 #endif
    955 	/* Mark tables RO, and pin the kernel's shadow as L2 */
    956 	addr = (u_long)pde - KERNBASE;
    957 	for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
    958 		xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
    959 #if 0
    960 		if (i == 2 || i == 3)
    961 			continue;
    962 		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    963 #endif
    964 	}
    965 	if (final) {
    966 		addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
    967 		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    968 	}
    969 #if 0
    970 	addr = (u_long)pde - KERNBASE + 2 * PAGE_SIZE;
    971 	xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    972 #endif
    973 #else /* PAE */
    974 
    975 	/* Recursive entry in pmap_kernel(). */
    976 	bt_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_pgd - KERNBASE)
    977 	    | PG_k | PG_RO | PG_V | pg_nx;
    978 #ifdef __x86_64__
    979 	/* Recursive entry in higher-level per-cpu PD. */
    980 	bt_cpu_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_cpu_pgd - KERNBASE)
    981 	    | PG_k | PG_RO | PG_V | pg_nx;
    982 #endif
    983 
    984 	/* Mark tables RO */
    985 	xen_bt_set_readonly((vaddr_t)pde);
    986 #endif
    987 #if PTP_LEVELS > 2 || defined(PAE)
    988 	xen_bt_set_readonly((vaddr_t)pdtpe);
    989 #endif
    990 #if PTP_LEVELS > 3
    991 	xen_bt_set_readonly(new_pgd);
    992 #endif
    993 
    994 	/* Pin the PGD */
    995 #ifdef __x86_64__
    996 	xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
    997 #elif PAE
    998 	xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
    999 #else
   1000 	xpq_queue_pin_l2_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1001 #endif
   1002 
   1003 	/* Save phys. addr of PDP, for libkvm. */
   1004 #ifdef PAE
   1005 	PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
   1006 #else
   1007 	PDPpaddr = (u_long)bt_pgd - KERNBASE;
   1008 #endif
   1009 
   1010 	/* Switch to new tables */
   1011 	xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
   1012 
   1013 #ifdef PAE
   1014 	if (final) {
   1015 		/* Save the address of the L3 page */
   1016 		cpu_info_primary.ci_pae_l3_pdir = pdtpe;
   1017 		cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
   1018 
   1019 		/* Now enter the kernel's PTE mappings */
   1020 		addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
   1021 		xpq_queue_pte_update(
   1022 		    xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
   1023 		    xpmap_ptom_masked(addr) | PG_k | PG_V);
   1024 		xpq_flush_queue();
   1025 	}
   1026 #elif defined(__x86_64__)
   1027 	if (final) {
   1028 		/* Save the address of the real per-cpu L4 page. */
   1029 		cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
   1030 		cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)bt_cpu_pgd - KERNBASE);
   1031 	}
   1032 #endif
   1033 	__USE(pdtpe);
   1034 
   1035 	/*
   1036 	 * Now we can safely reclaim the space taken by the old tables.
   1037 	 */
   1038 
   1039 	/* Unpin old PGD */
   1040 	xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
   1041 
   1042 	/* Mark old tables RW */
   1043 	page = old_pgd;
   1044 	addr = xpmap_mtop((paddr_t)pde[pl2_pi(page)] & PG_FRAME);
   1045 	pte = (pd_entry_t *)((u_long)addr + KERNBASE);
   1046 	pte += pl1_pi(page);
   1047 	while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
   1048 		addr = xpmap_ptom(((u_long)pte) - KERNBASE);
   1049 		xpq_queue_pte_update(addr, *pte | PG_RW);
   1050 		page += PAGE_SIZE;
   1051 		/*
   1052 		 * Our PTEs are contiguous so it's safe to just "++" here.
   1053 		 */
   1054 		pte++;
   1055 	}
   1056 	xpq_flush_queue();
   1057 }
   1058 
   1059 
   1060 /*
   1061  * Bootstrap helper functions
   1062  */
   1063 
   1064 /*
   1065  * Mark a page readonly
   1066  * XXX: assuming vaddr = paddr + KERNBASE
   1067  */
   1068 
   1069 static void
   1070 xen_bt_set_readonly(vaddr_t page)
   1071 {
   1072 	pt_entry_t entry;
   1073 
   1074 	entry = xpmap_ptom_masked(page - KERNBASE);
   1075 	entry |= PG_k | PG_V;
   1076 
   1077 	HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
   1078 }
   1079 
   1080 #ifdef __x86_64__
   1081 void
   1082 xen_set_user_pgd(paddr_t page)
   1083 {
   1084 	struct mmuext_op op;
   1085 	int s = splvm();
   1086 
   1087 	xpq_flush_queue();
   1088 	op.cmd = MMUEXT_NEW_USER_BASEPTR;
   1089 	op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
   1090 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
   1091 		panic("xen_set_user_pgd: failed to install new user page"
   1092 			" directory %#" PRIxPADDR, page);
   1093 	splx(s);
   1094 }
   1095 #endif /* __x86_64__ */
   1096