Home | History | Annotate | Line # | Download | only in x86
x86_xpmap.c revision 1.68
      1 /*	$NetBSD: x86_xpmap.c,v 1.68 2016/12/16 19:52:22 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2006 Mathieu Ropert <mro (at) adviseo.fr>
      5  *
      6  * Permission to use, copy, modify, and distribute this software for any
      7  * purpose with or without fee is hereby granted, provided that the above
      8  * copyright notice and this permission notice appear in all copies.
      9  *
     10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     17  */
     18 
     19 /*
     20  * Copyright (c) 2006, 2007 Manuel Bouyer.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the above copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  *
     31  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     32  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     34  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     37  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     38  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     39  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     40  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     41  */
     42 
     43 /*
     44  * Copyright (c) 2004 Christian Limpach.
     45  * All rights reserved.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.68 2016/12/16 19:52:22 maxv Exp $");
     70 
     71 #include "opt_xen.h"
     72 #include "opt_ddb.h"
     73 #include "ksyms.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/mutex.h>
     78 #include <sys/cpu.h>
     79 
     80 #include <uvm/uvm.h>
     81 
     82 #include <x86/pmap.h>
     83 #include <machine/gdt.h>
     84 #include <xen/xenfunc.h>
     85 
     86 #include <dev/isa/isareg.h>
     87 #include <machine/isa_machdep.h>
     88 
     89 #undef	XENDEBUG
     90 /* #define XENDEBUG_SYNC */
     91 
     92 #ifdef XENDEBUG
     93 #define	XENPRINTF(x) printf x
     94 #define	XENPRINTK2(x) /* printk x */
     95 static char XBUF[256];
     96 #else
     97 #define	XENPRINTF(x)
     98 #define	XENPRINTK2(x)
     99 #endif
    100 
    101 volatile shared_info_t *HYPERVISOR_shared_info;
    102 /* Xen requires the start_info struct to be page aligned */
    103 union start_info_union start_info_union __aligned(PAGE_SIZE);
    104 unsigned long *xpmap_phys_to_machine_mapping;
    105 kmutex_t pte_lock;
    106 vaddr_t xen_dummy_page;
    107 
    108 void xen_failsafe_handler(void);
    109 
    110 #define HYPERVISOR_mmu_update_self(req, count, success_count) \
    111 	HYPERVISOR_mmu_update((req), (count), (success_count), DOMID_SELF)
    112 
    113 extern volatile struct xencons_interface *xencons_interface; /* XXX */
    114 extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
    115 
    116 static void xen_bt_set_readonly(vaddr_t);
    117 static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
    118 
    119 vaddr_t xen_locore(void);
    120 
    121 /*
    122  * kcpuset internally uses an array of uint32_t while xen uses an array of
    123  * u_long. As we're little-endian we can cast one to the other.
    124  */
    125 typedef union {
    126 #ifdef _LP64
    127 	uint32_t xcpum_km[2];
    128 #else
    129 	uint32_t xcpum_km[1];
    130 #endif
    131 	u_long xcpum_xm;
    132 } xcpumask_t;
    133 
    134 void
    135 xen_failsafe_handler(void)
    136 {
    137 
    138 	panic("xen_failsafe_handler called!\n");
    139 }
    140 
    141 void
    142 xen_set_ldt(vaddr_t base, uint32_t entries)
    143 {
    144 	vaddr_t va;
    145 	vaddr_t end;
    146 	pt_entry_t *ptp;
    147 	int s;
    148 
    149 #ifdef __x86_64__
    150 	end = base + (entries << 3);
    151 #else
    152 	end = base + entries * sizeof(union descriptor);
    153 #endif
    154 
    155 	for (va = base; va < end; va += PAGE_SIZE) {
    156 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
    157 		ptp = kvtopte(va);
    158 		XENPRINTF(("xen_set_ldt %#" PRIxVADDR " %d %p\n",
    159 		    base, entries, ptp));
    160 		pmap_pte_clearbits(ptp, PG_RW);
    161 	}
    162 	s = splvm();
    163 	xpq_queue_set_ldt(base, entries);
    164 	splx(s);
    165 }
    166 
    167 #ifdef XENDEBUG
    168 void xpq_debug_dump(void);
    169 #endif
    170 
    171 #define XPQUEUE_SIZE 2048
    172 static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
    173 static int xpq_idx_array[MAXCPUS];
    174 
    175 #ifdef i386
    176 extern union descriptor tmpgdt[];
    177 #endif
    178 
    179 void
    180 xpq_flush_queue(void)
    181 {
    182 	int i, ok = 0, ret;
    183 
    184 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    185 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    186 
    187 	XENPRINTK2(("flush queue %p entries %d\n", xpq_queue, xpq_idx));
    188 	for (i = 0; i < xpq_idx; i++)
    189 		XENPRINTK2(("%d: 0x%08" PRIx64 " 0x%08" PRIx64 "\n", i,
    190 		    xpq_queue[i].ptr, xpq_queue[i].val));
    191 
    192 retry:
    193 	ret = HYPERVISOR_mmu_update_self(xpq_queue, xpq_idx, &ok);
    194 
    195 	if (xpq_idx != 0 && ret < 0) {
    196 		struct cpu_info *ci;
    197 		CPU_INFO_ITERATOR cii;
    198 
    199 		printf("xpq_flush_queue: %d entries (%d successful) on "
    200 		    "cpu%d (%ld)\n",
    201 		    xpq_idx, ok, curcpu()->ci_index, curcpu()->ci_cpuid);
    202 
    203 		if (ok != 0) {
    204 			xpq_queue += ok;
    205 			xpq_idx -= ok;
    206 			ok = 0;
    207 			goto retry;
    208 		}
    209 
    210 		for (CPU_INFO_FOREACH(cii, ci)) {
    211 			xpq_queue = xpq_queue_array[ci->ci_cpuid];
    212 			xpq_idx = xpq_idx_array[ci->ci_cpuid];
    213 			printf("cpu%d (%ld):\n", ci->ci_index, ci->ci_cpuid);
    214 			for (i = 0; i < xpq_idx; i++) {
    215 				printf("  0x%016" PRIx64 ": 0x%016" PRIx64 "\n",
    216 				   xpq_queue[i].ptr, xpq_queue[i].val);
    217 			}
    218 #ifdef __x86_64__
    219 			for (i = 0; i < PDIR_SLOT_PTE; i++) {
    220 				if (ci->ci_kpm_pdir[i] == 0)
    221 					continue;
    222 				printf(" kpm_pdir[%d]: 0x%" PRIx64 "\n",
    223 				    i, ci->ci_kpm_pdir[i]);
    224 			}
    225 #endif
    226 		}
    227 		panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
    228 	}
    229 	xpq_idx_array[curcpu()->ci_cpuid] = 0;
    230 }
    231 
    232 static inline void
    233 xpq_increment_idx(void)
    234 {
    235 
    236 	if (__predict_false(++xpq_idx_array[curcpu()->ci_cpuid] == XPQUEUE_SIZE))
    237 		xpq_flush_queue();
    238 }
    239 
    240 void
    241 xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
    242 {
    243 
    244 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    245 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    246 
    247 	XENPRINTK2(("xpq_queue_machphys_update ma=0x%" PRIx64 " pa=0x%" PRIx64
    248 	    "\n", (int64_t)ma, (int64_t)pa));
    249 
    250 	xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
    251 	xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
    252 	xpq_increment_idx();
    253 #ifdef XENDEBUG_SYNC
    254 	xpq_flush_queue();
    255 #endif
    256 }
    257 
    258 void
    259 xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
    260 {
    261 
    262 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    263 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    264 
    265 	KASSERT((ptr & 3) == 0);
    266 	xpq_queue[xpq_idx].ptr = (paddr_t)ptr | MMU_NORMAL_PT_UPDATE;
    267 	xpq_queue[xpq_idx].val = val;
    268 	xpq_increment_idx();
    269 #ifdef XENDEBUG_SYNC
    270 	xpq_flush_queue();
    271 #endif
    272 }
    273 
    274 void
    275 xpq_queue_pt_switch(paddr_t pa)
    276 {
    277 	struct mmuext_op op;
    278 	xpq_flush_queue();
    279 
    280 	XENPRINTK2(("xpq_queue_pt_switch: 0x%" PRIx64 " 0x%" PRIx64 "\n",
    281 	    (int64_t)pa, (int64_t)pa));
    282 	op.cmd = MMUEXT_NEW_BASEPTR;
    283 	op.arg1.mfn = pa >> PAGE_SHIFT;
    284 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    285 		panic("xpq_queue_pt_switch");
    286 }
    287 
    288 void
    289 xpq_queue_pin_table(paddr_t pa, int lvl)
    290 {
    291 	struct mmuext_op op;
    292 
    293 	xpq_flush_queue();
    294 
    295 	XENPRINTK2(("xpq_queue_pin_l%d_table: %#" PRIxPADDR "\n",
    296 	    lvl + 1, pa));
    297 
    298 	op.arg1.mfn = pa >> PAGE_SHIFT;
    299 	op.cmd = lvl;
    300 
    301 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    302 		panic("xpq_queue_pin_table");
    303 }
    304 
    305 void
    306 xpq_queue_unpin_table(paddr_t pa)
    307 {
    308 	struct mmuext_op op;
    309 
    310 	xpq_flush_queue();
    311 
    312 	XENPRINTK2(("xpq_queue_unpin_table: %#" PRIxPADDR "\n", pa));
    313 	op.arg1.mfn = pa >> PAGE_SHIFT;
    314 	op.cmd = MMUEXT_UNPIN_TABLE;
    315 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    316 		panic("xpq_queue_unpin_table");
    317 }
    318 
    319 void
    320 xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
    321 {
    322 	struct mmuext_op op;
    323 
    324 	xpq_flush_queue();
    325 
    326 	XENPRINTK2(("xpq_queue_set_ldt\n"));
    327 	KASSERT(va == (va & ~PAGE_MASK));
    328 	op.cmd = MMUEXT_SET_LDT;
    329 	op.arg1.linear_addr = va;
    330 	op.arg2.nr_ents = entries;
    331 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    332 		panic("xpq_queue_set_ldt");
    333 }
    334 
    335 void
    336 xpq_queue_tlb_flush(void)
    337 {
    338 	struct mmuext_op op;
    339 
    340 	xpq_flush_queue();
    341 
    342 	XENPRINTK2(("xpq_queue_tlb_flush\n"));
    343 	op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
    344 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    345 		panic("xpq_queue_tlb_flush");
    346 }
    347 
    348 void
    349 xpq_flush_cache(void)
    350 {
    351 	int s = splvm();
    352 
    353 	xpq_flush_queue();
    354 
    355 	XENPRINTK2(("xpq_queue_flush_cache\n"));
    356 	asm("wbinvd":::"memory");
    357 	splx(s); /* XXX: removeme */
    358 }
    359 
    360 void
    361 xpq_queue_invlpg(vaddr_t va)
    362 {
    363 	struct mmuext_op op;
    364 	xpq_flush_queue();
    365 
    366 	XENPRINTK2(("xpq_queue_invlpg %#" PRIxVADDR "\n", va));
    367 	op.cmd = MMUEXT_INVLPG_LOCAL;
    368 	op.arg1.linear_addr = (va & ~PAGE_MASK);
    369 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    370 		panic("xpq_queue_invlpg");
    371 }
    372 
    373 void
    374 xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
    375 {
    376 	xcpumask_t xcpumask;
    377 	mmuext_op_t op;
    378 
    379 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    380 
    381 	/* Flush pending page updates */
    382 	xpq_flush_queue();
    383 
    384 	op.cmd = MMUEXT_INVLPG_MULTI;
    385 	op.arg1.linear_addr = va;
    386 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    387 
    388 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    389 		panic("xpq_queue_invlpg_all");
    390 	}
    391 
    392 	return;
    393 }
    394 
    395 void
    396 xen_bcast_invlpg(vaddr_t va)
    397 {
    398 	mmuext_op_t op;
    399 
    400 	/* Flush pending page updates */
    401 	xpq_flush_queue();
    402 
    403 	op.cmd = MMUEXT_INVLPG_ALL;
    404 	op.arg1.linear_addr = va;
    405 
    406 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    407 		panic("xpq_queue_invlpg_all");
    408 	}
    409 
    410 	return;
    411 }
    412 
    413 /* This is a synchronous call. */
    414 void
    415 xen_mcast_tlbflush(kcpuset_t *kc)
    416 {
    417 	xcpumask_t xcpumask;
    418 	mmuext_op_t op;
    419 
    420 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    421 
    422 	/* Flush pending page updates */
    423 	xpq_flush_queue();
    424 
    425 	op.cmd = MMUEXT_TLB_FLUSH_MULTI;
    426 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    427 
    428 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    429 		panic("xpq_queue_invlpg_all");
    430 	}
    431 
    432 	return;
    433 }
    434 
    435 /* This is a synchronous call. */
    436 void
    437 xen_bcast_tlbflush(void)
    438 {
    439 	mmuext_op_t op;
    440 
    441 	/* Flush pending page updates */
    442 	xpq_flush_queue();
    443 
    444 	op.cmd = MMUEXT_TLB_FLUSH_ALL;
    445 
    446 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    447 		panic("xpq_queue_invlpg_all");
    448 	}
    449 
    450 	return;
    451 }
    452 
    453 /* This is a synchronous call. */
    454 void
    455 xen_vcpu_mcast_invlpg(vaddr_t sva, vaddr_t eva, kcpuset_t *kc)
    456 {
    457 	KASSERT(eva > sva);
    458 
    459 	/* Flush pending page updates */
    460 	xpq_flush_queue();
    461 
    462 	/* Align to nearest page boundary */
    463 	sva &= ~PAGE_MASK;
    464 	eva &= ~PAGE_MASK;
    465 
    466 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    467 		xen_mcast_invlpg(sva, kc);
    468 	}
    469 
    470 	return;
    471 }
    472 
    473 /* This is a synchronous call. */
    474 void
    475 xen_vcpu_bcast_invlpg(vaddr_t sva, vaddr_t eva)
    476 {
    477 	KASSERT(eva > sva);
    478 
    479 	/* Flush pending page updates */
    480 	xpq_flush_queue();
    481 
    482 	/* Align to nearest page boundary */
    483 	sva &= ~PAGE_MASK;
    484 	eva &= ~PAGE_MASK;
    485 
    486 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    487 		xen_bcast_invlpg(sva);
    488 	}
    489 
    490 	return;
    491 }
    492 
    493 /* Copy a page */
    494 void
    495 xen_copy_page(paddr_t srcpa, paddr_t dstpa)
    496 {
    497 	mmuext_op_t op;
    498 
    499 	op.cmd = MMUEXT_COPY_PAGE;
    500 	op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
    501 	op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
    502 
    503 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    504 		panic(__func__);
    505 	}
    506 }
    507 
    508 /* Zero a physical page */
    509 void
    510 xen_pagezero(paddr_t pa)
    511 {
    512 	mmuext_op_t op;
    513 
    514 	op.cmd = MMUEXT_CLEAR_PAGE;
    515 	op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
    516 
    517 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    518 		panic(__func__);
    519 	}
    520 }
    521 
    522 int
    523 xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
    524 {
    525 	mmu_update_t op;
    526 	int ok;
    527 
    528 	xpq_flush_queue();
    529 
    530 	op.ptr = ptr;
    531 	op.val = val;
    532 	if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
    533 		return EFAULT;
    534 	return (0);
    535 }
    536 
    537 #ifdef XENDEBUG
    538 void
    539 xpq_debug_dump(void)
    540 {
    541 	int i;
    542 
    543 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    544 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    545 
    546 	XENPRINTK2(("idx: %d\n", xpq_idx));
    547 	for (i = 0; i < xpq_idx; i++) {
    548 		snprintf(XBUF, sizeof(XBUF), "%" PRIx64 " %08" PRIx64,
    549 		    xpq_queue[i].ptr, xpq_queue[i].val);
    550 		if (++i < xpq_idx)
    551 			snprintf(XBUF + strlen(XBUF),
    552 			    sizeof(XBUF) - strlen(XBUF),
    553 			    "%" PRIx64 " %08" PRIx64,
    554 			    xpq_queue[i].ptr, xpq_queue[i].val);
    555 		if (++i < xpq_idx)
    556 			snprintf(XBUF + strlen(XBUF),
    557 			    sizeof(XBUF) - strlen(XBUF),
    558 			    "%" PRIx64 " %08" PRIx64,
    559 			    xpq_queue[i].ptr, xpq_queue[i].val);
    560 		if (++i < xpq_idx)
    561 			snprintf(XBUF + strlen(XBUF),
    562 			    sizeof(XBUF) - strlen(XBUF),
    563 			    "%" PRIx64 " %08" PRIx64,
    564 			    xpq_queue[i].ptr, xpq_queue[i].val);
    565 		XENPRINTK2(("%d: %s\n", xpq_idx, XBUF));
    566 	}
    567 }
    568 #endif
    569 
    570 
    571 #if L2_SLOT_KERNBASE > 0
    572 #define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
    573 #else
    574 #define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
    575 #endif
    576 
    577 #ifdef PAE
    578 /*
    579  * For PAE, we consider a single contiguous L2 "superpage" of 4 pages, all of
    580  * them mapped by the L3 page. We also need a shadow page for L3[3].
    581  */
    582 static const int l2_4_count = 6;
    583 #elif defined(__x86_64__)
    584 static const int l2_4_count = PTP_LEVELS;
    585 #else
    586 static const int l2_4_count = PTP_LEVELS - 1;
    587 #endif
    588 
    589 /*
    590  * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
    591  * tables.
    592  *
    593  * Virtual address space of the kernel when leaving this function:
    594  * +--------------+------------------+-------------+------------+---------------
    595  * | KERNEL IMAGE | BOOTSTRAP TABLES | PROC0 UAREA | DUMMY PAGE | HYPER. SHARED
    596  * +--------------+------------------+-------------+------------+---------------
    597  *
    598  * ------+-----------------+-------------+
    599  *  INFO | EARLY ZERO PAGE | ISA I/O MEM |
    600  * ------+-----------------+-------------+
    601  *
    602  * DUMMY PAGE is either a PDG for amd64 or a GDT for i386.
    603  *
    604  * (HYPER. SHARED INFO + EARLY ZERO PAGE + ISA I/O MEM) have no physical
    605  * addresses preallocated.
    606  */
    607 vaddr_t
    608 xen_locore(void)
    609 {
    610 	size_t count, oldcount, mapsize;
    611 	vaddr_t bootstrap_tables, init_tables;
    612 
    613 	xen_init_features();
    614 
    615 	memset(xpq_idx_array, 0, sizeof(xpq_idx_array));
    616 
    617 	xpmap_phys_to_machine_mapping =
    618 	    (unsigned long *)xen_start_info.mfn_list;
    619 
    620 	/* Space after Xen boostrap tables should be free */
    621 	init_tables = xen_start_info.pt_base;
    622 	bootstrap_tables = init_tables +
    623 	    (xen_start_info.nr_pt_frames * PAGE_SIZE);
    624 
    625 	/*
    626 	 * Calculate how much space we need. First, everything mapped before
    627 	 * the Xen bootstrap tables.
    628 	 */
    629 	mapsize = init_tables - KERNTEXTOFF;
    630 	/* after the tables we'll have:
    631 	 *  - UAREA
    632 	 *  - dummy user PGD (x86_64)
    633 	 *  - HYPERVISOR_shared_info
    634 	 *  - early_zerop
    635 	 *  - ISA I/O mem (if needed)
    636 	 */
    637 	mapsize += UPAGES * PAGE_SIZE;
    638 #ifdef __x86_64__
    639 	mapsize += PAGE_SIZE;
    640 #endif
    641 	mapsize += PAGE_SIZE;
    642 	mapsize += PAGE_SIZE;
    643 #ifdef DOM0OPS
    644 	if (xendomain_is_dom0()) {
    645 		mapsize += IOM_SIZE;
    646 	}
    647 #endif
    648 
    649 	/*
    650 	 * At this point, mapsize doesn't include the table size.
    651 	 */
    652 #ifdef __x86_64__
    653 	count = TABLE_L2_ENTRIES;
    654 #else
    655 	count = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
    656 #endif
    657 
    658 	/*
    659 	 * Now compute how many L2 pages we need exactly. This is useful only
    660 	 * on i386, since the initial count for amd64 is already enough.
    661 	 */
    662 	while (KERNTEXTOFF + mapsize + (count + l2_4_count) * PAGE_SIZE >
    663 	    KERNBASE + (count << L2_SHIFT)) {
    664 		count++;
    665 	}
    666 
    667 #ifndef __x86_64__
    668 	/*
    669 	 * One more L2 page: we'll allocate several pages after kva_start
    670 	 * in pmap_bootstrap() before pmap_growkernel(), which have not been
    671 	 * counted here. It's not a big issue to allocate one more L2 as
    672 	 * pmap_growkernel() will be called anyway.
    673 	 */
    674 	count++;
    675 	nkptp[1] = count;
    676 #endif
    677 
    678 	/*
    679 	 * Install bootstrap pages. We may need more L2 pages than will
    680 	 * have the final table here, as it's installed after the final table.
    681 	 */
    682 	oldcount = count;
    683 
    684 bootstrap_again:
    685 
    686 	/*
    687 	 * Xen space we'll reclaim may not be enough for our new page tables,
    688 	 * move bootstrap tables if necessary.
    689 	 */
    690 	if (bootstrap_tables < init_tables + ((count + l2_4_count) * PAGE_SIZE))
    691 		bootstrap_tables = init_tables +
    692 		    ((count + l2_4_count) * PAGE_SIZE);
    693 
    694 	/*
    695 	 * Make sure the number of L2 pages we have is enough to map everything
    696 	 * from KERNBASE to the bootstrap tables themselves.
    697 	 */
    698 	if (bootstrap_tables + ((oldcount + l2_4_count) * PAGE_SIZE) >
    699 	    KERNBASE + (oldcount << L2_SHIFT)) {
    700 		oldcount++;
    701 		goto bootstrap_again;
    702 	}
    703 
    704 	/* Create temporary tables */
    705 	xen_bootstrap_tables(init_tables, bootstrap_tables,
    706 	    xen_start_info.nr_pt_frames, oldcount, false);
    707 
    708 	/* Create final tables */
    709 	xen_bootstrap_tables(bootstrap_tables, init_tables,
    710 	    oldcount + l2_4_count, count, true);
    711 
    712 	/* Zero out PROC0 UAREA and DUMMY PAGE. */
    713 	memset((void *)(init_tables + ((count + l2_4_count) * PAGE_SIZE)), 0,
    714 	    (UPAGES + 1) * PAGE_SIZE);
    715 
    716 	/* Finally, flush TLB. */
    717 	xpq_queue_tlb_flush();
    718 
    719 	return (init_tables + ((count + l2_4_count) * PAGE_SIZE));
    720 }
    721 
    722 /*
    723  * Build a new table and switch to it.
    724  * old_count is # of old tables (including PGD, PDTPE and PDE).
    725  * new_count is # of new tables (PTE only).
    726  * We assume the areas don't overlap.
    727  */
    728 static void
    729 xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
    730     size_t new_count, bool final)
    731 {
    732 	pd_entry_t *pdtpe, *pde, *pte;
    733 	pd_entry_t *bt_pgd;
    734 	paddr_t addr;
    735 	vaddr_t page, avail, map_end;
    736 	int i;
    737 	extern char __rodata_start;
    738 	extern char __data_start;
    739 	extern char __kernel_end;
    740 	extern char *early_zerop; /* from pmap.c */
    741 	pt_entry_t pg_nx;
    742 	u_int descs[4];
    743 
    744 	/*
    745 	 * Set the NX/XD bit, if available. descs[3] = %edx.
    746 	 */
    747 	x86_cpuid(0x80000001, descs);
    748 	pg_nx = (descs[3] & CPUID_NOX) ? PG_NX : 0;
    749 
    750 	/*
    751 	 * Layout of RW area after the kernel image:
    752 	 *     xencons_interface (if present)
    753 	 *     xenstore_interface (if present)
    754 	 *     table pages (new_count + l2_4_count entries)
    755 	 * Extra mappings (only when final is true):
    756 	 *     UAREA
    757 	 *     dummy user PGD (x86_64 only) / GDT page (i386 only)
    758 	 *     HYPERVISOR_shared_info
    759 	 *     early_zerop
    760 	 *     ISA I/O mem (if needed)
    761 	 */
    762 	map_end = new_pgd + ((new_count + l2_4_count) * PAGE_SIZE);
    763 	if (final) {
    764 		map_end += UPAGES * PAGE_SIZE;
    765 		xen_dummy_page = (vaddr_t)map_end;
    766 		map_end += PAGE_SIZE;
    767 		HYPERVISOR_shared_info = (shared_info_t *)map_end;
    768 		map_end += PAGE_SIZE;
    769 		early_zerop = (char *)map_end;
    770 		map_end += PAGE_SIZE;
    771 	}
    772 
    773 	/*
    774 	 * We always set atdevbase, as it's used by init386 to find the first
    775 	 * available VA. map_end is updated only if we are dom0, so
    776 	 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
    777 	 * this case.
    778 	 */
    779 	if (final) {
    780 		atdevbase = map_end;
    781 #ifdef DOM0OPS
    782 		if (xendomain_is_dom0()) {
    783 			/* ISA I/O mem */
    784 			map_end += IOM_SIZE;
    785 		}
    786 #endif
    787 	}
    788 
    789 	__PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
    790 	__PRINTK(("console %#lx ", xen_start_info.console_mfn));
    791 	__PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
    792 
    793 	/*
    794 	 * Create bootstrap page tables. What we need:
    795 	 * - a PGD (level 4)
    796 	 * - a PDTPE (level 3)
    797 	 * - a PDE (level 2)
    798 	 * - some PTEs (level 1)
    799 	 */
    800 
    801 	bt_pgd = (pd_entry_t *)new_pgd;
    802 	memset(bt_pgd, 0, PAGE_SIZE);
    803 	avail = new_pgd + PAGE_SIZE;
    804 
    805 #if PTP_LEVELS > 3
    806 	/* Per-cpu L4 */
    807 	pd_entry_t *bt_cpu_pgd = bt_pgd;
    808 	/* pmap_kernel() "shadow" L4 */
    809 	bt_pgd = (pd_entry_t *)avail;
    810 	memset(bt_pgd, 0, PAGE_SIZE);
    811 	avail += PAGE_SIZE;
    812 
    813 	/* Install L3 */
    814 	pdtpe = (pd_entry_t *)avail;
    815 	memset(pdtpe, 0, PAGE_SIZE);
    816 	avail += PAGE_SIZE;
    817 
    818 	addr = ((u_long)pdtpe) - KERNBASE;
    819 	bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
    820 	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
    821 #else
    822 	pdtpe = bt_pgd;
    823 #endif
    824 
    825 #if PTP_LEVELS > 2
    826 	/* Level 2 */
    827 	pde = (pd_entry_t *)avail;
    828 	memset(pde, 0, PAGE_SIZE);
    829 	avail += PAGE_SIZE;
    830 
    831 	addr = ((u_long)pde) - KERNBASE;
    832 	pdtpe[pl3_pi(KERNTEXTOFF)] =
    833 	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
    834 #elif defined(PAE)
    835 	/* Our PAE-style level 2: 5 contigous pages (4 L2 + 1 shadow) */
    836 	pde = (pd_entry_t *)avail;
    837 	memset(pde, 0, PAGE_SIZE * 5);
    838 	avail += PAGE_SIZE * 5;
    839 	addr = ((u_long)pde) - KERNBASE;
    840 
    841 	/*
    842 	 * Enter L2 pages in L3. The real L2 kernel PD will be the last one
    843 	 * (so that pde[L2_SLOT_KERN] always points to the shadow).
    844 	 */
    845 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    846 		/*
    847 		 * Xen doesn't want RW mappings in L3 entries, it'll add it
    848 		 * itself.
    849 		 */
    850 		pdtpe[i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    851 	}
    852 	addr += PAGE_SIZE;
    853 	pdtpe[3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    854 #else
    855 	pde = bt_pgd;
    856 #endif
    857 
    858 	/* Level 1 */
    859 	page = KERNTEXTOFF;
    860 	for (i = 0; i < new_count; i ++) {
    861 		vaddr_t cur_page = page;
    862 
    863 		pte = (pd_entry_t *)avail;
    864 		avail += PAGE_SIZE;
    865 
    866 		memset(pte, 0, PAGE_SIZE);
    867 		while (pl2_pi(page) == pl2_pi(cur_page)) {
    868 			if (page >= map_end) {
    869 				/* not mapped at all */
    870 				pte[pl1_pi(page)] = 0;
    871 				page += PAGE_SIZE;
    872 				continue;
    873 			}
    874 			pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
    875 			if (page == (vaddr_t)HYPERVISOR_shared_info) {
    876 				pte[pl1_pi(page)] = xen_start_info.shared_info;
    877 			}
    878 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    879 			    == xen_start_info.console.domU.mfn) {
    880 				xencons_interface = (void *)page;
    881 				pte[pl1_pi(page)] = xen_start_info.console_mfn;
    882 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    883 			}
    884 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    885 			    == xen_start_info.store_mfn) {
    886 				xenstore_interface = (void *)page;
    887 				pte[pl1_pi(page)] = xen_start_info.store_mfn;
    888 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    889 			}
    890 #ifdef DOM0OPS
    891 			if (page >= (vaddr_t)atdevbase &&
    892 			    page < (vaddr_t)atdevbase + IOM_SIZE) {
    893 				pte[pl1_pi(page)] =
    894 				    IOM_BEGIN + (page - (vaddr_t)atdevbase);
    895 				pte[pl1_pi(page)] |= pg_nx;
    896 			}
    897 #endif
    898 
    899 			pte[pl1_pi(page)] |= PG_k | PG_V;
    900 			if (page < (vaddr_t)&__rodata_start) {
    901 				/* Map the kernel text RX. */
    902 				pte[pl1_pi(page)] |= PG_RO;
    903 			} else if (page >= (vaddr_t)&__rodata_start &&
    904 			    page < (vaddr_t)&__data_start) {
    905 				/* Map the kernel rodata R. */
    906 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    907 			} else if (page >= old_pgd &&
    908 			    page < old_pgd + (old_count * PAGE_SIZE)) {
    909 				/* Map the old page tables R. */
    910 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    911 			} else if (page >= new_pgd &&
    912 			    page < new_pgd + ((new_count + l2_4_count) * PAGE_SIZE)) {
    913 				/* Map the new page tables R. */
    914 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    915 #ifdef i386
    916 			} else if (page == (vaddr_t)tmpgdt) {
    917 				/*
    918 				 * Map bootstrap gdt R/O. Later, we will re-add
    919 				 * this page to uvm after making it writable.
    920 				 */
    921 				pte[pl1_pi(page)] = 0;
    922 				page += PAGE_SIZE;
    923 				continue;
    924 #endif
    925 			} else if (page >= (vaddr_t)&__data_start &&
    926 			    page < (vaddr_t)&__kernel_end) {
    927 				/* Map the kernel data+bss RW. */
    928 				pte[pl1_pi(page)] |= PG_RW | pg_nx;
    929 			} else {
    930 				/* Map the page RW. */
    931 				pte[pl1_pi(page)] |= PG_RW | pg_nx;
    932 			}
    933 
    934 			page += PAGE_SIZE;
    935 		}
    936 
    937 		addr = ((u_long)pte) - KERNBASE;
    938 		pde[pl2_pi(cur_page)] =
    939 		    xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
    940 
    941 		/* Mark readonly */
    942 		xen_bt_set_readonly((vaddr_t)pte);
    943 	}
    944 
    945 	/* Install recursive page tables mapping */
    946 #ifdef PAE
    947 	/*
    948 	 * We need a shadow page for the kernel's L2 page.
    949 	 * The real L2 kernel PD will be the last one (so that
    950 	 * pde[L2_SLOT_KERN] always points to the shadow).
    951 	 */
    952 	memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
    953 	cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
    954 	cpu_info_primary.ci_kpm_pdirpa =
    955 	    (vaddr_t) cpu_info_primary.ci_kpm_pdir - KERNBASE;
    956 
    957 	/*
    958 	 * We don't enter a recursive entry from the L3 PD. Instead, we enter
    959 	 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
    960 	 * have to enter the shadow after switching %cr3, or Xen will refcount
    961 	 * some PTEs with the wrong type.
    962 	 */
    963 	addr = (u_long)pde - KERNBASE;
    964 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    965 		pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_k | PG_V |
    966 		    pg_nx;
    967 	}
    968 #if 0
    969 	addr += PAGE_SIZE; /* point to shadow L2 */
    970 	pde[PDIR_SLOT_PTE + 3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    971 #endif
    972 	/* Mark tables RO, and pin the kernel's shadow as L2 */
    973 	addr = (u_long)pde - KERNBASE;
    974 	for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
    975 		xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
    976 #if 0
    977 		if (i == 2 || i == 3)
    978 			continue;
    979 		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    980 #endif
    981 	}
    982 	if (final) {
    983 		addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
    984 		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    985 	}
    986 #if 0
    987 	addr = (u_long)pde - KERNBASE + 2 * PAGE_SIZE;
    988 	xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    989 #endif
    990 #else /* PAE */
    991 
    992 	/* Recursive entry in pmap_kernel(). */
    993 	bt_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_pgd - KERNBASE)
    994 	    | PG_k | PG_RO | PG_V | pg_nx;
    995 #ifdef __x86_64__
    996 	/* Recursive entry in higher-level per-cpu PD. */
    997 	bt_cpu_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_cpu_pgd - KERNBASE)
    998 	    | PG_k | PG_RO | PG_V | pg_nx;
    999 #endif
   1000 
   1001 	/* Mark tables RO */
   1002 	xen_bt_set_readonly((vaddr_t)pde);
   1003 #endif
   1004 #if PTP_LEVELS > 2 || defined(PAE)
   1005 	xen_bt_set_readonly((vaddr_t)pdtpe);
   1006 #endif
   1007 #if PTP_LEVELS > 3
   1008 	xen_bt_set_readonly(new_pgd);
   1009 #endif
   1010 
   1011 	/* Pin the PGD */
   1012 #ifdef __x86_64__
   1013 	xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1014 #elif PAE
   1015 	xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1016 #else
   1017 	xpq_queue_pin_l2_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1018 #endif
   1019 
   1020 	/* Save phys. addr of PDP, for libkvm. */
   1021 #ifdef PAE
   1022 	PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
   1023 #else
   1024 	PDPpaddr = (u_long)bt_pgd - KERNBASE;
   1025 #endif
   1026 
   1027 	/* Switch to new tables */
   1028 	xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
   1029 
   1030 #ifdef PAE
   1031 	if (final) {
   1032 		/* Save the address of the L3 page */
   1033 		cpu_info_primary.ci_pae_l3_pdir = pdtpe;
   1034 		cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
   1035 
   1036 		/* Now enter the kernel's PTE mappings */
   1037 		addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
   1038 		xpq_queue_pte_update(
   1039 		    xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
   1040 		    xpmap_ptom_masked(addr) | PG_k | PG_V);
   1041 		xpq_flush_queue();
   1042 	}
   1043 #elif defined(__x86_64__)
   1044 	if (final) {
   1045 		/* Save the address of the real per-cpu L4 page. */
   1046 		cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
   1047 		cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)bt_cpu_pgd - KERNBASE);
   1048 	}
   1049 #endif
   1050 	__USE(pdtpe);
   1051 
   1052 	/*
   1053 	 * Now we can safely reclaim the space taken by the old tables.
   1054 	 */
   1055 
   1056 	/* Unpin old PGD */
   1057 	xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
   1058 
   1059 	/* Mark old tables RW */
   1060 	page = old_pgd;
   1061 	addr = xpmap_mtop((paddr_t)pde[pl2_pi(page)] & PG_FRAME);
   1062 	pte = (pd_entry_t *)((u_long)addr + KERNBASE);
   1063 	pte += pl1_pi(page);
   1064 	while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
   1065 		addr = xpmap_ptom(((u_long)pte) - KERNBASE);
   1066 		xpq_queue_pte_update(addr, *pte | PG_RW);
   1067 		page += PAGE_SIZE;
   1068 		/*
   1069 		 * Our PTEs are contiguous so it's safe to just "++" here.
   1070 		 */
   1071 		pte++;
   1072 	}
   1073 	xpq_flush_queue();
   1074 }
   1075 
   1076 
   1077 /*
   1078  * Bootstrap helper functions
   1079  */
   1080 
   1081 /*
   1082  * Mark a page readonly
   1083  * XXX: assuming vaddr = paddr + KERNBASE
   1084  */
   1085 
   1086 static void
   1087 xen_bt_set_readonly(vaddr_t page)
   1088 {
   1089 	pt_entry_t entry;
   1090 
   1091 	entry = xpmap_ptom_masked(page - KERNBASE);
   1092 	entry |= PG_k | PG_V;
   1093 
   1094 	HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
   1095 }
   1096 
   1097 #ifdef __x86_64__
   1098 void
   1099 xen_set_user_pgd(paddr_t page)
   1100 {
   1101 	struct mmuext_op op;
   1102 	int s = splvm();
   1103 
   1104 	xpq_flush_queue();
   1105 	op.cmd = MMUEXT_NEW_USER_BASEPTR;
   1106 	op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
   1107 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
   1108 		panic("xen_set_user_pgd: failed to install new user page"
   1109 			" directory %#" PRIxPADDR, page);
   1110 	splx(s);
   1111 }
   1112 #endif /* __x86_64__ */
   1113