x86_xpmap.c revision 1.69 1 /* $NetBSD: x86_xpmap.c,v 1.69 2017/01/06 08:32:26 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2006 Mathieu Ropert <mro (at) adviseo.fr>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 /*
20 * Copyright (c) 2006, 2007 Manuel Bouyer.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the above copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
32 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
34 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 2004 Christian Limpach.
45 * All rights reserved.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.69 2017/01/06 08:32:26 maxv Exp $");
70
71 #include "opt_xen.h"
72 #include "opt_ddb.h"
73 #include "ksyms.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mutex.h>
78 #include <sys/cpu.h>
79
80 #include <uvm/uvm.h>
81
82 #include <x86/pmap.h>
83 #include <machine/gdt.h>
84 #include <xen/xenfunc.h>
85
86 #include <dev/isa/isareg.h>
87 #include <machine/isa_machdep.h>
88
89 #undef XENDEBUG
90 /* #define XENDEBUG_SYNC */
91
92 #ifdef XENDEBUG
93 #define XENPRINTF(x) printf x
94 #define XENPRINTK2(x) /* printk x */
95 static char XBUF[256];
96 #else
97 #define XENPRINTF(x)
98 #define XENPRINTK2(x)
99 #endif
100
101 volatile shared_info_t *HYPERVISOR_shared_info;
102 /* Xen requires the start_info struct to be page aligned */
103 union start_info_union start_info_union __aligned(PAGE_SIZE);
104 unsigned long *xpmap_phys_to_machine_mapping;
105 kmutex_t pte_lock;
106 vaddr_t xen_dummy_page;
107
108 void xen_failsafe_handler(void);
109
110 #define HYPERVISOR_mmu_update_self(req, count, success_count) \
111 HYPERVISOR_mmu_update((req), (count), (success_count), DOMID_SELF)
112
113 extern volatile struct xencons_interface *xencons_interface; /* XXX */
114 extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
115
116 static void xen_bt_set_readonly(vaddr_t);
117 static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
118
119 vaddr_t xen_locore(void);
120
121 /*
122 * kcpuset internally uses an array of uint32_t while xen uses an array of
123 * u_long. As we're little-endian we can cast one to the other.
124 */
125 typedef union {
126 #ifdef _LP64
127 uint32_t xcpum_km[2];
128 #else
129 uint32_t xcpum_km[1];
130 #endif
131 u_long xcpum_xm;
132 } xcpumask_t;
133
134 void
135 xen_failsafe_handler(void)
136 {
137
138 panic("xen_failsafe_handler called!\n");
139 }
140
141 void
142 xen_set_ldt(vaddr_t base, uint32_t entries)
143 {
144 vaddr_t va;
145 vaddr_t end;
146 pt_entry_t *ptp;
147 int s;
148
149 #ifdef __x86_64__
150 end = base + (entries << 3);
151 #else
152 end = base + entries * sizeof(union descriptor);
153 #endif
154
155 for (va = base; va < end; va += PAGE_SIZE) {
156 KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
157 ptp = kvtopte(va);
158 XENPRINTF(("xen_set_ldt %#" PRIxVADDR " %d %p\n",
159 base, entries, ptp));
160 pmap_pte_clearbits(ptp, PG_RW);
161 }
162 s = splvm();
163 xpq_queue_set_ldt(base, entries);
164 splx(s);
165 }
166
167 #ifdef XENDEBUG
168 void xpq_debug_dump(void);
169 #endif
170
171 #define XPQUEUE_SIZE 2048
172 static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
173 static int xpq_idx_array[MAXCPUS];
174
175 #ifdef i386
176 extern union descriptor tmpgdt[];
177 #endif
178
179 void
180 xpq_flush_queue(void)
181 {
182 int i, ok = 0, ret;
183
184 mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
185 int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
186
187 XENPRINTK2(("flush queue %p entries %d\n", xpq_queue, xpq_idx));
188 for (i = 0; i < xpq_idx; i++)
189 XENPRINTK2(("%d: 0x%08" PRIx64 " 0x%08" PRIx64 "\n", i,
190 xpq_queue[i].ptr, xpq_queue[i].val));
191
192 retry:
193 ret = HYPERVISOR_mmu_update_self(xpq_queue, xpq_idx, &ok);
194
195 if (xpq_idx != 0 && ret < 0) {
196 struct cpu_info *ci;
197 CPU_INFO_ITERATOR cii;
198
199 printf("xpq_flush_queue: %d entries (%d successful) on "
200 "cpu%d (%ld)\n",
201 xpq_idx, ok, curcpu()->ci_index, curcpu()->ci_cpuid);
202
203 if (ok != 0) {
204 xpq_queue += ok;
205 xpq_idx -= ok;
206 ok = 0;
207 goto retry;
208 }
209
210 for (CPU_INFO_FOREACH(cii, ci)) {
211 xpq_queue = xpq_queue_array[ci->ci_cpuid];
212 xpq_idx = xpq_idx_array[ci->ci_cpuid];
213 printf("cpu%d (%ld):\n", ci->ci_index, ci->ci_cpuid);
214 for (i = 0; i < xpq_idx; i++) {
215 printf(" 0x%016" PRIx64 ": 0x%016" PRIx64 "\n",
216 xpq_queue[i].ptr, xpq_queue[i].val);
217 }
218 #ifdef __x86_64__
219 for (i = 0; i < PDIR_SLOT_PTE; i++) {
220 if (ci->ci_kpm_pdir[i] == 0)
221 continue;
222 printf(" kpm_pdir[%d]: 0x%" PRIx64 "\n",
223 i, ci->ci_kpm_pdir[i]);
224 }
225 #endif
226 }
227 panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
228 }
229 xpq_idx_array[curcpu()->ci_cpuid] = 0;
230 }
231
232 static inline void
233 xpq_increment_idx(void)
234 {
235
236 if (__predict_false(++xpq_idx_array[curcpu()->ci_cpuid] == XPQUEUE_SIZE))
237 xpq_flush_queue();
238 }
239
240 void
241 xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
242 {
243
244 mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
245 int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
246
247 XENPRINTK2(("xpq_queue_machphys_update ma=0x%" PRIx64 " pa=0x%" PRIx64
248 "\n", (int64_t)ma, (int64_t)pa));
249
250 xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
251 xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
252 xpq_increment_idx();
253 #ifdef XENDEBUG_SYNC
254 xpq_flush_queue();
255 #endif
256 }
257
258 void
259 xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
260 {
261
262 mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
263 int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
264
265 KASSERT((ptr & 3) == 0);
266 xpq_queue[xpq_idx].ptr = (paddr_t)ptr | MMU_NORMAL_PT_UPDATE;
267 xpq_queue[xpq_idx].val = val;
268 xpq_increment_idx();
269 #ifdef XENDEBUG_SYNC
270 xpq_flush_queue();
271 #endif
272 }
273
274 void
275 xpq_queue_pt_switch(paddr_t pa)
276 {
277 struct mmuext_op op;
278 xpq_flush_queue();
279
280 XENPRINTK2(("xpq_queue_pt_switch: 0x%" PRIx64 " 0x%" PRIx64 "\n",
281 (int64_t)pa, (int64_t)pa));
282 op.cmd = MMUEXT_NEW_BASEPTR;
283 op.arg1.mfn = pa >> PAGE_SHIFT;
284 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
285 panic("xpq_queue_pt_switch");
286 }
287
288 void
289 xpq_queue_pin_table(paddr_t pa, int lvl)
290 {
291 struct mmuext_op op;
292
293 xpq_flush_queue();
294
295 XENPRINTK2(("xpq_queue_pin_l%d_table: %#" PRIxPADDR "\n",
296 lvl + 1, pa));
297
298 op.arg1.mfn = pa >> PAGE_SHIFT;
299 op.cmd = lvl;
300
301 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
302 panic("xpq_queue_pin_table");
303 }
304
305 void
306 xpq_queue_unpin_table(paddr_t pa)
307 {
308 struct mmuext_op op;
309
310 xpq_flush_queue();
311
312 XENPRINTK2(("xpq_queue_unpin_table: %#" PRIxPADDR "\n", pa));
313 op.arg1.mfn = pa >> PAGE_SHIFT;
314 op.cmd = MMUEXT_UNPIN_TABLE;
315 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
316 panic("xpq_queue_unpin_table");
317 }
318
319 void
320 xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
321 {
322 struct mmuext_op op;
323
324 xpq_flush_queue();
325
326 XENPRINTK2(("xpq_queue_set_ldt\n"));
327 KASSERT(va == (va & ~PAGE_MASK));
328 op.cmd = MMUEXT_SET_LDT;
329 op.arg1.linear_addr = va;
330 op.arg2.nr_ents = entries;
331 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
332 panic("xpq_queue_set_ldt");
333 }
334
335 void
336 xpq_queue_tlb_flush(void)
337 {
338 struct mmuext_op op;
339
340 xpq_flush_queue();
341
342 XENPRINTK2(("xpq_queue_tlb_flush\n"));
343 op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
344 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
345 panic("xpq_queue_tlb_flush");
346 }
347
348 void
349 xpq_flush_cache(void)
350 {
351 int s = splvm();
352
353 xpq_flush_queue();
354
355 XENPRINTK2(("xpq_queue_flush_cache\n"));
356 asm("wbinvd":::"memory");
357 splx(s); /* XXX: removeme */
358 }
359
360 void
361 xpq_queue_invlpg(vaddr_t va)
362 {
363 struct mmuext_op op;
364 xpq_flush_queue();
365
366 XENPRINTK2(("xpq_queue_invlpg %#" PRIxVADDR "\n", va));
367 op.cmd = MMUEXT_INVLPG_LOCAL;
368 op.arg1.linear_addr = (va & ~PAGE_MASK);
369 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
370 panic("xpq_queue_invlpg");
371 }
372
373 void
374 xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
375 {
376 xcpumask_t xcpumask;
377 mmuext_op_t op;
378
379 kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
380
381 /* Flush pending page updates */
382 xpq_flush_queue();
383
384 op.cmd = MMUEXT_INVLPG_MULTI;
385 op.arg1.linear_addr = va;
386 op.arg2.vcpumask = &xcpumask.xcpum_xm;
387
388 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
389 panic("xpq_queue_invlpg_all");
390 }
391
392 return;
393 }
394
395 void
396 xen_bcast_invlpg(vaddr_t va)
397 {
398 mmuext_op_t op;
399
400 /* Flush pending page updates */
401 xpq_flush_queue();
402
403 op.cmd = MMUEXT_INVLPG_ALL;
404 op.arg1.linear_addr = va;
405
406 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
407 panic("xpq_queue_invlpg_all");
408 }
409
410 return;
411 }
412
413 /* This is a synchronous call. */
414 void
415 xen_mcast_tlbflush(kcpuset_t *kc)
416 {
417 xcpumask_t xcpumask;
418 mmuext_op_t op;
419
420 kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
421
422 /* Flush pending page updates */
423 xpq_flush_queue();
424
425 op.cmd = MMUEXT_TLB_FLUSH_MULTI;
426 op.arg2.vcpumask = &xcpumask.xcpum_xm;
427
428 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
429 panic("xpq_queue_invlpg_all");
430 }
431
432 return;
433 }
434
435 /* This is a synchronous call. */
436 void
437 xen_bcast_tlbflush(void)
438 {
439 mmuext_op_t op;
440
441 /* Flush pending page updates */
442 xpq_flush_queue();
443
444 op.cmd = MMUEXT_TLB_FLUSH_ALL;
445
446 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
447 panic("xpq_queue_invlpg_all");
448 }
449
450 return;
451 }
452
453 /* This is a synchronous call. */
454 void
455 xen_vcpu_mcast_invlpg(vaddr_t sva, vaddr_t eva, kcpuset_t *kc)
456 {
457 KASSERT(eva > sva);
458
459 /* Flush pending page updates */
460 xpq_flush_queue();
461
462 /* Align to nearest page boundary */
463 sva &= ~PAGE_MASK;
464 eva &= ~PAGE_MASK;
465
466 for ( ; sva <= eva; sva += PAGE_SIZE) {
467 xen_mcast_invlpg(sva, kc);
468 }
469
470 return;
471 }
472
473 /* This is a synchronous call. */
474 void
475 xen_vcpu_bcast_invlpg(vaddr_t sva, vaddr_t eva)
476 {
477 KASSERT(eva > sva);
478
479 /* Flush pending page updates */
480 xpq_flush_queue();
481
482 /* Align to nearest page boundary */
483 sva &= ~PAGE_MASK;
484 eva &= ~PAGE_MASK;
485
486 for ( ; sva <= eva; sva += PAGE_SIZE) {
487 xen_bcast_invlpg(sva);
488 }
489
490 return;
491 }
492
493 /* Copy a page */
494 void
495 xen_copy_page(paddr_t srcpa, paddr_t dstpa)
496 {
497 mmuext_op_t op;
498
499 op.cmd = MMUEXT_COPY_PAGE;
500 op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
501 op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
502
503 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
504 panic(__func__);
505 }
506 }
507
508 /* Zero a physical page */
509 void
510 xen_pagezero(paddr_t pa)
511 {
512 mmuext_op_t op;
513
514 op.cmd = MMUEXT_CLEAR_PAGE;
515 op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
516
517 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
518 panic(__func__);
519 }
520 }
521
522 int
523 xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
524 {
525 mmu_update_t op;
526 int ok;
527
528 xpq_flush_queue();
529
530 op.ptr = ptr;
531 op.val = val;
532 if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
533 return EFAULT;
534 return (0);
535 }
536
537 #ifdef XENDEBUG
538 void
539 xpq_debug_dump(void)
540 {
541 int i;
542
543 mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
544 int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
545
546 XENPRINTK2(("idx: %d\n", xpq_idx));
547 for (i = 0; i < xpq_idx; i++) {
548 snprintf(XBUF, sizeof(XBUF), "%" PRIx64 " %08" PRIx64,
549 xpq_queue[i].ptr, xpq_queue[i].val);
550 if (++i < xpq_idx)
551 snprintf(XBUF + strlen(XBUF),
552 sizeof(XBUF) - strlen(XBUF),
553 "%" PRIx64 " %08" PRIx64,
554 xpq_queue[i].ptr, xpq_queue[i].val);
555 if (++i < xpq_idx)
556 snprintf(XBUF + strlen(XBUF),
557 sizeof(XBUF) - strlen(XBUF),
558 "%" PRIx64 " %08" PRIx64,
559 xpq_queue[i].ptr, xpq_queue[i].val);
560 if (++i < xpq_idx)
561 snprintf(XBUF + strlen(XBUF),
562 sizeof(XBUF) - strlen(XBUF),
563 "%" PRIx64 " %08" PRIx64,
564 xpq_queue[i].ptr, xpq_queue[i].val);
565 XENPRINTK2(("%d: %s\n", xpq_idx, XBUF));
566 }
567 }
568 #endif
569
570
571 #if L2_SLOT_KERNBASE > 0
572 #define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
573 #else
574 #define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
575 #endif
576
577 #ifdef PAE
578 /*
579 * For PAE, we consider a single contiguous L2 "superpage" of 4 pages, all of
580 * them mapped by the L3 page. We also need a shadow page for L3[3].
581 */
582 static const int l2_4_count = 6;
583 #elif defined(__x86_64__)
584 static const int l2_4_count = PTP_LEVELS;
585 #else
586 static const int l2_4_count = PTP_LEVELS - 1;
587 #endif
588
589 /*
590 * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
591 * tables.
592 *
593 * Virtual address space of the kernel when leaving this function:
594 * +--------------+------------------+-------------+------------+---------------
595 * | KERNEL IMAGE | BOOTSTRAP TABLES | PROC0 UAREA | DUMMY PAGE | HYPER. SHARED
596 * +--------------+------------------+-------------+------------+---------------
597 *
598 * ------+-----------------+-------------+
599 * INFO | EARLY ZERO PAGE | ISA I/O MEM |
600 * ------+-----------------+-------------+
601 *
602 * DUMMY PAGE is either a PDG for amd64 or a GDT for i386.
603 *
604 * (HYPER. SHARED INFO + EARLY ZERO PAGE + ISA I/O MEM) have no physical
605 * addresses preallocated.
606 */
607 vaddr_t
608 xen_locore(void)
609 {
610 size_t count, oldcount, mapsize;
611 vaddr_t bootstrap_tables, init_tables;
612
613 xen_init_features();
614
615 memset(xpq_idx_array, 0, sizeof(xpq_idx_array));
616
617 xpmap_phys_to_machine_mapping =
618 (unsigned long *)xen_start_info.mfn_list;
619
620 /* Space after Xen boostrap tables should be free */
621 init_tables = xen_start_info.pt_base;
622 bootstrap_tables = init_tables +
623 (xen_start_info.nr_pt_frames * PAGE_SIZE);
624
625 /*
626 * Calculate how much space we need. First, everything mapped before
627 * the Xen bootstrap tables.
628 */
629 mapsize = init_tables - KERNTEXTOFF;
630 /* after the tables we'll have:
631 * - UAREA
632 * - dummy user PGD (x86_64)
633 * - HYPERVISOR_shared_info
634 * - early_zerop
635 * - ISA I/O mem (if needed)
636 */
637 mapsize += UPAGES * PAGE_SIZE;
638 #ifdef __x86_64__
639 mapsize += PAGE_SIZE;
640 #endif
641 mapsize += PAGE_SIZE;
642 mapsize += PAGE_SIZE;
643 #ifdef DOM0OPS
644 if (xendomain_is_dom0()) {
645 mapsize += IOM_SIZE;
646 }
647 #endif
648
649 /*
650 * At this point, mapsize doesn't include the table size.
651 */
652 #ifdef __x86_64__
653 count = TABLE_L2_ENTRIES;
654 #else
655 count = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
656 #endif
657
658 /*
659 * Now compute how many L2 pages we need exactly. This is useful only
660 * on i386, since the initial count for amd64 is already enough.
661 */
662 while (KERNTEXTOFF + mapsize + (count + l2_4_count) * PAGE_SIZE >
663 KERNBASE + (count << L2_SHIFT)) {
664 count++;
665 }
666
667 #ifdef i386
668 /*
669 * One more L2 page: we'll allocate several pages after kva_start
670 * in pmap_bootstrap() before pmap_growkernel(), which have not been
671 * counted here. It's not a big issue to allocate one more L2 as
672 * pmap_growkernel() will be called anyway.
673 */
674 count++;
675 nkptp[1] = count;
676 #endif
677
678 /*
679 * Install bootstrap pages. We may need more L2 pages than will
680 * have the final table here, as it's installed after the final table.
681 */
682 oldcount = count;
683
684 bootstrap_again:
685
686 /*
687 * Xen space we'll reclaim may not be enough for our new page tables,
688 * move bootstrap tables if necessary.
689 */
690 if (bootstrap_tables < init_tables + ((count + l2_4_count) * PAGE_SIZE))
691 bootstrap_tables = init_tables +
692 ((count + l2_4_count) * PAGE_SIZE);
693
694 /*
695 * Make sure the number of L2 pages we have is enough to map everything
696 * from KERNBASE to the bootstrap tables themselves.
697 */
698 if (bootstrap_tables + ((oldcount + l2_4_count) * PAGE_SIZE) >
699 KERNBASE + (oldcount << L2_SHIFT)) {
700 oldcount++;
701 goto bootstrap_again;
702 }
703
704 /* Create temporary tables */
705 xen_bootstrap_tables(init_tables, bootstrap_tables,
706 xen_start_info.nr_pt_frames, oldcount, false);
707
708 /* Create final tables */
709 xen_bootstrap_tables(bootstrap_tables, init_tables,
710 oldcount + l2_4_count, count, true);
711
712 /* Zero out PROC0 UAREA and DUMMY PAGE. */
713 memset((void *)(init_tables + ((count + l2_4_count) * PAGE_SIZE)), 0,
714 (UPAGES + 1) * PAGE_SIZE);
715
716 /* Finally, flush TLB. */
717 xpq_queue_tlb_flush();
718
719 return (init_tables + ((count + l2_4_count) * PAGE_SIZE));
720 }
721
722 /*
723 * Build a new table and switch to it.
724 * old_count is # of old tables (including PGD, PDTPE and PDE).
725 * new_count is # of new tables (PTE only).
726 * We assume the areas don't overlap.
727 */
728 static void
729 xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
730 size_t new_count, bool final)
731 {
732 pd_entry_t *pdtpe, *pde, *pte;
733 pd_entry_t *bt_pgd;
734 paddr_t addr;
735 vaddr_t page, avail, map_end;
736 int i;
737 extern char __rodata_start;
738 extern char __data_start;
739 extern char __kernel_end;
740 extern char *early_zerop; /* from pmap.c */
741 pt_entry_t pg_nx;
742 u_int descs[4];
743
744 /*
745 * Set the NX/XD bit, if available. descs[3] = %edx.
746 */
747 x86_cpuid(0x80000001, descs);
748 pg_nx = (descs[3] & CPUID_NOX) ? PG_NX : 0;
749
750 /*
751 * Layout of RW area after the kernel image:
752 * xencons_interface (if present)
753 * xenstore_interface (if present)
754 * table pages (new_count + l2_4_count entries)
755 * Extra mappings (only when final is true):
756 * UAREA
757 * dummy user PGD (x86_64 only) / GDT page (i386 only)
758 * HYPERVISOR_shared_info
759 * early_zerop
760 * ISA I/O mem (if needed)
761 */
762 map_end = new_pgd + ((new_count + l2_4_count) * PAGE_SIZE);
763 if (final) {
764 map_end += UPAGES * PAGE_SIZE;
765 xen_dummy_page = (vaddr_t)map_end;
766 map_end += PAGE_SIZE;
767 HYPERVISOR_shared_info = (shared_info_t *)map_end;
768 map_end += PAGE_SIZE;
769 early_zerop = (char *)map_end;
770 map_end += PAGE_SIZE;
771 }
772
773 /*
774 * We always set atdevbase, as it's used by init386 to find the first
775 * available VA. map_end is updated only if we are dom0, so
776 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
777 * this case.
778 */
779 if (final) {
780 atdevbase = map_end;
781 #ifdef DOM0OPS
782 if (xendomain_is_dom0()) {
783 /* ISA I/O mem */
784 map_end += IOM_SIZE;
785 }
786 #endif
787 }
788
789 __PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
790 __PRINTK(("console %#lx ", xen_start_info.console_mfn));
791 __PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
792
793 /*
794 * Create bootstrap page tables. What we need:
795 * - a PGD (level 4)
796 * - a PDTPE (level 3)
797 * - a PDE (level 2)
798 * - some PTEs (level 1)
799 */
800
801 bt_pgd = (pd_entry_t *)new_pgd;
802 memset(bt_pgd, 0, PAGE_SIZE);
803 avail = new_pgd + PAGE_SIZE;
804
805 #if PTP_LEVELS > 3
806 /* Per-cpu L4 */
807 pd_entry_t *bt_cpu_pgd = bt_pgd;
808 /* pmap_kernel() "shadow" L4 */
809 bt_pgd = (pd_entry_t *)avail;
810 memset(bt_pgd, 0, PAGE_SIZE);
811 avail += PAGE_SIZE;
812
813 /* Install L3 */
814 pdtpe = (pd_entry_t *)avail;
815 memset(pdtpe, 0, PAGE_SIZE);
816 avail += PAGE_SIZE;
817
818 addr = ((u_long)pdtpe) - KERNBASE;
819 bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
820 xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
821 #else
822 pdtpe = bt_pgd;
823 #endif
824
825 #if PTP_LEVELS > 2
826 /* Level 2 */
827 pde = (pd_entry_t *)avail;
828 memset(pde, 0, PAGE_SIZE);
829 avail += PAGE_SIZE;
830
831 addr = ((u_long)pde) - KERNBASE;
832 pdtpe[pl3_pi(KERNTEXTOFF)] =
833 xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
834 #elif defined(PAE)
835 /*
836 * Our PAE-style level 2, 5 contiguous pages (4 L2 + 1 shadow).
837 * +-----------------+----------------+---------+
838 * Physical layout: | 3 * USERLAND L2 | L2 KERN SHADOW | L2 KERN |
839 * +-----------------+----------------+---------+
840 * However, we enter pdtpte[3] into L2 KERN, and not L2 KERN SHADOW.
841 * This way, pde[L2_SLOT_KERN] always points to the shadow.
842 */
843 pde = (pd_entry_t *)avail;
844 memset(pde, 0, PAGE_SIZE * 5);
845 avail += PAGE_SIZE * 5;
846
847 /*
848 * Link L2 pages in L3, with a special case for L2 KERN. Xen doesn't
849 * want RW permissions in L3 entries, it'll add them itself.
850 */
851 addr = ((u_long)pde) - KERNBASE;
852 for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
853 pdtpe[i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
854 }
855 addr += PAGE_SIZE;
856 pdtpe[3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
857 #else
858 pde = bt_pgd;
859 #endif
860
861 /* Level 1 */
862 page = KERNTEXTOFF;
863 for (i = 0; i < new_count; i ++) {
864 vaddr_t cur_page = page;
865
866 pte = (pd_entry_t *)avail;
867 avail += PAGE_SIZE;
868
869 memset(pte, 0, PAGE_SIZE);
870 while (pl2_pi(page) == pl2_pi(cur_page)) {
871 if (page >= map_end) {
872 /* not mapped at all */
873 pte[pl1_pi(page)] = 0;
874 page += PAGE_SIZE;
875 continue;
876 }
877 pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
878 if (page == (vaddr_t)HYPERVISOR_shared_info) {
879 pte[pl1_pi(page)] = xen_start_info.shared_info;
880 }
881 if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
882 == xen_start_info.console.domU.mfn) {
883 xencons_interface = (void *)page;
884 pte[pl1_pi(page)] = xen_start_info.console_mfn;
885 pte[pl1_pi(page)] <<= PAGE_SHIFT;
886 }
887 if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
888 == xen_start_info.store_mfn) {
889 xenstore_interface = (void *)page;
890 pte[pl1_pi(page)] = xen_start_info.store_mfn;
891 pte[pl1_pi(page)] <<= PAGE_SHIFT;
892 }
893 #ifdef DOM0OPS
894 if (page >= (vaddr_t)atdevbase &&
895 page < (vaddr_t)atdevbase + IOM_SIZE) {
896 pte[pl1_pi(page)] =
897 IOM_BEGIN + (page - (vaddr_t)atdevbase);
898 pte[pl1_pi(page)] |= pg_nx;
899 }
900 #endif
901
902 pte[pl1_pi(page)] |= PG_k | PG_V;
903 if (page < (vaddr_t)&__rodata_start) {
904 /* Map the kernel text RX. */
905 pte[pl1_pi(page)] |= PG_RO;
906 } else if (page >= (vaddr_t)&__rodata_start &&
907 page < (vaddr_t)&__data_start) {
908 /* Map the kernel rodata R. */
909 pte[pl1_pi(page)] |= PG_RO | pg_nx;
910 } else if (page >= old_pgd &&
911 page < old_pgd + (old_count * PAGE_SIZE)) {
912 /* Map the old page tables R. */
913 pte[pl1_pi(page)] |= PG_RO | pg_nx;
914 } else if (page >= new_pgd &&
915 page < new_pgd + ((new_count + l2_4_count) * PAGE_SIZE)) {
916 /* Map the new page tables R. */
917 pte[pl1_pi(page)] |= PG_RO | pg_nx;
918 #ifdef i386
919 } else if (page == (vaddr_t)tmpgdt) {
920 /*
921 * Map bootstrap gdt R/O. Later, we will re-add
922 * this page to uvm after making it writable.
923 */
924 pte[pl1_pi(page)] = 0;
925 page += PAGE_SIZE;
926 continue;
927 #endif
928 } else if (page >= (vaddr_t)&__data_start &&
929 page < (vaddr_t)&__kernel_end) {
930 /* Map the kernel data+bss RW. */
931 pte[pl1_pi(page)] |= PG_RW | pg_nx;
932 } else {
933 /* Map the page RW. */
934 pte[pl1_pi(page)] |= PG_RW | pg_nx;
935 }
936
937 page += PAGE_SIZE;
938 }
939
940 addr = ((u_long)pte) - KERNBASE;
941 pde[pl2_pi(cur_page)] =
942 xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
943
944 /* Mark readonly */
945 xen_bt_set_readonly((vaddr_t)pte);
946 }
947
948 /* Install recursive page tables mapping */
949 #ifdef PAE
950 /* Copy L2 KERN into L2 KERN SHADOW, and reference the latter in cpu0. */
951 memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
952 cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
953 cpu_info_primary.ci_kpm_pdirpa =
954 (vaddr_t)cpu_info_primary.ci_kpm_pdir - KERNBASE;
955
956 /*
957 * We don't enter a recursive entry from the L3 PD. Instead, we enter
958 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
959 * have to enter the shadow after switching %cr3, or Xen will refcount
960 * some PTEs with the wrong type.
961 */
962 addr = (u_long)pde - KERNBASE;
963 for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
964 pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_k | PG_V |
965 pg_nx;
966 }
967
968 /* Mark tables RO, and pin L2 KERN SHADOW. */
969 addr = (u_long)pde - KERNBASE;
970 for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
971 xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
972 }
973 if (final) {
974 addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
975 xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
976 }
977 #else /* PAE */
978
979 /* Recursive entry in pmap_kernel(). */
980 bt_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_pgd - KERNBASE)
981 | PG_k | PG_RO | PG_V | pg_nx;
982 #ifdef __x86_64__
983 /* Recursive entry in higher-level per-cpu PD. */
984 bt_cpu_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_cpu_pgd - KERNBASE)
985 | PG_k | PG_RO | PG_V | pg_nx;
986 #endif
987
988 /* Mark tables RO */
989 xen_bt_set_readonly((vaddr_t)pde);
990 #endif /* PAE */
991
992 #if PTP_LEVELS > 2 || defined(PAE)
993 xen_bt_set_readonly((vaddr_t)pdtpe);
994 #endif
995 #if PTP_LEVELS > 3
996 xen_bt_set_readonly(new_pgd);
997 #endif
998
999 /* Pin the PGD */
1000 #ifdef __x86_64__
1001 xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
1002 #elif PAE
1003 xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
1004 #else
1005 xpq_queue_pin_l2_table(xpmap_ptom_masked(new_pgd - KERNBASE));
1006 #endif
1007
1008 /* Save phys. addr of PDP, for libkvm. */
1009 #ifdef PAE
1010 PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
1011 #else
1012 PDPpaddr = (u_long)bt_pgd - KERNBASE;
1013 #endif
1014
1015 /* Switch to new tables */
1016 xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
1017
1018 #ifdef PAE
1019 if (final) {
1020 /* Save the address of the L3 page */
1021 cpu_info_primary.ci_pae_l3_pdir = pdtpe;
1022 cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
1023
1024 /* Now enter the kernel's PTE mappings */
1025 addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
1026 xpq_queue_pte_update(
1027 xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
1028 xpmap_ptom_masked(addr) | PG_k | PG_V);
1029 xpq_flush_queue();
1030 }
1031 #elif defined(__x86_64__)
1032 if (final) {
1033 /* Save the address of the real per-cpu L4 page. */
1034 cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
1035 cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)bt_cpu_pgd - KERNBASE);
1036 }
1037 #endif
1038 __USE(pdtpe);
1039
1040 /*
1041 * Now we can safely reclaim the space taken by the old tables.
1042 */
1043
1044 /* Unpin old PGD */
1045 xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
1046
1047 /* Mark old tables RW */
1048 page = old_pgd;
1049 addr = xpmap_mtop((paddr_t)pde[pl2_pi(page)] & PG_FRAME);
1050 pte = (pd_entry_t *)((u_long)addr + KERNBASE);
1051 pte += pl1_pi(page);
1052 while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
1053 addr = xpmap_ptom(((u_long)pte) - KERNBASE);
1054 xpq_queue_pte_update(addr, *pte | PG_RW);
1055 page += PAGE_SIZE;
1056 /*
1057 * Our PTEs are contiguous so it's safe to just "++" here.
1058 */
1059 pte++;
1060 }
1061 xpq_flush_queue();
1062 }
1063
1064
1065 /*
1066 * Bootstrap helper functions
1067 */
1068
1069 /*
1070 * Mark a page readonly
1071 * XXX: assuming vaddr = paddr + KERNBASE
1072 */
1073
1074 static void
1075 xen_bt_set_readonly(vaddr_t page)
1076 {
1077 pt_entry_t entry;
1078
1079 entry = xpmap_ptom_masked(page - KERNBASE);
1080 entry |= PG_k | PG_V;
1081
1082 HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
1083 }
1084
1085 #ifdef __x86_64__
1086 void
1087 xen_set_user_pgd(paddr_t page)
1088 {
1089 struct mmuext_op op;
1090 int s = splvm();
1091
1092 xpq_flush_queue();
1093 op.cmd = MMUEXT_NEW_USER_BASEPTR;
1094 op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
1095 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
1096 panic("xen_set_user_pgd: failed to install new user page"
1097 " directory %#" PRIxPADDR, page);
1098 splx(s);
1099 }
1100 #endif /* __x86_64__ */
1101