Home | History | Annotate | Line # | Download | only in x86
x86_xpmap.c revision 1.70
      1 /*	$NetBSD: x86_xpmap.c,v 1.70 2017/01/22 19:24:51 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2006 Mathieu Ropert <mro (at) adviseo.fr>
      5  *
      6  * Permission to use, copy, modify, and distribute this software for any
      7  * purpose with or without fee is hereby granted, provided that the above
      8  * copyright notice and this permission notice appear in all copies.
      9  *
     10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     17  */
     18 
     19 /*
     20  * Copyright (c) 2006, 2007 Manuel Bouyer.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the above copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  *
     31  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     32  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     34  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     37  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     38  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     39  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     40  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     41  */
     42 
     43 /*
     44  * Copyright (c) 2004 Christian Limpach.
     45  * All rights reserved.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.70 2017/01/22 19:24:51 maxv Exp $");
     70 
     71 #include "opt_xen.h"
     72 #include "opt_ddb.h"
     73 #include "ksyms.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/mutex.h>
     78 #include <sys/cpu.h>
     79 
     80 #include <uvm/uvm.h>
     81 
     82 #include <x86/pmap.h>
     83 #include <machine/gdt.h>
     84 #include <xen/xenfunc.h>
     85 
     86 #include <dev/isa/isareg.h>
     87 #include <machine/isa_machdep.h>
     88 
     89 #undef	XENDEBUG
     90 /* #define XENDEBUG_SYNC */
     91 
     92 #ifdef XENDEBUG
     93 #define	XENPRINTF(x) printf x
     94 #define	XENPRINTK2(x) /* printk x */
     95 static char XBUF[256];
     96 #else
     97 #define	XENPRINTF(x)
     98 #define	XENPRINTK2(x)
     99 #endif
    100 
    101 volatile shared_info_t *HYPERVISOR_shared_info;
    102 /* Xen requires the start_info struct to be page aligned */
    103 union start_info_union start_info_union __aligned(PAGE_SIZE);
    104 unsigned long *xpmap_phys_to_machine_mapping;
    105 kmutex_t pte_lock;
    106 vaddr_t xen_dummy_page;
    107 
    108 pt_entry_t xpmap_pg_nx;
    109 
    110 void xen_failsafe_handler(void);
    111 
    112 #define HYPERVISOR_mmu_update_self(req, count, success_count) \
    113 	HYPERVISOR_mmu_update((req), (count), (success_count), DOMID_SELF)
    114 
    115 extern volatile struct xencons_interface *xencons_interface; /* XXX */
    116 extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
    117 
    118 static void xen_bt_set_readonly(vaddr_t);
    119 static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
    120 
    121 vaddr_t xen_locore(void);
    122 
    123 /*
    124  * kcpuset internally uses an array of uint32_t while xen uses an array of
    125  * u_long. As we're little-endian we can cast one to the other.
    126  */
    127 typedef union {
    128 #ifdef _LP64
    129 	uint32_t xcpum_km[2];
    130 #else
    131 	uint32_t xcpum_km[1];
    132 #endif
    133 	u_long xcpum_xm;
    134 } xcpumask_t;
    135 
    136 void
    137 xen_failsafe_handler(void)
    138 {
    139 
    140 	panic("xen_failsafe_handler called!\n");
    141 }
    142 
    143 void
    144 xen_set_ldt(vaddr_t base, uint32_t entries)
    145 {
    146 	vaddr_t va;
    147 	vaddr_t end;
    148 	pt_entry_t *ptp;
    149 	int s;
    150 
    151 #ifdef __x86_64__
    152 	end = base + (entries << 3);
    153 #else
    154 	end = base + entries * sizeof(union descriptor);
    155 #endif
    156 
    157 	for (va = base; va < end; va += PAGE_SIZE) {
    158 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
    159 		ptp = kvtopte(va);
    160 		XENPRINTF(("xen_set_ldt %#" PRIxVADDR " %d %p\n",
    161 		    base, entries, ptp));
    162 		pmap_pte_clearbits(ptp, PG_RW);
    163 	}
    164 	s = splvm();
    165 	xpq_queue_set_ldt(base, entries);
    166 	splx(s);
    167 }
    168 
    169 #ifdef XENDEBUG
    170 void xpq_debug_dump(void);
    171 #endif
    172 
    173 #define XPQUEUE_SIZE 2048
    174 static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
    175 static int xpq_idx_array[MAXCPUS];
    176 
    177 #ifdef i386
    178 extern union descriptor tmpgdt[];
    179 #endif
    180 
    181 void
    182 xpq_flush_queue(void)
    183 {
    184 	int i, ok = 0, ret;
    185 
    186 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    187 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    188 
    189 	XENPRINTK2(("flush queue %p entries %d\n", xpq_queue, xpq_idx));
    190 	for (i = 0; i < xpq_idx; i++)
    191 		XENPRINTK2(("%d: 0x%08" PRIx64 " 0x%08" PRIx64 "\n", i,
    192 		    xpq_queue[i].ptr, xpq_queue[i].val));
    193 
    194 retry:
    195 	ret = HYPERVISOR_mmu_update_self(xpq_queue, xpq_idx, &ok);
    196 
    197 	if (xpq_idx != 0 && ret < 0) {
    198 		struct cpu_info *ci;
    199 		CPU_INFO_ITERATOR cii;
    200 
    201 		printf("xpq_flush_queue: %d entries (%d successful) on "
    202 		    "cpu%d (%ld)\n",
    203 		    xpq_idx, ok, curcpu()->ci_index, curcpu()->ci_cpuid);
    204 
    205 		if (ok != 0) {
    206 			xpq_queue += ok;
    207 			xpq_idx -= ok;
    208 			ok = 0;
    209 			goto retry;
    210 		}
    211 
    212 		for (CPU_INFO_FOREACH(cii, ci)) {
    213 			xpq_queue = xpq_queue_array[ci->ci_cpuid];
    214 			xpq_idx = xpq_idx_array[ci->ci_cpuid];
    215 			printf("cpu%d (%ld):\n", ci->ci_index, ci->ci_cpuid);
    216 			for (i = 0; i < xpq_idx; i++) {
    217 				printf("  0x%016" PRIx64 ": 0x%016" PRIx64 "\n",
    218 				   xpq_queue[i].ptr, xpq_queue[i].val);
    219 			}
    220 #ifdef __x86_64__
    221 			for (i = 0; i < PDIR_SLOT_PTE; i++) {
    222 				if (ci->ci_kpm_pdir[i] == 0)
    223 					continue;
    224 				printf(" kpm_pdir[%d]: 0x%" PRIx64 "\n",
    225 				    i, ci->ci_kpm_pdir[i]);
    226 			}
    227 #endif
    228 		}
    229 		panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
    230 	}
    231 	xpq_idx_array[curcpu()->ci_cpuid] = 0;
    232 }
    233 
    234 static inline void
    235 xpq_increment_idx(void)
    236 {
    237 
    238 	if (__predict_false(++xpq_idx_array[curcpu()->ci_cpuid] == XPQUEUE_SIZE))
    239 		xpq_flush_queue();
    240 }
    241 
    242 void
    243 xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
    244 {
    245 
    246 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    247 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    248 
    249 	XENPRINTK2(("xpq_queue_machphys_update ma=0x%" PRIx64 " pa=0x%" PRIx64
    250 	    "\n", (int64_t)ma, (int64_t)pa));
    251 
    252 	xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
    253 	xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
    254 	xpq_increment_idx();
    255 #ifdef XENDEBUG_SYNC
    256 	xpq_flush_queue();
    257 #endif
    258 }
    259 
    260 void
    261 xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
    262 {
    263 
    264 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    265 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    266 
    267 	KASSERT((ptr & 3) == 0);
    268 	xpq_queue[xpq_idx].ptr = (paddr_t)ptr | MMU_NORMAL_PT_UPDATE;
    269 	xpq_queue[xpq_idx].val = val;
    270 	xpq_increment_idx();
    271 #ifdef XENDEBUG_SYNC
    272 	xpq_flush_queue();
    273 #endif
    274 }
    275 
    276 void
    277 xpq_queue_pt_switch(paddr_t pa)
    278 {
    279 	struct mmuext_op op;
    280 	xpq_flush_queue();
    281 
    282 	XENPRINTK2(("xpq_queue_pt_switch: 0x%" PRIx64 " 0x%" PRIx64 "\n",
    283 	    (int64_t)pa, (int64_t)pa));
    284 	op.cmd = MMUEXT_NEW_BASEPTR;
    285 	op.arg1.mfn = pa >> PAGE_SHIFT;
    286 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    287 		panic("xpq_queue_pt_switch");
    288 }
    289 
    290 void
    291 xpq_queue_pin_table(paddr_t pa, int lvl)
    292 {
    293 	struct mmuext_op op;
    294 
    295 	xpq_flush_queue();
    296 
    297 	XENPRINTK2(("xpq_queue_pin_l%d_table: %#" PRIxPADDR "\n",
    298 	    lvl + 1, pa));
    299 
    300 	op.arg1.mfn = pa >> PAGE_SHIFT;
    301 	op.cmd = lvl;
    302 
    303 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    304 		panic("xpq_queue_pin_table");
    305 }
    306 
    307 void
    308 xpq_queue_unpin_table(paddr_t pa)
    309 {
    310 	struct mmuext_op op;
    311 
    312 	xpq_flush_queue();
    313 
    314 	XENPRINTK2(("xpq_queue_unpin_table: %#" PRIxPADDR "\n", pa));
    315 	op.arg1.mfn = pa >> PAGE_SHIFT;
    316 	op.cmd = MMUEXT_UNPIN_TABLE;
    317 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    318 		panic("xpq_queue_unpin_table");
    319 }
    320 
    321 void
    322 xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
    323 {
    324 	struct mmuext_op op;
    325 
    326 	xpq_flush_queue();
    327 
    328 	XENPRINTK2(("xpq_queue_set_ldt\n"));
    329 	KASSERT(va == (va & ~PAGE_MASK));
    330 	op.cmd = MMUEXT_SET_LDT;
    331 	op.arg1.linear_addr = va;
    332 	op.arg2.nr_ents = entries;
    333 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    334 		panic("xpq_queue_set_ldt");
    335 }
    336 
    337 void
    338 xpq_queue_tlb_flush(void)
    339 {
    340 	struct mmuext_op op;
    341 
    342 	xpq_flush_queue();
    343 
    344 	XENPRINTK2(("xpq_queue_tlb_flush\n"));
    345 	op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
    346 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    347 		panic("xpq_queue_tlb_flush");
    348 }
    349 
    350 void
    351 xpq_flush_cache(void)
    352 {
    353 	int s = splvm();
    354 
    355 	xpq_flush_queue();
    356 
    357 	XENPRINTK2(("xpq_queue_flush_cache\n"));
    358 	asm("wbinvd":::"memory");
    359 	splx(s); /* XXX: removeme */
    360 }
    361 
    362 void
    363 xpq_queue_invlpg(vaddr_t va)
    364 {
    365 	struct mmuext_op op;
    366 	xpq_flush_queue();
    367 
    368 	XENPRINTK2(("xpq_queue_invlpg %#" PRIxVADDR "\n", va));
    369 	op.cmd = MMUEXT_INVLPG_LOCAL;
    370 	op.arg1.linear_addr = (va & ~PAGE_MASK);
    371 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    372 		panic("xpq_queue_invlpg");
    373 }
    374 
    375 void
    376 xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
    377 {
    378 	xcpumask_t xcpumask;
    379 	mmuext_op_t op;
    380 
    381 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    382 
    383 	/* Flush pending page updates */
    384 	xpq_flush_queue();
    385 
    386 	op.cmd = MMUEXT_INVLPG_MULTI;
    387 	op.arg1.linear_addr = va;
    388 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    389 
    390 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    391 		panic("xpq_queue_invlpg_all");
    392 	}
    393 
    394 	return;
    395 }
    396 
    397 void
    398 xen_bcast_invlpg(vaddr_t va)
    399 {
    400 	mmuext_op_t op;
    401 
    402 	/* Flush pending page updates */
    403 	xpq_flush_queue();
    404 
    405 	op.cmd = MMUEXT_INVLPG_ALL;
    406 	op.arg1.linear_addr = va;
    407 
    408 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    409 		panic("xpq_queue_invlpg_all");
    410 	}
    411 
    412 	return;
    413 }
    414 
    415 /* This is a synchronous call. */
    416 void
    417 xen_mcast_tlbflush(kcpuset_t *kc)
    418 {
    419 	xcpumask_t xcpumask;
    420 	mmuext_op_t op;
    421 
    422 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    423 
    424 	/* Flush pending page updates */
    425 	xpq_flush_queue();
    426 
    427 	op.cmd = MMUEXT_TLB_FLUSH_MULTI;
    428 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    429 
    430 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    431 		panic("xpq_queue_invlpg_all");
    432 	}
    433 
    434 	return;
    435 }
    436 
    437 /* This is a synchronous call. */
    438 void
    439 xen_bcast_tlbflush(void)
    440 {
    441 	mmuext_op_t op;
    442 
    443 	/* Flush pending page updates */
    444 	xpq_flush_queue();
    445 
    446 	op.cmd = MMUEXT_TLB_FLUSH_ALL;
    447 
    448 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    449 		panic("xpq_queue_invlpg_all");
    450 	}
    451 
    452 	return;
    453 }
    454 
    455 /* This is a synchronous call. */
    456 void
    457 xen_vcpu_mcast_invlpg(vaddr_t sva, vaddr_t eva, kcpuset_t *kc)
    458 {
    459 	KASSERT(eva > sva);
    460 
    461 	/* Flush pending page updates */
    462 	xpq_flush_queue();
    463 
    464 	/* Align to nearest page boundary */
    465 	sva &= ~PAGE_MASK;
    466 	eva &= ~PAGE_MASK;
    467 
    468 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    469 		xen_mcast_invlpg(sva, kc);
    470 	}
    471 
    472 	return;
    473 }
    474 
    475 /* This is a synchronous call. */
    476 void
    477 xen_vcpu_bcast_invlpg(vaddr_t sva, vaddr_t eva)
    478 {
    479 	KASSERT(eva > sva);
    480 
    481 	/* Flush pending page updates */
    482 	xpq_flush_queue();
    483 
    484 	/* Align to nearest page boundary */
    485 	sva &= ~PAGE_MASK;
    486 	eva &= ~PAGE_MASK;
    487 
    488 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    489 		xen_bcast_invlpg(sva);
    490 	}
    491 
    492 	return;
    493 }
    494 
    495 /* Copy a page */
    496 void
    497 xen_copy_page(paddr_t srcpa, paddr_t dstpa)
    498 {
    499 	mmuext_op_t op;
    500 
    501 	op.cmd = MMUEXT_COPY_PAGE;
    502 	op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
    503 	op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
    504 
    505 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    506 		panic(__func__);
    507 	}
    508 }
    509 
    510 /* Zero a physical page */
    511 void
    512 xen_pagezero(paddr_t pa)
    513 {
    514 	mmuext_op_t op;
    515 
    516 	op.cmd = MMUEXT_CLEAR_PAGE;
    517 	op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
    518 
    519 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    520 		panic(__func__);
    521 	}
    522 }
    523 
    524 int
    525 xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
    526 {
    527 	mmu_update_t op;
    528 	int ok;
    529 
    530 	xpq_flush_queue();
    531 
    532 	op.ptr = ptr;
    533 	op.val = val;
    534 	if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
    535 		return EFAULT;
    536 	return (0);
    537 }
    538 
    539 #ifdef XENDEBUG
    540 void
    541 xpq_debug_dump(void)
    542 {
    543 	int i;
    544 
    545 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    546 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    547 
    548 	XENPRINTK2(("idx: %d\n", xpq_idx));
    549 	for (i = 0; i < xpq_idx; i++) {
    550 		snprintf(XBUF, sizeof(XBUF), "%" PRIx64 " %08" PRIx64,
    551 		    xpq_queue[i].ptr, xpq_queue[i].val);
    552 		if (++i < xpq_idx)
    553 			snprintf(XBUF + strlen(XBUF),
    554 			    sizeof(XBUF) - strlen(XBUF),
    555 			    "%" PRIx64 " %08" PRIx64,
    556 			    xpq_queue[i].ptr, xpq_queue[i].val);
    557 		if (++i < xpq_idx)
    558 			snprintf(XBUF + strlen(XBUF),
    559 			    sizeof(XBUF) - strlen(XBUF),
    560 			    "%" PRIx64 " %08" PRIx64,
    561 			    xpq_queue[i].ptr, xpq_queue[i].val);
    562 		if (++i < xpq_idx)
    563 			snprintf(XBUF + strlen(XBUF),
    564 			    sizeof(XBUF) - strlen(XBUF),
    565 			    "%" PRIx64 " %08" PRIx64,
    566 			    xpq_queue[i].ptr, xpq_queue[i].val);
    567 		XENPRINTK2(("%d: %s\n", xpq_idx, XBUF));
    568 	}
    569 }
    570 #endif
    571 
    572 
    573 #if L2_SLOT_KERNBASE > 0
    574 #define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
    575 #else
    576 #define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
    577 #endif
    578 
    579 #ifdef PAE
    580 /*
    581  * For PAE, we consider a single contiguous L2 "superpage" of 4 pages, all of
    582  * them mapped by the L3 page. We also need a shadow page for L3[3].
    583  */
    584 static const int l2_4_count = 6;
    585 #elif defined(__x86_64__)
    586 static const int l2_4_count = PTP_LEVELS;
    587 #else
    588 static const int l2_4_count = PTP_LEVELS - 1;
    589 #endif
    590 
    591 /*
    592  * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
    593  * tables.
    594  *
    595  * Virtual address space of the kernel when leaving this function:
    596  * +--------------+------------------+-------------+------------+---------------
    597  * | KERNEL IMAGE | BOOTSTRAP TABLES | PROC0 UAREA | DUMMY PAGE | HYPER. SHARED
    598  * +--------------+------------------+-------------+------------+---------------
    599  *
    600  * ------+-----------------+-------------+
    601  *  INFO | EARLY ZERO PAGE | ISA I/O MEM |
    602  * ------+-----------------+-------------+
    603  *
    604  * DUMMY PAGE is either a PDG for amd64 or a GDT for i386.
    605  *
    606  * (HYPER. SHARED INFO + EARLY ZERO PAGE + ISA I/O MEM) have no physical
    607  * addresses preallocated.
    608  */
    609 vaddr_t
    610 xen_locore(void)
    611 {
    612 	size_t count, oldcount, mapsize;
    613 	vaddr_t bootstrap_tables, init_tables;
    614 	u_int descs[4];
    615 
    616 	xen_init_features();
    617 
    618 	memset(xpq_idx_array, 0, sizeof(xpq_idx_array));
    619 
    620 	xpmap_phys_to_machine_mapping =
    621 	    (unsigned long *)xen_start_info.mfn_list;
    622 
    623 	/* Set the NX/XD bit, if available. descs[3] = %edx. */
    624 	x86_cpuid(0x80000001, descs);
    625 	xpmap_pg_nx = (descs[3] & CPUID_NOX) ? PG_NX : 0;
    626 
    627 	/* Space after Xen boostrap tables should be free */
    628 	init_tables = xen_start_info.pt_base;
    629 	bootstrap_tables = init_tables +
    630 	    (xen_start_info.nr_pt_frames * PAGE_SIZE);
    631 
    632 	/*
    633 	 * Calculate how much space we need. First, everything mapped before
    634 	 * the Xen bootstrap tables.
    635 	 */
    636 	mapsize = init_tables - KERNTEXTOFF;
    637 	/* after the tables we'll have:
    638 	 *  - UAREA
    639 	 *  - dummy user PGD (x86_64)
    640 	 *  - HYPERVISOR_shared_info
    641 	 *  - early_zerop
    642 	 *  - ISA I/O mem (if needed)
    643 	 */
    644 	mapsize += UPAGES * PAGE_SIZE;
    645 #ifdef __x86_64__
    646 	mapsize += PAGE_SIZE;
    647 #endif
    648 	mapsize += PAGE_SIZE;
    649 	mapsize += PAGE_SIZE;
    650 #ifdef DOM0OPS
    651 	if (xendomain_is_dom0()) {
    652 		mapsize += IOM_SIZE;
    653 	}
    654 #endif
    655 
    656 	/*
    657 	 * At this point, mapsize doesn't include the table size.
    658 	 */
    659 #ifdef __x86_64__
    660 	count = TABLE_L2_ENTRIES;
    661 #else
    662 	count = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
    663 #endif
    664 
    665 	/*
    666 	 * Now compute how many L2 pages we need exactly. This is useful only
    667 	 * on i386, since the initial count for amd64 is already enough.
    668 	 */
    669 	while (KERNTEXTOFF + mapsize + (count + l2_4_count) * PAGE_SIZE >
    670 	    KERNBASE + (count << L2_SHIFT)) {
    671 		count++;
    672 	}
    673 
    674 #ifdef i386
    675 	/*
    676 	 * One more L2 page: we'll allocate several pages after kva_start
    677 	 * in pmap_bootstrap() before pmap_growkernel(), which have not been
    678 	 * counted here. It's not a big issue to allocate one more L2 as
    679 	 * pmap_growkernel() will be called anyway.
    680 	 */
    681 	count++;
    682 	nkptp[1] = count;
    683 #endif
    684 
    685 	/*
    686 	 * Install bootstrap pages. We may need more L2 pages than will
    687 	 * have the final table here, as it's installed after the final table.
    688 	 */
    689 	oldcount = count;
    690 
    691 bootstrap_again:
    692 
    693 	/*
    694 	 * Xen space we'll reclaim may not be enough for our new page tables,
    695 	 * move bootstrap tables if necessary.
    696 	 */
    697 	if (bootstrap_tables < init_tables + ((count + l2_4_count) * PAGE_SIZE))
    698 		bootstrap_tables = init_tables +
    699 		    ((count + l2_4_count) * PAGE_SIZE);
    700 
    701 	/*
    702 	 * Make sure the number of L2 pages we have is enough to map everything
    703 	 * from KERNBASE to the bootstrap tables themselves.
    704 	 */
    705 	if (bootstrap_tables + ((oldcount + l2_4_count) * PAGE_SIZE) >
    706 	    KERNBASE + (oldcount << L2_SHIFT)) {
    707 		oldcount++;
    708 		goto bootstrap_again;
    709 	}
    710 
    711 	/* Create temporary tables */
    712 	xen_bootstrap_tables(init_tables, bootstrap_tables,
    713 	    xen_start_info.nr_pt_frames, oldcount, false);
    714 
    715 	/* Create final tables */
    716 	xen_bootstrap_tables(bootstrap_tables, init_tables,
    717 	    oldcount + l2_4_count, count, true);
    718 
    719 	/* Zero out PROC0 UAREA and DUMMY PAGE. */
    720 	memset((void *)(init_tables + ((count + l2_4_count) * PAGE_SIZE)), 0,
    721 	    (UPAGES + 1) * PAGE_SIZE);
    722 
    723 	/* Finally, flush TLB. */
    724 	xpq_queue_tlb_flush();
    725 
    726 	return (init_tables + ((count + l2_4_count) * PAGE_SIZE));
    727 }
    728 
    729 /*
    730  * Build a new table and switch to it.
    731  * old_count is # of old tables (including PGD, PDTPE and PDE).
    732  * new_count is # of new tables (PTE only).
    733  * We assume the areas don't overlap.
    734  */
    735 static void
    736 xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
    737     size_t new_count, bool final)
    738 {
    739 	pd_entry_t *pdtpe, *pde, *pte;
    740 	pd_entry_t *bt_pgd;
    741 	paddr_t addr;
    742 	vaddr_t page, avail, map_end;
    743 	int i;
    744 	extern char __rodata_start;
    745 	extern char __data_start;
    746 	extern char __kernel_end;
    747 	extern char *early_zerop; /* from pmap.c */
    748 
    749 	/*
    750 	 * Layout of RW area after the kernel image:
    751 	 *     xencons_interface (if present)
    752 	 *     xenstore_interface (if present)
    753 	 *     table pages (new_count + l2_4_count entries)
    754 	 * Extra mappings (only when final is true):
    755 	 *     UAREA
    756 	 *     dummy user PGD (x86_64 only) / GDT page (i386 only)
    757 	 *     HYPERVISOR_shared_info
    758 	 *     early_zerop
    759 	 *     ISA I/O mem (if needed)
    760 	 */
    761 	map_end = new_pgd + ((new_count + l2_4_count) * PAGE_SIZE);
    762 	if (final) {
    763 		map_end += UPAGES * PAGE_SIZE;
    764 		xen_dummy_page = (vaddr_t)map_end;
    765 		map_end += PAGE_SIZE;
    766 		HYPERVISOR_shared_info = (shared_info_t *)map_end;
    767 		map_end += PAGE_SIZE;
    768 		early_zerop = (char *)map_end;
    769 		map_end += PAGE_SIZE;
    770 	}
    771 
    772 	/*
    773 	 * We always set atdevbase, as it's used by init386 to find the first
    774 	 * available VA. map_end is updated only if we are dom0, so
    775 	 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
    776 	 * this case.
    777 	 */
    778 	if (final) {
    779 		atdevbase = map_end;
    780 #ifdef DOM0OPS
    781 		if (xendomain_is_dom0()) {
    782 			/* ISA I/O mem */
    783 			map_end += IOM_SIZE;
    784 		}
    785 #endif
    786 	}
    787 
    788 	__PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
    789 	__PRINTK(("console %#lx ", xen_start_info.console_mfn));
    790 	__PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
    791 
    792 	/*
    793 	 * Create bootstrap page tables. What we need:
    794 	 * - a PGD (level 4)
    795 	 * - a PDTPE (level 3)
    796 	 * - a PDE (level 2)
    797 	 * - some PTEs (level 1)
    798 	 */
    799 
    800 	bt_pgd = (pd_entry_t *)new_pgd;
    801 	memset(bt_pgd, 0, PAGE_SIZE);
    802 	avail = new_pgd + PAGE_SIZE;
    803 
    804 #if PTP_LEVELS > 3
    805 	/* Per-cpu L4 */
    806 	pd_entry_t *bt_cpu_pgd = bt_pgd;
    807 	/* pmap_kernel() "shadow" L4 */
    808 	bt_pgd = (pd_entry_t *)avail;
    809 	memset(bt_pgd, 0, PAGE_SIZE);
    810 	avail += PAGE_SIZE;
    811 
    812 	/* Install L3 */
    813 	pdtpe = (pd_entry_t *)avail;
    814 	memset(pdtpe, 0, PAGE_SIZE);
    815 	avail += PAGE_SIZE;
    816 
    817 	addr = ((u_long)pdtpe) - KERNBASE;
    818 	bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
    819 	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
    820 #else
    821 	pdtpe = bt_pgd;
    822 #endif
    823 
    824 #if PTP_LEVELS > 2
    825 	/* Level 2 */
    826 	pde = (pd_entry_t *)avail;
    827 	memset(pde, 0, PAGE_SIZE);
    828 	avail += PAGE_SIZE;
    829 
    830 	addr = ((u_long)pde) - KERNBASE;
    831 	pdtpe[pl3_pi(KERNTEXTOFF)] =
    832 	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
    833 #elif defined(PAE)
    834 	/*
    835 	 * Our PAE-style level 2, 5 contiguous pages (4 L2 + 1 shadow).
    836 	 *                  +-----------------+----------------+---------+
    837 	 * Physical layout: | 3 * USERLAND L2 | L2 KERN SHADOW | L2 KERN |
    838 	 *                  +-----------------+----------------+---------+
    839 	 * However, we enter pdtpte[3] into L2 KERN, and not L2 KERN SHADOW.
    840 	 * This way, pde[L2_SLOT_KERN] always points to the shadow.
    841 	 */
    842 	pde = (pd_entry_t *)avail;
    843 	memset(pde, 0, PAGE_SIZE * 5);
    844 	avail += PAGE_SIZE * 5;
    845 
    846 	/*
    847 	 * Link L2 pages in L3, with a special case for L2 KERN. Xen doesn't
    848 	 * want RW permissions in L3 entries, it'll add them itself.
    849 	 */
    850 	addr = ((u_long)pde) - KERNBASE;
    851 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    852 		pdtpe[i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    853 	}
    854 	addr += PAGE_SIZE;
    855 	pdtpe[3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    856 #else
    857 	pde = bt_pgd;
    858 #endif
    859 
    860 	/* Level 1 */
    861 	page = KERNTEXTOFF;
    862 	for (i = 0; i < new_count; i ++) {
    863 		vaddr_t cur_page = page;
    864 
    865 		pte = (pd_entry_t *)avail;
    866 		avail += PAGE_SIZE;
    867 
    868 		memset(pte, 0, PAGE_SIZE);
    869 		while (pl2_pi(page) == pl2_pi(cur_page)) {
    870 			if (page >= map_end) {
    871 				/* not mapped at all */
    872 				pte[pl1_pi(page)] = 0;
    873 				page += PAGE_SIZE;
    874 				continue;
    875 			}
    876 			pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
    877 			if (page == (vaddr_t)HYPERVISOR_shared_info) {
    878 				pte[pl1_pi(page)] = xen_start_info.shared_info;
    879 			}
    880 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    881 			    == xen_start_info.console.domU.mfn) {
    882 				xencons_interface = (void *)page;
    883 				pte[pl1_pi(page)] = xen_start_info.console_mfn;
    884 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    885 			}
    886 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    887 			    == xen_start_info.store_mfn) {
    888 				xenstore_interface = (void *)page;
    889 				pte[pl1_pi(page)] = xen_start_info.store_mfn;
    890 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    891 			}
    892 #ifdef DOM0OPS
    893 			if (page >= (vaddr_t)atdevbase &&
    894 			    page < (vaddr_t)atdevbase + IOM_SIZE) {
    895 				pte[pl1_pi(page)] =
    896 				    IOM_BEGIN + (page - (vaddr_t)atdevbase);
    897 				pte[pl1_pi(page)] |= xpmap_pg_nx;
    898 			}
    899 #endif
    900 
    901 			pte[pl1_pi(page)] |= PG_k | PG_V;
    902 			if (page < (vaddr_t)&__rodata_start) {
    903 				/* Map the kernel text RX. */
    904 				pte[pl1_pi(page)] |= PG_RO;
    905 			} else if (page >= (vaddr_t)&__rodata_start &&
    906 			    page < (vaddr_t)&__data_start) {
    907 				/* Map the kernel rodata R. */
    908 				pte[pl1_pi(page)] |= PG_RO | xpmap_pg_nx;
    909 			} else if (page >= old_pgd &&
    910 			    page < old_pgd + (old_count * PAGE_SIZE)) {
    911 				/* Map the old page tables R. */
    912 				pte[pl1_pi(page)] |= PG_RO | xpmap_pg_nx;
    913 			} else if (page >= new_pgd &&
    914 			    page < new_pgd + ((new_count + l2_4_count) * PAGE_SIZE)) {
    915 				/* Map the new page tables R. */
    916 				pte[pl1_pi(page)] |= PG_RO | xpmap_pg_nx;
    917 #ifdef i386
    918 			} else if (page == (vaddr_t)tmpgdt) {
    919 				/*
    920 				 * Map bootstrap gdt R/O. Later, we will re-add
    921 				 * this page to uvm after making it writable.
    922 				 */
    923 				pte[pl1_pi(page)] = 0;
    924 				page += PAGE_SIZE;
    925 				continue;
    926 #endif
    927 			} else if (page >= (vaddr_t)&__data_start &&
    928 			    page < (vaddr_t)&__kernel_end) {
    929 				/* Map the kernel data+bss RW. */
    930 				pte[pl1_pi(page)] |= PG_RW | xpmap_pg_nx;
    931 			} else {
    932 				/* Map the page RW. */
    933 				pte[pl1_pi(page)] |= PG_RW | xpmap_pg_nx;
    934 			}
    935 
    936 			page += PAGE_SIZE;
    937 		}
    938 
    939 		addr = ((u_long)pte) - KERNBASE;
    940 		pde[pl2_pi(cur_page)] =
    941 		    xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
    942 
    943 		/* Mark readonly */
    944 		xen_bt_set_readonly((vaddr_t)pte);
    945 	}
    946 
    947 	/* Install recursive page tables mapping */
    948 #ifdef PAE
    949 	/* Copy L2 KERN into L2 KERN SHADOW, and reference the latter in cpu0. */
    950 	memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
    951 	cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
    952 	cpu_info_primary.ci_kpm_pdirpa =
    953 	    (vaddr_t)cpu_info_primary.ci_kpm_pdir - KERNBASE;
    954 
    955 	/*
    956 	 * We don't enter a recursive entry from the L3 PD. Instead, we enter
    957 	 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
    958 	 * have to enter the shadow after switching %cr3, or Xen will refcount
    959 	 * some PTEs with the wrong type.
    960 	 */
    961 	addr = (u_long)pde - KERNBASE;
    962 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    963 		pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_k | PG_V |
    964 		    xpmap_pg_nx;
    965 	}
    966 
    967 	/* Mark tables RO, and pin L2 KERN SHADOW. */
    968 	addr = (u_long)pde - KERNBASE;
    969 	for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
    970 		xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
    971 	}
    972 	if (final) {
    973 		addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
    974 		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
    975 	}
    976 #else /* PAE */
    977 
    978 	/* Recursive entry in pmap_kernel(). */
    979 	bt_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_pgd - KERNBASE)
    980 	    | PG_k | PG_RO | PG_V | xpmap_pg_nx;
    981 #ifdef __x86_64__
    982 	/* Recursive entry in higher-level per-cpu PD. */
    983 	bt_cpu_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_cpu_pgd - KERNBASE)
    984 	    | PG_k | PG_RO | PG_V | xpmap_pg_nx;
    985 #endif
    986 
    987 	/* Mark tables RO */
    988 	xen_bt_set_readonly((vaddr_t)pde);
    989 #endif /* PAE */
    990 
    991 #if PTP_LEVELS > 2 || defined(PAE)
    992 	xen_bt_set_readonly((vaddr_t)pdtpe);
    993 #endif
    994 #if PTP_LEVELS > 3
    995 	xen_bt_set_readonly(new_pgd);
    996 #endif
    997 
    998 	/* Pin the PGD */
    999 #ifdef __x86_64__
   1000 	xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1001 #elif PAE
   1002 	xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1003 #else
   1004 	xpq_queue_pin_l2_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1005 #endif
   1006 
   1007 	/* Save phys. addr of PDP, for libkvm. */
   1008 #ifdef PAE
   1009 	PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
   1010 #else
   1011 	PDPpaddr = (u_long)bt_pgd - KERNBASE;
   1012 #endif
   1013 
   1014 	/* Switch to new tables */
   1015 	xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
   1016 
   1017 #ifdef PAE
   1018 	if (final) {
   1019 		/* Save the address of the L3 page */
   1020 		cpu_info_primary.ci_pae_l3_pdir = pdtpe;
   1021 		cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
   1022 
   1023 		/* Now enter the kernel's PTE mappings */
   1024 		addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
   1025 		xpq_queue_pte_update(
   1026 		    xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
   1027 		    xpmap_ptom_masked(addr) | PG_k | PG_V);
   1028 		xpq_flush_queue();
   1029 	}
   1030 #elif defined(__x86_64__)
   1031 	if (final) {
   1032 		/* Save the address of the real per-cpu L4 page. */
   1033 		cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
   1034 		cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)bt_cpu_pgd - KERNBASE);
   1035 	}
   1036 #endif
   1037 	__USE(pdtpe);
   1038 
   1039 	/*
   1040 	 * Now we can safely reclaim the space taken by the old tables.
   1041 	 */
   1042 
   1043 	/* Unpin old PGD */
   1044 	xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
   1045 
   1046 	/* Mark old tables RW */
   1047 	page = old_pgd;
   1048 	addr = xpmap_mtop((paddr_t)pde[pl2_pi(page)] & PG_FRAME);
   1049 	pte = (pd_entry_t *)((u_long)addr + KERNBASE);
   1050 	pte += pl1_pi(page);
   1051 	while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
   1052 		addr = xpmap_ptom(((u_long)pte) - KERNBASE);
   1053 		xpq_queue_pte_update(addr, *pte | PG_RW);
   1054 		page += PAGE_SIZE;
   1055 		/*
   1056 		 * Our PTEs are contiguous so it's safe to just "++" here.
   1057 		 */
   1058 		pte++;
   1059 	}
   1060 	xpq_flush_queue();
   1061 }
   1062 
   1063 /*
   1064  * Mark a page read-only, assuming vaddr = paddr + KERNBASE.
   1065  */
   1066 static void
   1067 xen_bt_set_readonly(vaddr_t page)
   1068 {
   1069 	pt_entry_t entry;
   1070 
   1071 	entry = xpmap_ptom_masked(page - KERNBASE);
   1072 	entry |= PG_k | PG_V | xpmap_pg_nx;
   1073 
   1074 	HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
   1075 }
   1076 
   1077 #ifdef __x86_64__
   1078 void
   1079 xen_set_user_pgd(paddr_t page)
   1080 {
   1081 	struct mmuext_op op;
   1082 	int s = splvm();
   1083 
   1084 	xpq_flush_queue();
   1085 	op.cmd = MMUEXT_NEW_USER_BASEPTR;
   1086 	op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
   1087 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
   1088 		panic("xen_set_user_pgd: failed to install new user page"
   1089 			" directory %#" PRIxPADDR, page);
   1090 	splx(s);
   1091 }
   1092 #endif /* __x86_64__ */
   1093