x86_xpmap.c revision 1.80 1 /* $NetBSD: x86_xpmap.c,v 1.80 2018/07/27 10:04:22 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2017 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2006 Mathieu Ropert <mro (at) adviseo.fr>
34 *
35 * Permission to use, copy, modify, and distribute this software for any
36 * purpose with or without fee is hereby granted, provided that the above
37 * copyright notice and this permission notice appear in all copies.
38 *
39 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
40 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
41 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
42 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
43 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
44 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
45 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
46 */
47
48 /*
49 * Copyright (c) 2006, 2007 Manuel Bouyer.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
64 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
65 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
66 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
67 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
68 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
69 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Copyright (c) 2004 Christian Limpach.
74 * All rights reserved.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
86 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
87 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
88 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
89 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
90 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
91 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
92 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
93 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
94 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
95 */
96
97 #include <sys/cdefs.h>
98 __KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.80 2018/07/27 10:04:22 maxv Exp $");
99
100 #include "opt_xen.h"
101 #include "opt_ddb.h"
102 #include "ksyms.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/mutex.h>
107 #include <sys/cpu.h>
108
109 #include <uvm/uvm.h>
110
111 #include <x86/pmap.h>
112 #include <machine/gdt.h>
113 #include <xen/xenfunc.h>
114
115 #include <dev/isa/isareg.h>
116 #include <machine/isa_machdep.h>
117
118 #ifdef XENDEBUG
119 #define __PRINTK(x) printk x
120 #else
121 #define __PRINTK(x)
122 #endif
123
124 /* Xen requires the start_info struct to be page aligned */
125 union start_info_union start_info_union __aligned(PAGE_SIZE);
126
127 volatile shared_info_t *HYPERVISOR_shared_info __read_mostly;
128 unsigned long *xpmap_phys_to_machine_mapping __read_mostly;
129 kmutex_t pte_lock __cacheline_aligned;
130 vaddr_t xen_dummy_page;
131 pt_entry_t xpmap_pg_nx __read_mostly;
132
133 #define XPQUEUE_SIZE 2048
134 static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
135
136 void xen_failsafe_handler(void);
137
138 extern volatile struct xencons_interface *xencons_interface; /* XXX */
139 extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
140
141 static void xen_bt_set_readonly(vaddr_t);
142 static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
143
144 vaddr_t xen_locore(void);
145
146 /*
147 * kcpuset internally uses an array of uint32_t while xen uses an array of
148 * u_long. As we're little-endian we can cast one to the other.
149 */
150 typedef union {
151 #ifdef _LP64
152 uint32_t xcpum_km[2];
153 #else
154 uint32_t xcpum_km[1];
155 #endif
156 u_long xcpum_xm;
157 } xcpumask_t;
158
159 void
160 xen_failsafe_handler(void)
161 {
162
163 panic("xen_failsafe_handler called!\n");
164 }
165
166 void
167 xen_set_ldt(vaddr_t base, uint32_t entries)
168 {
169 vaddr_t va;
170 vaddr_t end;
171 pt_entry_t *ptp;
172 int s;
173
174 #ifdef __x86_64__
175 end = base + (entries << 3);
176 #else
177 end = base + entries * sizeof(union descriptor);
178 #endif
179
180 for (va = base; va < end; va += PAGE_SIZE) {
181 KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
182 ptp = kvtopte(va);
183 pmap_pte_clearbits(ptp, PG_RW);
184 }
185 s = splvm(); /* XXXSMP */
186 xpq_queue_set_ldt(base, entries);
187 splx(s);
188 }
189
190 void
191 xpq_flush_queue(void)
192 {
193 mmu_update_t *xpq_queue;
194 int done = 0, ret;
195 size_t xpq_idx;
196
197 xpq_idx = curcpu()->ci_xpq_idx;
198 xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
199
200 retry:
201 ret = HYPERVISOR_mmu_update(xpq_queue, xpq_idx, &done, DOMID_SELF);
202
203 if (ret < 0 && xpq_idx != 0) {
204 printf("xpq_flush_queue: %zu entries (%d successful) on "
205 "cpu%d (%ld)\n",
206 xpq_idx, done, curcpu()->ci_index, curcpu()->ci_cpuid);
207
208 if (done != 0) {
209 xpq_queue += done;
210 xpq_idx -= done;
211 done = 0;
212 goto retry;
213 }
214
215 panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
216 }
217 curcpu()->ci_xpq_idx = 0;
218 }
219
220 static inline void
221 xpq_increment_idx(void)
222 {
223
224 if (__predict_false(++curcpu()->ci_xpq_idx == XPQUEUE_SIZE))
225 xpq_flush_queue();
226 }
227
228 void
229 xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
230 {
231 mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
232 size_t xpq_idx = curcpu()->ci_xpq_idx;
233
234 xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
235 xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
236 xpq_increment_idx();
237 }
238
239 void
240 xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
241 {
242 mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
243 size_t xpq_idx = curcpu()->ci_xpq_idx;
244
245 xpq_queue[xpq_idx].ptr = ptr | MMU_NORMAL_PT_UPDATE;
246 xpq_queue[xpq_idx].val = val;
247 xpq_increment_idx();
248 }
249
250 void
251 xpq_queue_pt_switch(paddr_t pa)
252 {
253 struct mmuext_op op;
254
255 xpq_flush_queue();
256
257 op.cmd = MMUEXT_NEW_BASEPTR;
258 op.arg1.mfn = pa >> PAGE_SHIFT;
259 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
260 panic(__func__);
261 }
262
263 void
264 xpq_queue_pin_table(paddr_t pa, int lvl)
265 {
266 struct mmuext_op op;
267
268 xpq_flush_queue();
269
270 op.cmd = lvl;
271 op.arg1.mfn = pa >> PAGE_SHIFT;
272 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
273 panic(__func__);
274 }
275
276 void
277 xpq_queue_unpin_table(paddr_t pa)
278 {
279 struct mmuext_op op;
280
281 xpq_flush_queue();
282
283 op.cmd = MMUEXT_UNPIN_TABLE;
284 op.arg1.mfn = pa >> PAGE_SHIFT;
285 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
286 panic(__func__);
287 }
288
289 void
290 xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
291 {
292 struct mmuext_op op;
293
294 xpq_flush_queue();
295
296 KASSERT(va == (va & ~PAGE_MASK));
297 op.cmd = MMUEXT_SET_LDT;
298 op.arg1.linear_addr = va;
299 op.arg2.nr_ents = entries;
300 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
301 panic(__func__);
302 }
303
304 void
305 xpq_queue_tlb_flush(void)
306 {
307 struct mmuext_op op;
308
309 xpq_flush_queue();
310
311 op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
312 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
313 panic(__func__);
314 }
315
316 void
317 xpq_flush_cache(void)
318 {
319 int s = splvm(); /* XXXSMP */
320
321 xpq_flush_queue();
322
323 asm("wbinvd":::"memory");
324 splx(s); /* XXX: removeme */
325 }
326
327 void
328 xpq_queue_invlpg(vaddr_t va)
329 {
330 struct mmuext_op op;
331
332 xpq_flush_queue();
333
334 op.cmd = MMUEXT_INVLPG_LOCAL;
335 op.arg1.linear_addr = (va & ~PAGE_MASK);
336 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
337 panic(__func__);
338 }
339
340 void
341 xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
342 {
343 xcpumask_t xcpumask;
344 mmuext_op_t op;
345
346 kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
347
348 xpq_flush_queue();
349
350 op.cmd = MMUEXT_INVLPG_MULTI;
351 op.arg1.linear_addr = va;
352 op.arg2.vcpumask = &xcpumask.xcpum_xm;
353
354 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
355 panic(__func__);
356 }
357
358 void
359 xen_bcast_invlpg(vaddr_t va)
360 {
361 mmuext_op_t op;
362
363 xpq_flush_queue();
364
365 op.cmd = MMUEXT_INVLPG_ALL;
366 op.arg1.linear_addr = va;
367
368 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
369 panic(__func__);
370 }
371
372 /* This is a synchronous call. */
373 void
374 xen_mcast_tlbflush(kcpuset_t *kc)
375 {
376 xcpumask_t xcpumask;
377 mmuext_op_t op;
378
379 kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
380
381 xpq_flush_queue();
382
383 op.cmd = MMUEXT_TLB_FLUSH_MULTI;
384 op.arg2.vcpumask = &xcpumask.xcpum_xm;
385
386 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
387 panic(__func__);
388 }
389
390 /* This is a synchronous call. */
391 void
392 xen_bcast_tlbflush(void)
393 {
394 mmuext_op_t op;
395
396 xpq_flush_queue();
397
398 op.cmd = MMUEXT_TLB_FLUSH_ALL;
399
400 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
401 panic(__func__);
402 }
403
404 void
405 xen_copy_page(paddr_t srcpa, paddr_t dstpa)
406 {
407 mmuext_op_t op;
408
409 op.cmd = MMUEXT_COPY_PAGE;
410 op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
411 op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
412
413 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
414 panic(__func__);
415 }
416
417 void
418 xen_pagezero(paddr_t pa)
419 {
420 mmuext_op_t op;
421
422 op.cmd = MMUEXT_CLEAR_PAGE;
423 op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
424
425 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
426 panic(__func__);
427 }
428
429 int
430 xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
431 {
432 mmu_update_t op;
433 int ok;
434
435 xpq_flush_queue();
436
437 op.ptr = ptr;
438 op.val = val;
439 if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
440 return EFAULT;
441 return 0;
442 }
443
444 #if L2_SLOT_KERNBASE > 0
445 #define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
446 #else
447 #define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
448 #endif
449
450 #ifdef __x86_64__
451 #define PDIRSZ PTP_LEVELS
452 #else
453 /*
454 * For PAE, we consider a single contiguous L2 "superpage" of 4 pages, all of
455 * them mapped by the L3 page. We also need a shadow page for L3[3].
456 * XXX so why 6?
457 */
458 #define PDIRSZ 6
459 #endif
460
461 /*
462 * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
463 * tables.
464 *
465 * Virtual address space of the kernel when leaving this function:
466 * +--------------+------------------+-------------+------------+---------------
467 * | KERNEL IMAGE | BOOTSTRAP TABLES | PROC0 UAREA | DUMMY PAGE | HYPER. SHARED
468 * +--------------+------------------+-------------+------------+---------------
469 *
470 * ------+-----------------+-------------+
471 * INFO | EARLY ZERO PAGE | ISA I/O MEM |
472 * ------+-----------------+-------------+
473 *
474 * DUMMY PAGE is either a PDG for amd64 or a GDT for i386.
475 *
476 * (HYPER. SHARED INFO + EARLY ZERO PAGE + ISA I/O MEM) have no physical
477 * addresses preallocated.
478 */
479 vaddr_t
480 xen_locore(void)
481 {
482 size_t nL2, oldcount, mapsize;
483 vaddr_t our_tables, xen_tables;
484 u_int descs[4];
485
486 xen_init_features();
487
488 xpmap_phys_to_machine_mapping =
489 (unsigned long *)xen_start_info.mfn_list;
490
491 /* Set the NX/XD bit, if available. descs[3] = %edx. */
492 x86_cpuid(0x80000001, descs);
493 xpmap_pg_nx = (descs[3] & CPUID_NOX) ? PG_NX : 0;
494
495 /* Space after Xen boostrap tables should be free */
496 xen_tables = xen_start_info.pt_base;
497 our_tables = xen_tables + (xen_start_info.nr_pt_frames * PAGE_SIZE);
498
499 /*
500 * Calculate how much space we need. First, everything mapped before
501 * the Xen bootstrap tables.
502 */
503 mapsize = xen_tables - KERNTEXTOFF;
504
505 /* After the tables we'll have:
506 * - UAREA
507 * - dummy user PGD (x86_64)
508 * - HYPERVISOR_shared_info
509 * - early_zerop
510 * - ISA I/O mem (if needed)
511 */
512 mapsize += UPAGES * PAGE_SIZE;
513 #ifdef __x86_64__
514 mapsize += PAGE_SIZE;
515 #endif
516 mapsize += PAGE_SIZE;
517 mapsize += PAGE_SIZE;
518 #ifdef DOM0OPS
519 if (xendomain_is_dom0()) {
520 mapsize += IOM_SIZE;
521 }
522 #endif
523
524 /*
525 * At this point, mapsize doesn't include the table size.
526 */
527 #ifdef __x86_64__
528 nL2 = TABLE_L2_ENTRIES;
529 #else
530 nL2 = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
531 #endif
532
533 /*
534 * Now compute how many L2 pages we need exactly. This is useful only
535 * on i386, since the initial count for amd64 is already enough.
536 */
537 while (KERNTEXTOFF + mapsize + (nL2 + PDIRSZ) * PAGE_SIZE >
538 KERNBASE + (nL2 << L2_SHIFT)) {
539 nL2++;
540 }
541
542 #ifdef i386
543 /*
544 * One more L2 page: we'll allocate several pages after kva_start
545 * in pmap_bootstrap() before pmap_growkernel(), which have not been
546 * counted here. It's not a big issue to allocate one more L2 as
547 * pmap_growkernel() will be called anyway.
548 */
549 nL2++;
550 nkptp[1] = nL2;
551 #endif
552
553 /*
554 * Install bootstrap pages. We may need more L2 pages than will
555 * have the final table here, as it's installed after the final table.
556 */
557 oldcount = nL2;
558
559 bootstrap_again:
560
561 /*
562 * Xen space we'll reclaim may not be enough for our new page tables,
563 * move bootstrap tables if necessary.
564 */
565 if (our_tables < xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE))
566 our_tables = xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE);
567
568 /*
569 * Make sure the number of L2 pages we have is enough to map everything
570 * from KERNBASE to the bootstrap tables themselves.
571 */
572 if (our_tables + ((oldcount + PDIRSZ) * PAGE_SIZE) >
573 KERNBASE + (oldcount << L2_SHIFT)) {
574 oldcount++;
575 goto bootstrap_again;
576 }
577
578 /* Create temporary tables */
579 xen_bootstrap_tables(xen_tables, our_tables,
580 xen_start_info.nr_pt_frames, oldcount, false);
581
582 /* Create final tables */
583 xen_bootstrap_tables(our_tables, xen_tables,
584 oldcount + PDIRSZ, nL2, true);
585
586 /* Zero out PROC0 UAREA and DUMMY PAGE. */
587 memset((void *)(xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE)), 0,
588 (UPAGES + 1) * PAGE_SIZE);
589
590 /* Finally, flush TLB. */
591 xpq_queue_tlb_flush();
592
593 return (xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE));
594 }
595
596 /*
597 * Build a new table and switch to it.
598 * old_count is # of old tables (including PGD, PDTPE and PDE).
599 * new_count is # of new tables (PTE only).
600 * We assume the areas don't overlap.
601 */
602 static void
603 xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
604 size_t new_count, bool final)
605 {
606 pd_entry_t *pdtpe, *pde, *pte;
607 pd_entry_t *bt_pgd;
608 paddr_t addr;
609 vaddr_t page, avail, map_end;
610 int i;
611 extern char __rodata_start;
612 extern char __data_start;
613 extern char __kernel_end;
614 extern char *early_zerop; /* from pmap.c */
615 #ifdef i386
616 extern union descriptor tmpgdt[];
617 #endif
618
619 /*
620 * Layout of RW area after the kernel image:
621 * xencons_interface (if present)
622 * xenstore_interface (if present)
623 * table pages (new_count + PDIRSZ entries)
624 * Extra mappings (only when final is true):
625 * UAREA
626 * dummy user PGD (x86_64 only) / GDT page (i386 only)
627 * HYPERVISOR_shared_info
628 * early_zerop
629 * ISA I/O mem (if needed)
630 */
631 map_end = new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE);
632 if (final) {
633 map_end += UPAGES * PAGE_SIZE;
634 xen_dummy_page = (vaddr_t)map_end;
635 map_end += PAGE_SIZE;
636 HYPERVISOR_shared_info = (shared_info_t *)map_end;
637 map_end += PAGE_SIZE;
638 early_zerop = (char *)map_end;
639 map_end += PAGE_SIZE;
640 }
641
642 /*
643 * We always set atdevbase, as it's used by init386 to find the first
644 * available VA. map_end is updated only if we are dom0, so
645 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
646 * this case.
647 */
648 if (final) {
649 atdevbase = map_end;
650 #ifdef DOM0OPS
651 if (xendomain_is_dom0()) {
652 /* ISA I/O mem */
653 map_end += IOM_SIZE;
654 }
655 #endif
656 }
657
658 __PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
659 __PRINTK(("console %#lx ", xen_start_info.console_mfn));
660 __PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
661
662 /*
663 * Create bootstrap page tables. What we need:
664 * - a PGD (level 4)
665 * - a PDTPE (level 3)
666 * - a PDE (level 2)
667 * - some PTEs (level 1)
668 */
669
670 bt_pgd = (pd_entry_t *)new_pgd;
671 memset(bt_pgd, 0, PAGE_SIZE);
672 avail = new_pgd + PAGE_SIZE;
673
674 #ifdef __x86_64__
675 /* Per-cpu L4 */
676 pd_entry_t *bt_cpu_pgd = bt_pgd;
677 /* pmap_kernel() "shadow" L4 */
678 bt_pgd = (pd_entry_t *)avail;
679 memset(bt_pgd, 0, PAGE_SIZE);
680 avail += PAGE_SIZE;
681
682 /* Install L3 */
683 pdtpe = (pd_entry_t *)avail;
684 memset(pdtpe, 0, PAGE_SIZE);
685 avail += PAGE_SIZE;
686
687 addr = ((u_long)pdtpe) - KERNBASE;
688 bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
689 xpmap_ptom_masked(addr) | PG_V | PG_RW;
690
691 /* Level 2 */
692 pde = (pd_entry_t *)avail;
693 memset(pde, 0, PAGE_SIZE);
694 avail += PAGE_SIZE;
695
696 addr = ((u_long)pde) - KERNBASE;
697 pdtpe[pl3_pi(KERNTEXTOFF)] =
698 xpmap_ptom_masked(addr) | PG_V | PG_RW;
699 #else
700 pdtpe = bt_pgd;
701
702 /*
703 * Our PAE-style level 2, 5 contiguous pages (4 L2 + 1 shadow).
704 * +-----------------+----------------+---------+
705 * Physical layout: | 3 * USERLAND L2 | L2 KERN SHADOW | L2 KERN |
706 * +-----------------+----------------+---------+
707 * However, we enter pdtpte[3] into L2 KERN, and not L2 KERN SHADOW.
708 * This way, pde[L2_SLOT_KERN] always points to the shadow.
709 */
710 pde = (pd_entry_t *)avail;
711 memset(pde, 0, PAGE_SIZE * 5);
712 avail += PAGE_SIZE * 5;
713
714 /*
715 * Link L2 pages in L3, with a special case for L2 KERN. Xen doesn't
716 * want RW permissions in L3 entries, it'll add them itself.
717 */
718 addr = ((u_long)pde) - KERNBASE;
719 for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
720 pdtpe[i] = xpmap_ptom_masked(addr) | PG_V;
721 }
722 addr += PAGE_SIZE;
723 pdtpe[3] = xpmap_ptom_masked(addr) | PG_V;
724 #endif
725
726 /* Level 1 */
727 page = KERNTEXTOFF;
728 for (i = 0; i < new_count; i ++) {
729 vaddr_t cur_page = page;
730
731 pte = (pd_entry_t *)avail;
732 avail += PAGE_SIZE;
733
734 memset(pte, 0, PAGE_SIZE);
735 while (pl2_pi(page) == pl2_pi(cur_page)) {
736 if (page >= map_end) {
737 /* not mapped at all */
738 pte[pl1_pi(page)] = 0;
739 page += PAGE_SIZE;
740 continue;
741 }
742 pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
743 if (page == (vaddr_t)HYPERVISOR_shared_info) {
744 pte[pl1_pi(page)] = xen_start_info.shared_info;
745 }
746 if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
747 == xen_start_info.console.domU.mfn) {
748 xencons_interface = (void *)page;
749 pte[pl1_pi(page)] = xen_start_info.console_mfn;
750 pte[pl1_pi(page)] <<= PAGE_SHIFT;
751 }
752 if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
753 == xen_start_info.store_mfn) {
754 xenstore_interface = (void *)page;
755 pte[pl1_pi(page)] = xen_start_info.store_mfn;
756 pte[pl1_pi(page)] <<= PAGE_SHIFT;
757 }
758 #ifdef DOM0OPS
759 if (page >= (vaddr_t)atdevbase &&
760 page < (vaddr_t)atdevbase + IOM_SIZE) {
761 pte[pl1_pi(page)] =
762 IOM_BEGIN + (page - (vaddr_t)atdevbase);
763 pte[pl1_pi(page)] |= xpmap_pg_nx;
764 }
765 #endif
766
767 pte[pl1_pi(page)] |= PG_V;
768 if (page < (vaddr_t)&__rodata_start) {
769 /* Map the kernel text RX. */
770 pte[pl1_pi(page)] |= PG_RO;
771 } else if (page >= (vaddr_t)&__rodata_start &&
772 page < (vaddr_t)&__data_start) {
773 /* Map the kernel rodata R. */
774 pte[pl1_pi(page)] |= PG_RO | xpmap_pg_nx;
775 } else if (page >= old_pgd &&
776 page < old_pgd + (old_count * PAGE_SIZE)) {
777 /* Map the old page tables R. */
778 pte[pl1_pi(page)] |= PG_RO | xpmap_pg_nx;
779 } else if (page >= new_pgd &&
780 page < new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE)) {
781 /* Map the new page tables R. */
782 pte[pl1_pi(page)] |= PG_RO | xpmap_pg_nx;
783 #ifdef i386
784 } else if (page == (vaddr_t)tmpgdt) {
785 /*
786 * Map bootstrap gdt R/O. Later, we will re-add
787 * this page to uvm after making it writable.
788 */
789 pte[pl1_pi(page)] = 0;
790 page += PAGE_SIZE;
791 continue;
792 #endif
793 } else if (page >= (vaddr_t)&__data_start &&
794 page < (vaddr_t)&__kernel_end) {
795 /* Map the kernel data+bss RW. */
796 pte[pl1_pi(page)] |= PG_RW | xpmap_pg_nx;
797 } else {
798 /* Map the page RW. */
799 pte[pl1_pi(page)] |= PG_RW | xpmap_pg_nx;
800 }
801
802 page += PAGE_SIZE;
803 }
804
805 addr = ((u_long)pte) - KERNBASE;
806 pde[pl2_pi(cur_page)] =
807 xpmap_ptom_masked(addr) | PG_RW | PG_V;
808
809 /* Mark readonly */
810 xen_bt_set_readonly((vaddr_t)pte);
811 }
812
813 /* Install recursive page tables mapping */
814 #ifdef __x86_64__
815 /* Recursive entry in pmap_kernel(). */
816 bt_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_pgd - KERNBASE)
817 | PG_RO | PG_V | xpmap_pg_nx;
818 /* Recursive entry in higher-level per-cpu PD. */
819 bt_cpu_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_cpu_pgd - KERNBASE)
820 | PG_RO | PG_V | xpmap_pg_nx;
821
822 /* Mark tables RO */
823 xen_bt_set_readonly((vaddr_t)pde);
824 #else
825 /* Copy L2 KERN into L2 KERN SHADOW, and reference the latter in cpu0. */
826 memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
827 cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
828 cpu_info_primary.ci_kpm_pdirpa =
829 (vaddr_t)cpu_info_primary.ci_kpm_pdir - KERNBASE;
830
831 /*
832 * We don't enter a recursive entry from the L3 PD. Instead, we enter
833 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
834 * have to enter the shadow after switching %cr3, or Xen will refcount
835 * some PTEs with the wrong type.
836 */
837 addr = (u_long)pde - KERNBASE;
838 for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
839 pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_V |
840 xpmap_pg_nx;
841 }
842
843 /* Mark tables RO, and pin L2 KERN SHADOW. */
844 addr = (u_long)pde - KERNBASE;
845 for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
846 xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
847 }
848 if (final) {
849 addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
850 xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
851 }
852 #endif
853
854 xen_bt_set_readonly((vaddr_t)pdtpe);
855 #ifdef __x86_64__
856 xen_bt_set_readonly(new_pgd);
857 #endif
858
859 /* Pin the PGD */
860 #ifdef __x86_64__
861 xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
862 #else
863 xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
864 #endif
865
866 /* Save phys. addr of PDP, for libkvm. */
867 #ifdef __x86_64__
868 PDPpaddr = (u_long)bt_pgd - KERNBASE;
869 #else
870 PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
871 #endif
872
873 /* Switch to new tables */
874 xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
875
876 if (final) {
877 #ifdef __x86_64__
878 /* Save the address of the real per-cpu L4 page. */
879 cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
880 cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)bt_cpu_pgd - KERNBASE);
881 #else
882 /* Save the address of the L3 page */
883 cpu_info_primary.ci_pae_l3_pdir = pdtpe;
884 cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
885
886 /* Now enter the kernel's PTE mappings */
887 addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
888 xpq_queue_pte_update(
889 xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
890 xpmap_ptom_masked(addr) | PG_V);
891 xpq_flush_queue();
892 #endif
893 }
894
895 /*
896 * Now we can safely reclaim the space taken by the old tables.
897 */
898
899 /* Unpin old PGD */
900 xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
901
902 /* Mark old tables RW */
903 page = old_pgd;
904 addr = xpmap_mtop((paddr_t)pde[pl2_pi(page)] & PG_FRAME);
905 pte = (pd_entry_t *)((u_long)addr + KERNBASE);
906 pte += pl1_pi(page);
907 while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
908 addr = xpmap_ptom(((u_long)pte) - KERNBASE);
909 xpq_queue_pte_update(addr, *pte | PG_RW);
910 page += PAGE_SIZE;
911 /*
912 * Our PTEs are contiguous so it's safe to just "++" here.
913 */
914 pte++;
915 }
916 xpq_flush_queue();
917 }
918
919 /*
920 * Mark a page read-only, assuming vaddr = paddr + KERNBASE.
921 */
922 static void
923 xen_bt_set_readonly(vaddr_t page)
924 {
925 pt_entry_t entry;
926
927 entry = xpmap_ptom_masked(page - KERNBASE);
928 entry |= PG_V | xpmap_pg_nx;
929
930 HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
931 }
932
933 #ifdef __x86_64__
934 void
935 xen_set_user_pgd(paddr_t page)
936 {
937 struct mmuext_op op;
938 int s = splvm(); /* XXXSMP */
939
940 xpq_flush_queue();
941 op.cmd = MMUEXT_NEW_USER_BASEPTR;
942 op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
943 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
944 panic("xen_set_user_pgd: failed to install new user page"
945 " directory %#" PRIxPADDR, page);
946 splx(s);
947 }
948 #endif /* __x86_64__ */
949