x86_xpmap.c revision 1.87 1 /* $NetBSD: x86_xpmap.c,v 1.87 2020/05/06 17:28:26 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 2017 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2006 Mathieu Ropert <mro (at) adviseo.fr>
34 *
35 * Permission to use, copy, modify, and distribute this software for any
36 * purpose with or without fee is hereby granted, provided that the above
37 * copyright notice and this permission notice appear in all copies.
38 *
39 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
40 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
41 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
42 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
43 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
44 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
45 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
46 */
47
48 /*
49 * Copyright (c) 2006, 2007 Manuel Bouyer.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
64 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
65 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
66 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
67 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
68 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
69 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Copyright (c) 2004 Christian Limpach.
74 * All rights reserved.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
86 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
87 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
88 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
89 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
90 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
91 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
92 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
93 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
94 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
95 */
96
97 #include <sys/cdefs.h>
98 __KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.87 2020/05/06 17:28:26 bouyer Exp $");
99
100 #include "opt_xen.h"
101 #include "opt_ddb.h"
102 #include "ksyms.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/mutex.h>
107 #include <sys/cpu.h>
108 #include <sys/kernel.h>
109
110 #include <uvm/uvm.h>
111
112 #include <x86/pmap.h>
113 #include <machine/gdt.h>
114 #include <xen/xenfunc.h>
115
116 #include <dev/isa/isareg.h>
117 #include <machine/isa_machdep.h>
118
119 #ifdef XENDEBUG
120 #define __PRINTK(x) printk x
121 #else
122 #define __PRINTK(x)
123 #endif
124
125 /* Xen requires the start_info struct to be page aligned */
126 union start_info_union start_info_union __aligned(PAGE_SIZE);
127
128 volatile shared_info_t *HYPERVISOR_shared_info __read_mostly;
129 unsigned long *xpmap_phys_to_machine_mapping __read_mostly;
130 kmutex_t pte_lock __cacheline_aligned;
131 vaddr_t xen_dummy_page;
132 pt_entry_t xpmap_pg_nx __read_mostly;
133
134 #define XPQUEUE_SIZE 2048
135 static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
136
137 void xen_failsafe_handler(void);
138
139 extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
140
141 static void xen_bt_set_readonly(vaddr_t);
142 static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
143
144 vaddr_t xen_locore(void);
145
146 /*
147 * kcpuset internally uses an array of uint32_t while xen uses an array of
148 * u_long. As we're little-endian we can cast one to the other.
149 */
150 typedef union {
151 #ifdef _LP64
152 uint32_t xcpum_km[2];
153 #else
154 uint32_t xcpum_km[1];
155 #endif
156 u_long xcpum_xm;
157 } xcpumask_t;
158
159 void
160 xen_failsafe_handler(void)
161 {
162
163 panic("xen_failsafe_handler called!\n");
164 }
165
166 void
167 xen_set_ldt(vaddr_t base, uint32_t entries)
168 {
169 vaddr_t va;
170 vaddr_t end;
171 pt_entry_t *ptp;
172 int s;
173
174 #ifdef __x86_64__
175 end = base + (entries << 3);
176 #else
177 end = base + entries * sizeof(union descriptor);
178 #endif
179
180 for (va = base; va < end; va += PAGE_SIZE) {
181 KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
182 ptp = kvtopte(va);
183 pmap_pte_clearbits(ptp, PTE_W);
184 }
185 s = splvm(); /* XXXSMP */
186 xpq_queue_set_ldt(base, entries);
187 splx(s);
188 }
189
190 void
191 xpq_flush_queue(void)
192 {
193 mmu_update_t *xpq_queue;
194 int done = 0, ret;
195 size_t xpq_idx;
196
197 KASSERT(curcpu()->ci_ilevel >= IPL_VM || cold);
198
199 xpq_idx = curcpu()->ci_xpq_idx;
200 xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
201
202 retry:
203 ret = HYPERVISOR_mmu_update(xpq_queue, xpq_idx, &done, DOMID_SELF);
204
205 if (ret < 0 && xpq_idx != 0) {
206 printf("xpq_flush_queue: %zu entries (%d successful) on "
207 "cpu%d (%ld)\n",
208 xpq_idx, done, curcpu()->ci_index, curcpu()->ci_cpuid);
209
210 if (done != 0) {
211 xpq_queue += done;
212 xpq_idx -= done;
213 done = 0;
214 goto retry;
215 }
216
217 panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
218 }
219 curcpu()->ci_xpq_idx = 0;
220 }
221
222 static inline void
223 xpq_increment_idx(void)
224 {
225 KASSERT(curcpu()->ci_ilevel >= IPL_VM || cold);
226 if (__predict_false(++curcpu()->ci_xpq_idx == XPQUEUE_SIZE))
227 xpq_flush_queue();
228 }
229
230 void
231 xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
232 {
233 mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
234 size_t xpq_idx = curcpu()->ci_xpq_idx;
235
236 xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
237 xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
238 xpq_increment_idx();
239 }
240
241 void
242 xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
243 {
244 mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
245 size_t xpq_idx = curcpu()->ci_xpq_idx;
246
247 xpq_queue[xpq_idx].ptr = ptr | MMU_NORMAL_PT_UPDATE;
248 xpq_queue[xpq_idx].val = val;
249 xpq_increment_idx();
250 }
251
252 void
253 xpq_queue_pt_switch(paddr_t pa)
254 {
255 struct mmuext_op op;
256
257 xpq_flush_queue();
258
259 op.cmd = MMUEXT_NEW_BASEPTR;
260 op.arg1.mfn = pa >> PAGE_SHIFT;
261 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
262 panic(__func__);
263 }
264
265 void
266 xpq_queue_pin_table(paddr_t pa, int lvl)
267 {
268 struct mmuext_op op;
269
270 xpq_flush_queue();
271
272 op.cmd = lvl;
273 op.arg1.mfn = pa >> PAGE_SHIFT;
274 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
275 panic(__func__);
276 }
277
278 void
279 xpq_queue_unpin_table(paddr_t pa)
280 {
281 struct mmuext_op op;
282
283 xpq_flush_queue();
284
285 op.cmd = MMUEXT_UNPIN_TABLE;
286 op.arg1.mfn = pa >> PAGE_SHIFT;
287 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
288 panic(__func__);
289 }
290
291 void
292 xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
293 {
294 struct mmuext_op op;
295
296 xpq_flush_queue();
297
298 KASSERT(va == (va & ~PAGE_MASK));
299 op.cmd = MMUEXT_SET_LDT;
300 op.arg1.linear_addr = va;
301 op.arg2.nr_ents = entries;
302 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
303 panic(__func__);
304 }
305
306 void
307 xpq_queue_tlb_flush(void)
308 {
309 struct mmuext_op op;
310
311 xpq_flush_queue();
312
313 op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
314 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
315 panic(__func__);
316 }
317
318 void
319 xpq_flush_cache(void)
320 {
321 int s = splvm();
322
323 xpq_flush_queue();
324
325 asm("wbinvd":::"memory");
326 splx(s);
327 }
328
329 void
330 xpq_queue_invlpg(vaddr_t va)
331 {
332 struct mmuext_op op;
333
334 xpq_flush_queue();
335
336 op.cmd = MMUEXT_INVLPG_LOCAL;
337 op.arg1.linear_addr = (va & ~PAGE_MASK);
338 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
339 panic(__func__);
340 }
341
342 void
343 xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
344 {
345 xcpumask_t xcpumask;
346 mmuext_op_t op;
347
348 kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
349
350 xpq_flush_queue();
351
352 op.cmd = MMUEXT_INVLPG_MULTI;
353 op.arg1.linear_addr = va;
354 set_xen_guest_handle(op.arg2.vcpumask, &xcpumask.xcpum_xm);
355
356 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
357 panic(__func__);
358 }
359
360 void
361 xen_bcast_invlpg(vaddr_t va)
362 {
363 mmuext_op_t op;
364
365 xpq_flush_queue();
366
367 op.cmd = MMUEXT_INVLPG_ALL;
368 op.arg1.linear_addr = va;
369
370 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
371 panic(__func__);
372 }
373
374 /* This is a synchronous call. */
375 void
376 xen_mcast_tlbflush(kcpuset_t *kc)
377 {
378 xcpumask_t xcpumask;
379 mmuext_op_t op;
380
381 kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
382
383 xpq_flush_queue();
384
385 op.cmd = MMUEXT_TLB_FLUSH_MULTI;
386 set_xen_guest_handle(op.arg2.vcpumask, &xcpumask.xcpum_xm);
387
388 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
389 panic(__func__);
390 }
391
392 /* This is a synchronous call. */
393 void
394 xen_bcast_tlbflush(void)
395 {
396 mmuext_op_t op;
397
398 xpq_flush_queue();
399
400 op.cmd = MMUEXT_TLB_FLUSH_ALL;
401
402 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
403 panic(__func__);
404 }
405
406 void
407 xen_copy_page(paddr_t srcpa, paddr_t dstpa)
408 {
409 mmuext_op_t op;
410
411 op.cmd = MMUEXT_COPY_PAGE;
412 op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
413 op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
414
415 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
416 panic(__func__);
417 }
418
419 void
420 xen_pagezero(paddr_t pa)
421 {
422 mmuext_op_t op;
423
424 op.cmd = MMUEXT_CLEAR_PAGE;
425 op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
426
427 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
428 panic(__func__);
429 }
430
431 int
432 xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
433 {
434 mmu_update_t op;
435 int ok;
436
437 xpq_flush_queue();
438
439 op.ptr = ptr;
440 op.val = val;
441 if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
442 return EFAULT;
443 return 0;
444 }
445
446 #if L2_SLOT_KERNBASE > 0
447 #define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
448 #else
449 #define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
450 #endif
451
452 #ifdef __x86_64__
453 #define PDIRSZ PTP_LEVELS
454 #else
455 /*
456 * For PAE, we need an L3 page, a single contiguous L2 "superpage" of 4 pages
457 * (all of them mapped by the L3 page), and a shadow page for L3[3].
458 */
459 #define PDIRSZ (1 + 4 + 1)
460 #endif
461
462 /*
463 * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
464 * tables.
465 *
466 * Virtual address space of the kernel when leaving this function:
467 * +--------------+------------------+-------------+------------+---------------
468 * | KERNEL IMAGE | BOOTSTRAP TABLES | PROC0 UAREA | DUMMY PAGE | HYPER. SHARED
469 * +--------------+------------------+-------------+------------+---------------
470 *
471 * ------+-----------------+-------------+
472 * INFO | EARLY ZERO PAGE | ISA I/O MEM |
473 * ------+-----------------+-------------+
474 *
475 * DUMMY PAGE is either a PDG for amd64 or a GDT for i386.
476 *
477 * (HYPER. SHARED INFO + EARLY ZERO PAGE + ISA I/O MEM) have no physical
478 * addresses preallocated.
479 */
480 vaddr_t
481 xen_locore(void)
482 {
483 size_t nL2, oldcount, mapsize;
484 vaddr_t our_tables, xen_tables;
485 u_int descs[4];
486
487 xen_init_features();
488
489 xpmap_phys_to_machine_mapping =
490 (unsigned long *)xen_start_info.mfn_list;
491
492 /* Set the NX/XD bit, if available. descs[3] = %edx. */
493 x86_cpuid(0x80000001, descs);
494 xpmap_pg_nx = (descs[3] & CPUID_NOX) ? PTE_NX : 0;
495
496 /* Space after Xen boostrap tables should be free */
497 xen_tables = xen_start_info.pt_base;
498 our_tables = xen_tables + (xen_start_info.nr_pt_frames * PAGE_SIZE);
499
500 /*
501 * Calculate how much space we need. First, everything mapped before
502 * the Xen bootstrap tables.
503 */
504 mapsize = xen_tables - KERNTEXTOFF;
505
506 /* After the tables we'll have:
507 * - UAREA
508 * - dummy user PGD (x86_64)
509 * - HYPERVISOR_shared_info
510 * - early_zerop
511 * - ISA I/O mem (if needed)
512 */
513 mapsize += UPAGES * PAGE_SIZE;
514 #ifdef __x86_64__
515 mapsize += PAGE_SIZE;
516 #endif
517 mapsize += PAGE_SIZE;
518 mapsize += PAGE_SIZE;
519 #ifdef DOM0OPS
520 if (xendomain_is_dom0()) {
521 mapsize += IOM_SIZE;
522 }
523 #endif
524
525 /*
526 * At this point, mapsize doesn't include the table size.
527 */
528 #ifdef __x86_64__
529 nL2 = TABLE_L2_ENTRIES;
530 #else
531 nL2 = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
532 #endif
533
534 /*
535 * Now compute how many L2 pages we need exactly. This is useful only
536 * on i386, since the initial count for amd64 is already enough.
537 */
538 while (KERNTEXTOFF + mapsize + (nL2 + PDIRSZ) * PAGE_SIZE >
539 KERNBASE + (nL2 << L2_SHIFT)) {
540 nL2++;
541 }
542
543 #ifdef i386
544 /*
545 * One more L2 page: we'll allocate several pages after kva_start
546 * in pmap_bootstrap() before pmap_growkernel(), which have not been
547 * counted here. It's not a big issue to allocate one more L2 as
548 * pmap_growkernel() will be called anyway.
549 */
550 nL2++;
551 nkptp[1] = nL2;
552 #endif
553
554 /*
555 * Install bootstrap pages. We may need more L2 pages than will
556 * have the final table here, as it's installed after the final table.
557 */
558 oldcount = nL2;
559
560 bootstrap_again:
561
562 /*
563 * Xen space we'll reclaim may not be enough for our new page tables,
564 * move bootstrap tables if necessary.
565 */
566 if (our_tables < xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE))
567 our_tables = xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE);
568
569 /*
570 * Make sure the number of L2 pages we have is enough to map everything
571 * from KERNBASE to the bootstrap tables themselves.
572 */
573 if (our_tables + ((oldcount + PDIRSZ) * PAGE_SIZE) >
574 KERNBASE + (oldcount << L2_SHIFT)) {
575 oldcount++;
576 goto bootstrap_again;
577 }
578
579 /* Create temporary tables */
580 xen_bootstrap_tables(xen_tables, our_tables,
581 xen_start_info.nr_pt_frames, oldcount, false);
582
583 /* Create final tables */
584 xen_bootstrap_tables(our_tables, xen_tables,
585 oldcount + PDIRSZ, nL2, true);
586
587 /* Zero out PROC0 UAREA and DUMMY PAGE. */
588 memset((void *)(xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE)), 0,
589 (UPAGES + 1) * PAGE_SIZE);
590
591 /* Finally, flush TLB. */
592 xpq_queue_tlb_flush();
593
594 return (xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE));
595 }
596
597 /*
598 * Build a new table and switch to it.
599 * old_count is # of old tables (including L4, L3 and L2).
600 * new_count is # of new tables (PTE only).
601 * We assume the areas don't overlap.
602 */
603 static void
604 xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
605 size_t new_count, bool final)
606 {
607 pd_entry_t *L4cpu, *L4, *L3, *L2, *pte;
608 paddr_t addr;
609 vaddr_t page, avail, map_end;
610 int i;
611 extern char __rodata_start;
612 extern char __data_start;
613 extern char __kernel_end;
614 extern char *early_zerop; /* from pmap.c */
615 #ifdef i386
616 extern union descriptor tmpgdt[];
617 #endif
618
619 /*
620 * Layout of RW area after the kernel image:
621 * xencons_interface (if present)
622 * xenstore_interface (if present)
623 * table pages (new_count + PDIRSZ entries)
624 * Extra mappings (only when final is true):
625 * UAREA
626 * dummy user PGD (x86_64 only) / GDT page (i386 only)
627 * HYPERVISOR_shared_info
628 * early_zerop
629 * ISA I/O mem (if needed)
630 */
631 map_end = new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE);
632 if (final) {
633 map_end += UPAGES * PAGE_SIZE;
634 xen_dummy_page = (vaddr_t)map_end;
635 map_end += PAGE_SIZE;
636 HYPERVISOR_shared_info = (shared_info_t *)map_end;
637 map_end += PAGE_SIZE;
638 early_zerop = (char *)map_end;
639 map_end += PAGE_SIZE;
640 }
641
642 /*
643 * We always set atdevbase, as it's used by init386 to find the first
644 * available VA. map_end is updated only if we are dom0, so
645 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
646 * this case.
647 */
648 if (final) {
649 atdevbase = map_end;
650 #ifdef DOM0OPS
651 if (xendomain_is_dom0()) {
652 /* ISA I/O mem */
653 map_end += IOM_SIZE;
654 }
655 #endif
656 }
657
658 __PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
659 __PRINTK(("console %#lx ", xen_start_info.console_mfn));
660 __PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
661
662 avail = new_pgd;
663
664 /*
665 * Create our page tables.
666 */
667
668 #ifdef __x86_64__
669 /* per-cpu L4 */
670 L4cpu = (pd_entry_t *)avail;
671 memset(L4cpu, 0, PAGE_SIZE);
672 avail += PAGE_SIZE;
673
674 /* pmap_kernel L4 */
675 L4 = (pd_entry_t *)avail;
676 memset(L4, 0, PAGE_SIZE);
677 avail += PAGE_SIZE;
678
679 /* L3 */
680 L3 = (pd_entry_t *)avail;
681 memset(L3, 0, PAGE_SIZE);
682 avail += PAGE_SIZE;
683
684 /* link L4->L3 */
685 addr = ((u_long)L3) - KERNBASE;
686 L4cpu[pl4_pi(KERNTEXTOFF)] = xpmap_ptom_masked(addr) | PTE_P | PTE_W;
687 L4[pl4_pi(KERNTEXTOFF)] = xpmap_ptom_masked(addr) | PTE_P | PTE_W;
688
689 /* L2 */
690 L2 = (pd_entry_t *)avail;
691 memset(L2, 0, PAGE_SIZE);
692 avail += PAGE_SIZE;
693
694 /* link L3->L2 */
695 addr = ((u_long)L2) - KERNBASE;
696 L3[pl3_pi(KERNTEXTOFF)] = xpmap_ptom_masked(addr) | PTE_P | PTE_W;
697 #else
698 /* no L4 on i386PAE */
699 __USE(L4cpu);
700 __USE(L4);
701
702 /* L3 */
703 L3 = (pd_entry_t *)avail;
704 memset(L3, 0, PAGE_SIZE);
705 avail += PAGE_SIZE;
706
707 /*
708 * Our PAE-style level 2, 5 contiguous pages (4 L2 + 1 shadow).
709 * +-----------------+----------------+---------+
710 * Physical layout: | 3 * USERLAND L2 | L2 KERN SHADOW | L2 KERN |
711 * +-----------------+----------------+---------+
712 * However, we enter L3[3] into L2 KERN, and not L2 KERN SHADOW.
713 * This way, L2[L2_SLOT_KERN] always points to the shadow.
714 */
715 L2 = (pd_entry_t *)avail;
716 memset(L2, 0, PAGE_SIZE * 5);
717 avail += PAGE_SIZE * 5;
718
719 /*
720 * Link L2 pages in L3, with a special case for L2 KERN. Xen doesn't
721 * want RW permissions in L3 entries, it'll add them itself.
722 */
723 addr = ((u_long)L2) - KERNBASE;
724 for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
725 L3[i] = xpmap_ptom_masked(addr) | PTE_P;
726 }
727 addr += PAGE_SIZE;
728 L3[3] = xpmap_ptom_masked(addr) | PTE_P;
729 #endif
730
731 /* Level 1 */
732 page = KERNTEXTOFF;
733 for (i = 0; i < new_count; i ++) {
734 vaddr_t cur_page = page;
735
736 pte = (pd_entry_t *)avail;
737 memset(pte, 0, PAGE_SIZE);
738 avail += PAGE_SIZE;
739
740 while (pl2_pi(page) == pl2_pi(cur_page)) {
741 if (page >= map_end) {
742 /* not mapped at all */
743 pte[pl1_pi(page)] = 0;
744 page += PAGE_SIZE;
745 continue;
746 }
747 pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
748 if (page == (vaddr_t)HYPERVISOR_shared_info) {
749 pte[pl1_pi(page)] = xen_start_info.shared_info;
750 }
751 if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
752 == xen_start_info.console.domU.mfn) {
753 xencons_interface = (void *)page;
754 pte[pl1_pi(page)] = xen_start_info.console_mfn;
755 pte[pl1_pi(page)] <<= PAGE_SHIFT;
756 }
757 if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
758 == xen_start_info.store_mfn) {
759 xenstore_interface = (void *)page;
760 pte[pl1_pi(page)] = xen_start_info.store_mfn;
761 pte[pl1_pi(page)] <<= PAGE_SHIFT;
762 }
763 #ifdef DOM0OPS
764 if (page >= (vaddr_t)atdevbase &&
765 page < (vaddr_t)atdevbase + IOM_SIZE) {
766 pte[pl1_pi(page)] =
767 IOM_BEGIN + (page - (vaddr_t)atdevbase);
768 pte[pl1_pi(page)] |= xpmap_pg_nx;
769 }
770 #endif
771
772 pte[pl1_pi(page)] |= PTE_P;
773 if (page < (vaddr_t)&__rodata_start) {
774 /* Map the kernel text RX. Nothing to do. */
775 } else if (page >= (vaddr_t)&__rodata_start &&
776 page < (vaddr_t)&__data_start) {
777 /* Map the kernel rodata R. */
778 pte[pl1_pi(page)] |= xpmap_pg_nx;
779 } else if (page >= old_pgd &&
780 page < old_pgd + (old_count * PAGE_SIZE)) {
781 /* Map the old page tables R. */
782 pte[pl1_pi(page)] |= xpmap_pg_nx;
783 } else if (page >= new_pgd &&
784 page < new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE)) {
785 /* Map the new page tables R. */
786 pte[pl1_pi(page)] |= xpmap_pg_nx;
787 #ifdef i386
788 } else if (page == (vaddr_t)tmpgdt) {
789 /*
790 * Map bootstrap gdt R/O. Later, we will re-add
791 * this page to uvm after making it writable.
792 */
793 pte[pl1_pi(page)] = 0;
794 page += PAGE_SIZE;
795 continue;
796 #endif
797 } else if (page >= (vaddr_t)&__data_start &&
798 page < (vaddr_t)&__kernel_end) {
799 /* Map the kernel data+bss RW. */
800 pte[pl1_pi(page)] |= PTE_W | xpmap_pg_nx;
801 } else {
802 /* Map the page RW. */
803 pte[pl1_pi(page)] |= PTE_W | xpmap_pg_nx;
804 }
805
806 page += PAGE_SIZE;
807 }
808
809 addr = ((u_long)pte) - KERNBASE;
810 L2[pl2_pi(cur_page)] = xpmap_ptom_masked(addr) | PTE_W | PTE_P;
811
812 /* Mark readonly */
813 xen_bt_set_readonly((vaddr_t)pte);
814 }
815
816 /* Install recursive page tables mapping */
817 #ifdef __x86_64__
818 /* Recursive entry in pmap_kernel(). */
819 L4[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)L4 - KERNBASE)
820 | PTE_P | xpmap_pg_nx;
821 /* Recursive entry in higher-level per-cpu PD. */
822 L4cpu[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)L4cpu - KERNBASE)
823 | PTE_P | xpmap_pg_nx;
824
825 /* Mark tables RO */
826 xen_bt_set_readonly((vaddr_t)L2);
827 #else
828 /* Copy L2 KERN into L2 KERN SHADOW, and reference the latter in cpu0. */
829 memcpy(&L2[L2_SLOT_KERN + NPDPG], &L2[L2_SLOT_KERN], PAGE_SIZE);
830 cpu_info_primary.ci_kpm_pdir = &L2[L2_SLOT_KERN + NPDPG];
831 cpu_info_primary.ci_kpm_pdirpa =
832 (vaddr_t)cpu_info_primary.ci_kpm_pdir - KERNBASE;
833
834 /*
835 * We don't enter a recursive entry from the L3 PD. Instead, we enter
836 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
837 * have to enter the shadow after switching %cr3, or Xen will refcount
838 * some PTEs with the wrong type.
839 */
840 addr = (u_long)L2 - KERNBASE;
841 for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
842 L2[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PTE_P |
843 xpmap_pg_nx;
844 }
845
846 /* Mark tables RO, and pin L2 KERN SHADOW. */
847 addr = (u_long)L2 - KERNBASE;
848 for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
849 xen_bt_set_readonly(((vaddr_t)L2) + PAGE_SIZE * i);
850 }
851 if (final) {
852 addr = (u_long)L2 - KERNBASE + 3 * PAGE_SIZE;
853 xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
854 }
855 #endif
856
857 xen_bt_set_readonly((vaddr_t)L3);
858 #ifdef __x86_64__
859 xen_bt_set_readonly((vaddr_t)L4cpu);
860 #endif
861
862 /* Pin the PGD */
863 #ifdef __x86_64__
864 xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
865 #else
866 xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
867 #endif
868
869 /* Save phys. addr of PDP, for libkvm. */
870 #ifdef __x86_64__
871 PDPpaddr = (u_long)L4 - KERNBASE;
872 #else
873 PDPpaddr = (u_long)L2 - KERNBASE; /* PDP is the L2 with PAE */
874 #endif
875
876 /* Switch to new tables */
877 xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
878
879 if (final) {
880 #ifdef __x86_64__
881 /* Save the address of the real per-cpu L4 page. */
882 cpu_info_primary.ci_kpm_pdir = L4cpu;
883 cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)L4cpu - KERNBASE);
884 #else
885 /* Save the address of the L3 page */
886 cpu_info_primary.ci_pae_l3_pdir = L3;
887 cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
888
889 /* Now enter the kernel's PTE mappings */
890 addr = (u_long)L2 - KERNBASE + PAGE_SIZE * 3;
891 xpq_queue_pte_update(
892 xpmap_ptom(((vaddr_t)&L2[PDIR_SLOT_PTE + 3]) - KERNBASE),
893 xpmap_ptom_masked(addr) | PTE_P);
894 xpq_flush_queue();
895 #endif
896 }
897
898 /*
899 * Now we can safely reclaim the space taken by the old tables.
900 */
901
902 /* Unpin old PGD */
903 xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
904
905 /* Mark old tables RW */
906 page = old_pgd;
907 addr = xpmap_mtop((paddr_t)L2[pl2_pi(page)] & PTE_4KFRAME);
908 pte = (pd_entry_t *)((u_long)addr + KERNBASE);
909 pte += pl1_pi(page);
910 while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
911 addr = xpmap_ptom(((u_long)pte) - KERNBASE);
912 xpq_queue_pte_update(addr, *pte | PTE_W);
913 page += PAGE_SIZE;
914 /*
915 * Our PTEs are contiguous so it's safe to just "++" here.
916 */
917 pte++;
918 }
919 xpq_flush_queue();
920 }
921
922 /*
923 * Mark a page read-only, assuming vaddr = paddr + KERNBASE.
924 */
925 static void
926 xen_bt_set_readonly(vaddr_t page)
927 {
928 pt_entry_t entry;
929
930 entry = xpmap_ptom_masked(page - KERNBASE);
931 entry |= PTE_P | xpmap_pg_nx;
932
933 HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
934 }
935
936 #ifdef __x86_64__
937 void
938 xen_set_user_pgd(paddr_t page)
939 {
940 struct mmuext_op op;
941 int s = splvm(); /* XXXSMP */
942
943 xpq_flush_queue();
944 op.cmd = MMUEXT_NEW_USER_BASEPTR;
945 op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
946 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
947 panic("xen_set_user_pgd: failed to install new user page"
948 " directory %#" PRIxPADDR, page);
949 splx(s);
950 }
951 #endif /* __x86_64__ */
952