xen_clock.c revision 1.10 1 1.10 bouyer /* $NetBSD: xen_clock.c,v 1.10 2023/07/07 15:13:41 bouyer Exp $ */
2 1.2 bouyer
3 1.2 bouyer /*-
4 1.2 bouyer * Copyright (c) 2017, 2018 The NetBSD Foundation, Inc.
5 1.2 bouyer * All rights reserved.
6 1.2 bouyer *
7 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
8 1.2 bouyer * by Taylor R. Campbell.
9 1.2 bouyer *
10 1.2 bouyer * Redistribution and use in source and binary forms, with or without
11 1.2 bouyer * modification, are permitted provided that the following conditions
12 1.2 bouyer * are met:
13 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
14 1.2 bouyer * notice, this list of conditions and the following disclaimer.
15 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
17 1.2 bouyer * documentation and/or other materials provided with the distribution.
18 1.2 bouyer *
19 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
30 1.2 bouyer */
31 1.2 bouyer
32 1.2 bouyer #include "opt_xen.h"
33 1.2 bouyer
34 1.2 bouyer #ifndef XEN_CLOCK_DEBUG
35 1.2 bouyer #define XEN_CLOCK_DEBUG 0
36 1.2 bouyer #endif
37 1.2 bouyer
38 1.2 bouyer #include <sys/cdefs.h>
39 1.10 bouyer __KERNEL_RCSID(0, "$NetBSD: xen_clock.c,v 1.10 2023/07/07 15:13:41 bouyer Exp $");
40 1.2 bouyer
41 1.2 bouyer #include <sys/param.h>
42 1.2 bouyer #include <sys/types.h>
43 1.2 bouyer #include <sys/atomic.h>
44 1.2 bouyer #include <sys/callout.h>
45 1.2 bouyer #include <sys/cpu.h>
46 1.2 bouyer #include <sys/device.h>
47 1.2 bouyer #include <sys/evcnt.h>
48 1.2 bouyer #include <sys/intr.h>
49 1.2 bouyer #include <sys/kernel.h>
50 1.2 bouyer #include <sys/lwp.h>
51 1.2 bouyer #include <sys/proc.h>
52 1.9 riastrad #include <sys/sdt.h>
53 1.2 bouyer #include <sys/sysctl.h>
54 1.2 bouyer #include <sys/systm.h>
55 1.2 bouyer #include <sys/time.h>
56 1.2 bouyer #include <sys/timetc.h>
57 1.2 bouyer
58 1.2 bouyer #include <dev/clock_subr.h>
59 1.2 bouyer
60 1.2 bouyer #include <machine/cpu.h>
61 1.2 bouyer #include <machine/cpu_counter.h>
62 1.2 bouyer #include <machine/lock.h>
63 1.2 bouyer
64 1.2 bouyer #include <xen/evtchn.h>
65 1.2 bouyer #include <xen/hypervisor.h>
66 1.2 bouyer #include <xen/include/public/vcpu.h>
67 1.2 bouyer #include <xen/xen.h>
68 1.2 bouyer
69 1.2 bouyer #include <x86/rtc.h>
70 1.2 bouyer
71 1.2 bouyer #define NS_PER_TICK ((uint64_t)1000000000ULL/hz)
72 1.2 bouyer
73 1.2 bouyer static uint64_t xen_vcputime_systime_ns(void);
74 1.2 bouyer static uint64_t xen_vcputime_raw_systime_ns(void);
75 1.2 bouyer static uint64_t xen_global_systime_ns(void);
76 1.2 bouyer static unsigned xen_get_timecount(struct timecounter *);
77 1.2 bouyer static int xen_timer_handler(void *, struct clockframe *);
78 1.2 bouyer
79 1.2 bouyer /*
80 1.9 riastrad * dtrace probes
81 1.9 riastrad */
82 1.9 riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, tsc__backward,
83 1.9 riastrad "uint64_t"/*raw_systime_ns*/,
84 1.9 riastrad "uint64_t"/*tsc_timestamp*/,
85 1.9 riastrad "uint64_t"/*tsc_to_system_mul*/,
86 1.9 riastrad "int"/*tsc_shift*/,
87 1.9 riastrad "uint64_t"/*delta_ns*/,
88 1.9 riastrad "uint64_t"/*tsc*/,
89 1.9 riastrad "uint64_t"/*systime_ns*/);
90 1.9 riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, tsc__delta__negative,
91 1.9 riastrad "uint64_t"/*raw_systime_ns*/,
92 1.9 riastrad "uint64_t"/*tsc_timestamp*/,
93 1.9 riastrad "uint64_t"/*tsc_to_system_mul*/,
94 1.9 riastrad "int"/*tsc_shift*/,
95 1.9 riastrad "uint64_t"/*delta_ns*/,
96 1.9 riastrad "uint64_t"/*tsc*/,
97 1.9 riastrad "uint64_t"/*systime_ns*/);
98 1.9 riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, systime__wraparound,
99 1.9 riastrad "uint64_t"/*raw_systime_ns*/,
100 1.9 riastrad "uint64_t"/*tsc_timestamp*/,
101 1.9 riastrad "uint64_t"/*tsc_to_system_mul*/,
102 1.9 riastrad "int"/*tsc_shift*/,
103 1.9 riastrad "uint64_t"/*delta_ns*/,
104 1.9 riastrad "uint64_t"/*tsc*/,
105 1.9 riastrad "uint64_t"/*systime_ns*/);
106 1.9 riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, systime__backward,
107 1.9 riastrad "uint64_t"/*raw_systime_ns*/,
108 1.9 riastrad "uint64_t"/*tsc_timestamp*/,
109 1.9 riastrad "uint64_t"/*tsc_to_system_mul*/,
110 1.9 riastrad "int"/*tsc_shift*/,
111 1.9 riastrad "uint64_t"/*delta_ns*/,
112 1.9 riastrad "uint64_t"/*tsc*/,
113 1.9 riastrad "uint64_t"/*systime_ns*/);
114 1.9 riastrad
115 1.9 riastrad SDT_PROBE_DEFINE2(sdt, xen, hardclock, systime__backward,
116 1.9 riastrad "uint64_t"/*last_systime_ns*/,
117 1.9 riastrad "uint64_t"/*this_systime_ns*/);
118 1.9 riastrad SDT_PROBE_DEFINE3(sdt, xen, hardclock, missed,
119 1.9 riastrad "uint64_t"/*last_systime_ns*/,
120 1.9 riastrad "uint64_t"/*this_systime_ns*/,
121 1.9 riastrad "uint64_t"/*remaining_ns*/);
122 1.9 riastrad
123 1.9 riastrad /*
124 1.2 bouyer * xen timecounter:
125 1.2 bouyer *
126 1.2 bouyer * Xen vCPU system time, plus an adjustment with rdtsc.
127 1.2 bouyer */
128 1.2 bouyer static struct timecounter xen_timecounter = {
129 1.2 bouyer .tc_get_timecount = xen_get_timecount,
130 1.2 bouyer .tc_poll_pps = NULL,
131 1.2 bouyer .tc_counter_mask = ~0U,
132 1.2 bouyer .tc_frequency = 1000000000ULL, /* 1 GHz, i.e. units of nanoseconds */
133 1.2 bouyer .tc_name = "xen_system_time",
134 1.2 bouyer .tc_quality = 10000,
135 1.2 bouyer };
136 1.2 bouyer
137 1.2 bouyer /*
138 1.2 bouyer * xen_global_systime_ns_stamp
139 1.2 bouyer *
140 1.2 bouyer * The latest Xen vCPU system time that has been observed on any
141 1.2 bouyer * CPU, for a global monotonic view of the Xen system time clock.
142 1.2 bouyer */
143 1.2 bouyer static volatile uint64_t xen_global_systime_ns_stamp __cacheline_aligned;
144 1.2 bouyer
145 1.2 bouyer #ifdef DOM0OPS
146 1.2 bouyer /*
147 1.2 bouyer * xen timepush state:
148 1.2 bouyer *
149 1.2 bouyer * Callout to periodically, after a sysctl-configurable number of
150 1.2 bouyer * NetBSD ticks, set the Xen hypervisor's wall clock time.
151 1.2 bouyer */
152 1.2 bouyer static struct {
153 1.2 bouyer struct callout ch;
154 1.2 bouyer int ticks;
155 1.2 bouyer } xen_timepush;
156 1.2 bouyer
157 1.2 bouyer static void xen_timepush_init(void);
158 1.2 bouyer static void xen_timepush_intr(void *);
159 1.2 bouyer static int sysctl_xen_timepush(SYSCTLFN_ARGS);
160 1.2 bouyer #endif
161 1.2 bouyer
162 1.2 bouyer /*
163 1.2 bouyer * xen_rdtsc()
164 1.2 bouyer *
165 1.2 bouyer * Read the local pCPU's tsc.
166 1.2 bouyer */
167 1.2 bouyer static inline uint64_t
168 1.2 bouyer xen_rdtsc(void)
169 1.2 bouyer {
170 1.2 bouyer uint32_t lo, hi;
171 1.2 bouyer
172 1.2 bouyer asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
173 1.2 bouyer
174 1.2 bouyer return ((uint64_t)hi << 32) | lo;
175 1.2 bouyer }
176 1.2 bouyer
177 1.2 bouyer /*
178 1.2 bouyer * struct xen_vcputime_ticket
179 1.2 bouyer *
180 1.2 bouyer * State for a vCPU read section, during which a caller may read
181 1.2 bouyer * from fields of a struct vcpu_time_info and call xen_rdtsc.
182 1.2 bouyer * Caller must enter with xen_vcputime_enter, exit with
183 1.2 bouyer * xen_vcputime_exit, and be prepared to retry if
184 1.2 bouyer * xen_vcputime_exit fails.
185 1.2 bouyer */
186 1.2 bouyer struct xen_vcputime_ticket {
187 1.2 bouyer uint64_t version;
188 1.2 bouyer };
189 1.2 bouyer
190 1.2 bouyer /*
191 1.2 bouyer * xen_vcputime_enter(tp)
192 1.2 bouyer *
193 1.2 bouyer * Enter a vCPU time read section and store a ticket in *tp, which
194 1.2 bouyer * the caller must use with xen_vcputime_exit. Return a pointer
195 1.2 bouyer * to the current CPU's vcpu_time_info structure. Caller must
196 1.2 bouyer * already be bound to the CPU.
197 1.2 bouyer */
198 1.2 bouyer static inline volatile struct vcpu_time_info *
199 1.2 bouyer xen_vcputime_enter(struct xen_vcputime_ticket *tp)
200 1.2 bouyer {
201 1.2 bouyer volatile struct vcpu_time_info *vt = &curcpu()->ci_vcpu->time;
202 1.2 bouyer
203 1.2 bouyer while (__predict_false(1 & (tp->version = vt->version)))
204 1.2 bouyer SPINLOCK_BACKOFF_HOOK;
205 1.2 bouyer
206 1.2 bouyer /*
207 1.2 bouyer * Must read the version before reading the tsc on the local
208 1.2 bouyer * pCPU. We are racing only with interruption by the
209 1.2 bouyer * hypervisor, so no need for a stronger memory barrier.
210 1.2 bouyer */
211 1.2 bouyer __insn_barrier();
212 1.2 bouyer
213 1.2 bouyer return vt;
214 1.2 bouyer }
215 1.2 bouyer
216 1.2 bouyer /*
217 1.2 bouyer * xen_vcputime_exit(vt, tp)
218 1.2 bouyer *
219 1.2 bouyer * Exit a vCPU time read section with the ticket in *tp from
220 1.2 bouyer * xen_vcputime_enter. Return true on success, false if caller
221 1.2 bouyer * must retry.
222 1.2 bouyer */
223 1.2 bouyer static inline bool
224 1.2 bouyer xen_vcputime_exit(volatile struct vcpu_time_info *vt,
225 1.2 bouyer struct xen_vcputime_ticket *tp)
226 1.2 bouyer {
227 1.2 bouyer
228 1.2 bouyer KASSERT(vt == &curcpu()->ci_vcpu->time);
229 1.2 bouyer
230 1.2 bouyer /*
231 1.2 bouyer * Must read the tsc before re-reading the version on the local
232 1.2 bouyer * pCPU. We are racing only with interruption by the
233 1.2 bouyer * hypervisor, so no need for a stronger memory barrier.
234 1.2 bouyer */
235 1.2 bouyer __insn_barrier();
236 1.2 bouyer
237 1.2 bouyer return tp->version == vt->version;
238 1.2 bouyer }
239 1.2 bouyer
240 1.2 bouyer /*
241 1.2 bouyer * xen_tsc_to_ns_delta(delta_tsc, mul_frac, shift)
242 1.2 bouyer *
243 1.2 bouyer * Convert a difference in tsc units to a difference in
244 1.2 bouyer * nanoseconds given a multiplier and shift for the unit
245 1.2 bouyer * conversion.
246 1.2 bouyer */
247 1.2 bouyer static inline uint64_t
248 1.2 bouyer xen_tsc_to_ns_delta(uint64_t delta_tsc, uint32_t tsc_to_system_mul,
249 1.2 bouyer int8_t tsc_shift)
250 1.2 bouyer {
251 1.2 bouyer uint32_t delta_tsc_hi, delta_tsc_lo;
252 1.2 bouyer
253 1.2 bouyer if (tsc_shift < 0)
254 1.2 bouyer delta_tsc >>= -tsc_shift;
255 1.2 bouyer else
256 1.2 bouyer delta_tsc <<= tsc_shift;
257 1.2 bouyer
258 1.2 bouyer delta_tsc_hi = delta_tsc >> 32;
259 1.2 bouyer delta_tsc_lo = delta_tsc & 0xffffffffUL;
260 1.2 bouyer
261 1.2 bouyer /* d*m/2^32 = (2^32 d_h + d_l)*m/2^32 = d_h*m + (d_l*m)/2^32 */
262 1.2 bouyer return ((uint64_t)delta_tsc_hi * tsc_to_system_mul) +
263 1.2 bouyer (((uint64_t)delta_tsc_lo * tsc_to_system_mul) >> 32);
264 1.2 bouyer }
265 1.2 bouyer
266 1.2 bouyer /*
267 1.2 bouyer * xen_vcputime_systime_ns()
268 1.2 bouyer *
269 1.2 bouyer * Return a snapshot of the Xen system time plus an adjustment
270 1.2 bouyer * from the tsc, in units of nanoseconds. Caller must be bound to
271 1.2 bouyer * the current CPU.
272 1.2 bouyer */
273 1.2 bouyer static uint64_t
274 1.2 bouyer xen_vcputime_systime_ns(void)
275 1.2 bouyer {
276 1.2 bouyer volatile struct vcpu_time_info *vt;
277 1.2 bouyer struct cpu_info *ci = curcpu();
278 1.2 bouyer struct xen_vcputime_ticket ticket;
279 1.2 bouyer uint64_t raw_systime_ns, tsc_timestamp, tsc, delta_tsc, delta_ns;
280 1.2 bouyer uint32_t tsc_to_system_mul;
281 1.2 bouyer int8_t tsc_shift;
282 1.2 bouyer uint64_t systime_ns;
283 1.2 bouyer
284 1.2 bouyer /* We'd better be bound to the CPU in _some_ way. */
285 1.2 bouyer KASSERT(cpu_intr_p() || cpu_softintr_p() || kpreempt_disabled() ||
286 1.2 bouyer (curlwp->l_flag & LP_BOUND));
287 1.2 bouyer
288 1.2 bouyer /*
289 1.2 bouyer * Repeatedly try to read the system time, corresponding tsc
290 1.2 bouyer * timestamp, and tsc frequency until we get a consistent view.
291 1.2 bouyer */
292 1.2 bouyer do {
293 1.2 bouyer vt = xen_vcputime_enter(&ticket);
294 1.2 bouyer
295 1.2 bouyer /* Grab Xen's snapshot of raw system time and tsc. */
296 1.2 bouyer raw_systime_ns = vt->system_time;
297 1.2 bouyer tsc_timestamp = vt->tsc_timestamp;
298 1.2 bouyer
299 1.2 bouyer /* Get Xen's current idea of how fast the tsc is counting. */
300 1.2 bouyer tsc_to_system_mul = vt->tsc_to_system_mul;
301 1.2 bouyer tsc_shift = vt->tsc_shift;
302 1.2 bouyer
303 1.2 bouyer /* Read the CPU's tsc. */
304 1.2 bouyer tsc = xen_rdtsc();
305 1.2 bouyer } while (!xen_vcputime_exit(vt, &ticket));
306 1.2 bouyer
307 1.2 bouyer /*
308 1.2 bouyer * Out of paranoia, check whether the tsc has gone backwards
309 1.2 bouyer * since Xen's timestamp.
310 1.2 bouyer *
311 1.2 bouyer * This shouldn't happen because the Xen hypervisor is supposed
312 1.2 bouyer * to have read the tsc _before_ writing to the vcpu_time_info
313 1.2 bouyer * page, _before_ we read the tsc.
314 1.2 bouyer *
315 1.2 bouyer * Further, if we switched pCPUs after reading the tsc
316 1.2 bouyer * timestamp but before reading the CPU's tsc, the hypervisor
317 1.2 bouyer * had better notify us by updating the version too and forcing
318 1.2 bouyer * us to retry the vCPU time read.
319 1.2 bouyer */
320 1.2 bouyer if (__predict_false(tsc < tsc_timestamp)) {
321 1.2 bouyer /*
322 1.2 bouyer * Notify the console that the CPU's tsc appeared to
323 1.2 bouyer * run behind Xen's idea of it, and pretend it hadn't.
324 1.2 bouyer */
325 1.9 riastrad SDT_PROBE7(sdt, xen, clock, tsc__backward,
326 1.9 riastrad raw_systime_ns, tsc_timestamp,
327 1.9 riastrad tsc_to_system_mul, tsc_shift, /*delta_ns*/0, tsc,
328 1.9 riastrad /*systime_ns*/raw_systime_ns);
329 1.9 riastrad #if XEN_CLOCK_DEBUG
330 1.8 bouyer device_printf(ci->ci_dev, "xen cpu tsc %"PRIu64
331 1.2 bouyer " ran backwards from timestamp %"PRIu64
332 1.2 bouyer " by %"PRIu64"\n",
333 1.2 bouyer tsc, tsc_timestamp, tsc_timestamp - tsc);
334 1.2 bouyer #endif
335 1.2 bouyer ci->ci_xen_cpu_tsc_backwards_evcnt.ev_count++;
336 1.2 bouyer delta_ns = delta_tsc = 0;
337 1.2 bouyer } else {
338 1.2 bouyer /* Find how far the CPU's tsc has advanced. */
339 1.2 bouyer delta_tsc = tsc - tsc_timestamp;
340 1.2 bouyer
341 1.2 bouyer /* Convert the tsc delta to a nanosecond delta. */
342 1.2 bouyer delta_ns = xen_tsc_to_ns_delta(delta_tsc, tsc_to_system_mul,
343 1.2 bouyer tsc_shift);
344 1.2 bouyer }
345 1.2 bouyer
346 1.2 bouyer /*
347 1.2 bouyer * Notify the console if the delta computation yielded a
348 1.2 bouyer * negative, and pretend it hadn't.
349 1.2 bouyer *
350 1.2 bouyer * This doesn't make sense but I include it out of paranoia.
351 1.2 bouyer */
352 1.2 bouyer if (__predict_false((int64_t)delta_ns < 0)) {
353 1.9 riastrad SDT_PROBE7(sdt, xen, clock, tsc__delta__negative,
354 1.9 riastrad raw_systime_ns, tsc_timestamp,
355 1.9 riastrad tsc_to_system_mul, tsc_shift, delta_ns, tsc,
356 1.9 riastrad /*systime_ns*/raw_systime_ns);
357 1.9 riastrad #if XEN_CLOCK_DEBUG
358 1.9 riastrad device_printf(ci->ci_dev, "xen tsc delta in ns went negative:"
359 1.9 riastrad " %"PRId64"\n", delta_ns);
360 1.2 bouyer #endif
361 1.2 bouyer ci->ci_xen_tsc_delta_negative_evcnt.ev_count++;
362 1.2 bouyer delta_ns = 0;
363 1.2 bouyer }
364 1.2 bouyer
365 1.2 bouyer /*
366 1.2 bouyer * Compute the TSC-adjusted system time.
367 1.2 bouyer */
368 1.2 bouyer systime_ns = raw_systime_ns + delta_ns;
369 1.2 bouyer
370 1.2 bouyer /*
371 1.2 bouyer * Notify the console if the addition wrapped around.
372 1.2 bouyer *
373 1.2 bouyer * This shouldn't happen because system time should be relative
374 1.2 bouyer * to a reasonable reference point, not centuries in the past.
375 1.2 bouyer * (2^64 ns is approximately half a millennium.)
376 1.2 bouyer */
377 1.2 bouyer if (__predict_false(systime_ns < raw_systime_ns)) {
378 1.9 riastrad SDT_PROBE7(sdt, xen, clock, systime__wraparound,
379 1.9 riastrad raw_systime_ns, tsc_timestamp,
380 1.9 riastrad tsc_to_system_mul, tsc_shift, delta_ns, tsc,
381 1.9 riastrad systime_ns);
382 1.9 riastrad #if XEN_CLOCK_DEBUG
383 1.2 bouyer printf("xen raw systime + tsc delta wrapped around:"
384 1.2 bouyer " %"PRIu64" + %"PRIu64" = %"PRIu64"\n",
385 1.2 bouyer raw_systime_ns, delta_ns, systime_ns);
386 1.2 bouyer #endif
387 1.2 bouyer ci->ci_xen_raw_systime_wraparound_evcnt.ev_count++;
388 1.2 bouyer }
389 1.2 bouyer
390 1.2 bouyer /*
391 1.2 bouyer * Notify the console if the TSC-adjusted Xen system time
392 1.2 bouyer * appears to have gone backwards, and pretend we had gone
393 1.2 bouyer * forward. This seems to happen pretty regularly under load.
394 1.2 bouyer */
395 1.2 bouyer if (__predict_false(ci->ci_xen_last_systime_ns > systime_ns)) {
396 1.9 riastrad SDT_PROBE7(sdt, xen, clock, systime__backward,
397 1.9 riastrad raw_systime_ns, tsc_timestamp,
398 1.9 riastrad tsc_to_system_mul, tsc_shift, delta_ns, tsc,
399 1.9 riastrad systime_ns);
400 1.9 riastrad #if XEN_CLOCK_DEBUG
401 1.2 bouyer printf("xen raw systime + tsc delta went backwards:"
402 1.2 bouyer " %"PRIu64" > %"PRIu64"\n",
403 1.2 bouyer ci->ci_xen_last_systime_ns, systime_ns);
404 1.2 bouyer printf(" raw_systime_ns=%"PRIu64"\n tsc_timestamp=%"PRIu64"\n"
405 1.2 bouyer " tsc=%"PRIu64"\n tsc_to_system_mul=%"PRIu32"\n"
406 1.2 bouyer " tsc_shift=%"PRId8"\n delta_tsc=%"PRIu64"\n"
407 1.2 bouyer " delta_ns=%"PRIu64"\n",
408 1.2 bouyer raw_systime_ns, tsc_timestamp, tsc, tsc_to_system_mul,
409 1.2 bouyer tsc_shift, delta_tsc, delta_ns);
410 1.2 bouyer #endif
411 1.2 bouyer ci->ci_xen_raw_systime_backwards_evcnt.ev_count++;
412 1.2 bouyer systime_ns = ci->ci_xen_last_systime_ns + 1;
413 1.2 bouyer }
414 1.2 bouyer
415 1.2 bouyer /* Remember the TSC-adjusted Xen system time. */
416 1.2 bouyer ci->ci_xen_last_systime_ns = systime_ns;
417 1.2 bouyer
418 1.2 bouyer /* We had better not have migrated CPUs. */
419 1.2 bouyer KASSERT(ci == curcpu());
420 1.2 bouyer
421 1.2 bouyer /* And we're done: return the TSC-adjusted systime in nanoseconds. */
422 1.2 bouyer return systime_ns;
423 1.2 bouyer }
424 1.2 bouyer
425 1.2 bouyer /*
426 1.2 bouyer * xen_vcputime_raw_systime_ns()
427 1.2 bouyer *
428 1.2 bouyer * Return a snapshot of the current Xen system time to the
429 1.2 bouyer * resolution of the Xen hypervisor tick, in units of nanoseconds.
430 1.2 bouyer */
431 1.2 bouyer static uint64_t
432 1.2 bouyer xen_vcputime_raw_systime_ns(void)
433 1.2 bouyer {
434 1.2 bouyer volatile struct vcpu_time_info *vt;
435 1.2 bouyer struct xen_vcputime_ticket ticket;
436 1.2 bouyer uint64_t raw_systime_ns;
437 1.2 bouyer
438 1.2 bouyer do {
439 1.2 bouyer vt = xen_vcputime_enter(&ticket);
440 1.2 bouyer raw_systime_ns = vt->system_time;
441 1.2 bouyer } while (!xen_vcputime_exit(vt, &ticket));
442 1.2 bouyer
443 1.2 bouyer return raw_systime_ns;
444 1.2 bouyer }
445 1.2 bouyer
446 1.2 bouyer /*
447 1.2 bouyer * struct xen_wallclock_ticket
448 1.2 bouyer *
449 1.2 bouyer * State for a wall clock read section, during which a caller may
450 1.2 bouyer * read from the wall clock fields of HYPERVISOR_shared_info.
451 1.2 bouyer * Caller must enter with xen_wallclock_enter, exit with
452 1.2 bouyer * xen_wallclock_exit, and be prepared to retry if
453 1.2 bouyer * xen_wallclock_exit fails.
454 1.2 bouyer */
455 1.2 bouyer struct xen_wallclock_ticket {
456 1.2 bouyer uint32_t version;
457 1.2 bouyer };
458 1.2 bouyer
459 1.2 bouyer /*
460 1.2 bouyer * xen_wallclock_enter(tp)
461 1.2 bouyer *
462 1.2 bouyer * Enter a wall clock read section and store a ticket in *tp,
463 1.2 bouyer * which the caller must use with xen_wallclock_exit.
464 1.2 bouyer */
465 1.2 bouyer static inline void
466 1.2 bouyer xen_wallclock_enter(struct xen_wallclock_ticket *tp)
467 1.2 bouyer {
468 1.2 bouyer
469 1.2 bouyer while (__predict_false(1 & (tp->version =
470 1.2 bouyer HYPERVISOR_shared_info->wc_version)))
471 1.2 bouyer SPINLOCK_BACKOFF_HOOK;
472 1.2 bouyer
473 1.2 bouyer /*
474 1.2 bouyer * Must read the version from memory before reading the
475 1.2 bouyer * timestamp from memory, as written potentially by another
476 1.2 bouyer * pCPU.
477 1.2 bouyer */
478 1.2 bouyer membar_consumer();
479 1.2 bouyer }
480 1.2 bouyer
481 1.2 bouyer /*
482 1.2 bouyer * xen_wallclock_exit(tp)
483 1.2 bouyer *
484 1.2 bouyer * Exit a wall clock read section with the ticket in *tp from
485 1.2 bouyer * xen_wallclock_enter. Return true on success, false if caller
486 1.2 bouyer * must retry.
487 1.2 bouyer */
488 1.2 bouyer static inline bool
489 1.2 bouyer xen_wallclock_exit(struct xen_wallclock_ticket *tp)
490 1.2 bouyer {
491 1.2 bouyer
492 1.2 bouyer /*
493 1.2 bouyer * Must read the timestamp from memory before re-reading the
494 1.2 bouyer * version from memory, as written potentially by another pCPU.
495 1.2 bouyer */
496 1.2 bouyer membar_consumer();
497 1.2 bouyer
498 1.2 bouyer return tp->version == HYPERVISOR_shared_info->wc_version;
499 1.2 bouyer }
500 1.2 bouyer
501 1.2 bouyer /*
502 1.2 bouyer * xen_global_systime_ns()
503 1.2 bouyer *
504 1.2 bouyer * Return a global monotonic view of the system time in
505 1.2 bouyer * nanoseconds, computed by the per-CPU Xen raw system time plus
506 1.2 bouyer * an rdtsc adjustment, and advance the view of the system time
507 1.2 bouyer * for all other CPUs.
508 1.2 bouyer */
509 1.2 bouyer static uint64_t
510 1.2 bouyer xen_global_systime_ns(void)
511 1.2 bouyer {
512 1.2 bouyer struct cpu_info *ci;
513 1.2 bouyer uint64_t local, global, result;
514 1.2 bouyer
515 1.2 bouyer /*
516 1.2 bouyer * Find the local timecount on this CPU, and make sure it does
517 1.2 bouyer * not precede the latest global timecount witnessed so far by
518 1.2 bouyer * any CPU. If it does, add to the local CPU's skew from the
519 1.2 bouyer * fastest CPU.
520 1.2 bouyer *
521 1.2 bouyer * XXX Can we avoid retrying if the CAS fails?
522 1.2 bouyer */
523 1.2 bouyer int s = splsched(); /* make sure we won't be interrupted */
524 1.2 bouyer ci = curcpu();
525 1.2 bouyer do {
526 1.2 bouyer local = xen_vcputime_systime_ns();
527 1.2 bouyer local += ci->ci_xen_systime_ns_skew;
528 1.2 bouyer global = xen_global_systime_ns_stamp;
529 1.2 bouyer if (__predict_false(local < global + 1)) {
530 1.2 bouyer result = global + 1;
531 1.2 bouyer ci->ci_xen_systime_ns_skew += global + 1 - local;
532 1.2 bouyer } else {
533 1.2 bouyer result = local;
534 1.2 bouyer }
535 1.2 bouyer } while (atomic_cas_64(&xen_global_systime_ns_stamp, global, result)
536 1.2 bouyer != global);
537 1.2 bouyer KASSERT(ci == curcpu());
538 1.2 bouyer splx(s);
539 1.2 bouyer
540 1.2 bouyer return result;
541 1.2 bouyer }
542 1.2 bouyer
543 1.2 bouyer /*
544 1.2 bouyer * xen_get_timecount(tc)
545 1.2 bouyer *
546 1.2 bouyer * Return the low 32 bits of a global monotonic view of the Xen
547 1.2 bouyer * system time.
548 1.2 bouyer */
549 1.2 bouyer static unsigned
550 1.2 bouyer xen_get_timecount(struct timecounter *tc)
551 1.2 bouyer {
552 1.2 bouyer
553 1.2 bouyer KASSERT(tc == &xen_timecounter);
554 1.2 bouyer
555 1.2 bouyer return (unsigned)xen_global_systime_ns();
556 1.2 bouyer }
557 1.2 bouyer
558 1.2 bouyer /*
559 1.2 bouyer * xen_delay(n)
560 1.2 bouyer *
561 1.2 bouyer * Wait approximately n microseconds.
562 1.2 bouyer */
563 1.2 bouyer void
564 1.2 bouyer xen_delay(unsigned n)
565 1.2 bouyer {
566 1.2 bouyer int bound;
567 1.2 bouyer
568 1.2 bouyer /* Bind to the CPU so we don't compare tsc on different CPUs. */
569 1.2 bouyer bound = curlwp_bind();
570 1.2 bouyer
571 1.2 bouyer if (curcpu()->ci_vcpu == NULL) {
572 1.2 bouyer curlwp_bindx(bound);
573 1.2 bouyer return;
574 1.2 bouyer }
575 1.2 bouyer
576 1.2 bouyer /* Short wait (<500us) or long wait? */
577 1.2 bouyer if (n < 500000) {
578 1.2 bouyer /*
579 1.2 bouyer * Xen system time is not precise enough for short
580 1.2 bouyer * delays, so use the tsc instead.
581 1.2 bouyer *
582 1.2 bouyer * We work with the current tsc frequency, and figure
583 1.2 bouyer * that if it changes while we're delaying, we've
584 1.2 bouyer * probably delayed long enough -- up to 500us.
585 1.2 bouyer *
586 1.2 bouyer * We do not use cpu_frequency(ci), which uses a
587 1.2 bouyer * quantity detected at boot time, and which may have
588 1.2 bouyer * changed by now if Xen has migrated this vCPU to
589 1.2 bouyer * another pCPU.
590 1.2 bouyer *
591 1.2 bouyer * XXX How long does it take to migrate pCPUs?
592 1.2 bouyer */
593 1.2 bouyer volatile struct vcpu_time_info *vt;
594 1.2 bouyer struct xen_vcputime_ticket ticket;
595 1.2 bouyer uint64_t tsc_start, last_tsc, tsc;
596 1.2 bouyer uint32_t tsc_to_system_mul;
597 1.2 bouyer int8_t tsc_shift;
598 1.2 bouyer
599 1.2 bouyer /* Get the starting tsc and tsc frequency. */
600 1.2 bouyer do {
601 1.2 bouyer vt = xen_vcputime_enter(&ticket);
602 1.2 bouyer tsc_start = last_tsc = xen_rdtsc();
603 1.2 bouyer tsc_to_system_mul = vt->tsc_to_system_mul;
604 1.2 bouyer tsc_shift = vt->tsc_shift;
605 1.2 bouyer } while (!xen_vcputime_exit(vt, &ticket));
606 1.2 bouyer
607 1.2 bouyer /*
608 1.2 bouyer * Wait until as many tsc ticks as there are in n
609 1.2 bouyer * microseconds have elapsed, or the tsc has gone
610 1.2 bouyer * backwards meaning we've probably migrated pCPUs.
611 1.2 bouyer */
612 1.2 bouyer for (;;) {
613 1.2 bouyer tsc = xen_rdtsc();
614 1.2 bouyer if (__predict_false(tsc < last_tsc))
615 1.2 bouyer break;
616 1.2 bouyer if (xen_tsc_to_ns_delta(tsc - tsc_start,
617 1.2 bouyer tsc_to_system_mul, tsc_shift)/1000 >= n)
618 1.2 bouyer break;
619 1.2 bouyer last_tsc = tsc;
620 1.2 bouyer }
621 1.2 bouyer } else {
622 1.2 bouyer /*
623 1.2 bouyer * Use the Xen system time for >=500us delays. From my
624 1.2 bouyer * testing, it seems to sometimes run backward by about
625 1.2 bouyer * 110us, which is not so bad.
626 1.2 bouyer */
627 1.2 bouyer uint64_t n_ns = 1000*(uint64_t)n;
628 1.2 bouyer uint64_t start_ns;
629 1.2 bouyer
630 1.2 bouyer /* Get the start time. */
631 1.2 bouyer start_ns = xen_vcputime_raw_systime_ns();
632 1.2 bouyer
633 1.2 bouyer /* Wait until the system time has passed the end. */
634 1.2 bouyer do {
635 1.2 bouyer HYPERVISOR_yield();
636 1.2 bouyer } while (xen_vcputime_raw_systime_ns() - start_ns < n_ns);
637 1.2 bouyer }
638 1.2 bouyer
639 1.2 bouyer /* Unbind from the CPU if we weren't already bound. */
640 1.2 bouyer curlwp_bindx(bound);
641 1.2 bouyer }
642 1.2 bouyer
643 1.2 bouyer /*
644 1.2 bouyer * xen_suspendclocks(ci)
645 1.2 bouyer *
646 1.2 bouyer * Stop handling the Xen timer event on the CPU of ci. Caller
647 1.2 bouyer * must be running on and bound to ci's CPU.
648 1.2 bouyer *
649 1.2 bouyer * Actually, caller must have kpreemption disabled, because that's
650 1.2 bouyer * easier to assert at the moment.
651 1.2 bouyer */
652 1.2 bouyer void
653 1.2 bouyer xen_suspendclocks(struct cpu_info *ci)
654 1.2 bouyer {
655 1.2 bouyer int evtch;
656 1.2 bouyer
657 1.2 bouyer KASSERT(ci == curcpu());
658 1.2 bouyer KASSERT(kpreempt_disabled());
659 1.2 bouyer
660 1.2 bouyer evtch = unbind_virq_from_evtch(VIRQ_TIMER);
661 1.2 bouyer KASSERT(evtch != -1);
662 1.2 bouyer
663 1.2 bouyer hypervisor_mask_event(evtch);
664 1.2 bouyer event_remove_handler(evtch,
665 1.2 bouyer __FPTRCAST(int (*)(void *), xen_timer_handler), ci);
666 1.2 bouyer
667 1.2 bouyer aprint_verbose("Xen clock: removed event channel %d\n", evtch);
668 1.2 bouyer
669 1.2 bouyer /* We'd better not have switched CPUs. */
670 1.2 bouyer KASSERT(ci == curcpu());
671 1.2 bouyer }
672 1.2 bouyer
673 1.2 bouyer /*
674 1.2 bouyer * xen_resumeclocks(ci)
675 1.2 bouyer *
676 1.2 bouyer * Start handling the Xen timer event on the CPU of ci. Arm the
677 1.2 bouyer * Xen timer. Caller must be running on and bound to ci's CPU.
678 1.2 bouyer *
679 1.2 bouyer * Actually, caller must have kpreemption disabled, because that's
680 1.2 bouyer * easier to assert at the moment.
681 1.2 bouyer */
682 1.2 bouyer void
683 1.2 bouyer xen_resumeclocks(struct cpu_info *ci)
684 1.2 bouyer {
685 1.2 bouyer char intr_xname[INTRDEVNAMEBUF];
686 1.2 bouyer int evtch;
687 1.2 bouyer int error __diagused;
688 1.2 bouyer
689 1.2 bouyer KASSERT(ci == curcpu());
690 1.2 bouyer KASSERT(kpreempt_disabled());
691 1.2 bouyer
692 1.2 bouyer evtch = bind_virq_to_evtch(VIRQ_TIMER);
693 1.2 bouyer KASSERT(evtch != -1);
694 1.2 bouyer
695 1.2 bouyer snprintf(intr_xname, sizeof(intr_xname), "%s clock",
696 1.2 bouyer device_xname(ci->ci_dev));
697 1.2 bouyer /* XXX sketchy function pointer cast -- fix the API, please */
698 1.2 bouyer if (event_set_handler(evtch,
699 1.2 bouyer __FPTRCAST(int (*)(void *), xen_timer_handler),
700 1.5 bouyer ci, IPL_CLOCK, NULL, intr_xname, true, ci) == NULL)
701 1.2 bouyer panic("failed to establish timer interrupt handler");
702 1.2 bouyer
703 1.2 bouyer
704 1.2 bouyer aprint_verbose("Xen %s: using event channel %d\n", intr_xname, evtch);
705 1.2 bouyer
706 1.2 bouyer /* Disarm the periodic timer on Xen>=3.1 which is allegedly buggy. */
707 1.2 bouyer if (XEN_MAJOR(xen_version) > 3 || XEN_MINOR(xen_version) > 0) {
708 1.2 bouyer error = HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
709 1.2 bouyer ci->ci_vcpuid, NULL);
710 1.2 bouyer KASSERT(error == 0);
711 1.2 bouyer }
712 1.2 bouyer
713 1.2 bouyer /* Pretend the last hardclock happened right now. */
714 1.2 bouyer ci->ci_xen_hardclock_systime_ns = xen_vcputime_systime_ns();
715 1.2 bouyer
716 1.10 bouyer hypervisor_unmask_event(evtch);
717 1.10 bouyer
718 1.2 bouyer /* Arm the one-shot timer. */
719 1.2 bouyer error = HYPERVISOR_set_timer_op(ci->ci_xen_hardclock_systime_ns +
720 1.2 bouyer NS_PER_TICK);
721 1.2 bouyer KASSERT(error == 0);
722 1.2 bouyer
723 1.2 bouyer /* We'd better not have switched CPUs. */
724 1.2 bouyer KASSERT(ci == curcpu());
725 1.2 bouyer }
726 1.2 bouyer
727 1.2 bouyer /*
728 1.2 bouyer * xen_timer_handler(cookie, frame)
729 1.2 bouyer *
730 1.2 bouyer * Periodic Xen timer event handler for NetBSD hardclock. Calls
731 1.2 bouyer * to this may get delayed, so we run hardclock as many times as
732 1.2 bouyer * we need to in order to cover the Xen system time that elapsed.
733 1.2 bouyer * After that, re-arm the timer to run again at the next tick.
734 1.2 bouyer * The cookie is the pointer to struct cpu_info.
735 1.2 bouyer */
736 1.2 bouyer static int
737 1.2 bouyer xen_timer_handler(void *cookie, struct clockframe *frame)
738 1.2 bouyer {
739 1.2 bouyer struct cpu_info *ci = curcpu();
740 1.2 bouyer uint64_t last, now, delta, next;
741 1.2 bouyer int error;
742 1.2 bouyer
743 1.2 bouyer KASSERT(cpu_intr_p());
744 1.2 bouyer KASSERT(cookie == ci);
745 1.2 bouyer
746 1.7 riastrad #if defined(XENPV)
747 1.2 bouyer frame = NULL; /* We use values cached in curcpu() */
748 1.2 bouyer #endif
749 1.2 bouyer again:
750 1.2 bouyer /*
751 1.2 bouyer * Find how many nanoseconds of Xen system time has elapsed
752 1.2 bouyer * since the last hardclock tick.
753 1.2 bouyer */
754 1.2 bouyer last = ci->ci_xen_hardclock_systime_ns;
755 1.2 bouyer now = xen_vcputime_systime_ns();
756 1.2 bouyer if (now < last) {
757 1.9 riastrad SDT_PROBE2(sdt, xen, hardclock, systime__backward,
758 1.9 riastrad last, now);
759 1.9 riastrad #if XEN_CLOCK_DEBUG
760 1.9 riastrad device_printf(ci->ci_dev, "xen systime ran backwards"
761 1.9 riastrad " in hardclock %"PRIu64"ns\n",
762 1.2 bouyer last - now);
763 1.2 bouyer #endif
764 1.2 bouyer ci->ci_xen_systime_backwards_hardclock_evcnt.ev_count++;
765 1.2 bouyer now = last;
766 1.2 bouyer }
767 1.2 bouyer delta = now - last;
768 1.2 bouyer
769 1.2 bouyer /*
770 1.2 bouyer * Play hardclock catchup: run the hardclock timer as many
771 1.2 bouyer * times as appears necessary based on how much time has
772 1.2 bouyer * passed.
773 1.2 bouyer */
774 1.2 bouyer while (delta >= NS_PER_TICK) {
775 1.2 bouyer ci->ci_xen_hardclock_systime_ns += NS_PER_TICK;
776 1.2 bouyer delta -= NS_PER_TICK;
777 1.2 bouyer hardclock(frame);
778 1.9 riastrad if (__predict_false(delta >= NS_PER_TICK)) {
779 1.9 riastrad SDT_PROBE3(sdt, xen, hardclock, missed,
780 1.9 riastrad last, now, delta);
781 1.2 bouyer ci->ci_xen_missed_hardclock_evcnt.ev_count++;
782 1.9 riastrad }
783 1.2 bouyer }
784 1.2 bouyer
785 1.2 bouyer /*
786 1.2 bouyer * Re-arm the timer. If it fails, it's probably because the
787 1.2 bouyer * time is in the past, so update our idea of what the Xen
788 1.2 bouyer * system time is and try again.
789 1.2 bouyer */
790 1.2 bouyer next = ci->ci_xen_hardclock_systime_ns + NS_PER_TICK;
791 1.2 bouyer error = HYPERVISOR_set_timer_op(next);
792 1.2 bouyer if (error)
793 1.2 bouyer goto again;
794 1.2 bouyer
795 1.2 bouyer /* Success! */
796 1.2 bouyer return 0;
797 1.2 bouyer }
798 1.2 bouyer
799 1.2 bouyer /*
800 1.6 ad * xen_initclocks()
801 1.2 bouyer *
802 1.2 bouyer * Initialize the Xen clocks on the current CPU.
803 1.2 bouyer */
804 1.2 bouyer void
805 1.6 ad xen_initclocks(void)
806 1.2 bouyer {
807 1.2 bouyer struct cpu_info *ci = curcpu();
808 1.2 bouyer
809 1.2 bouyer /* If this is the primary CPU, do global initialization first. */
810 1.2 bouyer if (ci == &cpu_info_primary) {
811 1.2 bouyer /* Initialize the systemwide Xen timecounter. */
812 1.2 bouyer tc_init(&xen_timecounter);
813 1.2 bouyer }
814 1.2 bouyer
815 1.2 bouyer /* Attach the event counters. */
816 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_cpu_tsc_backwards_evcnt,
817 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
818 1.2 bouyer "cpu tsc ran backwards");
819 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_tsc_delta_negative_evcnt,
820 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
821 1.2 bouyer "tsc delta went negative");
822 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_raw_systime_wraparound_evcnt,
823 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
824 1.2 bouyer "raw systime wrapped around");
825 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_raw_systime_backwards_evcnt,
826 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
827 1.2 bouyer "raw systime went backwards");
828 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_systime_backwards_hardclock_evcnt,
829 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
830 1.2 bouyer "systime went backwards in hardclock");
831 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_missed_hardclock_evcnt,
832 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
833 1.2 bouyer "missed hardclock");
834 1.2 bouyer
835 1.2 bouyer /* Fire up the clocks. */
836 1.2 bouyer xen_resumeclocks(ci);
837 1.2 bouyer
838 1.2 bouyer #ifdef DOM0OPS
839 1.2 bouyer /*
840 1.2 bouyer * If this is a privileged dom0, start pushing the wall
841 1.2 bouyer * clock time back to the Xen hypervisor.
842 1.2 bouyer */
843 1.6 ad if (ci == &cpu_info_primary && xendomain_is_privileged())
844 1.2 bouyer xen_timepush_init();
845 1.2 bouyer #endif
846 1.2 bouyer }
847 1.2 bouyer
848 1.2 bouyer #ifdef DOM0OPS
849 1.2 bouyer
850 1.2 bouyer /*
851 1.2 bouyer * xen_timepush_init()
852 1.2 bouyer *
853 1.2 bouyer * Initialize callout to periodically set Xen hypervisor's wall
854 1.2 bouyer * clock time.
855 1.2 bouyer */
856 1.2 bouyer static void
857 1.2 bouyer xen_timepush_init(void)
858 1.2 bouyer {
859 1.2 bouyer struct sysctllog *log = NULL;
860 1.2 bouyer const struct sysctlnode *node = NULL;
861 1.2 bouyer int error;
862 1.2 bouyer
863 1.2 bouyer /* Start periodically updating the hypervisor's wall clock time. */
864 1.2 bouyer callout_init(&xen_timepush.ch, 0);
865 1.2 bouyer callout_setfunc(&xen_timepush.ch, xen_timepush_intr, NULL);
866 1.2 bouyer
867 1.2 bouyer /* Pick a default frequency for timepush. */
868 1.2 bouyer xen_timepush.ticks = 53*hz + 3; /* avoid exact # of min/sec */
869 1.2 bouyer
870 1.2 bouyer /* Create machdep.xen node. */
871 1.2 bouyer /* XXX Creation of the `machdep.xen' node should be elsewhere. */
872 1.2 bouyer error = sysctl_createv(&log, 0, NULL, &node, 0,
873 1.2 bouyer CTLTYPE_NODE, "xen",
874 1.2 bouyer SYSCTL_DESCR("Xen top level node"),
875 1.2 bouyer NULL, 0, NULL, 0,
876 1.2 bouyer CTL_MACHDEP, CTL_CREATE, CTL_EOL);
877 1.2 bouyer if (error)
878 1.2 bouyer goto fail;
879 1.2 bouyer KASSERT(node != NULL);
880 1.2 bouyer
881 1.2 bouyer /* Create int machdep.xen.timepush_ticks knob. */
882 1.2 bouyer error = sysctl_createv(&log, 0, NULL, NULL, CTLFLAG_READWRITE,
883 1.2 bouyer CTLTYPE_INT, "timepush_ticks",
884 1.2 bouyer SYSCTL_DESCR("How often to update the hypervisor's time-of-day;"
885 1.2 bouyer " 0 to disable"),
886 1.2 bouyer sysctl_xen_timepush, 0, &xen_timepush.ticks, 0,
887 1.2 bouyer CTL_CREATE, CTL_EOL);
888 1.2 bouyer if (error)
889 1.2 bouyer goto fail;
890 1.2 bouyer
891 1.2 bouyer /* Start the timepush callout. */
892 1.2 bouyer callout_schedule(&xen_timepush.ch, xen_timepush.ticks);
893 1.2 bouyer
894 1.2 bouyer /* Success! */
895 1.2 bouyer return;
896 1.2 bouyer
897 1.2 bouyer fail: sysctl_teardown(&log);
898 1.2 bouyer }
899 1.2 bouyer
900 1.2 bouyer /*
901 1.2 bouyer * xen_timepush_intr(cookie)
902 1.2 bouyer *
903 1.2 bouyer * Callout interrupt handler to push NetBSD's idea of the wall
904 1.2 bouyer * clock time, usually synchronized with NTP, back to the Xen
905 1.2 bouyer * hypervisor.
906 1.2 bouyer */
907 1.2 bouyer static void
908 1.2 bouyer xen_timepush_intr(void *cookie)
909 1.2 bouyer {
910 1.2 bouyer
911 1.2 bouyer resettodr();
912 1.2 bouyer if (xen_timepush.ticks)
913 1.2 bouyer callout_schedule(&xen_timepush.ch, xen_timepush.ticks);
914 1.2 bouyer }
915 1.2 bouyer
916 1.2 bouyer /*
917 1.2 bouyer * sysctl_xen_timepush(...)
918 1.2 bouyer *
919 1.2 bouyer * Sysctl handler to set machdep.xen.timepush_ticks.
920 1.2 bouyer */
921 1.2 bouyer static int
922 1.2 bouyer sysctl_xen_timepush(SYSCTLFN_ARGS)
923 1.2 bouyer {
924 1.2 bouyer struct sysctlnode node;
925 1.2 bouyer int ticks;
926 1.2 bouyer int error;
927 1.2 bouyer
928 1.2 bouyer ticks = xen_timepush.ticks;
929 1.2 bouyer node = *rnode;
930 1.2 bouyer node.sysctl_data = &ticks;
931 1.2 bouyer error = sysctl_lookup(SYSCTLFN_CALL(&node));
932 1.2 bouyer if (error || newp == NULL)
933 1.2 bouyer return error;
934 1.2 bouyer
935 1.2 bouyer if (ticks < 0)
936 1.2 bouyer return EINVAL;
937 1.2 bouyer
938 1.2 bouyer if (ticks != xen_timepush.ticks) {
939 1.2 bouyer xen_timepush.ticks = ticks;
940 1.2 bouyer
941 1.2 bouyer if (ticks == 0)
942 1.2 bouyer callout_stop(&xen_timepush.ch);
943 1.2 bouyer else
944 1.2 bouyer callout_schedule(&xen_timepush.ch, ticks);
945 1.2 bouyer }
946 1.2 bouyer
947 1.2 bouyer return 0;
948 1.2 bouyer }
949 1.2 bouyer
950 1.2 bouyer #endif /* DOM0OPS */
951 1.2 bouyer
952 1.2 bouyer static int xen_rtc_get(struct todr_chip_handle *, struct timeval *);
953 1.2 bouyer static int xen_rtc_set(struct todr_chip_handle *, struct timeval *);
954 1.2 bouyer static void xen_wallclock_time(struct timespec *);
955 1.2 bouyer /*
956 1.2 bouyer * xen time of day register:
957 1.2 bouyer *
958 1.2 bouyer * Xen wall clock time, plus a Xen vCPU system time adjustment.
959 1.2 bouyer */
960 1.2 bouyer static struct todr_chip_handle xen_todr_chip = {
961 1.2 bouyer .todr_gettime = xen_rtc_get,
962 1.2 bouyer .todr_settime = xen_rtc_set,
963 1.2 bouyer };
964 1.2 bouyer
965 1.2 bouyer /*
966 1.4 bouyer * xen_startrtclock()
967 1.2 bouyer *
968 1.2 bouyer * Initialize the real-time clock from x86 machdep autoconf.
969 1.2 bouyer */
970 1.2 bouyer void
971 1.4 bouyer xen_startrtclock(void)
972 1.2 bouyer {
973 1.2 bouyer
974 1.2 bouyer todr_attach(&xen_todr_chip);
975 1.2 bouyer }
976 1.2 bouyer
977 1.2 bouyer /*
978 1.2 bouyer * xen_rtc_get(todr, tv)
979 1.2 bouyer *
980 1.2 bouyer * Get the current real-time clock from the Xen wall clock time
981 1.2 bouyer * and vCPU system time adjustment.
982 1.2 bouyer */
983 1.2 bouyer static int
984 1.2 bouyer xen_rtc_get(struct todr_chip_handle *todr, struct timeval *tvp)
985 1.2 bouyer {
986 1.2 bouyer struct timespec ts;
987 1.2 bouyer
988 1.2 bouyer xen_wallclock_time(&ts);
989 1.2 bouyer TIMESPEC_TO_TIMEVAL(tvp, &ts);
990 1.2 bouyer
991 1.2 bouyer return 0;
992 1.2 bouyer }
993 1.2 bouyer
994 1.2 bouyer /*
995 1.2 bouyer * xen_rtc_set(todr, tv)
996 1.2 bouyer *
997 1.2 bouyer * Set the Xen wall clock time, if we can.
998 1.2 bouyer */
999 1.2 bouyer static int
1000 1.2 bouyer xen_rtc_set(struct todr_chip_handle *todr, struct timeval *tvp)
1001 1.2 bouyer {
1002 1.2 bouyer #ifdef DOM0OPS
1003 1.2 bouyer struct clock_ymdhms dt;
1004 1.2 bouyer xen_platform_op_t op;
1005 1.2 bouyer uint64_t systime_ns;
1006 1.2 bouyer
1007 1.2 bouyer if (xendomain_is_privileged()) {
1008 1.2 bouyer /* Convert to ymdhms and set the x86 ISA RTC. */
1009 1.2 bouyer clock_secs_to_ymdhms(tvp->tv_sec, &dt);
1010 1.2 bouyer rtc_set_ymdhms(NULL, &dt);
1011 1.2 bouyer
1012 1.2 bouyer /* Get the global system time so we can preserve it. */
1013 1.2 bouyer systime_ns = xen_global_systime_ns();
1014 1.2 bouyer
1015 1.2 bouyer /* Set the hypervisor wall clock time. */
1016 1.2 bouyer op.cmd = XENPF_settime;
1017 1.2 bouyer op.u.settime.secs = tvp->tv_sec;
1018 1.2 bouyer op.u.settime.nsecs = tvp->tv_usec * 1000;
1019 1.2 bouyer op.u.settime.system_time = systime_ns;
1020 1.2 bouyer return HYPERVISOR_platform_op(&op);
1021 1.2 bouyer }
1022 1.2 bouyer #endif
1023 1.2 bouyer
1024 1.2 bouyer /* XXX Should this fail if not on privileged dom0? */
1025 1.2 bouyer return 0;
1026 1.2 bouyer }
1027 1.2 bouyer
1028 1.2 bouyer /*
1029 1.2 bouyer * xen_wallclock_time(tsp)
1030 1.2 bouyer *
1031 1.2 bouyer * Return a snapshot of the current low-resolution wall clock
1032 1.2 bouyer * time, as reported by the hypervisor, in tsp.
1033 1.2 bouyer */
1034 1.2 bouyer static void
1035 1.2 bouyer xen_wallclock_time(struct timespec *tsp)
1036 1.2 bouyer {
1037 1.2 bouyer struct xen_wallclock_ticket ticket;
1038 1.2 bouyer uint64_t systime_ns;
1039 1.2 bouyer
1040 1.2 bouyer int s = splsched(); /* make sure we won't be interrupted */
1041 1.2 bouyer /* Read the last wall clock sample from the hypervisor. */
1042 1.2 bouyer do {
1043 1.2 bouyer xen_wallclock_enter(&ticket);
1044 1.2 bouyer tsp->tv_sec = HYPERVISOR_shared_info->wc_sec;
1045 1.2 bouyer tsp->tv_nsec = HYPERVISOR_shared_info->wc_nsec;
1046 1.2 bouyer } while (!xen_wallclock_exit(&ticket));
1047 1.2 bouyer
1048 1.2 bouyer /* Get the global system time. */
1049 1.2 bouyer systime_ns = xen_global_systime_ns();
1050 1.2 bouyer splx(s);
1051 1.2 bouyer
1052 1.2 bouyer /* Add the system time to the wall clock time. */
1053 1.2 bouyer systime_ns += tsp->tv_nsec;
1054 1.2 bouyer tsp->tv_sec += systime_ns / 1000000000ull;
1055 1.2 bouyer tsp->tv_nsec = systime_ns % 1000000000ull;
1056 1.2 bouyer }
1057 1.2 bouyer
1058 1.4 bouyer #ifdef XENPV
1059 1.4 bouyer /*
1060 1.4 bouyer * setstatclockrate(rate)
1061 1.4 bouyer *
1062 1.4 bouyer * Set the statclock to run at rate, in units of ticks per second.
1063 1.4 bouyer *
1064 1.4 bouyer * Currently Xen does not have a separate statclock, so this is a
1065 1.4 bouyer * noop; instad the statclock runs in hardclock.
1066 1.4 bouyer */
1067 1.4 bouyer void
1068 1.4 bouyer setstatclockrate(int rate)
1069 1.4 bouyer {
1070 1.4 bouyer }
1071 1.2 bouyer #endif /* XENPV */
1072