Home | History | Annotate | Line # | Download | only in xen
xen_clock.c revision 1.13
      1  1.13  riastrad /*	$NetBSD: xen_clock.c,v 1.13 2023/07/28 10:38:44 riastradh Exp $	*/
      2   1.2    bouyer 
      3   1.2    bouyer /*-
      4   1.2    bouyer  * Copyright (c) 2017, 2018 The NetBSD Foundation, Inc.
      5   1.2    bouyer  * All rights reserved.
      6   1.2    bouyer  *
      7   1.2    bouyer  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2    bouyer  * by Taylor R. Campbell.
      9   1.2    bouyer  *
     10   1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     11   1.2    bouyer  * modification, are permitted provided that the following conditions
     12   1.2    bouyer  * are met:
     13   1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     14   1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     15   1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     17   1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     18   1.2    bouyer  *
     19   1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2    bouyer  */
     31   1.2    bouyer 
     32   1.2    bouyer #include "opt_xen.h"
     33   1.2    bouyer 
     34   1.2    bouyer #ifndef XEN_CLOCK_DEBUG
     35   1.2    bouyer #define	XEN_CLOCK_DEBUG	0
     36   1.2    bouyer #endif
     37   1.2    bouyer 
     38   1.2    bouyer #include <sys/cdefs.h>
     39  1.13  riastrad __KERNEL_RCSID(0, "$NetBSD: xen_clock.c,v 1.13 2023/07/28 10:38:44 riastradh Exp $");
     40   1.2    bouyer 
     41   1.2    bouyer #include <sys/param.h>
     42   1.2    bouyer #include <sys/types.h>
     43   1.2    bouyer #include <sys/atomic.h>
     44   1.2    bouyer #include <sys/callout.h>
     45   1.2    bouyer #include <sys/cpu.h>
     46   1.2    bouyer #include <sys/device.h>
     47   1.2    bouyer #include <sys/evcnt.h>
     48   1.2    bouyer #include <sys/intr.h>
     49   1.2    bouyer #include <sys/kernel.h>
     50   1.2    bouyer #include <sys/lwp.h>
     51   1.2    bouyer #include <sys/proc.h>
     52   1.9  riastrad #include <sys/sdt.h>
     53   1.2    bouyer #include <sys/sysctl.h>
     54   1.2    bouyer #include <sys/systm.h>
     55   1.2    bouyer #include <sys/time.h>
     56   1.2    bouyer #include <sys/timetc.h>
     57   1.2    bouyer 
     58   1.2    bouyer #include <dev/clock_subr.h>
     59   1.2    bouyer 
     60   1.2    bouyer #include <machine/cpu.h>
     61   1.2    bouyer #include <machine/cpu_counter.h>
     62   1.2    bouyer #include <machine/lock.h>
     63   1.2    bouyer 
     64   1.2    bouyer #include <xen/evtchn.h>
     65   1.2    bouyer #include <xen/hypervisor.h>
     66   1.2    bouyer #include <xen/include/public/vcpu.h>
     67   1.2    bouyer #include <xen/xen.h>
     68   1.2    bouyer 
     69   1.2    bouyer #include <x86/rtc.h>
     70   1.2    bouyer 
     71   1.2    bouyer #define NS_PER_TICK ((uint64_t)1000000000ULL/hz)
     72   1.2    bouyer 
     73   1.2    bouyer static uint64_t	xen_vcputime_systime_ns(void);
     74   1.2    bouyer static uint64_t	xen_vcputime_raw_systime_ns(void);
     75   1.2    bouyer static uint64_t	xen_global_systime_ns(void);
     76   1.2    bouyer static unsigned	xen_get_timecount(struct timecounter *);
     77   1.2    bouyer static int	xen_timer_handler(void *, struct clockframe *);
     78   1.2    bouyer 
     79   1.2    bouyer /*
     80   1.9  riastrad  * dtrace probes
     81   1.9  riastrad  */
     82   1.9  riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, tsc__backward,
     83   1.9  riastrad     "uint64_t"/*raw_systime_ns*/,
     84   1.9  riastrad     "uint64_t"/*tsc_timestamp*/,
     85   1.9  riastrad     "uint64_t"/*tsc_to_system_mul*/,
     86   1.9  riastrad     "int"/*tsc_shift*/,
     87   1.9  riastrad     "uint64_t"/*delta_ns*/,
     88   1.9  riastrad     "uint64_t"/*tsc*/,
     89   1.9  riastrad     "uint64_t"/*systime_ns*/);
     90   1.9  riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, tsc__delta__negative,
     91   1.9  riastrad     "uint64_t"/*raw_systime_ns*/,
     92   1.9  riastrad     "uint64_t"/*tsc_timestamp*/,
     93   1.9  riastrad     "uint64_t"/*tsc_to_system_mul*/,
     94   1.9  riastrad     "int"/*tsc_shift*/,
     95   1.9  riastrad     "uint64_t"/*delta_ns*/,
     96   1.9  riastrad     "uint64_t"/*tsc*/,
     97   1.9  riastrad     "uint64_t"/*systime_ns*/);
     98   1.9  riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, systime__wraparound,
     99   1.9  riastrad     "uint64_t"/*raw_systime_ns*/,
    100   1.9  riastrad     "uint64_t"/*tsc_timestamp*/,
    101   1.9  riastrad     "uint64_t"/*tsc_to_system_mul*/,
    102   1.9  riastrad     "int"/*tsc_shift*/,
    103   1.9  riastrad     "uint64_t"/*delta_ns*/,
    104   1.9  riastrad     "uint64_t"/*tsc*/,
    105   1.9  riastrad     "uint64_t"/*systime_ns*/);
    106   1.9  riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, systime__backward,
    107   1.9  riastrad     "uint64_t"/*raw_systime_ns*/,
    108   1.9  riastrad     "uint64_t"/*tsc_timestamp*/,
    109   1.9  riastrad     "uint64_t"/*tsc_to_system_mul*/,
    110   1.9  riastrad     "int"/*tsc_shift*/,
    111   1.9  riastrad     "uint64_t"/*delta_ns*/,
    112   1.9  riastrad     "uint64_t"/*tsc*/,
    113   1.9  riastrad     "uint64_t"/*systime_ns*/);
    114   1.9  riastrad 
    115  1.11  riastrad SDT_PROBE_DEFINE3(sdt, xen, timecounter, backward,
    116  1.11  riastrad     "uint64_t"/*local*/,
    117  1.11  riastrad     "uint64_t"/*skew*/,
    118  1.11  riastrad     "uint64_t"/*global*/);
    119  1.11  riastrad 
    120   1.9  riastrad SDT_PROBE_DEFINE2(sdt, xen, hardclock, systime__backward,
    121   1.9  riastrad     "uint64_t"/*last_systime_ns*/,
    122   1.9  riastrad     "uint64_t"/*this_systime_ns*/);
    123   1.9  riastrad SDT_PROBE_DEFINE3(sdt, xen, hardclock, missed,
    124   1.9  riastrad     "uint64_t"/*last_systime_ns*/,
    125   1.9  riastrad     "uint64_t"/*this_systime_ns*/,
    126   1.9  riastrad     "uint64_t"/*remaining_ns*/);
    127   1.9  riastrad 
    128   1.9  riastrad /*
    129   1.2    bouyer  * xen timecounter:
    130   1.2    bouyer  *
    131   1.2    bouyer  *	Xen vCPU system time, plus an adjustment with rdtsc.
    132   1.2    bouyer  */
    133   1.2    bouyer static struct timecounter xen_timecounter = {
    134   1.2    bouyer 	.tc_get_timecount = xen_get_timecount,
    135   1.2    bouyer 	.tc_poll_pps = NULL,
    136   1.2    bouyer 	.tc_counter_mask = ~0U,
    137   1.2    bouyer 	.tc_frequency = 1000000000ULL,	/* 1 GHz, i.e. units of nanoseconds */
    138   1.2    bouyer 	.tc_name = "xen_system_time",
    139   1.2    bouyer 	.tc_quality = 10000,
    140   1.2    bouyer };
    141   1.2    bouyer 
    142   1.2    bouyer /*
    143   1.2    bouyer  * xen_global_systime_ns_stamp
    144   1.2    bouyer  *
    145   1.2    bouyer  *	The latest Xen vCPU system time that has been observed on any
    146   1.2    bouyer  *	CPU, for a global monotonic view of the Xen system time clock.
    147   1.2    bouyer  */
    148   1.2    bouyer static volatile uint64_t xen_global_systime_ns_stamp __cacheline_aligned;
    149   1.2    bouyer 
    150   1.2    bouyer #ifdef DOM0OPS
    151   1.2    bouyer /*
    152   1.2    bouyer  * xen timepush state:
    153   1.2    bouyer  *
    154   1.2    bouyer  *	Callout to periodically, after a sysctl-configurable number of
    155   1.2    bouyer  *	NetBSD ticks, set the Xen hypervisor's wall clock time.
    156   1.2    bouyer  */
    157   1.2    bouyer static struct {
    158   1.2    bouyer 	struct callout	ch;
    159   1.2    bouyer 	int		ticks;
    160   1.2    bouyer } xen_timepush;
    161   1.2    bouyer 
    162   1.2    bouyer static void	xen_timepush_init(void);
    163   1.2    bouyer static void	xen_timepush_intr(void *);
    164   1.2    bouyer static int	sysctl_xen_timepush(SYSCTLFN_ARGS);
    165   1.2    bouyer #endif
    166   1.2    bouyer 
    167   1.2    bouyer /*
    168   1.2    bouyer  * xen_rdtsc()
    169   1.2    bouyer  *
    170   1.2    bouyer  *	Read the local pCPU's tsc.
    171   1.2    bouyer  */
    172   1.2    bouyer static inline uint64_t
    173   1.2    bouyer xen_rdtsc(void)
    174   1.2    bouyer {
    175   1.2    bouyer 	uint32_t lo, hi;
    176   1.2    bouyer 
    177   1.2    bouyer 	asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
    178   1.2    bouyer 
    179   1.2    bouyer 	return ((uint64_t)hi << 32) | lo;
    180   1.2    bouyer }
    181   1.2    bouyer 
    182   1.2    bouyer /*
    183   1.2    bouyer  * struct xen_vcputime_ticket
    184   1.2    bouyer  *
    185   1.2    bouyer  *	State for a vCPU read section, during which a caller may read
    186   1.2    bouyer  *	from fields of a struct vcpu_time_info and call xen_rdtsc.
    187   1.2    bouyer  *	Caller must enter with xen_vcputime_enter, exit with
    188   1.2    bouyer  *	xen_vcputime_exit, and be prepared to retry if
    189   1.2    bouyer  *	xen_vcputime_exit fails.
    190   1.2    bouyer  */
    191   1.2    bouyer struct xen_vcputime_ticket {
    192   1.2    bouyer 	uint64_t	version;
    193   1.2    bouyer };
    194   1.2    bouyer 
    195   1.2    bouyer /*
    196   1.2    bouyer  * xen_vcputime_enter(tp)
    197   1.2    bouyer  *
    198   1.2    bouyer  *	Enter a vCPU time read section and store a ticket in *tp, which
    199   1.2    bouyer  *	the caller must use with xen_vcputime_exit.  Return a pointer
    200   1.2    bouyer  *	to the current CPU's vcpu_time_info structure.  Caller must
    201   1.2    bouyer  *	already be bound to the CPU.
    202   1.2    bouyer  */
    203   1.2    bouyer static inline volatile struct vcpu_time_info *
    204   1.2    bouyer xen_vcputime_enter(struct xen_vcputime_ticket *tp)
    205   1.2    bouyer {
    206   1.2    bouyer 	volatile struct vcpu_time_info *vt = &curcpu()->ci_vcpu->time;
    207   1.2    bouyer 
    208   1.2    bouyer 	while (__predict_false(1 & (tp->version = vt->version)))
    209   1.2    bouyer 		SPINLOCK_BACKOFF_HOOK;
    210   1.2    bouyer 
    211   1.2    bouyer 	/*
    212   1.2    bouyer 	 * Must read the version before reading the tsc on the local
    213   1.2    bouyer 	 * pCPU.  We are racing only with interruption by the
    214   1.2    bouyer 	 * hypervisor, so no need for a stronger memory barrier.
    215   1.2    bouyer 	 */
    216   1.2    bouyer 	__insn_barrier();
    217   1.2    bouyer 
    218   1.2    bouyer 	return vt;
    219   1.2    bouyer }
    220   1.2    bouyer 
    221   1.2    bouyer /*
    222   1.2    bouyer  * xen_vcputime_exit(vt, tp)
    223   1.2    bouyer  *
    224   1.2    bouyer  *	Exit a vCPU time read section with the ticket in *tp from
    225   1.2    bouyer  *	xen_vcputime_enter.  Return true on success, false if caller
    226   1.2    bouyer  *	must retry.
    227   1.2    bouyer  */
    228   1.2    bouyer static inline bool
    229   1.2    bouyer xen_vcputime_exit(volatile struct vcpu_time_info *vt,
    230   1.2    bouyer     struct xen_vcputime_ticket *tp)
    231   1.2    bouyer {
    232   1.2    bouyer 
    233   1.2    bouyer 	KASSERT(vt == &curcpu()->ci_vcpu->time);
    234   1.2    bouyer 
    235   1.2    bouyer 	/*
    236   1.2    bouyer 	 * Must read the tsc before re-reading the version on the local
    237   1.2    bouyer 	 * pCPU.  We are racing only with interruption by the
    238   1.2    bouyer 	 * hypervisor, so no need for a stronger memory barrier.
    239   1.2    bouyer 	 */
    240   1.2    bouyer 	__insn_barrier();
    241   1.2    bouyer 
    242   1.2    bouyer 	return tp->version == vt->version;
    243   1.2    bouyer }
    244   1.2    bouyer 
    245   1.2    bouyer /*
    246   1.2    bouyer  * xen_tsc_to_ns_delta(delta_tsc, mul_frac, shift)
    247   1.2    bouyer  *
    248   1.2    bouyer  *	Convert a difference in tsc units to a difference in
    249   1.2    bouyer  *	nanoseconds given a multiplier and shift for the unit
    250   1.2    bouyer  *	conversion.
    251   1.2    bouyer  */
    252   1.2    bouyer static inline uint64_t
    253   1.2    bouyer xen_tsc_to_ns_delta(uint64_t delta_tsc, uint32_t tsc_to_system_mul,
    254   1.2    bouyer     int8_t tsc_shift)
    255   1.2    bouyer {
    256   1.2    bouyer 	uint32_t delta_tsc_hi, delta_tsc_lo;
    257   1.2    bouyer 
    258   1.2    bouyer 	if (tsc_shift < 0)
    259   1.2    bouyer 		delta_tsc >>= -tsc_shift;
    260   1.2    bouyer 	else
    261   1.2    bouyer 		delta_tsc <<= tsc_shift;
    262   1.2    bouyer 
    263   1.2    bouyer 	delta_tsc_hi = delta_tsc >> 32;
    264   1.2    bouyer 	delta_tsc_lo = delta_tsc & 0xffffffffUL;
    265   1.2    bouyer 
    266   1.2    bouyer 	/* d*m/2^32 = (2^32 d_h + d_l)*m/2^32 = d_h*m + (d_l*m)/2^32 */
    267   1.2    bouyer 	return ((uint64_t)delta_tsc_hi * tsc_to_system_mul) +
    268   1.2    bouyer 	    (((uint64_t)delta_tsc_lo * tsc_to_system_mul) >> 32);
    269   1.2    bouyer }
    270   1.2    bouyer 
    271   1.2    bouyer /*
    272   1.2    bouyer  * xen_vcputime_systime_ns()
    273   1.2    bouyer  *
    274   1.2    bouyer  *	Return a snapshot of the Xen system time plus an adjustment
    275   1.2    bouyer  *	from the tsc, in units of nanoseconds.  Caller must be bound to
    276   1.2    bouyer  *	the current CPU.
    277   1.2    bouyer  */
    278   1.2    bouyer static uint64_t
    279   1.2    bouyer xen_vcputime_systime_ns(void)
    280   1.2    bouyer {
    281   1.2    bouyer 	volatile struct vcpu_time_info *vt;
    282   1.2    bouyer 	struct cpu_info *ci = curcpu();
    283   1.2    bouyer 	struct xen_vcputime_ticket ticket;
    284   1.2    bouyer 	uint64_t raw_systime_ns, tsc_timestamp, tsc, delta_tsc, delta_ns;
    285   1.2    bouyer 	uint32_t tsc_to_system_mul;
    286   1.2    bouyer 	int8_t tsc_shift;
    287   1.2    bouyer 	uint64_t systime_ns;
    288   1.2    bouyer 
    289   1.2    bouyer 	/* We'd better be bound to the CPU in _some_ way.  */
    290   1.2    bouyer 	KASSERT(cpu_intr_p() || cpu_softintr_p() || kpreempt_disabled() ||
    291   1.2    bouyer 	    (curlwp->l_flag & LP_BOUND));
    292   1.2    bouyer 
    293   1.2    bouyer 	/*
    294   1.2    bouyer 	 * Repeatedly try to read the system time, corresponding tsc
    295   1.2    bouyer 	 * timestamp, and tsc frequency until we get a consistent view.
    296   1.2    bouyer 	 */
    297   1.2    bouyer 	do {
    298   1.2    bouyer 		vt = xen_vcputime_enter(&ticket);
    299   1.2    bouyer 
    300   1.2    bouyer 		/* Grab Xen's snapshot of raw system time and tsc.  */
    301   1.2    bouyer 		raw_systime_ns = vt->system_time;
    302   1.2    bouyer 		tsc_timestamp = vt->tsc_timestamp;
    303   1.2    bouyer 
    304   1.2    bouyer 		/* Get Xen's current idea of how fast the tsc is counting.  */
    305   1.2    bouyer 		tsc_to_system_mul = vt->tsc_to_system_mul;
    306   1.2    bouyer 		tsc_shift = vt->tsc_shift;
    307   1.2    bouyer 
    308   1.2    bouyer 		/* Read the CPU's tsc.  */
    309   1.2    bouyer 		tsc = xen_rdtsc();
    310   1.2    bouyer 	} while (!xen_vcputime_exit(vt, &ticket));
    311   1.2    bouyer 
    312   1.2    bouyer 	/*
    313   1.2    bouyer 	 * Out of paranoia, check whether the tsc has gone backwards
    314   1.2    bouyer 	 * since Xen's timestamp.
    315   1.2    bouyer 	 *
    316   1.2    bouyer 	 * This shouldn't happen because the Xen hypervisor is supposed
    317   1.2    bouyer 	 * to have read the tsc _before_ writing to the vcpu_time_info
    318   1.2    bouyer 	 * page, _before_ we read the tsc.
    319   1.2    bouyer 	 *
    320   1.2    bouyer 	 * Further, if we switched pCPUs after reading the tsc
    321   1.2    bouyer 	 * timestamp but before reading the CPU's tsc, the hypervisor
    322   1.2    bouyer 	 * had better notify us by updating the version too and forcing
    323   1.2    bouyer 	 * us to retry the vCPU time read.
    324   1.2    bouyer 	 */
    325   1.2    bouyer 	if (__predict_false(tsc < tsc_timestamp)) {
    326   1.2    bouyer 		/*
    327   1.2    bouyer 		 * Notify the console that the CPU's tsc appeared to
    328   1.2    bouyer 		 * run behind Xen's idea of it, and pretend it hadn't.
    329   1.2    bouyer 		 */
    330   1.9  riastrad 		SDT_PROBE7(sdt, xen, clock, tsc__backward,
    331   1.9  riastrad 		    raw_systime_ns, tsc_timestamp,
    332   1.9  riastrad 		    tsc_to_system_mul, tsc_shift, /*delta_ns*/0, tsc,
    333   1.9  riastrad 		    /*systime_ns*/raw_systime_ns);
    334   1.9  riastrad #if XEN_CLOCK_DEBUG
    335   1.8    bouyer 		device_printf(ci->ci_dev, "xen cpu tsc %"PRIu64
    336   1.2    bouyer 		    " ran backwards from timestamp %"PRIu64
    337   1.2    bouyer 		    " by %"PRIu64"\n",
    338   1.2    bouyer 		    tsc, tsc_timestamp, tsc_timestamp - tsc);
    339   1.2    bouyer #endif
    340   1.2    bouyer 		ci->ci_xen_cpu_tsc_backwards_evcnt.ev_count++;
    341   1.2    bouyer 		delta_ns = delta_tsc = 0;
    342   1.2    bouyer 	} else {
    343   1.2    bouyer 		/* Find how far the CPU's tsc has advanced.  */
    344   1.2    bouyer 		delta_tsc = tsc - tsc_timestamp;
    345   1.2    bouyer 
    346   1.2    bouyer 		/* Convert the tsc delta to a nanosecond delta.  */
    347   1.2    bouyer 		delta_ns = xen_tsc_to_ns_delta(delta_tsc, tsc_to_system_mul,
    348   1.2    bouyer 		    tsc_shift);
    349   1.2    bouyer 	}
    350   1.2    bouyer 
    351   1.2    bouyer 	/*
    352   1.2    bouyer 	 * Notify the console if the delta computation yielded a
    353   1.2    bouyer 	 * negative, and pretend it hadn't.
    354   1.2    bouyer 	 *
    355   1.2    bouyer 	 * This doesn't make sense but I include it out of paranoia.
    356   1.2    bouyer 	 */
    357   1.2    bouyer 	if (__predict_false((int64_t)delta_ns < 0)) {
    358   1.9  riastrad 		SDT_PROBE7(sdt, xen, clock, tsc__delta__negative,
    359   1.9  riastrad 		    raw_systime_ns, tsc_timestamp,
    360   1.9  riastrad 		    tsc_to_system_mul, tsc_shift, delta_ns, tsc,
    361   1.9  riastrad 		    /*systime_ns*/raw_systime_ns);
    362   1.9  riastrad #if XEN_CLOCK_DEBUG
    363   1.9  riastrad 		device_printf(ci->ci_dev, "xen tsc delta in ns went negative:"
    364   1.9  riastrad 		    " %"PRId64"\n", delta_ns);
    365   1.2    bouyer #endif
    366   1.2    bouyer 		ci->ci_xen_tsc_delta_negative_evcnt.ev_count++;
    367   1.2    bouyer 		delta_ns = 0;
    368   1.2    bouyer 	}
    369   1.2    bouyer 
    370   1.2    bouyer 	/*
    371   1.2    bouyer 	 * Compute the TSC-adjusted system time.
    372   1.2    bouyer 	 */
    373   1.2    bouyer 	systime_ns = raw_systime_ns + delta_ns;
    374   1.2    bouyer 
    375   1.2    bouyer 	/*
    376   1.2    bouyer 	 * Notify the console if the addition wrapped around.
    377   1.2    bouyer 	 *
    378   1.2    bouyer 	 * This shouldn't happen because system time should be relative
    379   1.2    bouyer 	 * to a reasonable reference point, not centuries in the past.
    380   1.2    bouyer 	 * (2^64 ns is approximately half a millennium.)
    381   1.2    bouyer 	 */
    382   1.2    bouyer 	if (__predict_false(systime_ns < raw_systime_ns)) {
    383   1.9  riastrad 		SDT_PROBE7(sdt, xen, clock, systime__wraparound,
    384   1.9  riastrad 		    raw_systime_ns, tsc_timestamp,
    385   1.9  riastrad 		    tsc_to_system_mul, tsc_shift, delta_ns, tsc,
    386   1.9  riastrad 		    systime_ns);
    387   1.9  riastrad #if XEN_CLOCK_DEBUG
    388   1.2    bouyer 		printf("xen raw systime + tsc delta wrapped around:"
    389   1.2    bouyer 		    " %"PRIu64" + %"PRIu64" = %"PRIu64"\n",
    390   1.2    bouyer 		    raw_systime_ns, delta_ns, systime_ns);
    391   1.2    bouyer #endif
    392   1.2    bouyer 		ci->ci_xen_raw_systime_wraparound_evcnt.ev_count++;
    393   1.2    bouyer 	}
    394   1.2    bouyer 
    395   1.2    bouyer 	/*
    396   1.2    bouyer 	 * Notify the console if the TSC-adjusted Xen system time
    397   1.2    bouyer 	 * appears to have gone backwards, and pretend we had gone
    398   1.2    bouyer 	 * forward.  This seems to happen pretty regularly under load.
    399   1.2    bouyer 	 */
    400   1.2    bouyer 	if (__predict_false(ci->ci_xen_last_systime_ns > systime_ns)) {
    401   1.9  riastrad 		SDT_PROBE7(sdt, xen, clock, systime__backward,
    402   1.9  riastrad 		    raw_systime_ns, tsc_timestamp,
    403   1.9  riastrad 		    tsc_to_system_mul, tsc_shift, delta_ns, tsc,
    404   1.9  riastrad 		    systime_ns);
    405   1.9  riastrad #if XEN_CLOCK_DEBUG
    406   1.2    bouyer 		printf("xen raw systime + tsc delta went backwards:"
    407   1.2    bouyer 		    " %"PRIu64" > %"PRIu64"\n",
    408   1.2    bouyer 		    ci->ci_xen_last_systime_ns, systime_ns);
    409   1.2    bouyer 		printf(" raw_systime_ns=%"PRIu64"\n tsc_timestamp=%"PRIu64"\n"
    410   1.2    bouyer 		    " tsc=%"PRIu64"\n tsc_to_system_mul=%"PRIu32"\n"
    411   1.2    bouyer 		    " tsc_shift=%"PRId8"\n delta_tsc=%"PRIu64"\n"
    412   1.2    bouyer 		    " delta_ns=%"PRIu64"\n",
    413   1.2    bouyer 		    raw_systime_ns, tsc_timestamp, tsc, tsc_to_system_mul,
    414   1.2    bouyer 		    tsc_shift, delta_tsc, delta_ns);
    415   1.2    bouyer #endif
    416   1.2    bouyer 		ci->ci_xen_raw_systime_backwards_evcnt.ev_count++;
    417   1.2    bouyer 		systime_ns = ci->ci_xen_last_systime_ns + 1;
    418   1.2    bouyer 	}
    419   1.2    bouyer 
    420   1.2    bouyer 	/* Remember the TSC-adjusted Xen system time.  */
    421   1.2    bouyer 	ci->ci_xen_last_systime_ns = systime_ns;
    422   1.2    bouyer 
    423   1.2    bouyer 	/* We had better not have migrated CPUs.  */
    424   1.2    bouyer 	KASSERT(ci == curcpu());
    425   1.2    bouyer 
    426   1.2    bouyer 	/* And we're done: return the TSC-adjusted systime in nanoseconds.  */
    427   1.2    bouyer 	return systime_ns;
    428   1.2    bouyer }
    429   1.2    bouyer 
    430   1.2    bouyer /*
    431   1.2    bouyer  * xen_vcputime_raw_systime_ns()
    432   1.2    bouyer  *
    433   1.2    bouyer  *	Return a snapshot of the current Xen system time to the
    434   1.2    bouyer  *	resolution of the Xen hypervisor tick, in units of nanoseconds.
    435   1.2    bouyer  */
    436   1.2    bouyer static uint64_t
    437   1.2    bouyer xen_vcputime_raw_systime_ns(void)
    438   1.2    bouyer {
    439   1.2    bouyer 	volatile struct vcpu_time_info *vt;
    440   1.2    bouyer 	struct xen_vcputime_ticket ticket;
    441   1.2    bouyer 	uint64_t raw_systime_ns;
    442   1.2    bouyer 
    443   1.2    bouyer 	do {
    444   1.2    bouyer 		vt = xen_vcputime_enter(&ticket);
    445   1.2    bouyer 		raw_systime_ns = vt->system_time;
    446   1.2    bouyer 	} while (!xen_vcputime_exit(vt, &ticket));
    447   1.2    bouyer 
    448   1.2    bouyer 	return raw_systime_ns;
    449   1.2    bouyer }
    450   1.2    bouyer 
    451   1.2    bouyer /*
    452   1.2    bouyer  * struct xen_wallclock_ticket
    453   1.2    bouyer  *
    454   1.2    bouyer  *	State for a wall clock read section, during which a caller may
    455   1.2    bouyer  *	read from the wall clock fields of HYPERVISOR_shared_info.
    456   1.2    bouyer  *	Caller must enter with xen_wallclock_enter, exit with
    457   1.2    bouyer  *	xen_wallclock_exit, and be prepared to retry if
    458   1.2    bouyer  *	xen_wallclock_exit fails.
    459   1.2    bouyer  */
    460   1.2    bouyer struct xen_wallclock_ticket {
    461   1.2    bouyer 	uint32_t version;
    462   1.2    bouyer };
    463   1.2    bouyer 
    464   1.2    bouyer /*
    465   1.2    bouyer  * xen_wallclock_enter(tp)
    466   1.2    bouyer  *
    467   1.2    bouyer  *	Enter a wall clock read section and store a ticket in *tp,
    468   1.2    bouyer  *	which the caller must use with xen_wallclock_exit.
    469   1.2    bouyer  */
    470   1.2    bouyer static inline void
    471   1.2    bouyer xen_wallclock_enter(struct xen_wallclock_ticket *tp)
    472   1.2    bouyer {
    473   1.2    bouyer 
    474   1.2    bouyer 	while (__predict_false(1 & (tp->version =
    475   1.2    bouyer 		    HYPERVISOR_shared_info->wc_version)))
    476   1.2    bouyer 		SPINLOCK_BACKOFF_HOOK;
    477   1.2    bouyer 
    478   1.2    bouyer 	/*
    479   1.2    bouyer 	 * Must read the version from memory before reading the
    480   1.2    bouyer 	 * timestamp from memory, as written potentially by another
    481   1.2    bouyer 	 * pCPU.
    482   1.2    bouyer 	 */
    483   1.2    bouyer 	membar_consumer();
    484   1.2    bouyer }
    485   1.2    bouyer 
    486   1.2    bouyer /*
    487   1.2    bouyer  * xen_wallclock_exit(tp)
    488   1.2    bouyer  *
    489   1.2    bouyer  *	Exit a wall clock read section with the ticket in *tp from
    490   1.2    bouyer  *	xen_wallclock_enter.  Return true on success, false if caller
    491   1.2    bouyer  *	must retry.
    492   1.2    bouyer  */
    493   1.2    bouyer static inline bool
    494   1.2    bouyer xen_wallclock_exit(struct xen_wallclock_ticket *tp)
    495   1.2    bouyer {
    496   1.2    bouyer 
    497   1.2    bouyer 	/*
    498   1.2    bouyer 	 * Must read the timestamp from memory before re-reading the
    499   1.2    bouyer 	 * version from memory, as written potentially by another pCPU.
    500   1.2    bouyer 	 */
    501   1.2    bouyer 	membar_consumer();
    502   1.2    bouyer 
    503   1.2    bouyer 	return tp->version == HYPERVISOR_shared_info->wc_version;
    504   1.2    bouyer }
    505   1.2    bouyer 
    506   1.2    bouyer /*
    507   1.2    bouyer  * xen_global_systime_ns()
    508   1.2    bouyer  *
    509   1.2    bouyer  *	Return a global monotonic view of the system time in
    510   1.2    bouyer  *	nanoseconds, computed by the per-CPU Xen raw system time plus
    511   1.2    bouyer  *	an rdtsc adjustment, and advance the view of the system time
    512   1.2    bouyer  *	for all other CPUs.
    513   1.2    bouyer  */
    514   1.2    bouyer static uint64_t
    515   1.2    bouyer xen_global_systime_ns(void)
    516   1.2    bouyer {
    517   1.2    bouyer 	struct cpu_info *ci;
    518  1.11  riastrad 	uint64_t local, global, skew, result;
    519   1.2    bouyer 
    520   1.2    bouyer 	/*
    521   1.2    bouyer 	 * Find the local timecount on this CPU, and make sure it does
    522   1.2    bouyer 	 * not precede the latest global timecount witnessed so far by
    523   1.2    bouyer 	 * any CPU.  If it does, add to the local CPU's skew from the
    524   1.2    bouyer 	 * fastest CPU.
    525   1.2    bouyer 	 *
    526   1.2    bouyer 	 * XXX Can we avoid retrying if the CAS fails?
    527   1.2    bouyer 	 */
    528   1.2    bouyer 	int s = splsched(); /* make sure we won't be interrupted */
    529   1.2    bouyer 	ci = curcpu();
    530   1.2    bouyer 	do {
    531   1.2    bouyer 		local = xen_vcputime_systime_ns();
    532  1.11  riastrad 		skew = ci->ci_xen_systime_ns_skew;
    533   1.2    bouyer 		global = xen_global_systime_ns_stamp;
    534  1.11  riastrad 		if (__predict_false(local + skew < global + 1)) {
    535  1.11  riastrad 			SDT_PROBE3(sdt, xen, timecounter, backward,
    536  1.11  riastrad 			    local, skew, global);
    537  1.11  riastrad #if XEN_CLOCK_DEBUG
    538  1.11  riastrad 			device_printf(ci->ci_dev,
    539  1.11  riastrad 			    "xen timecounter went backwards:"
    540  1.11  riastrad 			    " local=%"PRIu64" skew=%"PRIu64" global=%"PRIu64","
    541  1.11  riastrad 			    " adding %"PRIu64" to skew\n",
    542  1.11  riastrad 			    local, skew, global, global + 1 - (local + skew));
    543  1.11  riastrad #endif
    544  1.11  riastrad 			ci->ci_xen_timecounter_backwards_evcnt.ev_count++;
    545   1.2    bouyer 			result = global + 1;
    546  1.11  riastrad 			ci->ci_xen_systime_ns_skew += global + 1 -
    547  1.11  riastrad 			    (local + skew);
    548   1.2    bouyer 		} else {
    549  1.11  riastrad 			result = local + skew;
    550   1.2    bouyer 		}
    551   1.2    bouyer 	} while (atomic_cas_64(&xen_global_systime_ns_stamp, global, result)
    552   1.2    bouyer 	    != global);
    553   1.2    bouyer 	KASSERT(ci == curcpu());
    554   1.2    bouyer 	splx(s);
    555   1.2    bouyer 
    556   1.2    bouyer 	return result;
    557   1.2    bouyer }
    558   1.2    bouyer 
    559   1.2    bouyer /*
    560   1.2    bouyer  * xen_get_timecount(tc)
    561   1.2    bouyer  *
    562   1.2    bouyer  *	Return the low 32 bits of a global monotonic view of the Xen
    563   1.2    bouyer  *	system time.
    564   1.2    bouyer  */
    565   1.2    bouyer static unsigned
    566   1.2    bouyer xen_get_timecount(struct timecounter *tc)
    567   1.2    bouyer {
    568   1.2    bouyer 
    569   1.2    bouyer 	KASSERT(tc == &xen_timecounter);
    570   1.2    bouyer 
    571   1.2    bouyer 	return (unsigned)xen_global_systime_ns();
    572   1.2    bouyer }
    573   1.2    bouyer 
    574   1.2    bouyer /*
    575   1.2    bouyer  * xen_delay(n)
    576   1.2    bouyer  *
    577   1.2    bouyer  *	Wait approximately n microseconds.
    578   1.2    bouyer  */
    579   1.2    bouyer void
    580   1.2    bouyer xen_delay(unsigned n)
    581   1.2    bouyer {
    582   1.2    bouyer 	int bound;
    583   1.2    bouyer 
    584   1.2    bouyer 	/* Bind to the CPU so we don't compare tsc on different CPUs.  */
    585   1.2    bouyer 	bound = curlwp_bind();
    586   1.2    bouyer 
    587   1.2    bouyer 	if (curcpu()->ci_vcpu == NULL) {
    588   1.2    bouyer 		curlwp_bindx(bound);
    589   1.2    bouyer 		return;
    590   1.2    bouyer 	}
    591   1.2    bouyer 
    592   1.2    bouyer 	/* Short wait (<500us) or long wait?  */
    593   1.2    bouyer 	if (n < 500000) {
    594   1.2    bouyer 		/*
    595   1.2    bouyer 		 * Xen system time is not precise enough for short
    596   1.2    bouyer 		 * delays, so use the tsc instead.
    597   1.2    bouyer 		 *
    598   1.2    bouyer 		 * We work with the current tsc frequency, and figure
    599   1.2    bouyer 		 * that if it changes while we're delaying, we've
    600   1.2    bouyer 		 * probably delayed long enough -- up to 500us.
    601   1.2    bouyer 		 *
    602   1.2    bouyer 		 * We do not use cpu_frequency(ci), which uses a
    603   1.2    bouyer 		 * quantity detected at boot time, and which may have
    604   1.2    bouyer 		 * changed by now if Xen has migrated this vCPU to
    605   1.2    bouyer 		 * another pCPU.
    606   1.2    bouyer 		 *
    607   1.2    bouyer 		 * XXX How long does it take to migrate pCPUs?
    608   1.2    bouyer 		 */
    609   1.2    bouyer 		volatile struct vcpu_time_info *vt;
    610   1.2    bouyer 		struct xen_vcputime_ticket ticket;
    611   1.2    bouyer 		uint64_t tsc_start, last_tsc, tsc;
    612   1.2    bouyer 		uint32_t tsc_to_system_mul;
    613   1.2    bouyer 		int8_t tsc_shift;
    614   1.2    bouyer 
    615   1.2    bouyer 		/* Get the starting tsc and tsc frequency.  */
    616   1.2    bouyer 		do {
    617   1.2    bouyer 			vt = xen_vcputime_enter(&ticket);
    618   1.2    bouyer 			tsc_start = last_tsc = xen_rdtsc();
    619   1.2    bouyer 			tsc_to_system_mul = vt->tsc_to_system_mul;
    620   1.2    bouyer 			tsc_shift = vt->tsc_shift;
    621   1.2    bouyer 		} while (!xen_vcputime_exit(vt, &ticket));
    622   1.2    bouyer 
    623   1.2    bouyer 		/*
    624   1.2    bouyer 		 * Wait until as many tsc ticks as there are in n
    625   1.2    bouyer 		 * microseconds have elapsed, or the tsc has gone
    626   1.2    bouyer 		 * backwards meaning we've probably migrated pCPUs.
    627   1.2    bouyer 		 */
    628   1.2    bouyer 		for (;;) {
    629   1.2    bouyer 			tsc = xen_rdtsc();
    630   1.2    bouyer 			if (__predict_false(tsc < last_tsc))
    631   1.2    bouyer 				break;
    632   1.2    bouyer 			if (xen_tsc_to_ns_delta(tsc - tsc_start,
    633   1.2    bouyer 				tsc_to_system_mul, tsc_shift)/1000 >= n)
    634   1.2    bouyer 				break;
    635   1.2    bouyer 			last_tsc = tsc;
    636   1.2    bouyer 		}
    637   1.2    bouyer 	} else {
    638   1.2    bouyer 		/*
    639   1.2    bouyer 		 * Use the Xen system time for >=500us delays.  From my
    640   1.2    bouyer 		 * testing, it seems to sometimes run backward by about
    641   1.2    bouyer 		 * 110us, which is not so bad.
    642   1.2    bouyer 		 */
    643   1.2    bouyer 		uint64_t n_ns = 1000*(uint64_t)n;
    644   1.2    bouyer 		uint64_t start_ns;
    645   1.2    bouyer 
    646   1.2    bouyer 		/* Get the start time.  */
    647   1.2    bouyer 		start_ns = xen_vcputime_raw_systime_ns();
    648   1.2    bouyer 
    649   1.2    bouyer 		/* Wait until the system time has passed the end.  */
    650   1.2    bouyer 		do {
    651   1.2    bouyer 			HYPERVISOR_yield();
    652   1.2    bouyer 		} while (xen_vcputime_raw_systime_ns() - start_ns < n_ns);
    653   1.2    bouyer 	}
    654   1.2    bouyer 
    655   1.2    bouyer 	/* Unbind from the CPU if we weren't already bound.  */
    656   1.2    bouyer 	curlwp_bindx(bound);
    657   1.2    bouyer }
    658   1.2    bouyer 
    659   1.2    bouyer /*
    660   1.2    bouyer  * xen_suspendclocks(ci)
    661   1.2    bouyer  *
    662   1.2    bouyer  *	Stop handling the Xen timer event on the CPU of ci.  Caller
    663   1.2    bouyer  *	must be running on and bound to ci's CPU.
    664   1.2    bouyer  *
    665   1.2    bouyer  *	Actually, caller must have kpreemption disabled, because that's
    666   1.2    bouyer  *	easier to assert at the moment.
    667   1.2    bouyer  */
    668   1.2    bouyer void
    669   1.2    bouyer xen_suspendclocks(struct cpu_info *ci)
    670   1.2    bouyer {
    671   1.2    bouyer 	int evtch;
    672   1.2    bouyer 
    673   1.2    bouyer 	KASSERT(ci == curcpu());
    674   1.2    bouyer 	KASSERT(kpreempt_disabled());
    675   1.2    bouyer 
    676  1.13  riastrad 	/*
    677  1.13  riastrad 	 * Find the VIRQ_TIMER event channel and close it so new timer
    678  1.13  riastrad 	 * interrupt events stop getting delivered to it.
    679  1.13  riastrad 	 *
    680  1.13  riastrad 	 * XXX Should this happen later?  This is not the reverse order
    681  1.13  riastrad 	 * of xen_resumeclocks.  It is apparently necessary in this
    682  1.13  riastrad 	 * order only because we don't stash evtchn anywhere, but we
    683  1.13  riastrad 	 * could stash it.
    684  1.13  riastrad 	 */
    685   1.2    bouyer 	evtch = unbind_virq_from_evtch(VIRQ_TIMER);
    686   1.2    bouyer 	KASSERT(evtch != -1);
    687   1.2    bouyer 
    688  1.13  riastrad 	/*
    689  1.13  riastrad 	 * Mask the event channel so we stop getting new interrupts on
    690  1.13  riastrad 	 * it.
    691  1.13  riastrad 	 */
    692   1.2    bouyer 	hypervisor_mask_event(evtch);
    693  1.13  riastrad 
    694  1.13  riastrad 	/*
    695  1.13  riastrad 	 * Now that we are no longer getting new interrupts, remove the
    696  1.13  riastrad 	 * handler and wait for any existing calls to the handler to
    697  1.13  riastrad 	 * complete.  After this point, there can be no concurrent
    698  1.13  riastrad 	 * calls to xen_timer_handler.
    699  1.13  riastrad 	 */
    700  1.13  riastrad 	event_remove_handler(evtch,
    701   1.2    bouyer 	    __FPTRCAST(int (*)(void *), xen_timer_handler), ci);
    702   1.2    bouyer 
    703   1.2    bouyer 	aprint_verbose("Xen clock: removed event channel %d\n", evtch);
    704   1.2    bouyer 
    705   1.2    bouyer 	/* We'd better not have switched CPUs.  */
    706   1.2    bouyer 	KASSERT(ci == curcpu());
    707   1.2    bouyer }
    708   1.2    bouyer 
    709   1.2    bouyer /*
    710   1.2    bouyer  * xen_resumeclocks(ci)
    711   1.2    bouyer  *
    712   1.2    bouyer  *	Start handling the Xen timer event on the CPU of ci.  Arm the
    713   1.2    bouyer  *	Xen timer.  Caller must be running on and bound to ci's CPU.
    714   1.2    bouyer  *
    715   1.2    bouyer  *	Actually, caller must have kpreemption disabled, because that's
    716   1.2    bouyer  *	easier to assert at the moment.
    717   1.2    bouyer  */
    718   1.2    bouyer void
    719   1.2    bouyer xen_resumeclocks(struct cpu_info *ci)
    720   1.2    bouyer {
    721   1.2    bouyer 	char intr_xname[INTRDEVNAMEBUF];
    722   1.2    bouyer 	int evtch;
    723   1.2    bouyer 	int error __diagused;
    724   1.2    bouyer 
    725   1.2    bouyer 	KASSERT(ci == curcpu());
    726   1.2    bouyer 	KASSERT(kpreempt_disabled());
    727   1.2    bouyer 
    728  1.13  riastrad 	/*
    729  1.13  riastrad 	 * Allocate an event channel to receive VIRQ_TIMER events.
    730  1.13  riastrad 	 */
    731   1.2    bouyer 	evtch = bind_virq_to_evtch(VIRQ_TIMER);
    732   1.2    bouyer 	KASSERT(evtch != -1);
    733   1.2    bouyer 
    734  1.13  riastrad 	/*
    735  1.13  riastrad 	 * Set an event handler for VIRQ_TIMER events to call
    736  1.13  riastrad 	 * xen_timer_handler.
    737  1.13  riastrad 	 */
    738   1.2    bouyer 	snprintf(intr_xname, sizeof(intr_xname), "%s clock",
    739   1.2    bouyer 	    device_xname(ci->ci_dev));
    740   1.2    bouyer 	/* XXX sketchy function pointer cast -- fix the API, please */
    741   1.2    bouyer 	if (event_set_handler(evtch,
    742   1.2    bouyer 	    __FPTRCAST(int (*)(void *), xen_timer_handler),
    743   1.5    bouyer 	    ci, IPL_CLOCK, NULL, intr_xname, true, ci) == NULL)
    744   1.2    bouyer 		panic("failed to establish timer interrupt handler");
    745   1.2    bouyer 
    746   1.2    bouyer 	aprint_verbose("Xen %s: using event channel %d\n", intr_xname, evtch);
    747   1.2    bouyer 
    748   1.2    bouyer 	/* Disarm the periodic timer on Xen>=3.1 which is allegedly buggy.  */
    749   1.2    bouyer 	if (XEN_MAJOR(xen_version) > 3 || XEN_MINOR(xen_version) > 0) {
    750   1.2    bouyer 		error = HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
    751   1.2    bouyer 		    ci->ci_vcpuid, NULL);
    752   1.2    bouyer 		KASSERT(error == 0);
    753   1.2    bouyer 	}
    754   1.2    bouyer 
    755   1.2    bouyer 	/* Pretend the last hardclock happened right now.  */
    756   1.2    bouyer 	ci->ci_xen_hardclock_systime_ns = xen_vcputime_systime_ns();
    757   1.2    bouyer 
    758   1.2    bouyer 	/* Arm the one-shot timer.  */
    759   1.2    bouyer 	error = HYPERVISOR_set_timer_op(ci->ci_xen_hardclock_systime_ns +
    760   1.2    bouyer 	    NS_PER_TICK);
    761   1.2    bouyer 	KASSERT(error == 0);
    762  1.13  riastrad 
    763  1.13  riastrad 	/*
    764  1.13  riastrad 	 * Ready to go.  Unmask the event.  After this point, Xen may
    765  1.13  riastrad 	 * start calling xen_timer_handler.
    766  1.13  riastrad 	 */
    767  1.12    bouyer 	hypervisor_unmask_event(evtch);
    768   1.2    bouyer 
    769   1.2    bouyer 	/* We'd better not have switched CPUs.  */
    770   1.2    bouyer 	KASSERT(ci == curcpu());
    771   1.2    bouyer }
    772   1.2    bouyer 
    773   1.2    bouyer /*
    774   1.2    bouyer  * xen_timer_handler(cookie, frame)
    775   1.2    bouyer  *
    776   1.2    bouyer  *	Periodic Xen timer event handler for NetBSD hardclock.  Calls
    777   1.2    bouyer  *	to this may get delayed, so we run hardclock as many times as
    778   1.2    bouyer  *	we need to in order to cover the Xen system time that elapsed.
    779   1.2    bouyer  *	After that, re-arm the timer to run again at the next tick.
    780   1.2    bouyer  *	The cookie is the pointer to struct cpu_info.
    781   1.2    bouyer  */
    782   1.2    bouyer static int
    783   1.2    bouyer xen_timer_handler(void *cookie, struct clockframe *frame)
    784   1.2    bouyer {
    785   1.2    bouyer 	struct cpu_info *ci = curcpu();
    786   1.2    bouyer 	uint64_t last, now, delta, next;
    787   1.2    bouyer 	int error;
    788   1.2    bouyer 
    789   1.2    bouyer 	KASSERT(cpu_intr_p());
    790   1.2    bouyer 	KASSERT(cookie == ci);
    791   1.2    bouyer 
    792   1.7  riastrad #if defined(XENPV)
    793   1.2    bouyer 	frame = NULL; /* We use values cached in curcpu()  */
    794   1.2    bouyer #endif
    795   1.2    bouyer again:
    796   1.2    bouyer 	/*
    797   1.2    bouyer 	 * Find how many nanoseconds of Xen system time has elapsed
    798   1.2    bouyer 	 * since the last hardclock tick.
    799   1.2    bouyer 	 */
    800   1.2    bouyer 	last = ci->ci_xen_hardclock_systime_ns;
    801   1.2    bouyer 	now = xen_vcputime_systime_ns();
    802   1.2    bouyer 	if (now < last) {
    803   1.9  riastrad 		SDT_PROBE2(sdt, xen, hardclock, systime__backward,
    804   1.9  riastrad 		    last, now);
    805   1.9  riastrad #if XEN_CLOCK_DEBUG
    806   1.9  riastrad 		device_printf(ci->ci_dev, "xen systime ran backwards"
    807   1.9  riastrad 		    " in hardclock %"PRIu64"ns\n",
    808   1.2    bouyer 		    last - now);
    809   1.2    bouyer #endif
    810   1.2    bouyer 		ci->ci_xen_systime_backwards_hardclock_evcnt.ev_count++;
    811   1.2    bouyer 		now = last;
    812   1.2    bouyer 	}
    813   1.2    bouyer 	delta = now - last;
    814   1.2    bouyer 
    815   1.2    bouyer 	/*
    816   1.2    bouyer 	 * Play hardclock catchup: run the hardclock timer as many
    817   1.2    bouyer 	 * times as appears necessary based on how much time has
    818   1.2    bouyer 	 * passed.
    819   1.2    bouyer 	 */
    820   1.2    bouyer 	while (delta >= NS_PER_TICK) {
    821   1.2    bouyer 		ci->ci_xen_hardclock_systime_ns += NS_PER_TICK;
    822   1.2    bouyer 		delta -= NS_PER_TICK;
    823   1.2    bouyer 		hardclock(frame);
    824   1.9  riastrad 		if (__predict_false(delta >= NS_PER_TICK)) {
    825   1.9  riastrad 			SDT_PROBE3(sdt, xen, hardclock, missed,
    826   1.9  riastrad 			    last, now, delta);
    827   1.2    bouyer 			ci->ci_xen_missed_hardclock_evcnt.ev_count++;
    828   1.9  riastrad 		}
    829   1.2    bouyer 	}
    830   1.2    bouyer 
    831   1.2    bouyer 	/*
    832   1.2    bouyer 	 * Re-arm the timer.  If it fails, it's probably because the
    833   1.2    bouyer 	 * time is in the past, so update our idea of what the Xen
    834   1.2    bouyer 	 * system time is and try again.
    835   1.2    bouyer 	 */
    836   1.2    bouyer 	next = ci->ci_xen_hardclock_systime_ns + NS_PER_TICK;
    837   1.2    bouyer 	error = HYPERVISOR_set_timer_op(next);
    838   1.2    bouyer 	if (error)
    839   1.2    bouyer 		goto again;
    840   1.2    bouyer 
    841   1.2    bouyer 	/* Success!  */
    842   1.2    bouyer 	return 0;
    843   1.2    bouyer }
    844   1.2    bouyer 
    845   1.2    bouyer /*
    846   1.6        ad  * xen_initclocks()
    847   1.2    bouyer  *
    848   1.2    bouyer  *	Initialize the Xen clocks on the current CPU.
    849   1.2    bouyer  */
    850   1.2    bouyer void
    851   1.6        ad xen_initclocks(void)
    852   1.2    bouyer {
    853   1.2    bouyer 	struct cpu_info *ci = curcpu();
    854   1.2    bouyer 
    855   1.2    bouyer 	/* If this is the primary CPU, do global initialization first.  */
    856   1.2    bouyer 	if (ci == &cpu_info_primary) {
    857   1.2    bouyer 		/* Initialize the systemwide Xen timecounter.  */
    858   1.2    bouyer 		tc_init(&xen_timecounter);
    859   1.2    bouyer 	}
    860   1.2    bouyer 
    861   1.2    bouyer 	/* Attach the event counters.  */
    862   1.2    bouyer 	evcnt_attach_dynamic(&ci->ci_xen_cpu_tsc_backwards_evcnt,
    863   1.2    bouyer 	    EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
    864   1.2    bouyer 	    "cpu tsc ran backwards");
    865   1.2    bouyer 	evcnt_attach_dynamic(&ci->ci_xen_tsc_delta_negative_evcnt,
    866   1.2    bouyer 	    EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
    867   1.2    bouyer 	    "tsc delta went negative");
    868   1.2    bouyer 	evcnt_attach_dynamic(&ci->ci_xen_raw_systime_wraparound_evcnt,
    869   1.2    bouyer 	    EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
    870   1.2    bouyer 	    "raw systime wrapped around");
    871   1.2    bouyer 	evcnt_attach_dynamic(&ci->ci_xen_raw_systime_backwards_evcnt,
    872   1.2    bouyer 	    EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
    873   1.2    bouyer 	    "raw systime went backwards");
    874   1.2    bouyer 	evcnt_attach_dynamic(&ci->ci_xen_systime_backwards_hardclock_evcnt,
    875   1.2    bouyer 	    EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
    876   1.2    bouyer 	    "systime went backwards in hardclock");
    877   1.2    bouyer 	evcnt_attach_dynamic(&ci->ci_xen_missed_hardclock_evcnt,
    878   1.2    bouyer 	    EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
    879   1.2    bouyer 	    "missed hardclock");
    880  1.11  riastrad 	evcnt_attach_dynamic(&ci->ci_xen_timecounter_backwards_evcnt,
    881  1.11  riastrad 	    EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
    882  1.11  riastrad 	    "timecounter went backwards");
    883   1.2    bouyer 
    884   1.2    bouyer 	/* Fire up the clocks.  */
    885   1.2    bouyer 	xen_resumeclocks(ci);
    886   1.2    bouyer 
    887   1.2    bouyer #ifdef DOM0OPS
    888   1.2    bouyer 	/*
    889   1.2    bouyer 	 * If this is a privileged dom0, start pushing the wall
    890   1.2    bouyer 	 * clock time back to the Xen hypervisor.
    891   1.2    bouyer 	 */
    892   1.6        ad 	if (ci == &cpu_info_primary && xendomain_is_privileged())
    893   1.2    bouyer 		xen_timepush_init();
    894   1.2    bouyer #endif
    895   1.2    bouyer }
    896   1.2    bouyer 
    897   1.2    bouyer #ifdef DOM0OPS
    898   1.2    bouyer 
    899   1.2    bouyer /*
    900   1.2    bouyer  * xen_timepush_init()
    901   1.2    bouyer  *
    902   1.2    bouyer  *	Initialize callout to periodically set Xen hypervisor's wall
    903   1.2    bouyer  *	clock time.
    904   1.2    bouyer  */
    905   1.2    bouyer static void
    906   1.2    bouyer xen_timepush_init(void)
    907   1.2    bouyer {
    908   1.2    bouyer 	struct sysctllog *log = NULL;
    909   1.2    bouyer 	const struct sysctlnode *node = NULL;
    910   1.2    bouyer 	int error;
    911   1.2    bouyer 
    912   1.2    bouyer 	/* Start periodically updating the hypervisor's wall clock time.  */
    913   1.2    bouyer 	callout_init(&xen_timepush.ch, 0);
    914   1.2    bouyer 	callout_setfunc(&xen_timepush.ch, xen_timepush_intr, NULL);
    915   1.2    bouyer 
    916   1.2    bouyer 	/* Pick a default frequency for timepush.  */
    917   1.2    bouyer 	xen_timepush.ticks = 53*hz + 3; /* avoid exact # of min/sec */
    918   1.2    bouyer 
    919   1.2    bouyer 	/* Create machdep.xen node.  */
    920   1.2    bouyer 	/* XXX Creation of the `machdep.xen' node should be elsewhere.  */
    921   1.2    bouyer 	error = sysctl_createv(&log, 0, NULL, &node, 0,
    922   1.2    bouyer 	    CTLTYPE_NODE, "xen",
    923   1.2    bouyer 	    SYSCTL_DESCR("Xen top level node"),
    924   1.2    bouyer 	    NULL, 0, NULL, 0,
    925   1.2    bouyer 	    CTL_MACHDEP, CTL_CREATE, CTL_EOL);
    926   1.2    bouyer 	if (error)
    927   1.2    bouyer 		goto fail;
    928   1.2    bouyer 	KASSERT(node != NULL);
    929   1.2    bouyer 
    930   1.2    bouyer 	/* Create int machdep.xen.timepush_ticks knob.  */
    931   1.2    bouyer 	error = sysctl_createv(&log, 0, NULL, NULL, CTLFLAG_READWRITE,
    932   1.2    bouyer 	    CTLTYPE_INT, "timepush_ticks",
    933   1.2    bouyer 	    SYSCTL_DESCR("How often to update the hypervisor's time-of-day;"
    934   1.2    bouyer 		" 0 to disable"),
    935   1.2    bouyer 	    sysctl_xen_timepush, 0, &xen_timepush.ticks, 0,
    936   1.2    bouyer 	    CTL_CREATE, CTL_EOL);
    937   1.2    bouyer 	if (error)
    938   1.2    bouyer 		goto fail;
    939   1.2    bouyer 
    940   1.2    bouyer 	/* Start the timepush callout.  */
    941   1.2    bouyer 	callout_schedule(&xen_timepush.ch, xen_timepush.ticks);
    942   1.2    bouyer 
    943   1.2    bouyer 	/* Success!  */
    944   1.2    bouyer 	return;
    945   1.2    bouyer 
    946   1.2    bouyer fail:	sysctl_teardown(&log);
    947   1.2    bouyer }
    948   1.2    bouyer 
    949   1.2    bouyer /*
    950   1.2    bouyer  * xen_timepush_intr(cookie)
    951   1.2    bouyer  *
    952   1.2    bouyer  *	Callout interrupt handler to push NetBSD's idea of the wall
    953   1.2    bouyer  *	clock time, usually synchronized with NTP, back to the Xen
    954   1.2    bouyer  *	hypervisor.
    955   1.2    bouyer  */
    956   1.2    bouyer static void
    957   1.2    bouyer xen_timepush_intr(void *cookie)
    958   1.2    bouyer {
    959   1.2    bouyer 
    960   1.2    bouyer 	resettodr();
    961   1.2    bouyer 	if (xen_timepush.ticks)
    962   1.2    bouyer 		callout_schedule(&xen_timepush.ch, xen_timepush.ticks);
    963   1.2    bouyer }
    964   1.2    bouyer 
    965   1.2    bouyer /*
    966   1.2    bouyer  * sysctl_xen_timepush(...)
    967   1.2    bouyer  *
    968   1.2    bouyer  *	Sysctl handler to set machdep.xen.timepush_ticks.
    969   1.2    bouyer  */
    970   1.2    bouyer static int
    971   1.2    bouyer sysctl_xen_timepush(SYSCTLFN_ARGS)
    972   1.2    bouyer {
    973   1.2    bouyer 	struct sysctlnode node;
    974   1.2    bouyer 	int ticks;
    975   1.2    bouyer 	int error;
    976   1.2    bouyer 
    977   1.2    bouyer 	ticks = xen_timepush.ticks;
    978   1.2    bouyer 	node = *rnode;
    979   1.2    bouyer 	node.sysctl_data = &ticks;
    980   1.2    bouyer 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    981   1.2    bouyer 	if (error || newp == NULL)
    982   1.2    bouyer 		return error;
    983   1.2    bouyer 
    984   1.2    bouyer 	if (ticks < 0)
    985   1.2    bouyer 		return EINVAL;
    986   1.2    bouyer 
    987   1.2    bouyer 	if (ticks != xen_timepush.ticks) {
    988   1.2    bouyer 		xen_timepush.ticks = ticks;
    989   1.2    bouyer 
    990   1.2    bouyer 		if (ticks == 0)
    991   1.2    bouyer 			callout_stop(&xen_timepush.ch);
    992   1.2    bouyer 		else
    993   1.2    bouyer 			callout_schedule(&xen_timepush.ch, ticks);
    994   1.2    bouyer 	}
    995   1.2    bouyer 
    996   1.2    bouyer 	return 0;
    997   1.2    bouyer }
    998   1.2    bouyer 
    999   1.2    bouyer #endif	/* DOM0OPS */
   1000   1.2    bouyer 
   1001   1.2    bouyer static int	xen_rtc_get(struct todr_chip_handle *, struct timeval *);
   1002   1.2    bouyer static int	xen_rtc_set(struct todr_chip_handle *, struct timeval *);
   1003   1.2    bouyer static void	xen_wallclock_time(struct timespec *);
   1004   1.2    bouyer /*
   1005   1.2    bouyer  * xen time of day register:
   1006   1.2    bouyer  *
   1007   1.2    bouyer  *	Xen wall clock time, plus a Xen vCPU system time adjustment.
   1008   1.2    bouyer  */
   1009   1.2    bouyer static struct todr_chip_handle xen_todr_chip = {
   1010   1.2    bouyer 	.todr_gettime = xen_rtc_get,
   1011   1.2    bouyer 	.todr_settime = xen_rtc_set,
   1012   1.2    bouyer };
   1013   1.2    bouyer 
   1014   1.2    bouyer /*
   1015   1.4    bouyer  * xen_startrtclock()
   1016   1.2    bouyer  *
   1017   1.2    bouyer  *	Initialize the real-time clock from x86 machdep autoconf.
   1018   1.2    bouyer  */
   1019   1.2    bouyer void
   1020   1.4    bouyer xen_startrtclock(void)
   1021   1.2    bouyer {
   1022   1.2    bouyer 
   1023   1.2    bouyer 	todr_attach(&xen_todr_chip);
   1024   1.2    bouyer }
   1025   1.2    bouyer 
   1026   1.2    bouyer /*
   1027   1.2    bouyer  * xen_rtc_get(todr, tv)
   1028   1.2    bouyer  *
   1029   1.2    bouyer  *	Get the current real-time clock from the Xen wall clock time
   1030   1.2    bouyer  *	and vCPU system time adjustment.
   1031   1.2    bouyer  */
   1032   1.2    bouyer static int
   1033   1.2    bouyer xen_rtc_get(struct todr_chip_handle *todr, struct timeval *tvp)
   1034   1.2    bouyer {
   1035   1.2    bouyer 	struct timespec ts;
   1036   1.2    bouyer 
   1037   1.2    bouyer 	xen_wallclock_time(&ts);
   1038   1.2    bouyer 	TIMESPEC_TO_TIMEVAL(tvp, &ts);
   1039   1.2    bouyer 
   1040   1.2    bouyer 	return 0;
   1041   1.2    bouyer }
   1042   1.2    bouyer 
   1043   1.2    bouyer /*
   1044   1.2    bouyer  * xen_rtc_set(todr, tv)
   1045   1.2    bouyer  *
   1046   1.2    bouyer  *	Set the Xen wall clock time, if we can.
   1047   1.2    bouyer  */
   1048   1.2    bouyer static int
   1049   1.2    bouyer xen_rtc_set(struct todr_chip_handle *todr, struct timeval *tvp)
   1050   1.2    bouyer {
   1051   1.2    bouyer #ifdef DOM0OPS
   1052   1.2    bouyer 	struct clock_ymdhms dt;
   1053   1.2    bouyer 	xen_platform_op_t op;
   1054   1.2    bouyer 	uint64_t systime_ns;
   1055   1.2    bouyer 
   1056   1.2    bouyer 	if (xendomain_is_privileged()) {
   1057   1.2    bouyer 		/* Convert to ymdhms and set the x86 ISA RTC.  */
   1058   1.2    bouyer 		clock_secs_to_ymdhms(tvp->tv_sec, &dt);
   1059   1.2    bouyer 		rtc_set_ymdhms(NULL, &dt);
   1060   1.2    bouyer 
   1061   1.2    bouyer 		/* Get the global system time so we can preserve it.  */
   1062   1.2    bouyer 		systime_ns = xen_global_systime_ns();
   1063   1.2    bouyer 
   1064   1.2    bouyer 		/* Set the hypervisor wall clock time.  */
   1065   1.2    bouyer 		op.cmd = XENPF_settime;
   1066   1.2    bouyer 		op.u.settime.secs = tvp->tv_sec;
   1067   1.2    bouyer 		op.u.settime.nsecs = tvp->tv_usec * 1000;
   1068   1.2    bouyer 		op.u.settime.system_time = systime_ns;
   1069   1.2    bouyer 		return HYPERVISOR_platform_op(&op);
   1070   1.2    bouyer 	}
   1071   1.2    bouyer #endif
   1072   1.2    bouyer 
   1073   1.2    bouyer 	/* XXX Should this fail if not on privileged dom0?  */
   1074   1.2    bouyer 	return 0;
   1075   1.2    bouyer }
   1076   1.2    bouyer 
   1077   1.2    bouyer /*
   1078   1.2    bouyer  * xen_wallclock_time(tsp)
   1079   1.2    bouyer  *
   1080   1.2    bouyer  *	Return a snapshot of the current low-resolution wall clock
   1081   1.2    bouyer  *	time, as reported by the hypervisor, in tsp.
   1082   1.2    bouyer  */
   1083   1.2    bouyer static void
   1084   1.2    bouyer xen_wallclock_time(struct timespec *tsp)
   1085   1.2    bouyer {
   1086   1.2    bouyer 	struct xen_wallclock_ticket ticket;
   1087   1.2    bouyer 	uint64_t systime_ns;
   1088   1.2    bouyer 
   1089   1.2    bouyer 	int s = splsched(); /* make sure we won't be interrupted */
   1090   1.2    bouyer 	/* Read the last wall clock sample from the hypervisor. */
   1091   1.2    bouyer 	do {
   1092   1.2    bouyer 		xen_wallclock_enter(&ticket);
   1093   1.2    bouyer 		tsp->tv_sec = HYPERVISOR_shared_info->wc_sec;
   1094   1.2    bouyer 		tsp->tv_nsec = HYPERVISOR_shared_info->wc_nsec;
   1095   1.2    bouyer 	} while (!xen_wallclock_exit(&ticket));
   1096   1.2    bouyer 
   1097   1.2    bouyer 	/* Get the global system time.  */
   1098   1.2    bouyer 	systime_ns = xen_global_systime_ns();
   1099   1.2    bouyer 	splx(s);
   1100   1.2    bouyer 
   1101   1.2    bouyer 	/* Add the system time to the wall clock time.  */
   1102   1.2    bouyer 	systime_ns += tsp->tv_nsec;
   1103   1.2    bouyer 	tsp->tv_sec += systime_ns / 1000000000ull;
   1104   1.2    bouyer 	tsp->tv_nsec = systime_ns % 1000000000ull;
   1105   1.2    bouyer }
   1106   1.2    bouyer 
   1107   1.4    bouyer #ifdef XENPV
   1108   1.4    bouyer /*
   1109   1.4    bouyer  * setstatclockrate(rate)
   1110   1.4    bouyer  *
   1111   1.4    bouyer  *	Set the statclock to run at rate, in units of ticks per second.
   1112   1.4    bouyer  *
   1113   1.4    bouyer  *	Currently Xen does not have a separate statclock, so this is a
   1114   1.4    bouyer  *	noop; instad the statclock runs in hardclock.
   1115   1.4    bouyer  */
   1116   1.4    bouyer void
   1117   1.4    bouyer setstatclockrate(int rate)
   1118   1.4    bouyer {
   1119   1.4    bouyer }
   1120   1.2    bouyer #endif /* XENPV */
   1121