xen_clock.c revision 1.13 1 1.13 riastrad /* $NetBSD: xen_clock.c,v 1.13 2023/07/28 10:38:44 riastradh Exp $ */
2 1.2 bouyer
3 1.2 bouyer /*-
4 1.2 bouyer * Copyright (c) 2017, 2018 The NetBSD Foundation, Inc.
5 1.2 bouyer * All rights reserved.
6 1.2 bouyer *
7 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
8 1.2 bouyer * by Taylor R. Campbell.
9 1.2 bouyer *
10 1.2 bouyer * Redistribution and use in source and binary forms, with or without
11 1.2 bouyer * modification, are permitted provided that the following conditions
12 1.2 bouyer * are met:
13 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
14 1.2 bouyer * notice, this list of conditions and the following disclaimer.
15 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
17 1.2 bouyer * documentation and/or other materials provided with the distribution.
18 1.2 bouyer *
19 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
30 1.2 bouyer */
31 1.2 bouyer
32 1.2 bouyer #include "opt_xen.h"
33 1.2 bouyer
34 1.2 bouyer #ifndef XEN_CLOCK_DEBUG
35 1.2 bouyer #define XEN_CLOCK_DEBUG 0
36 1.2 bouyer #endif
37 1.2 bouyer
38 1.2 bouyer #include <sys/cdefs.h>
39 1.13 riastrad __KERNEL_RCSID(0, "$NetBSD: xen_clock.c,v 1.13 2023/07/28 10:38:44 riastradh Exp $");
40 1.2 bouyer
41 1.2 bouyer #include <sys/param.h>
42 1.2 bouyer #include <sys/types.h>
43 1.2 bouyer #include <sys/atomic.h>
44 1.2 bouyer #include <sys/callout.h>
45 1.2 bouyer #include <sys/cpu.h>
46 1.2 bouyer #include <sys/device.h>
47 1.2 bouyer #include <sys/evcnt.h>
48 1.2 bouyer #include <sys/intr.h>
49 1.2 bouyer #include <sys/kernel.h>
50 1.2 bouyer #include <sys/lwp.h>
51 1.2 bouyer #include <sys/proc.h>
52 1.9 riastrad #include <sys/sdt.h>
53 1.2 bouyer #include <sys/sysctl.h>
54 1.2 bouyer #include <sys/systm.h>
55 1.2 bouyer #include <sys/time.h>
56 1.2 bouyer #include <sys/timetc.h>
57 1.2 bouyer
58 1.2 bouyer #include <dev/clock_subr.h>
59 1.2 bouyer
60 1.2 bouyer #include <machine/cpu.h>
61 1.2 bouyer #include <machine/cpu_counter.h>
62 1.2 bouyer #include <machine/lock.h>
63 1.2 bouyer
64 1.2 bouyer #include <xen/evtchn.h>
65 1.2 bouyer #include <xen/hypervisor.h>
66 1.2 bouyer #include <xen/include/public/vcpu.h>
67 1.2 bouyer #include <xen/xen.h>
68 1.2 bouyer
69 1.2 bouyer #include <x86/rtc.h>
70 1.2 bouyer
71 1.2 bouyer #define NS_PER_TICK ((uint64_t)1000000000ULL/hz)
72 1.2 bouyer
73 1.2 bouyer static uint64_t xen_vcputime_systime_ns(void);
74 1.2 bouyer static uint64_t xen_vcputime_raw_systime_ns(void);
75 1.2 bouyer static uint64_t xen_global_systime_ns(void);
76 1.2 bouyer static unsigned xen_get_timecount(struct timecounter *);
77 1.2 bouyer static int xen_timer_handler(void *, struct clockframe *);
78 1.2 bouyer
79 1.2 bouyer /*
80 1.9 riastrad * dtrace probes
81 1.9 riastrad */
82 1.9 riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, tsc__backward,
83 1.9 riastrad "uint64_t"/*raw_systime_ns*/,
84 1.9 riastrad "uint64_t"/*tsc_timestamp*/,
85 1.9 riastrad "uint64_t"/*tsc_to_system_mul*/,
86 1.9 riastrad "int"/*tsc_shift*/,
87 1.9 riastrad "uint64_t"/*delta_ns*/,
88 1.9 riastrad "uint64_t"/*tsc*/,
89 1.9 riastrad "uint64_t"/*systime_ns*/);
90 1.9 riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, tsc__delta__negative,
91 1.9 riastrad "uint64_t"/*raw_systime_ns*/,
92 1.9 riastrad "uint64_t"/*tsc_timestamp*/,
93 1.9 riastrad "uint64_t"/*tsc_to_system_mul*/,
94 1.9 riastrad "int"/*tsc_shift*/,
95 1.9 riastrad "uint64_t"/*delta_ns*/,
96 1.9 riastrad "uint64_t"/*tsc*/,
97 1.9 riastrad "uint64_t"/*systime_ns*/);
98 1.9 riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, systime__wraparound,
99 1.9 riastrad "uint64_t"/*raw_systime_ns*/,
100 1.9 riastrad "uint64_t"/*tsc_timestamp*/,
101 1.9 riastrad "uint64_t"/*tsc_to_system_mul*/,
102 1.9 riastrad "int"/*tsc_shift*/,
103 1.9 riastrad "uint64_t"/*delta_ns*/,
104 1.9 riastrad "uint64_t"/*tsc*/,
105 1.9 riastrad "uint64_t"/*systime_ns*/);
106 1.9 riastrad SDT_PROBE_DEFINE7(sdt, xen, clock, systime__backward,
107 1.9 riastrad "uint64_t"/*raw_systime_ns*/,
108 1.9 riastrad "uint64_t"/*tsc_timestamp*/,
109 1.9 riastrad "uint64_t"/*tsc_to_system_mul*/,
110 1.9 riastrad "int"/*tsc_shift*/,
111 1.9 riastrad "uint64_t"/*delta_ns*/,
112 1.9 riastrad "uint64_t"/*tsc*/,
113 1.9 riastrad "uint64_t"/*systime_ns*/);
114 1.9 riastrad
115 1.11 riastrad SDT_PROBE_DEFINE3(sdt, xen, timecounter, backward,
116 1.11 riastrad "uint64_t"/*local*/,
117 1.11 riastrad "uint64_t"/*skew*/,
118 1.11 riastrad "uint64_t"/*global*/);
119 1.11 riastrad
120 1.9 riastrad SDT_PROBE_DEFINE2(sdt, xen, hardclock, systime__backward,
121 1.9 riastrad "uint64_t"/*last_systime_ns*/,
122 1.9 riastrad "uint64_t"/*this_systime_ns*/);
123 1.9 riastrad SDT_PROBE_DEFINE3(sdt, xen, hardclock, missed,
124 1.9 riastrad "uint64_t"/*last_systime_ns*/,
125 1.9 riastrad "uint64_t"/*this_systime_ns*/,
126 1.9 riastrad "uint64_t"/*remaining_ns*/);
127 1.9 riastrad
128 1.9 riastrad /*
129 1.2 bouyer * xen timecounter:
130 1.2 bouyer *
131 1.2 bouyer * Xen vCPU system time, plus an adjustment with rdtsc.
132 1.2 bouyer */
133 1.2 bouyer static struct timecounter xen_timecounter = {
134 1.2 bouyer .tc_get_timecount = xen_get_timecount,
135 1.2 bouyer .tc_poll_pps = NULL,
136 1.2 bouyer .tc_counter_mask = ~0U,
137 1.2 bouyer .tc_frequency = 1000000000ULL, /* 1 GHz, i.e. units of nanoseconds */
138 1.2 bouyer .tc_name = "xen_system_time",
139 1.2 bouyer .tc_quality = 10000,
140 1.2 bouyer };
141 1.2 bouyer
142 1.2 bouyer /*
143 1.2 bouyer * xen_global_systime_ns_stamp
144 1.2 bouyer *
145 1.2 bouyer * The latest Xen vCPU system time that has been observed on any
146 1.2 bouyer * CPU, for a global monotonic view of the Xen system time clock.
147 1.2 bouyer */
148 1.2 bouyer static volatile uint64_t xen_global_systime_ns_stamp __cacheline_aligned;
149 1.2 bouyer
150 1.2 bouyer #ifdef DOM0OPS
151 1.2 bouyer /*
152 1.2 bouyer * xen timepush state:
153 1.2 bouyer *
154 1.2 bouyer * Callout to periodically, after a sysctl-configurable number of
155 1.2 bouyer * NetBSD ticks, set the Xen hypervisor's wall clock time.
156 1.2 bouyer */
157 1.2 bouyer static struct {
158 1.2 bouyer struct callout ch;
159 1.2 bouyer int ticks;
160 1.2 bouyer } xen_timepush;
161 1.2 bouyer
162 1.2 bouyer static void xen_timepush_init(void);
163 1.2 bouyer static void xen_timepush_intr(void *);
164 1.2 bouyer static int sysctl_xen_timepush(SYSCTLFN_ARGS);
165 1.2 bouyer #endif
166 1.2 bouyer
167 1.2 bouyer /*
168 1.2 bouyer * xen_rdtsc()
169 1.2 bouyer *
170 1.2 bouyer * Read the local pCPU's tsc.
171 1.2 bouyer */
172 1.2 bouyer static inline uint64_t
173 1.2 bouyer xen_rdtsc(void)
174 1.2 bouyer {
175 1.2 bouyer uint32_t lo, hi;
176 1.2 bouyer
177 1.2 bouyer asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
178 1.2 bouyer
179 1.2 bouyer return ((uint64_t)hi << 32) | lo;
180 1.2 bouyer }
181 1.2 bouyer
182 1.2 bouyer /*
183 1.2 bouyer * struct xen_vcputime_ticket
184 1.2 bouyer *
185 1.2 bouyer * State for a vCPU read section, during which a caller may read
186 1.2 bouyer * from fields of a struct vcpu_time_info and call xen_rdtsc.
187 1.2 bouyer * Caller must enter with xen_vcputime_enter, exit with
188 1.2 bouyer * xen_vcputime_exit, and be prepared to retry if
189 1.2 bouyer * xen_vcputime_exit fails.
190 1.2 bouyer */
191 1.2 bouyer struct xen_vcputime_ticket {
192 1.2 bouyer uint64_t version;
193 1.2 bouyer };
194 1.2 bouyer
195 1.2 bouyer /*
196 1.2 bouyer * xen_vcputime_enter(tp)
197 1.2 bouyer *
198 1.2 bouyer * Enter a vCPU time read section and store a ticket in *tp, which
199 1.2 bouyer * the caller must use with xen_vcputime_exit. Return a pointer
200 1.2 bouyer * to the current CPU's vcpu_time_info structure. Caller must
201 1.2 bouyer * already be bound to the CPU.
202 1.2 bouyer */
203 1.2 bouyer static inline volatile struct vcpu_time_info *
204 1.2 bouyer xen_vcputime_enter(struct xen_vcputime_ticket *tp)
205 1.2 bouyer {
206 1.2 bouyer volatile struct vcpu_time_info *vt = &curcpu()->ci_vcpu->time;
207 1.2 bouyer
208 1.2 bouyer while (__predict_false(1 & (tp->version = vt->version)))
209 1.2 bouyer SPINLOCK_BACKOFF_HOOK;
210 1.2 bouyer
211 1.2 bouyer /*
212 1.2 bouyer * Must read the version before reading the tsc on the local
213 1.2 bouyer * pCPU. We are racing only with interruption by the
214 1.2 bouyer * hypervisor, so no need for a stronger memory barrier.
215 1.2 bouyer */
216 1.2 bouyer __insn_barrier();
217 1.2 bouyer
218 1.2 bouyer return vt;
219 1.2 bouyer }
220 1.2 bouyer
221 1.2 bouyer /*
222 1.2 bouyer * xen_vcputime_exit(vt, tp)
223 1.2 bouyer *
224 1.2 bouyer * Exit a vCPU time read section with the ticket in *tp from
225 1.2 bouyer * xen_vcputime_enter. Return true on success, false if caller
226 1.2 bouyer * must retry.
227 1.2 bouyer */
228 1.2 bouyer static inline bool
229 1.2 bouyer xen_vcputime_exit(volatile struct vcpu_time_info *vt,
230 1.2 bouyer struct xen_vcputime_ticket *tp)
231 1.2 bouyer {
232 1.2 bouyer
233 1.2 bouyer KASSERT(vt == &curcpu()->ci_vcpu->time);
234 1.2 bouyer
235 1.2 bouyer /*
236 1.2 bouyer * Must read the tsc before re-reading the version on the local
237 1.2 bouyer * pCPU. We are racing only with interruption by the
238 1.2 bouyer * hypervisor, so no need for a stronger memory barrier.
239 1.2 bouyer */
240 1.2 bouyer __insn_barrier();
241 1.2 bouyer
242 1.2 bouyer return tp->version == vt->version;
243 1.2 bouyer }
244 1.2 bouyer
245 1.2 bouyer /*
246 1.2 bouyer * xen_tsc_to_ns_delta(delta_tsc, mul_frac, shift)
247 1.2 bouyer *
248 1.2 bouyer * Convert a difference in tsc units to a difference in
249 1.2 bouyer * nanoseconds given a multiplier and shift for the unit
250 1.2 bouyer * conversion.
251 1.2 bouyer */
252 1.2 bouyer static inline uint64_t
253 1.2 bouyer xen_tsc_to_ns_delta(uint64_t delta_tsc, uint32_t tsc_to_system_mul,
254 1.2 bouyer int8_t tsc_shift)
255 1.2 bouyer {
256 1.2 bouyer uint32_t delta_tsc_hi, delta_tsc_lo;
257 1.2 bouyer
258 1.2 bouyer if (tsc_shift < 0)
259 1.2 bouyer delta_tsc >>= -tsc_shift;
260 1.2 bouyer else
261 1.2 bouyer delta_tsc <<= tsc_shift;
262 1.2 bouyer
263 1.2 bouyer delta_tsc_hi = delta_tsc >> 32;
264 1.2 bouyer delta_tsc_lo = delta_tsc & 0xffffffffUL;
265 1.2 bouyer
266 1.2 bouyer /* d*m/2^32 = (2^32 d_h + d_l)*m/2^32 = d_h*m + (d_l*m)/2^32 */
267 1.2 bouyer return ((uint64_t)delta_tsc_hi * tsc_to_system_mul) +
268 1.2 bouyer (((uint64_t)delta_tsc_lo * tsc_to_system_mul) >> 32);
269 1.2 bouyer }
270 1.2 bouyer
271 1.2 bouyer /*
272 1.2 bouyer * xen_vcputime_systime_ns()
273 1.2 bouyer *
274 1.2 bouyer * Return a snapshot of the Xen system time plus an adjustment
275 1.2 bouyer * from the tsc, in units of nanoseconds. Caller must be bound to
276 1.2 bouyer * the current CPU.
277 1.2 bouyer */
278 1.2 bouyer static uint64_t
279 1.2 bouyer xen_vcputime_systime_ns(void)
280 1.2 bouyer {
281 1.2 bouyer volatile struct vcpu_time_info *vt;
282 1.2 bouyer struct cpu_info *ci = curcpu();
283 1.2 bouyer struct xen_vcputime_ticket ticket;
284 1.2 bouyer uint64_t raw_systime_ns, tsc_timestamp, tsc, delta_tsc, delta_ns;
285 1.2 bouyer uint32_t tsc_to_system_mul;
286 1.2 bouyer int8_t tsc_shift;
287 1.2 bouyer uint64_t systime_ns;
288 1.2 bouyer
289 1.2 bouyer /* We'd better be bound to the CPU in _some_ way. */
290 1.2 bouyer KASSERT(cpu_intr_p() || cpu_softintr_p() || kpreempt_disabled() ||
291 1.2 bouyer (curlwp->l_flag & LP_BOUND));
292 1.2 bouyer
293 1.2 bouyer /*
294 1.2 bouyer * Repeatedly try to read the system time, corresponding tsc
295 1.2 bouyer * timestamp, and tsc frequency until we get a consistent view.
296 1.2 bouyer */
297 1.2 bouyer do {
298 1.2 bouyer vt = xen_vcputime_enter(&ticket);
299 1.2 bouyer
300 1.2 bouyer /* Grab Xen's snapshot of raw system time and tsc. */
301 1.2 bouyer raw_systime_ns = vt->system_time;
302 1.2 bouyer tsc_timestamp = vt->tsc_timestamp;
303 1.2 bouyer
304 1.2 bouyer /* Get Xen's current idea of how fast the tsc is counting. */
305 1.2 bouyer tsc_to_system_mul = vt->tsc_to_system_mul;
306 1.2 bouyer tsc_shift = vt->tsc_shift;
307 1.2 bouyer
308 1.2 bouyer /* Read the CPU's tsc. */
309 1.2 bouyer tsc = xen_rdtsc();
310 1.2 bouyer } while (!xen_vcputime_exit(vt, &ticket));
311 1.2 bouyer
312 1.2 bouyer /*
313 1.2 bouyer * Out of paranoia, check whether the tsc has gone backwards
314 1.2 bouyer * since Xen's timestamp.
315 1.2 bouyer *
316 1.2 bouyer * This shouldn't happen because the Xen hypervisor is supposed
317 1.2 bouyer * to have read the tsc _before_ writing to the vcpu_time_info
318 1.2 bouyer * page, _before_ we read the tsc.
319 1.2 bouyer *
320 1.2 bouyer * Further, if we switched pCPUs after reading the tsc
321 1.2 bouyer * timestamp but before reading the CPU's tsc, the hypervisor
322 1.2 bouyer * had better notify us by updating the version too and forcing
323 1.2 bouyer * us to retry the vCPU time read.
324 1.2 bouyer */
325 1.2 bouyer if (__predict_false(tsc < tsc_timestamp)) {
326 1.2 bouyer /*
327 1.2 bouyer * Notify the console that the CPU's tsc appeared to
328 1.2 bouyer * run behind Xen's idea of it, and pretend it hadn't.
329 1.2 bouyer */
330 1.9 riastrad SDT_PROBE7(sdt, xen, clock, tsc__backward,
331 1.9 riastrad raw_systime_ns, tsc_timestamp,
332 1.9 riastrad tsc_to_system_mul, tsc_shift, /*delta_ns*/0, tsc,
333 1.9 riastrad /*systime_ns*/raw_systime_ns);
334 1.9 riastrad #if XEN_CLOCK_DEBUG
335 1.8 bouyer device_printf(ci->ci_dev, "xen cpu tsc %"PRIu64
336 1.2 bouyer " ran backwards from timestamp %"PRIu64
337 1.2 bouyer " by %"PRIu64"\n",
338 1.2 bouyer tsc, tsc_timestamp, tsc_timestamp - tsc);
339 1.2 bouyer #endif
340 1.2 bouyer ci->ci_xen_cpu_tsc_backwards_evcnt.ev_count++;
341 1.2 bouyer delta_ns = delta_tsc = 0;
342 1.2 bouyer } else {
343 1.2 bouyer /* Find how far the CPU's tsc has advanced. */
344 1.2 bouyer delta_tsc = tsc - tsc_timestamp;
345 1.2 bouyer
346 1.2 bouyer /* Convert the tsc delta to a nanosecond delta. */
347 1.2 bouyer delta_ns = xen_tsc_to_ns_delta(delta_tsc, tsc_to_system_mul,
348 1.2 bouyer tsc_shift);
349 1.2 bouyer }
350 1.2 bouyer
351 1.2 bouyer /*
352 1.2 bouyer * Notify the console if the delta computation yielded a
353 1.2 bouyer * negative, and pretend it hadn't.
354 1.2 bouyer *
355 1.2 bouyer * This doesn't make sense but I include it out of paranoia.
356 1.2 bouyer */
357 1.2 bouyer if (__predict_false((int64_t)delta_ns < 0)) {
358 1.9 riastrad SDT_PROBE7(sdt, xen, clock, tsc__delta__negative,
359 1.9 riastrad raw_systime_ns, tsc_timestamp,
360 1.9 riastrad tsc_to_system_mul, tsc_shift, delta_ns, tsc,
361 1.9 riastrad /*systime_ns*/raw_systime_ns);
362 1.9 riastrad #if XEN_CLOCK_DEBUG
363 1.9 riastrad device_printf(ci->ci_dev, "xen tsc delta in ns went negative:"
364 1.9 riastrad " %"PRId64"\n", delta_ns);
365 1.2 bouyer #endif
366 1.2 bouyer ci->ci_xen_tsc_delta_negative_evcnt.ev_count++;
367 1.2 bouyer delta_ns = 0;
368 1.2 bouyer }
369 1.2 bouyer
370 1.2 bouyer /*
371 1.2 bouyer * Compute the TSC-adjusted system time.
372 1.2 bouyer */
373 1.2 bouyer systime_ns = raw_systime_ns + delta_ns;
374 1.2 bouyer
375 1.2 bouyer /*
376 1.2 bouyer * Notify the console if the addition wrapped around.
377 1.2 bouyer *
378 1.2 bouyer * This shouldn't happen because system time should be relative
379 1.2 bouyer * to a reasonable reference point, not centuries in the past.
380 1.2 bouyer * (2^64 ns is approximately half a millennium.)
381 1.2 bouyer */
382 1.2 bouyer if (__predict_false(systime_ns < raw_systime_ns)) {
383 1.9 riastrad SDT_PROBE7(sdt, xen, clock, systime__wraparound,
384 1.9 riastrad raw_systime_ns, tsc_timestamp,
385 1.9 riastrad tsc_to_system_mul, tsc_shift, delta_ns, tsc,
386 1.9 riastrad systime_ns);
387 1.9 riastrad #if XEN_CLOCK_DEBUG
388 1.2 bouyer printf("xen raw systime + tsc delta wrapped around:"
389 1.2 bouyer " %"PRIu64" + %"PRIu64" = %"PRIu64"\n",
390 1.2 bouyer raw_systime_ns, delta_ns, systime_ns);
391 1.2 bouyer #endif
392 1.2 bouyer ci->ci_xen_raw_systime_wraparound_evcnt.ev_count++;
393 1.2 bouyer }
394 1.2 bouyer
395 1.2 bouyer /*
396 1.2 bouyer * Notify the console if the TSC-adjusted Xen system time
397 1.2 bouyer * appears to have gone backwards, and pretend we had gone
398 1.2 bouyer * forward. This seems to happen pretty regularly under load.
399 1.2 bouyer */
400 1.2 bouyer if (__predict_false(ci->ci_xen_last_systime_ns > systime_ns)) {
401 1.9 riastrad SDT_PROBE7(sdt, xen, clock, systime__backward,
402 1.9 riastrad raw_systime_ns, tsc_timestamp,
403 1.9 riastrad tsc_to_system_mul, tsc_shift, delta_ns, tsc,
404 1.9 riastrad systime_ns);
405 1.9 riastrad #if XEN_CLOCK_DEBUG
406 1.2 bouyer printf("xen raw systime + tsc delta went backwards:"
407 1.2 bouyer " %"PRIu64" > %"PRIu64"\n",
408 1.2 bouyer ci->ci_xen_last_systime_ns, systime_ns);
409 1.2 bouyer printf(" raw_systime_ns=%"PRIu64"\n tsc_timestamp=%"PRIu64"\n"
410 1.2 bouyer " tsc=%"PRIu64"\n tsc_to_system_mul=%"PRIu32"\n"
411 1.2 bouyer " tsc_shift=%"PRId8"\n delta_tsc=%"PRIu64"\n"
412 1.2 bouyer " delta_ns=%"PRIu64"\n",
413 1.2 bouyer raw_systime_ns, tsc_timestamp, tsc, tsc_to_system_mul,
414 1.2 bouyer tsc_shift, delta_tsc, delta_ns);
415 1.2 bouyer #endif
416 1.2 bouyer ci->ci_xen_raw_systime_backwards_evcnt.ev_count++;
417 1.2 bouyer systime_ns = ci->ci_xen_last_systime_ns + 1;
418 1.2 bouyer }
419 1.2 bouyer
420 1.2 bouyer /* Remember the TSC-adjusted Xen system time. */
421 1.2 bouyer ci->ci_xen_last_systime_ns = systime_ns;
422 1.2 bouyer
423 1.2 bouyer /* We had better not have migrated CPUs. */
424 1.2 bouyer KASSERT(ci == curcpu());
425 1.2 bouyer
426 1.2 bouyer /* And we're done: return the TSC-adjusted systime in nanoseconds. */
427 1.2 bouyer return systime_ns;
428 1.2 bouyer }
429 1.2 bouyer
430 1.2 bouyer /*
431 1.2 bouyer * xen_vcputime_raw_systime_ns()
432 1.2 bouyer *
433 1.2 bouyer * Return a snapshot of the current Xen system time to the
434 1.2 bouyer * resolution of the Xen hypervisor tick, in units of nanoseconds.
435 1.2 bouyer */
436 1.2 bouyer static uint64_t
437 1.2 bouyer xen_vcputime_raw_systime_ns(void)
438 1.2 bouyer {
439 1.2 bouyer volatile struct vcpu_time_info *vt;
440 1.2 bouyer struct xen_vcputime_ticket ticket;
441 1.2 bouyer uint64_t raw_systime_ns;
442 1.2 bouyer
443 1.2 bouyer do {
444 1.2 bouyer vt = xen_vcputime_enter(&ticket);
445 1.2 bouyer raw_systime_ns = vt->system_time;
446 1.2 bouyer } while (!xen_vcputime_exit(vt, &ticket));
447 1.2 bouyer
448 1.2 bouyer return raw_systime_ns;
449 1.2 bouyer }
450 1.2 bouyer
451 1.2 bouyer /*
452 1.2 bouyer * struct xen_wallclock_ticket
453 1.2 bouyer *
454 1.2 bouyer * State for a wall clock read section, during which a caller may
455 1.2 bouyer * read from the wall clock fields of HYPERVISOR_shared_info.
456 1.2 bouyer * Caller must enter with xen_wallclock_enter, exit with
457 1.2 bouyer * xen_wallclock_exit, and be prepared to retry if
458 1.2 bouyer * xen_wallclock_exit fails.
459 1.2 bouyer */
460 1.2 bouyer struct xen_wallclock_ticket {
461 1.2 bouyer uint32_t version;
462 1.2 bouyer };
463 1.2 bouyer
464 1.2 bouyer /*
465 1.2 bouyer * xen_wallclock_enter(tp)
466 1.2 bouyer *
467 1.2 bouyer * Enter a wall clock read section and store a ticket in *tp,
468 1.2 bouyer * which the caller must use with xen_wallclock_exit.
469 1.2 bouyer */
470 1.2 bouyer static inline void
471 1.2 bouyer xen_wallclock_enter(struct xen_wallclock_ticket *tp)
472 1.2 bouyer {
473 1.2 bouyer
474 1.2 bouyer while (__predict_false(1 & (tp->version =
475 1.2 bouyer HYPERVISOR_shared_info->wc_version)))
476 1.2 bouyer SPINLOCK_BACKOFF_HOOK;
477 1.2 bouyer
478 1.2 bouyer /*
479 1.2 bouyer * Must read the version from memory before reading the
480 1.2 bouyer * timestamp from memory, as written potentially by another
481 1.2 bouyer * pCPU.
482 1.2 bouyer */
483 1.2 bouyer membar_consumer();
484 1.2 bouyer }
485 1.2 bouyer
486 1.2 bouyer /*
487 1.2 bouyer * xen_wallclock_exit(tp)
488 1.2 bouyer *
489 1.2 bouyer * Exit a wall clock read section with the ticket in *tp from
490 1.2 bouyer * xen_wallclock_enter. Return true on success, false if caller
491 1.2 bouyer * must retry.
492 1.2 bouyer */
493 1.2 bouyer static inline bool
494 1.2 bouyer xen_wallclock_exit(struct xen_wallclock_ticket *tp)
495 1.2 bouyer {
496 1.2 bouyer
497 1.2 bouyer /*
498 1.2 bouyer * Must read the timestamp from memory before re-reading the
499 1.2 bouyer * version from memory, as written potentially by another pCPU.
500 1.2 bouyer */
501 1.2 bouyer membar_consumer();
502 1.2 bouyer
503 1.2 bouyer return tp->version == HYPERVISOR_shared_info->wc_version;
504 1.2 bouyer }
505 1.2 bouyer
506 1.2 bouyer /*
507 1.2 bouyer * xen_global_systime_ns()
508 1.2 bouyer *
509 1.2 bouyer * Return a global monotonic view of the system time in
510 1.2 bouyer * nanoseconds, computed by the per-CPU Xen raw system time plus
511 1.2 bouyer * an rdtsc adjustment, and advance the view of the system time
512 1.2 bouyer * for all other CPUs.
513 1.2 bouyer */
514 1.2 bouyer static uint64_t
515 1.2 bouyer xen_global_systime_ns(void)
516 1.2 bouyer {
517 1.2 bouyer struct cpu_info *ci;
518 1.11 riastrad uint64_t local, global, skew, result;
519 1.2 bouyer
520 1.2 bouyer /*
521 1.2 bouyer * Find the local timecount on this CPU, and make sure it does
522 1.2 bouyer * not precede the latest global timecount witnessed so far by
523 1.2 bouyer * any CPU. If it does, add to the local CPU's skew from the
524 1.2 bouyer * fastest CPU.
525 1.2 bouyer *
526 1.2 bouyer * XXX Can we avoid retrying if the CAS fails?
527 1.2 bouyer */
528 1.2 bouyer int s = splsched(); /* make sure we won't be interrupted */
529 1.2 bouyer ci = curcpu();
530 1.2 bouyer do {
531 1.2 bouyer local = xen_vcputime_systime_ns();
532 1.11 riastrad skew = ci->ci_xen_systime_ns_skew;
533 1.2 bouyer global = xen_global_systime_ns_stamp;
534 1.11 riastrad if (__predict_false(local + skew < global + 1)) {
535 1.11 riastrad SDT_PROBE3(sdt, xen, timecounter, backward,
536 1.11 riastrad local, skew, global);
537 1.11 riastrad #if XEN_CLOCK_DEBUG
538 1.11 riastrad device_printf(ci->ci_dev,
539 1.11 riastrad "xen timecounter went backwards:"
540 1.11 riastrad " local=%"PRIu64" skew=%"PRIu64" global=%"PRIu64","
541 1.11 riastrad " adding %"PRIu64" to skew\n",
542 1.11 riastrad local, skew, global, global + 1 - (local + skew));
543 1.11 riastrad #endif
544 1.11 riastrad ci->ci_xen_timecounter_backwards_evcnt.ev_count++;
545 1.2 bouyer result = global + 1;
546 1.11 riastrad ci->ci_xen_systime_ns_skew += global + 1 -
547 1.11 riastrad (local + skew);
548 1.2 bouyer } else {
549 1.11 riastrad result = local + skew;
550 1.2 bouyer }
551 1.2 bouyer } while (atomic_cas_64(&xen_global_systime_ns_stamp, global, result)
552 1.2 bouyer != global);
553 1.2 bouyer KASSERT(ci == curcpu());
554 1.2 bouyer splx(s);
555 1.2 bouyer
556 1.2 bouyer return result;
557 1.2 bouyer }
558 1.2 bouyer
559 1.2 bouyer /*
560 1.2 bouyer * xen_get_timecount(tc)
561 1.2 bouyer *
562 1.2 bouyer * Return the low 32 bits of a global monotonic view of the Xen
563 1.2 bouyer * system time.
564 1.2 bouyer */
565 1.2 bouyer static unsigned
566 1.2 bouyer xen_get_timecount(struct timecounter *tc)
567 1.2 bouyer {
568 1.2 bouyer
569 1.2 bouyer KASSERT(tc == &xen_timecounter);
570 1.2 bouyer
571 1.2 bouyer return (unsigned)xen_global_systime_ns();
572 1.2 bouyer }
573 1.2 bouyer
574 1.2 bouyer /*
575 1.2 bouyer * xen_delay(n)
576 1.2 bouyer *
577 1.2 bouyer * Wait approximately n microseconds.
578 1.2 bouyer */
579 1.2 bouyer void
580 1.2 bouyer xen_delay(unsigned n)
581 1.2 bouyer {
582 1.2 bouyer int bound;
583 1.2 bouyer
584 1.2 bouyer /* Bind to the CPU so we don't compare tsc on different CPUs. */
585 1.2 bouyer bound = curlwp_bind();
586 1.2 bouyer
587 1.2 bouyer if (curcpu()->ci_vcpu == NULL) {
588 1.2 bouyer curlwp_bindx(bound);
589 1.2 bouyer return;
590 1.2 bouyer }
591 1.2 bouyer
592 1.2 bouyer /* Short wait (<500us) or long wait? */
593 1.2 bouyer if (n < 500000) {
594 1.2 bouyer /*
595 1.2 bouyer * Xen system time is not precise enough for short
596 1.2 bouyer * delays, so use the tsc instead.
597 1.2 bouyer *
598 1.2 bouyer * We work with the current tsc frequency, and figure
599 1.2 bouyer * that if it changes while we're delaying, we've
600 1.2 bouyer * probably delayed long enough -- up to 500us.
601 1.2 bouyer *
602 1.2 bouyer * We do not use cpu_frequency(ci), which uses a
603 1.2 bouyer * quantity detected at boot time, and which may have
604 1.2 bouyer * changed by now if Xen has migrated this vCPU to
605 1.2 bouyer * another pCPU.
606 1.2 bouyer *
607 1.2 bouyer * XXX How long does it take to migrate pCPUs?
608 1.2 bouyer */
609 1.2 bouyer volatile struct vcpu_time_info *vt;
610 1.2 bouyer struct xen_vcputime_ticket ticket;
611 1.2 bouyer uint64_t tsc_start, last_tsc, tsc;
612 1.2 bouyer uint32_t tsc_to_system_mul;
613 1.2 bouyer int8_t tsc_shift;
614 1.2 bouyer
615 1.2 bouyer /* Get the starting tsc and tsc frequency. */
616 1.2 bouyer do {
617 1.2 bouyer vt = xen_vcputime_enter(&ticket);
618 1.2 bouyer tsc_start = last_tsc = xen_rdtsc();
619 1.2 bouyer tsc_to_system_mul = vt->tsc_to_system_mul;
620 1.2 bouyer tsc_shift = vt->tsc_shift;
621 1.2 bouyer } while (!xen_vcputime_exit(vt, &ticket));
622 1.2 bouyer
623 1.2 bouyer /*
624 1.2 bouyer * Wait until as many tsc ticks as there are in n
625 1.2 bouyer * microseconds have elapsed, or the tsc has gone
626 1.2 bouyer * backwards meaning we've probably migrated pCPUs.
627 1.2 bouyer */
628 1.2 bouyer for (;;) {
629 1.2 bouyer tsc = xen_rdtsc();
630 1.2 bouyer if (__predict_false(tsc < last_tsc))
631 1.2 bouyer break;
632 1.2 bouyer if (xen_tsc_to_ns_delta(tsc - tsc_start,
633 1.2 bouyer tsc_to_system_mul, tsc_shift)/1000 >= n)
634 1.2 bouyer break;
635 1.2 bouyer last_tsc = tsc;
636 1.2 bouyer }
637 1.2 bouyer } else {
638 1.2 bouyer /*
639 1.2 bouyer * Use the Xen system time for >=500us delays. From my
640 1.2 bouyer * testing, it seems to sometimes run backward by about
641 1.2 bouyer * 110us, which is not so bad.
642 1.2 bouyer */
643 1.2 bouyer uint64_t n_ns = 1000*(uint64_t)n;
644 1.2 bouyer uint64_t start_ns;
645 1.2 bouyer
646 1.2 bouyer /* Get the start time. */
647 1.2 bouyer start_ns = xen_vcputime_raw_systime_ns();
648 1.2 bouyer
649 1.2 bouyer /* Wait until the system time has passed the end. */
650 1.2 bouyer do {
651 1.2 bouyer HYPERVISOR_yield();
652 1.2 bouyer } while (xen_vcputime_raw_systime_ns() - start_ns < n_ns);
653 1.2 bouyer }
654 1.2 bouyer
655 1.2 bouyer /* Unbind from the CPU if we weren't already bound. */
656 1.2 bouyer curlwp_bindx(bound);
657 1.2 bouyer }
658 1.2 bouyer
659 1.2 bouyer /*
660 1.2 bouyer * xen_suspendclocks(ci)
661 1.2 bouyer *
662 1.2 bouyer * Stop handling the Xen timer event on the CPU of ci. Caller
663 1.2 bouyer * must be running on and bound to ci's CPU.
664 1.2 bouyer *
665 1.2 bouyer * Actually, caller must have kpreemption disabled, because that's
666 1.2 bouyer * easier to assert at the moment.
667 1.2 bouyer */
668 1.2 bouyer void
669 1.2 bouyer xen_suspendclocks(struct cpu_info *ci)
670 1.2 bouyer {
671 1.2 bouyer int evtch;
672 1.2 bouyer
673 1.2 bouyer KASSERT(ci == curcpu());
674 1.2 bouyer KASSERT(kpreempt_disabled());
675 1.2 bouyer
676 1.13 riastrad /*
677 1.13 riastrad * Find the VIRQ_TIMER event channel and close it so new timer
678 1.13 riastrad * interrupt events stop getting delivered to it.
679 1.13 riastrad *
680 1.13 riastrad * XXX Should this happen later? This is not the reverse order
681 1.13 riastrad * of xen_resumeclocks. It is apparently necessary in this
682 1.13 riastrad * order only because we don't stash evtchn anywhere, but we
683 1.13 riastrad * could stash it.
684 1.13 riastrad */
685 1.2 bouyer evtch = unbind_virq_from_evtch(VIRQ_TIMER);
686 1.2 bouyer KASSERT(evtch != -1);
687 1.2 bouyer
688 1.13 riastrad /*
689 1.13 riastrad * Mask the event channel so we stop getting new interrupts on
690 1.13 riastrad * it.
691 1.13 riastrad */
692 1.2 bouyer hypervisor_mask_event(evtch);
693 1.13 riastrad
694 1.13 riastrad /*
695 1.13 riastrad * Now that we are no longer getting new interrupts, remove the
696 1.13 riastrad * handler and wait for any existing calls to the handler to
697 1.13 riastrad * complete. After this point, there can be no concurrent
698 1.13 riastrad * calls to xen_timer_handler.
699 1.13 riastrad */
700 1.13 riastrad event_remove_handler(evtch,
701 1.2 bouyer __FPTRCAST(int (*)(void *), xen_timer_handler), ci);
702 1.2 bouyer
703 1.2 bouyer aprint_verbose("Xen clock: removed event channel %d\n", evtch);
704 1.2 bouyer
705 1.2 bouyer /* We'd better not have switched CPUs. */
706 1.2 bouyer KASSERT(ci == curcpu());
707 1.2 bouyer }
708 1.2 bouyer
709 1.2 bouyer /*
710 1.2 bouyer * xen_resumeclocks(ci)
711 1.2 bouyer *
712 1.2 bouyer * Start handling the Xen timer event on the CPU of ci. Arm the
713 1.2 bouyer * Xen timer. Caller must be running on and bound to ci's CPU.
714 1.2 bouyer *
715 1.2 bouyer * Actually, caller must have kpreemption disabled, because that's
716 1.2 bouyer * easier to assert at the moment.
717 1.2 bouyer */
718 1.2 bouyer void
719 1.2 bouyer xen_resumeclocks(struct cpu_info *ci)
720 1.2 bouyer {
721 1.2 bouyer char intr_xname[INTRDEVNAMEBUF];
722 1.2 bouyer int evtch;
723 1.2 bouyer int error __diagused;
724 1.2 bouyer
725 1.2 bouyer KASSERT(ci == curcpu());
726 1.2 bouyer KASSERT(kpreempt_disabled());
727 1.2 bouyer
728 1.13 riastrad /*
729 1.13 riastrad * Allocate an event channel to receive VIRQ_TIMER events.
730 1.13 riastrad */
731 1.2 bouyer evtch = bind_virq_to_evtch(VIRQ_TIMER);
732 1.2 bouyer KASSERT(evtch != -1);
733 1.2 bouyer
734 1.13 riastrad /*
735 1.13 riastrad * Set an event handler for VIRQ_TIMER events to call
736 1.13 riastrad * xen_timer_handler.
737 1.13 riastrad */
738 1.2 bouyer snprintf(intr_xname, sizeof(intr_xname), "%s clock",
739 1.2 bouyer device_xname(ci->ci_dev));
740 1.2 bouyer /* XXX sketchy function pointer cast -- fix the API, please */
741 1.2 bouyer if (event_set_handler(evtch,
742 1.2 bouyer __FPTRCAST(int (*)(void *), xen_timer_handler),
743 1.5 bouyer ci, IPL_CLOCK, NULL, intr_xname, true, ci) == NULL)
744 1.2 bouyer panic("failed to establish timer interrupt handler");
745 1.2 bouyer
746 1.2 bouyer aprint_verbose("Xen %s: using event channel %d\n", intr_xname, evtch);
747 1.2 bouyer
748 1.2 bouyer /* Disarm the periodic timer on Xen>=3.1 which is allegedly buggy. */
749 1.2 bouyer if (XEN_MAJOR(xen_version) > 3 || XEN_MINOR(xen_version) > 0) {
750 1.2 bouyer error = HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
751 1.2 bouyer ci->ci_vcpuid, NULL);
752 1.2 bouyer KASSERT(error == 0);
753 1.2 bouyer }
754 1.2 bouyer
755 1.2 bouyer /* Pretend the last hardclock happened right now. */
756 1.2 bouyer ci->ci_xen_hardclock_systime_ns = xen_vcputime_systime_ns();
757 1.2 bouyer
758 1.2 bouyer /* Arm the one-shot timer. */
759 1.2 bouyer error = HYPERVISOR_set_timer_op(ci->ci_xen_hardclock_systime_ns +
760 1.2 bouyer NS_PER_TICK);
761 1.2 bouyer KASSERT(error == 0);
762 1.13 riastrad
763 1.13 riastrad /*
764 1.13 riastrad * Ready to go. Unmask the event. After this point, Xen may
765 1.13 riastrad * start calling xen_timer_handler.
766 1.13 riastrad */
767 1.12 bouyer hypervisor_unmask_event(evtch);
768 1.2 bouyer
769 1.2 bouyer /* We'd better not have switched CPUs. */
770 1.2 bouyer KASSERT(ci == curcpu());
771 1.2 bouyer }
772 1.2 bouyer
773 1.2 bouyer /*
774 1.2 bouyer * xen_timer_handler(cookie, frame)
775 1.2 bouyer *
776 1.2 bouyer * Periodic Xen timer event handler for NetBSD hardclock. Calls
777 1.2 bouyer * to this may get delayed, so we run hardclock as many times as
778 1.2 bouyer * we need to in order to cover the Xen system time that elapsed.
779 1.2 bouyer * After that, re-arm the timer to run again at the next tick.
780 1.2 bouyer * The cookie is the pointer to struct cpu_info.
781 1.2 bouyer */
782 1.2 bouyer static int
783 1.2 bouyer xen_timer_handler(void *cookie, struct clockframe *frame)
784 1.2 bouyer {
785 1.2 bouyer struct cpu_info *ci = curcpu();
786 1.2 bouyer uint64_t last, now, delta, next;
787 1.2 bouyer int error;
788 1.2 bouyer
789 1.2 bouyer KASSERT(cpu_intr_p());
790 1.2 bouyer KASSERT(cookie == ci);
791 1.2 bouyer
792 1.7 riastrad #if defined(XENPV)
793 1.2 bouyer frame = NULL; /* We use values cached in curcpu() */
794 1.2 bouyer #endif
795 1.2 bouyer again:
796 1.2 bouyer /*
797 1.2 bouyer * Find how many nanoseconds of Xen system time has elapsed
798 1.2 bouyer * since the last hardclock tick.
799 1.2 bouyer */
800 1.2 bouyer last = ci->ci_xen_hardclock_systime_ns;
801 1.2 bouyer now = xen_vcputime_systime_ns();
802 1.2 bouyer if (now < last) {
803 1.9 riastrad SDT_PROBE2(sdt, xen, hardclock, systime__backward,
804 1.9 riastrad last, now);
805 1.9 riastrad #if XEN_CLOCK_DEBUG
806 1.9 riastrad device_printf(ci->ci_dev, "xen systime ran backwards"
807 1.9 riastrad " in hardclock %"PRIu64"ns\n",
808 1.2 bouyer last - now);
809 1.2 bouyer #endif
810 1.2 bouyer ci->ci_xen_systime_backwards_hardclock_evcnt.ev_count++;
811 1.2 bouyer now = last;
812 1.2 bouyer }
813 1.2 bouyer delta = now - last;
814 1.2 bouyer
815 1.2 bouyer /*
816 1.2 bouyer * Play hardclock catchup: run the hardclock timer as many
817 1.2 bouyer * times as appears necessary based on how much time has
818 1.2 bouyer * passed.
819 1.2 bouyer */
820 1.2 bouyer while (delta >= NS_PER_TICK) {
821 1.2 bouyer ci->ci_xen_hardclock_systime_ns += NS_PER_TICK;
822 1.2 bouyer delta -= NS_PER_TICK;
823 1.2 bouyer hardclock(frame);
824 1.9 riastrad if (__predict_false(delta >= NS_PER_TICK)) {
825 1.9 riastrad SDT_PROBE3(sdt, xen, hardclock, missed,
826 1.9 riastrad last, now, delta);
827 1.2 bouyer ci->ci_xen_missed_hardclock_evcnt.ev_count++;
828 1.9 riastrad }
829 1.2 bouyer }
830 1.2 bouyer
831 1.2 bouyer /*
832 1.2 bouyer * Re-arm the timer. If it fails, it's probably because the
833 1.2 bouyer * time is in the past, so update our idea of what the Xen
834 1.2 bouyer * system time is and try again.
835 1.2 bouyer */
836 1.2 bouyer next = ci->ci_xen_hardclock_systime_ns + NS_PER_TICK;
837 1.2 bouyer error = HYPERVISOR_set_timer_op(next);
838 1.2 bouyer if (error)
839 1.2 bouyer goto again;
840 1.2 bouyer
841 1.2 bouyer /* Success! */
842 1.2 bouyer return 0;
843 1.2 bouyer }
844 1.2 bouyer
845 1.2 bouyer /*
846 1.6 ad * xen_initclocks()
847 1.2 bouyer *
848 1.2 bouyer * Initialize the Xen clocks on the current CPU.
849 1.2 bouyer */
850 1.2 bouyer void
851 1.6 ad xen_initclocks(void)
852 1.2 bouyer {
853 1.2 bouyer struct cpu_info *ci = curcpu();
854 1.2 bouyer
855 1.2 bouyer /* If this is the primary CPU, do global initialization first. */
856 1.2 bouyer if (ci == &cpu_info_primary) {
857 1.2 bouyer /* Initialize the systemwide Xen timecounter. */
858 1.2 bouyer tc_init(&xen_timecounter);
859 1.2 bouyer }
860 1.2 bouyer
861 1.2 bouyer /* Attach the event counters. */
862 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_cpu_tsc_backwards_evcnt,
863 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
864 1.2 bouyer "cpu tsc ran backwards");
865 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_tsc_delta_negative_evcnt,
866 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
867 1.2 bouyer "tsc delta went negative");
868 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_raw_systime_wraparound_evcnt,
869 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
870 1.2 bouyer "raw systime wrapped around");
871 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_raw_systime_backwards_evcnt,
872 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
873 1.2 bouyer "raw systime went backwards");
874 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_systime_backwards_hardclock_evcnt,
875 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
876 1.2 bouyer "systime went backwards in hardclock");
877 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_missed_hardclock_evcnt,
878 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
879 1.2 bouyer "missed hardclock");
880 1.11 riastrad evcnt_attach_dynamic(&ci->ci_xen_timecounter_backwards_evcnt,
881 1.11 riastrad EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
882 1.11 riastrad "timecounter went backwards");
883 1.2 bouyer
884 1.2 bouyer /* Fire up the clocks. */
885 1.2 bouyer xen_resumeclocks(ci);
886 1.2 bouyer
887 1.2 bouyer #ifdef DOM0OPS
888 1.2 bouyer /*
889 1.2 bouyer * If this is a privileged dom0, start pushing the wall
890 1.2 bouyer * clock time back to the Xen hypervisor.
891 1.2 bouyer */
892 1.6 ad if (ci == &cpu_info_primary && xendomain_is_privileged())
893 1.2 bouyer xen_timepush_init();
894 1.2 bouyer #endif
895 1.2 bouyer }
896 1.2 bouyer
897 1.2 bouyer #ifdef DOM0OPS
898 1.2 bouyer
899 1.2 bouyer /*
900 1.2 bouyer * xen_timepush_init()
901 1.2 bouyer *
902 1.2 bouyer * Initialize callout to periodically set Xen hypervisor's wall
903 1.2 bouyer * clock time.
904 1.2 bouyer */
905 1.2 bouyer static void
906 1.2 bouyer xen_timepush_init(void)
907 1.2 bouyer {
908 1.2 bouyer struct sysctllog *log = NULL;
909 1.2 bouyer const struct sysctlnode *node = NULL;
910 1.2 bouyer int error;
911 1.2 bouyer
912 1.2 bouyer /* Start periodically updating the hypervisor's wall clock time. */
913 1.2 bouyer callout_init(&xen_timepush.ch, 0);
914 1.2 bouyer callout_setfunc(&xen_timepush.ch, xen_timepush_intr, NULL);
915 1.2 bouyer
916 1.2 bouyer /* Pick a default frequency for timepush. */
917 1.2 bouyer xen_timepush.ticks = 53*hz + 3; /* avoid exact # of min/sec */
918 1.2 bouyer
919 1.2 bouyer /* Create machdep.xen node. */
920 1.2 bouyer /* XXX Creation of the `machdep.xen' node should be elsewhere. */
921 1.2 bouyer error = sysctl_createv(&log, 0, NULL, &node, 0,
922 1.2 bouyer CTLTYPE_NODE, "xen",
923 1.2 bouyer SYSCTL_DESCR("Xen top level node"),
924 1.2 bouyer NULL, 0, NULL, 0,
925 1.2 bouyer CTL_MACHDEP, CTL_CREATE, CTL_EOL);
926 1.2 bouyer if (error)
927 1.2 bouyer goto fail;
928 1.2 bouyer KASSERT(node != NULL);
929 1.2 bouyer
930 1.2 bouyer /* Create int machdep.xen.timepush_ticks knob. */
931 1.2 bouyer error = sysctl_createv(&log, 0, NULL, NULL, CTLFLAG_READWRITE,
932 1.2 bouyer CTLTYPE_INT, "timepush_ticks",
933 1.2 bouyer SYSCTL_DESCR("How often to update the hypervisor's time-of-day;"
934 1.2 bouyer " 0 to disable"),
935 1.2 bouyer sysctl_xen_timepush, 0, &xen_timepush.ticks, 0,
936 1.2 bouyer CTL_CREATE, CTL_EOL);
937 1.2 bouyer if (error)
938 1.2 bouyer goto fail;
939 1.2 bouyer
940 1.2 bouyer /* Start the timepush callout. */
941 1.2 bouyer callout_schedule(&xen_timepush.ch, xen_timepush.ticks);
942 1.2 bouyer
943 1.2 bouyer /* Success! */
944 1.2 bouyer return;
945 1.2 bouyer
946 1.2 bouyer fail: sysctl_teardown(&log);
947 1.2 bouyer }
948 1.2 bouyer
949 1.2 bouyer /*
950 1.2 bouyer * xen_timepush_intr(cookie)
951 1.2 bouyer *
952 1.2 bouyer * Callout interrupt handler to push NetBSD's idea of the wall
953 1.2 bouyer * clock time, usually synchronized with NTP, back to the Xen
954 1.2 bouyer * hypervisor.
955 1.2 bouyer */
956 1.2 bouyer static void
957 1.2 bouyer xen_timepush_intr(void *cookie)
958 1.2 bouyer {
959 1.2 bouyer
960 1.2 bouyer resettodr();
961 1.2 bouyer if (xen_timepush.ticks)
962 1.2 bouyer callout_schedule(&xen_timepush.ch, xen_timepush.ticks);
963 1.2 bouyer }
964 1.2 bouyer
965 1.2 bouyer /*
966 1.2 bouyer * sysctl_xen_timepush(...)
967 1.2 bouyer *
968 1.2 bouyer * Sysctl handler to set machdep.xen.timepush_ticks.
969 1.2 bouyer */
970 1.2 bouyer static int
971 1.2 bouyer sysctl_xen_timepush(SYSCTLFN_ARGS)
972 1.2 bouyer {
973 1.2 bouyer struct sysctlnode node;
974 1.2 bouyer int ticks;
975 1.2 bouyer int error;
976 1.2 bouyer
977 1.2 bouyer ticks = xen_timepush.ticks;
978 1.2 bouyer node = *rnode;
979 1.2 bouyer node.sysctl_data = &ticks;
980 1.2 bouyer error = sysctl_lookup(SYSCTLFN_CALL(&node));
981 1.2 bouyer if (error || newp == NULL)
982 1.2 bouyer return error;
983 1.2 bouyer
984 1.2 bouyer if (ticks < 0)
985 1.2 bouyer return EINVAL;
986 1.2 bouyer
987 1.2 bouyer if (ticks != xen_timepush.ticks) {
988 1.2 bouyer xen_timepush.ticks = ticks;
989 1.2 bouyer
990 1.2 bouyer if (ticks == 0)
991 1.2 bouyer callout_stop(&xen_timepush.ch);
992 1.2 bouyer else
993 1.2 bouyer callout_schedule(&xen_timepush.ch, ticks);
994 1.2 bouyer }
995 1.2 bouyer
996 1.2 bouyer return 0;
997 1.2 bouyer }
998 1.2 bouyer
999 1.2 bouyer #endif /* DOM0OPS */
1000 1.2 bouyer
1001 1.2 bouyer static int xen_rtc_get(struct todr_chip_handle *, struct timeval *);
1002 1.2 bouyer static int xen_rtc_set(struct todr_chip_handle *, struct timeval *);
1003 1.2 bouyer static void xen_wallclock_time(struct timespec *);
1004 1.2 bouyer /*
1005 1.2 bouyer * xen time of day register:
1006 1.2 bouyer *
1007 1.2 bouyer * Xen wall clock time, plus a Xen vCPU system time adjustment.
1008 1.2 bouyer */
1009 1.2 bouyer static struct todr_chip_handle xen_todr_chip = {
1010 1.2 bouyer .todr_gettime = xen_rtc_get,
1011 1.2 bouyer .todr_settime = xen_rtc_set,
1012 1.2 bouyer };
1013 1.2 bouyer
1014 1.2 bouyer /*
1015 1.4 bouyer * xen_startrtclock()
1016 1.2 bouyer *
1017 1.2 bouyer * Initialize the real-time clock from x86 machdep autoconf.
1018 1.2 bouyer */
1019 1.2 bouyer void
1020 1.4 bouyer xen_startrtclock(void)
1021 1.2 bouyer {
1022 1.2 bouyer
1023 1.2 bouyer todr_attach(&xen_todr_chip);
1024 1.2 bouyer }
1025 1.2 bouyer
1026 1.2 bouyer /*
1027 1.2 bouyer * xen_rtc_get(todr, tv)
1028 1.2 bouyer *
1029 1.2 bouyer * Get the current real-time clock from the Xen wall clock time
1030 1.2 bouyer * and vCPU system time adjustment.
1031 1.2 bouyer */
1032 1.2 bouyer static int
1033 1.2 bouyer xen_rtc_get(struct todr_chip_handle *todr, struct timeval *tvp)
1034 1.2 bouyer {
1035 1.2 bouyer struct timespec ts;
1036 1.2 bouyer
1037 1.2 bouyer xen_wallclock_time(&ts);
1038 1.2 bouyer TIMESPEC_TO_TIMEVAL(tvp, &ts);
1039 1.2 bouyer
1040 1.2 bouyer return 0;
1041 1.2 bouyer }
1042 1.2 bouyer
1043 1.2 bouyer /*
1044 1.2 bouyer * xen_rtc_set(todr, tv)
1045 1.2 bouyer *
1046 1.2 bouyer * Set the Xen wall clock time, if we can.
1047 1.2 bouyer */
1048 1.2 bouyer static int
1049 1.2 bouyer xen_rtc_set(struct todr_chip_handle *todr, struct timeval *tvp)
1050 1.2 bouyer {
1051 1.2 bouyer #ifdef DOM0OPS
1052 1.2 bouyer struct clock_ymdhms dt;
1053 1.2 bouyer xen_platform_op_t op;
1054 1.2 bouyer uint64_t systime_ns;
1055 1.2 bouyer
1056 1.2 bouyer if (xendomain_is_privileged()) {
1057 1.2 bouyer /* Convert to ymdhms and set the x86 ISA RTC. */
1058 1.2 bouyer clock_secs_to_ymdhms(tvp->tv_sec, &dt);
1059 1.2 bouyer rtc_set_ymdhms(NULL, &dt);
1060 1.2 bouyer
1061 1.2 bouyer /* Get the global system time so we can preserve it. */
1062 1.2 bouyer systime_ns = xen_global_systime_ns();
1063 1.2 bouyer
1064 1.2 bouyer /* Set the hypervisor wall clock time. */
1065 1.2 bouyer op.cmd = XENPF_settime;
1066 1.2 bouyer op.u.settime.secs = tvp->tv_sec;
1067 1.2 bouyer op.u.settime.nsecs = tvp->tv_usec * 1000;
1068 1.2 bouyer op.u.settime.system_time = systime_ns;
1069 1.2 bouyer return HYPERVISOR_platform_op(&op);
1070 1.2 bouyer }
1071 1.2 bouyer #endif
1072 1.2 bouyer
1073 1.2 bouyer /* XXX Should this fail if not on privileged dom0? */
1074 1.2 bouyer return 0;
1075 1.2 bouyer }
1076 1.2 bouyer
1077 1.2 bouyer /*
1078 1.2 bouyer * xen_wallclock_time(tsp)
1079 1.2 bouyer *
1080 1.2 bouyer * Return a snapshot of the current low-resolution wall clock
1081 1.2 bouyer * time, as reported by the hypervisor, in tsp.
1082 1.2 bouyer */
1083 1.2 bouyer static void
1084 1.2 bouyer xen_wallclock_time(struct timespec *tsp)
1085 1.2 bouyer {
1086 1.2 bouyer struct xen_wallclock_ticket ticket;
1087 1.2 bouyer uint64_t systime_ns;
1088 1.2 bouyer
1089 1.2 bouyer int s = splsched(); /* make sure we won't be interrupted */
1090 1.2 bouyer /* Read the last wall clock sample from the hypervisor. */
1091 1.2 bouyer do {
1092 1.2 bouyer xen_wallclock_enter(&ticket);
1093 1.2 bouyer tsp->tv_sec = HYPERVISOR_shared_info->wc_sec;
1094 1.2 bouyer tsp->tv_nsec = HYPERVISOR_shared_info->wc_nsec;
1095 1.2 bouyer } while (!xen_wallclock_exit(&ticket));
1096 1.2 bouyer
1097 1.2 bouyer /* Get the global system time. */
1098 1.2 bouyer systime_ns = xen_global_systime_ns();
1099 1.2 bouyer splx(s);
1100 1.2 bouyer
1101 1.2 bouyer /* Add the system time to the wall clock time. */
1102 1.2 bouyer systime_ns += tsp->tv_nsec;
1103 1.2 bouyer tsp->tv_sec += systime_ns / 1000000000ull;
1104 1.2 bouyer tsp->tv_nsec = systime_ns % 1000000000ull;
1105 1.2 bouyer }
1106 1.2 bouyer
1107 1.4 bouyer #ifdef XENPV
1108 1.4 bouyer /*
1109 1.4 bouyer * setstatclockrate(rate)
1110 1.4 bouyer *
1111 1.4 bouyer * Set the statclock to run at rate, in units of ticks per second.
1112 1.4 bouyer *
1113 1.4 bouyer * Currently Xen does not have a separate statclock, so this is a
1114 1.4 bouyer * noop; instad the statclock runs in hardclock.
1115 1.4 bouyer */
1116 1.4 bouyer void
1117 1.4 bouyer setstatclockrate(int rate)
1118 1.4 bouyer {
1119 1.4 bouyer }
1120 1.2 bouyer #endif /* XENPV */
1121