xen_clock.c revision 1.2 1 1.2 bouyer /* $NetBSD: xen_clock.c,v 1.2 2020/04/25 15:26:18 bouyer Exp $ */
2 1.2 bouyer
3 1.2 bouyer /*-
4 1.2 bouyer * Copyright (c) 2017, 2018 The NetBSD Foundation, Inc.
5 1.2 bouyer * All rights reserved.
6 1.2 bouyer *
7 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
8 1.2 bouyer * by Taylor R. Campbell.
9 1.2 bouyer *
10 1.2 bouyer * Redistribution and use in source and binary forms, with or without
11 1.2 bouyer * modification, are permitted provided that the following conditions
12 1.2 bouyer * are met:
13 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
14 1.2 bouyer * notice, this list of conditions and the following disclaimer.
15 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
17 1.2 bouyer * documentation and/or other materials provided with the distribution.
18 1.2 bouyer *
19 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
30 1.2 bouyer */
31 1.2 bouyer
32 1.2 bouyer #include "opt_xen.h"
33 1.2 bouyer
34 1.2 bouyer #ifndef XEN_CLOCK_DEBUG
35 1.2 bouyer #define XEN_CLOCK_DEBUG 0
36 1.2 bouyer #endif
37 1.2 bouyer
38 1.2 bouyer #include <sys/cdefs.h>
39 1.2 bouyer __KERNEL_RCSID(0, "$NetBSD: xen_clock.c,v 1.2 2020/04/25 15:26:18 bouyer Exp $");
40 1.2 bouyer
41 1.2 bouyer #include <sys/param.h>
42 1.2 bouyer #include <sys/types.h>
43 1.2 bouyer #include <sys/atomic.h>
44 1.2 bouyer #include <sys/callout.h>
45 1.2 bouyer #include <sys/cpu.h>
46 1.2 bouyer #include <sys/device.h>
47 1.2 bouyer #include <sys/evcnt.h>
48 1.2 bouyer #include <sys/intr.h>
49 1.2 bouyer #include <sys/kernel.h>
50 1.2 bouyer #include <sys/lwp.h>
51 1.2 bouyer #include <sys/proc.h>
52 1.2 bouyer #include <sys/sysctl.h>
53 1.2 bouyer #include <sys/systm.h>
54 1.2 bouyer #include <sys/time.h>
55 1.2 bouyer #include <sys/timetc.h>
56 1.2 bouyer
57 1.2 bouyer #include <dev/clock_subr.h>
58 1.2 bouyer
59 1.2 bouyer #include <machine/cpu.h>
60 1.2 bouyer #include <machine/cpu_counter.h>
61 1.2 bouyer #include <machine/lock.h>
62 1.2 bouyer
63 1.2 bouyer #include <xen/evtchn.h>
64 1.2 bouyer #include <xen/hypervisor.h>
65 1.2 bouyer #include <xen/include/public/vcpu.h>
66 1.2 bouyer #include <xen/xen.h>
67 1.2 bouyer
68 1.2 bouyer #include <x86/rtc.h>
69 1.2 bouyer
70 1.2 bouyer #define NS_PER_TICK ((uint64_t)1000000000ULL/hz)
71 1.2 bouyer
72 1.2 bouyer static uint64_t xen_vcputime_systime_ns(void);
73 1.2 bouyer static uint64_t xen_vcputime_raw_systime_ns(void);
74 1.2 bouyer static uint64_t xen_global_systime_ns(void);
75 1.2 bouyer static unsigned xen_get_timecount(struct timecounter *);
76 1.2 bouyer static int xen_timer_handler(void *, struct clockframe *);
77 1.2 bouyer
78 1.2 bouyer /*
79 1.2 bouyer * xen timecounter:
80 1.2 bouyer *
81 1.2 bouyer * Xen vCPU system time, plus an adjustment with rdtsc.
82 1.2 bouyer */
83 1.2 bouyer static struct timecounter xen_timecounter = {
84 1.2 bouyer .tc_get_timecount = xen_get_timecount,
85 1.2 bouyer .tc_poll_pps = NULL,
86 1.2 bouyer .tc_counter_mask = ~0U,
87 1.2 bouyer .tc_frequency = 1000000000ULL, /* 1 GHz, i.e. units of nanoseconds */
88 1.2 bouyer .tc_name = "xen_system_time",
89 1.2 bouyer .tc_quality = 10000,
90 1.2 bouyer };
91 1.2 bouyer
92 1.2 bouyer /*
93 1.2 bouyer * xen_global_systime_ns_stamp
94 1.2 bouyer *
95 1.2 bouyer * The latest Xen vCPU system time that has been observed on any
96 1.2 bouyer * CPU, for a global monotonic view of the Xen system time clock.
97 1.2 bouyer */
98 1.2 bouyer static volatile uint64_t xen_global_systime_ns_stamp __cacheline_aligned;
99 1.2 bouyer
100 1.2 bouyer #ifdef DOM0OPS
101 1.2 bouyer /*
102 1.2 bouyer * xen timepush state:
103 1.2 bouyer *
104 1.2 bouyer * Callout to periodically, after a sysctl-configurable number of
105 1.2 bouyer * NetBSD ticks, set the Xen hypervisor's wall clock time.
106 1.2 bouyer */
107 1.2 bouyer static struct {
108 1.2 bouyer struct callout ch;
109 1.2 bouyer int ticks;
110 1.2 bouyer } xen_timepush;
111 1.2 bouyer
112 1.2 bouyer static void xen_timepush_init(void);
113 1.2 bouyer static void xen_timepush_intr(void *);
114 1.2 bouyer static int sysctl_xen_timepush(SYSCTLFN_ARGS);
115 1.2 bouyer #endif
116 1.2 bouyer
117 1.2 bouyer /*
118 1.2 bouyer * xen_rdtsc()
119 1.2 bouyer *
120 1.2 bouyer * Read the local pCPU's tsc.
121 1.2 bouyer */
122 1.2 bouyer static inline uint64_t
123 1.2 bouyer xen_rdtsc(void)
124 1.2 bouyer {
125 1.2 bouyer uint32_t lo, hi;
126 1.2 bouyer
127 1.2 bouyer asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
128 1.2 bouyer
129 1.2 bouyer return ((uint64_t)hi << 32) | lo;
130 1.2 bouyer }
131 1.2 bouyer
132 1.2 bouyer /*
133 1.2 bouyer * struct xen_vcputime_ticket
134 1.2 bouyer *
135 1.2 bouyer * State for a vCPU read section, during which a caller may read
136 1.2 bouyer * from fields of a struct vcpu_time_info and call xen_rdtsc.
137 1.2 bouyer * Caller must enter with xen_vcputime_enter, exit with
138 1.2 bouyer * xen_vcputime_exit, and be prepared to retry if
139 1.2 bouyer * xen_vcputime_exit fails.
140 1.2 bouyer */
141 1.2 bouyer struct xen_vcputime_ticket {
142 1.2 bouyer uint64_t version;
143 1.2 bouyer };
144 1.2 bouyer
145 1.2 bouyer /*
146 1.2 bouyer * xen_vcputime_enter(tp)
147 1.2 bouyer *
148 1.2 bouyer * Enter a vCPU time read section and store a ticket in *tp, which
149 1.2 bouyer * the caller must use with xen_vcputime_exit. Return a pointer
150 1.2 bouyer * to the current CPU's vcpu_time_info structure. Caller must
151 1.2 bouyer * already be bound to the CPU.
152 1.2 bouyer */
153 1.2 bouyer static inline volatile struct vcpu_time_info *
154 1.2 bouyer xen_vcputime_enter(struct xen_vcputime_ticket *tp)
155 1.2 bouyer {
156 1.2 bouyer volatile struct vcpu_time_info *vt = &curcpu()->ci_vcpu->time;
157 1.2 bouyer
158 1.2 bouyer while (__predict_false(1 & (tp->version = vt->version)))
159 1.2 bouyer SPINLOCK_BACKOFF_HOOK;
160 1.2 bouyer
161 1.2 bouyer /*
162 1.2 bouyer * Must read the version before reading the tsc on the local
163 1.2 bouyer * pCPU. We are racing only with interruption by the
164 1.2 bouyer * hypervisor, so no need for a stronger memory barrier.
165 1.2 bouyer */
166 1.2 bouyer __insn_barrier();
167 1.2 bouyer
168 1.2 bouyer return vt;
169 1.2 bouyer }
170 1.2 bouyer
171 1.2 bouyer /*
172 1.2 bouyer * xen_vcputime_exit(vt, tp)
173 1.2 bouyer *
174 1.2 bouyer * Exit a vCPU time read section with the ticket in *tp from
175 1.2 bouyer * xen_vcputime_enter. Return true on success, false if caller
176 1.2 bouyer * must retry.
177 1.2 bouyer */
178 1.2 bouyer static inline bool
179 1.2 bouyer xen_vcputime_exit(volatile struct vcpu_time_info *vt,
180 1.2 bouyer struct xen_vcputime_ticket *tp)
181 1.2 bouyer {
182 1.2 bouyer
183 1.2 bouyer KASSERT(vt == &curcpu()->ci_vcpu->time);
184 1.2 bouyer
185 1.2 bouyer /*
186 1.2 bouyer * Must read the tsc before re-reading the version on the local
187 1.2 bouyer * pCPU. We are racing only with interruption by the
188 1.2 bouyer * hypervisor, so no need for a stronger memory barrier.
189 1.2 bouyer */
190 1.2 bouyer __insn_barrier();
191 1.2 bouyer
192 1.2 bouyer return tp->version == vt->version;
193 1.2 bouyer }
194 1.2 bouyer
195 1.2 bouyer /*
196 1.2 bouyer * xen_tsc_to_ns_delta(delta_tsc, mul_frac, shift)
197 1.2 bouyer *
198 1.2 bouyer * Convert a difference in tsc units to a difference in
199 1.2 bouyer * nanoseconds given a multiplier and shift for the unit
200 1.2 bouyer * conversion.
201 1.2 bouyer */
202 1.2 bouyer static inline uint64_t
203 1.2 bouyer xen_tsc_to_ns_delta(uint64_t delta_tsc, uint32_t tsc_to_system_mul,
204 1.2 bouyer int8_t tsc_shift)
205 1.2 bouyer {
206 1.2 bouyer uint32_t delta_tsc_hi, delta_tsc_lo;
207 1.2 bouyer
208 1.2 bouyer if (tsc_shift < 0)
209 1.2 bouyer delta_tsc >>= -tsc_shift;
210 1.2 bouyer else
211 1.2 bouyer delta_tsc <<= tsc_shift;
212 1.2 bouyer
213 1.2 bouyer delta_tsc_hi = delta_tsc >> 32;
214 1.2 bouyer delta_tsc_lo = delta_tsc & 0xffffffffUL;
215 1.2 bouyer
216 1.2 bouyer /* d*m/2^32 = (2^32 d_h + d_l)*m/2^32 = d_h*m + (d_l*m)/2^32 */
217 1.2 bouyer return ((uint64_t)delta_tsc_hi * tsc_to_system_mul) +
218 1.2 bouyer (((uint64_t)delta_tsc_lo * tsc_to_system_mul) >> 32);
219 1.2 bouyer }
220 1.2 bouyer
221 1.2 bouyer /*
222 1.2 bouyer * xen_vcputime_systime_ns()
223 1.2 bouyer *
224 1.2 bouyer * Return a snapshot of the Xen system time plus an adjustment
225 1.2 bouyer * from the tsc, in units of nanoseconds. Caller must be bound to
226 1.2 bouyer * the current CPU.
227 1.2 bouyer */
228 1.2 bouyer static uint64_t
229 1.2 bouyer xen_vcputime_systime_ns(void)
230 1.2 bouyer {
231 1.2 bouyer volatile struct vcpu_time_info *vt;
232 1.2 bouyer struct cpu_info *ci = curcpu();
233 1.2 bouyer struct xen_vcputime_ticket ticket;
234 1.2 bouyer uint64_t raw_systime_ns, tsc_timestamp, tsc, delta_tsc, delta_ns;
235 1.2 bouyer uint32_t tsc_to_system_mul;
236 1.2 bouyer int8_t tsc_shift;
237 1.2 bouyer uint64_t systime_ns;
238 1.2 bouyer
239 1.2 bouyer /* We'd better be bound to the CPU in _some_ way. */
240 1.2 bouyer KASSERT(cpu_intr_p() || cpu_softintr_p() || kpreempt_disabled() ||
241 1.2 bouyer (curlwp->l_flag & LP_BOUND));
242 1.2 bouyer
243 1.2 bouyer /*
244 1.2 bouyer * Repeatedly try to read the system time, corresponding tsc
245 1.2 bouyer * timestamp, and tsc frequency until we get a consistent view.
246 1.2 bouyer */
247 1.2 bouyer do {
248 1.2 bouyer vt = xen_vcputime_enter(&ticket);
249 1.2 bouyer
250 1.2 bouyer /* Grab Xen's snapshot of raw system time and tsc. */
251 1.2 bouyer raw_systime_ns = vt->system_time;
252 1.2 bouyer tsc_timestamp = vt->tsc_timestamp;
253 1.2 bouyer
254 1.2 bouyer /* Get Xen's current idea of how fast the tsc is counting. */
255 1.2 bouyer tsc_to_system_mul = vt->tsc_to_system_mul;
256 1.2 bouyer tsc_shift = vt->tsc_shift;
257 1.2 bouyer
258 1.2 bouyer /* Read the CPU's tsc. */
259 1.2 bouyer tsc = xen_rdtsc();
260 1.2 bouyer } while (!xen_vcputime_exit(vt, &ticket));
261 1.2 bouyer
262 1.2 bouyer /*
263 1.2 bouyer * Out of paranoia, check whether the tsc has gone backwards
264 1.2 bouyer * since Xen's timestamp.
265 1.2 bouyer *
266 1.2 bouyer * This shouldn't happen because the Xen hypervisor is supposed
267 1.2 bouyer * to have read the tsc _before_ writing to the vcpu_time_info
268 1.2 bouyer * page, _before_ we read the tsc.
269 1.2 bouyer *
270 1.2 bouyer * Further, if we switched pCPUs after reading the tsc
271 1.2 bouyer * timestamp but before reading the CPU's tsc, the hypervisor
272 1.2 bouyer * had better notify us by updating the version too and forcing
273 1.2 bouyer * us to retry the vCPU time read.
274 1.2 bouyer */
275 1.2 bouyer if (__predict_false(tsc < tsc_timestamp)) {
276 1.2 bouyer /*
277 1.2 bouyer * Notify the console that the CPU's tsc appeared to
278 1.2 bouyer * run behind Xen's idea of it, and pretend it hadn't.
279 1.2 bouyer */
280 1.2 bouyer #if XEN_CLOCK_DEBUG /* XXX dtrace hook */
281 1.2 bouyer printf("xen cpu tsc %"PRIu64
282 1.2 bouyer " ran backwards from timestamp %"PRIu64
283 1.2 bouyer " by %"PRIu64"\n",
284 1.2 bouyer tsc, tsc_timestamp, tsc_timestamp - tsc);
285 1.2 bouyer #endif
286 1.2 bouyer ci->ci_xen_cpu_tsc_backwards_evcnt.ev_count++;
287 1.2 bouyer delta_ns = delta_tsc = 0;
288 1.2 bouyer } else {
289 1.2 bouyer /* Find how far the CPU's tsc has advanced. */
290 1.2 bouyer delta_tsc = tsc - tsc_timestamp;
291 1.2 bouyer
292 1.2 bouyer /* Convert the tsc delta to a nanosecond delta. */
293 1.2 bouyer delta_ns = xen_tsc_to_ns_delta(delta_tsc, tsc_to_system_mul,
294 1.2 bouyer tsc_shift);
295 1.2 bouyer }
296 1.2 bouyer
297 1.2 bouyer /*
298 1.2 bouyer * Notify the console if the delta computation yielded a
299 1.2 bouyer * negative, and pretend it hadn't.
300 1.2 bouyer *
301 1.2 bouyer * This doesn't make sense but I include it out of paranoia.
302 1.2 bouyer */
303 1.2 bouyer if (__predict_false((int64_t)delta_ns < 0)) {
304 1.2 bouyer #if XEN_CLOCK_DEBUG /* XXX dtrace hook */
305 1.2 bouyer printf("xen tsc delta in ns went negative: %"PRId64"\n",
306 1.2 bouyer delta_ns);
307 1.2 bouyer #endif
308 1.2 bouyer ci->ci_xen_tsc_delta_negative_evcnt.ev_count++;
309 1.2 bouyer delta_ns = 0;
310 1.2 bouyer }
311 1.2 bouyer
312 1.2 bouyer /*
313 1.2 bouyer * Compute the TSC-adjusted system time.
314 1.2 bouyer */
315 1.2 bouyer systime_ns = raw_systime_ns + delta_ns;
316 1.2 bouyer
317 1.2 bouyer /*
318 1.2 bouyer * Notify the console if the addition wrapped around.
319 1.2 bouyer *
320 1.2 bouyer * This shouldn't happen because system time should be relative
321 1.2 bouyer * to a reasonable reference point, not centuries in the past.
322 1.2 bouyer * (2^64 ns is approximately half a millennium.)
323 1.2 bouyer */
324 1.2 bouyer if (__predict_false(systime_ns < raw_systime_ns)) {
325 1.2 bouyer #if XEN_CLOCK_DEBUG /* XXX dtrace hook */
326 1.2 bouyer printf("xen raw systime + tsc delta wrapped around:"
327 1.2 bouyer " %"PRIu64" + %"PRIu64" = %"PRIu64"\n",
328 1.2 bouyer raw_systime_ns, delta_ns, systime_ns);
329 1.2 bouyer #endif
330 1.2 bouyer ci->ci_xen_raw_systime_wraparound_evcnt.ev_count++;
331 1.2 bouyer }
332 1.2 bouyer
333 1.2 bouyer /*
334 1.2 bouyer * Notify the console if the TSC-adjusted Xen system time
335 1.2 bouyer * appears to have gone backwards, and pretend we had gone
336 1.2 bouyer * forward. This seems to happen pretty regularly under load.
337 1.2 bouyer */
338 1.2 bouyer if (__predict_false(ci->ci_xen_last_systime_ns > systime_ns)) {
339 1.2 bouyer #if XEN_CLOCK_DEBUG /* XXX dtrace hook */
340 1.2 bouyer printf("xen raw systime + tsc delta went backwards:"
341 1.2 bouyer " %"PRIu64" > %"PRIu64"\n",
342 1.2 bouyer ci->ci_xen_last_systime_ns, systime_ns);
343 1.2 bouyer printf(" raw_systime_ns=%"PRIu64"\n tsc_timestamp=%"PRIu64"\n"
344 1.2 bouyer " tsc=%"PRIu64"\n tsc_to_system_mul=%"PRIu32"\n"
345 1.2 bouyer " tsc_shift=%"PRId8"\n delta_tsc=%"PRIu64"\n"
346 1.2 bouyer " delta_ns=%"PRIu64"\n",
347 1.2 bouyer raw_systime_ns, tsc_timestamp, tsc, tsc_to_system_mul,
348 1.2 bouyer tsc_shift, delta_tsc, delta_ns);
349 1.2 bouyer #endif
350 1.2 bouyer ci->ci_xen_raw_systime_backwards_evcnt.ev_count++;
351 1.2 bouyer systime_ns = ci->ci_xen_last_systime_ns + 1;
352 1.2 bouyer }
353 1.2 bouyer
354 1.2 bouyer /* Remember the TSC-adjusted Xen system time. */
355 1.2 bouyer ci->ci_xen_last_systime_ns = systime_ns;
356 1.2 bouyer
357 1.2 bouyer /* We had better not have migrated CPUs. */
358 1.2 bouyer KASSERT(ci == curcpu());
359 1.2 bouyer
360 1.2 bouyer /* And we're done: return the TSC-adjusted systime in nanoseconds. */
361 1.2 bouyer return systime_ns;
362 1.2 bouyer }
363 1.2 bouyer
364 1.2 bouyer /*
365 1.2 bouyer * xen_vcputime_raw_systime_ns()
366 1.2 bouyer *
367 1.2 bouyer * Return a snapshot of the current Xen system time to the
368 1.2 bouyer * resolution of the Xen hypervisor tick, in units of nanoseconds.
369 1.2 bouyer */
370 1.2 bouyer static uint64_t
371 1.2 bouyer xen_vcputime_raw_systime_ns(void)
372 1.2 bouyer {
373 1.2 bouyer volatile struct vcpu_time_info *vt;
374 1.2 bouyer struct xen_vcputime_ticket ticket;
375 1.2 bouyer uint64_t raw_systime_ns;
376 1.2 bouyer
377 1.2 bouyer do {
378 1.2 bouyer vt = xen_vcputime_enter(&ticket);
379 1.2 bouyer raw_systime_ns = vt->system_time;
380 1.2 bouyer } while (!xen_vcputime_exit(vt, &ticket));
381 1.2 bouyer
382 1.2 bouyer return raw_systime_ns;
383 1.2 bouyer }
384 1.2 bouyer
385 1.2 bouyer /*
386 1.2 bouyer * struct xen_wallclock_ticket
387 1.2 bouyer *
388 1.2 bouyer * State for a wall clock read section, during which a caller may
389 1.2 bouyer * read from the wall clock fields of HYPERVISOR_shared_info.
390 1.2 bouyer * Caller must enter with xen_wallclock_enter, exit with
391 1.2 bouyer * xen_wallclock_exit, and be prepared to retry if
392 1.2 bouyer * xen_wallclock_exit fails.
393 1.2 bouyer */
394 1.2 bouyer struct xen_wallclock_ticket {
395 1.2 bouyer uint32_t version;
396 1.2 bouyer };
397 1.2 bouyer
398 1.2 bouyer /*
399 1.2 bouyer * xen_wallclock_enter(tp)
400 1.2 bouyer *
401 1.2 bouyer * Enter a wall clock read section and store a ticket in *tp,
402 1.2 bouyer * which the caller must use with xen_wallclock_exit.
403 1.2 bouyer */
404 1.2 bouyer static inline void
405 1.2 bouyer xen_wallclock_enter(struct xen_wallclock_ticket *tp)
406 1.2 bouyer {
407 1.2 bouyer
408 1.2 bouyer while (__predict_false(1 & (tp->version =
409 1.2 bouyer HYPERVISOR_shared_info->wc_version)))
410 1.2 bouyer SPINLOCK_BACKOFF_HOOK;
411 1.2 bouyer
412 1.2 bouyer /*
413 1.2 bouyer * Must read the version from memory before reading the
414 1.2 bouyer * timestamp from memory, as written potentially by another
415 1.2 bouyer * pCPU.
416 1.2 bouyer */
417 1.2 bouyer membar_consumer();
418 1.2 bouyer }
419 1.2 bouyer
420 1.2 bouyer /*
421 1.2 bouyer * xen_wallclock_exit(tp)
422 1.2 bouyer *
423 1.2 bouyer * Exit a wall clock read section with the ticket in *tp from
424 1.2 bouyer * xen_wallclock_enter. Return true on success, false if caller
425 1.2 bouyer * must retry.
426 1.2 bouyer */
427 1.2 bouyer static inline bool
428 1.2 bouyer xen_wallclock_exit(struct xen_wallclock_ticket *tp)
429 1.2 bouyer {
430 1.2 bouyer
431 1.2 bouyer /*
432 1.2 bouyer * Must read the timestamp from memory before re-reading the
433 1.2 bouyer * version from memory, as written potentially by another pCPU.
434 1.2 bouyer */
435 1.2 bouyer membar_consumer();
436 1.2 bouyer
437 1.2 bouyer return tp->version == HYPERVISOR_shared_info->wc_version;
438 1.2 bouyer }
439 1.2 bouyer
440 1.2 bouyer /*
441 1.2 bouyer * xen_global_systime_ns()
442 1.2 bouyer *
443 1.2 bouyer * Return a global monotonic view of the system time in
444 1.2 bouyer * nanoseconds, computed by the per-CPU Xen raw system time plus
445 1.2 bouyer * an rdtsc adjustment, and advance the view of the system time
446 1.2 bouyer * for all other CPUs.
447 1.2 bouyer */
448 1.2 bouyer static uint64_t
449 1.2 bouyer xen_global_systime_ns(void)
450 1.2 bouyer {
451 1.2 bouyer struct cpu_info *ci;
452 1.2 bouyer uint64_t local, global, result;
453 1.2 bouyer
454 1.2 bouyer /*
455 1.2 bouyer * Find the local timecount on this CPU, and make sure it does
456 1.2 bouyer * not precede the latest global timecount witnessed so far by
457 1.2 bouyer * any CPU. If it does, add to the local CPU's skew from the
458 1.2 bouyer * fastest CPU.
459 1.2 bouyer *
460 1.2 bouyer * XXX Can we avoid retrying if the CAS fails?
461 1.2 bouyer */
462 1.2 bouyer int s = splsched(); /* make sure we won't be interrupted */
463 1.2 bouyer ci = curcpu();
464 1.2 bouyer do {
465 1.2 bouyer local = xen_vcputime_systime_ns();
466 1.2 bouyer local += ci->ci_xen_systime_ns_skew;
467 1.2 bouyer global = xen_global_systime_ns_stamp;
468 1.2 bouyer if (__predict_false(local < global + 1)) {
469 1.2 bouyer result = global + 1;
470 1.2 bouyer ci->ci_xen_systime_ns_skew += global + 1 - local;
471 1.2 bouyer } else {
472 1.2 bouyer result = local;
473 1.2 bouyer }
474 1.2 bouyer } while (atomic_cas_64(&xen_global_systime_ns_stamp, global, result)
475 1.2 bouyer != global);
476 1.2 bouyer KASSERT(ci == curcpu());
477 1.2 bouyer splx(s);
478 1.2 bouyer
479 1.2 bouyer return result;
480 1.2 bouyer }
481 1.2 bouyer
482 1.2 bouyer /*
483 1.2 bouyer * xen_get_timecount(tc)
484 1.2 bouyer *
485 1.2 bouyer * Return the low 32 bits of a global monotonic view of the Xen
486 1.2 bouyer * system time.
487 1.2 bouyer */
488 1.2 bouyer static unsigned
489 1.2 bouyer xen_get_timecount(struct timecounter *tc)
490 1.2 bouyer {
491 1.2 bouyer
492 1.2 bouyer KASSERT(tc == &xen_timecounter);
493 1.2 bouyer
494 1.2 bouyer return (unsigned)xen_global_systime_ns();
495 1.2 bouyer }
496 1.2 bouyer
497 1.2 bouyer /*
498 1.2 bouyer * xen_delay(n)
499 1.2 bouyer *
500 1.2 bouyer * Wait approximately n microseconds.
501 1.2 bouyer */
502 1.2 bouyer void
503 1.2 bouyer xen_delay(unsigned n)
504 1.2 bouyer {
505 1.2 bouyer int bound;
506 1.2 bouyer
507 1.2 bouyer /* Bind to the CPU so we don't compare tsc on different CPUs. */
508 1.2 bouyer bound = curlwp_bind();
509 1.2 bouyer
510 1.2 bouyer if (curcpu()->ci_vcpu == NULL) {
511 1.2 bouyer curlwp_bindx(bound);
512 1.2 bouyer return;
513 1.2 bouyer }
514 1.2 bouyer
515 1.2 bouyer /* Short wait (<500us) or long wait? */
516 1.2 bouyer if (n < 500000) {
517 1.2 bouyer /*
518 1.2 bouyer * Xen system time is not precise enough for short
519 1.2 bouyer * delays, so use the tsc instead.
520 1.2 bouyer *
521 1.2 bouyer * We work with the current tsc frequency, and figure
522 1.2 bouyer * that if it changes while we're delaying, we've
523 1.2 bouyer * probably delayed long enough -- up to 500us.
524 1.2 bouyer *
525 1.2 bouyer * We do not use cpu_frequency(ci), which uses a
526 1.2 bouyer * quantity detected at boot time, and which may have
527 1.2 bouyer * changed by now if Xen has migrated this vCPU to
528 1.2 bouyer * another pCPU.
529 1.2 bouyer *
530 1.2 bouyer * XXX How long does it take to migrate pCPUs?
531 1.2 bouyer */
532 1.2 bouyer volatile struct vcpu_time_info *vt;
533 1.2 bouyer struct xen_vcputime_ticket ticket;
534 1.2 bouyer uint64_t tsc_start, last_tsc, tsc;
535 1.2 bouyer uint32_t tsc_to_system_mul;
536 1.2 bouyer int8_t tsc_shift;
537 1.2 bouyer
538 1.2 bouyer /* Get the starting tsc and tsc frequency. */
539 1.2 bouyer do {
540 1.2 bouyer vt = xen_vcputime_enter(&ticket);
541 1.2 bouyer tsc_start = last_tsc = xen_rdtsc();
542 1.2 bouyer tsc_to_system_mul = vt->tsc_to_system_mul;
543 1.2 bouyer tsc_shift = vt->tsc_shift;
544 1.2 bouyer } while (!xen_vcputime_exit(vt, &ticket));
545 1.2 bouyer
546 1.2 bouyer /*
547 1.2 bouyer * Wait until as many tsc ticks as there are in n
548 1.2 bouyer * microseconds have elapsed, or the tsc has gone
549 1.2 bouyer * backwards meaning we've probably migrated pCPUs.
550 1.2 bouyer */
551 1.2 bouyer for (;;) {
552 1.2 bouyer tsc = xen_rdtsc();
553 1.2 bouyer if (__predict_false(tsc < last_tsc))
554 1.2 bouyer break;
555 1.2 bouyer if (xen_tsc_to_ns_delta(tsc - tsc_start,
556 1.2 bouyer tsc_to_system_mul, tsc_shift)/1000 >= n)
557 1.2 bouyer break;
558 1.2 bouyer last_tsc = tsc;
559 1.2 bouyer }
560 1.2 bouyer } else {
561 1.2 bouyer /*
562 1.2 bouyer * Use the Xen system time for >=500us delays. From my
563 1.2 bouyer * testing, it seems to sometimes run backward by about
564 1.2 bouyer * 110us, which is not so bad.
565 1.2 bouyer */
566 1.2 bouyer uint64_t n_ns = 1000*(uint64_t)n;
567 1.2 bouyer uint64_t start_ns;
568 1.2 bouyer
569 1.2 bouyer /* Get the start time. */
570 1.2 bouyer start_ns = xen_vcputime_raw_systime_ns();
571 1.2 bouyer
572 1.2 bouyer /* Wait until the system time has passed the end. */
573 1.2 bouyer do {
574 1.2 bouyer HYPERVISOR_yield();
575 1.2 bouyer } while (xen_vcputime_raw_systime_ns() - start_ns < n_ns);
576 1.2 bouyer }
577 1.2 bouyer
578 1.2 bouyer /* Unbind from the CPU if we weren't already bound. */
579 1.2 bouyer curlwp_bindx(bound);
580 1.2 bouyer }
581 1.2 bouyer
582 1.2 bouyer /*
583 1.2 bouyer * xen_suspendclocks(ci)
584 1.2 bouyer *
585 1.2 bouyer * Stop handling the Xen timer event on the CPU of ci. Caller
586 1.2 bouyer * must be running on and bound to ci's CPU.
587 1.2 bouyer *
588 1.2 bouyer * Actually, caller must have kpreemption disabled, because that's
589 1.2 bouyer * easier to assert at the moment.
590 1.2 bouyer */
591 1.2 bouyer void
592 1.2 bouyer xen_suspendclocks(struct cpu_info *ci)
593 1.2 bouyer {
594 1.2 bouyer int evtch;
595 1.2 bouyer
596 1.2 bouyer KASSERT(ci == curcpu());
597 1.2 bouyer KASSERT(kpreempt_disabled());
598 1.2 bouyer
599 1.2 bouyer evtch = unbind_virq_from_evtch(VIRQ_TIMER);
600 1.2 bouyer KASSERT(evtch != -1);
601 1.2 bouyer
602 1.2 bouyer hypervisor_mask_event(evtch);
603 1.2 bouyer event_remove_handler(evtch,
604 1.2 bouyer __FPTRCAST(int (*)(void *), xen_timer_handler), ci);
605 1.2 bouyer
606 1.2 bouyer aprint_verbose("Xen clock: removed event channel %d\n", evtch);
607 1.2 bouyer
608 1.2 bouyer /* We'd better not have switched CPUs. */
609 1.2 bouyer KASSERT(ci == curcpu());
610 1.2 bouyer }
611 1.2 bouyer
612 1.2 bouyer /*
613 1.2 bouyer * xen_resumeclocks(ci)
614 1.2 bouyer *
615 1.2 bouyer * Start handling the Xen timer event on the CPU of ci. Arm the
616 1.2 bouyer * Xen timer. Caller must be running on and bound to ci's CPU.
617 1.2 bouyer *
618 1.2 bouyer * Actually, caller must have kpreemption disabled, because that's
619 1.2 bouyer * easier to assert at the moment.
620 1.2 bouyer */
621 1.2 bouyer void
622 1.2 bouyer xen_resumeclocks(struct cpu_info *ci)
623 1.2 bouyer {
624 1.2 bouyer char intr_xname[INTRDEVNAMEBUF];
625 1.2 bouyer int evtch;
626 1.2 bouyer int error __diagused;
627 1.2 bouyer
628 1.2 bouyer KASSERT(ci == curcpu());
629 1.2 bouyer KASSERT(kpreempt_disabled());
630 1.2 bouyer
631 1.2 bouyer evtch = bind_virq_to_evtch(VIRQ_TIMER);
632 1.2 bouyer KASSERT(evtch != -1);
633 1.2 bouyer
634 1.2 bouyer snprintf(intr_xname, sizeof(intr_xname), "%s clock",
635 1.2 bouyer device_xname(ci->ci_dev));
636 1.2 bouyer /* XXX sketchy function pointer cast -- fix the API, please */
637 1.2 bouyer if (event_set_handler(evtch,
638 1.2 bouyer __FPTRCAST(int (*)(void *), xen_timer_handler),
639 1.2 bouyer ci, IPL_CLOCK, NULL, intr_xname, true, false) == NULL)
640 1.2 bouyer panic("failed to establish timer interrupt handler");
641 1.2 bouyer
642 1.2 bouyer hypervisor_unmask_event(evtch);
643 1.2 bouyer
644 1.2 bouyer aprint_verbose("Xen %s: using event channel %d\n", intr_xname, evtch);
645 1.2 bouyer
646 1.2 bouyer /* Disarm the periodic timer on Xen>=3.1 which is allegedly buggy. */
647 1.2 bouyer if (XEN_MAJOR(xen_version) > 3 || XEN_MINOR(xen_version) > 0) {
648 1.2 bouyer error = HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
649 1.2 bouyer ci->ci_vcpuid, NULL);
650 1.2 bouyer KASSERT(error == 0);
651 1.2 bouyer }
652 1.2 bouyer
653 1.2 bouyer /* Pretend the last hardclock happened right now. */
654 1.2 bouyer ci->ci_xen_hardclock_systime_ns = xen_vcputime_systime_ns();
655 1.2 bouyer
656 1.2 bouyer /* Arm the one-shot timer. */
657 1.2 bouyer error = HYPERVISOR_set_timer_op(ci->ci_xen_hardclock_systime_ns +
658 1.2 bouyer NS_PER_TICK);
659 1.2 bouyer KASSERT(error == 0);
660 1.2 bouyer
661 1.2 bouyer /* We'd better not have switched CPUs. */
662 1.2 bouyer KASSERT(ci == curcpu());
663 1.2 bouyer }
664 1.2 bouyer
665 1.2 bouyer /*
666 1.2 bouyer * xen_timer_handler(cookie, frame)
667 1.2 bouyer *
668 1.2 bouyer * Periodic Xen timer event handler for NetBSD hardclock. Calls
669 1.2 bouyer * to this may get delayed, so we run hardclock as many times as
670 1.2 bouyer * we need to in order to cover the Xen system time that elapsed.
671 1.2 bouyer * After that, re-arm the timer to run again at the next tick.
672 1.2 bouyer * The cookie is the pointer to struct cpu_info.
673 1.2 bouyer */
674 1.2 bouyer static int
675 1.2 bouyer xen_timer_handler(void *cookie, struct clockframe *frame)
676 1.2 bouyer {
677 1.2 bouyer struct cpu_info *ci = curcpu();
678 1.2 bouyer uint64_t last, now, delta, next;
679 1.2 bouyer int error;
680 1.2 bouyer
681 1.2 bouyer KASSERT(cpu_intr_p());
682 1.2 bouyer KASSERT(cookie == ci);
683 1.2 bouyer
684 1.2 bouyer #if defined(DIAGNOSTIC) && defined(XENPV)
685 1.2 bouyer frame = NULL; /* We use values cached in curcpu() */
686 1.2 bouyer #endif
687 1.2 bouyer again:
688 1.2 bouyer /*
689 1.2 bouyer * Find how many nanoseconds of Xen system time has elapsed
690 1.2 bouyer * since the last hardclock tick.
691 1.2 bouyer */
692 1.2 bouyer last = ci->ci_xen_hardclock_systime_ns;
693 1.2 bouyer now = xen_vcputime_systime_ns();
694 1.2 bouyer if (now < last) {
695 1.2 bouyer #if XEN_CLOCK_DEBUG /* XXX dtrace hook */
696 1.2 bouyer printf("xen systime ran backwards in hardclock %"PRIu64"ns\n",
697 1.2 bouyer last - now);
698 1.2 bouyer #endif
699 1.2 bouyer ci->ci_xen_systime_backwards_hardclock_evcnt.ev_count++;
700 1.2 bouyer now = last;
701 1.2 bouyer }
702 1.2 bouyer delta = now - last;
703 1.2 bouyer
704 1.2 bouyer /*
705 1.2 bouyer * Play hardclock catchup: run the hardclock timer as many
706 1.2 bouyer * times as appears necessary based on how much time has
707 1.2 bouyer * passed.
708 1.2 bouyer */
709 1.2 bouyer while (delta >= NS_PER_TICK) {
710 1.2 bouyer ci->ci_xen_hardclock_systime_ns += NS_PER_TICK;
711 1.2 bouyer delta -= NS_PER_TICK;
712 1.2 bouyer hardclock(frame);
713 1.2 bouyer if (__predict_false(delta >= NS_PER_TICK))
714 1.2 bouyer ci->ci_xen_missed_hardclock_evcnt.ev_count++;
715 1.2 bouyer }
716 1.2 bouyer
717 1.2 bouyer /*
718 1.2 bouyer * Re-arm the timer. If it fails, it's probably because the
719 1.2 bouyer * time is in the past, so update our idea of what the Xen
720 1.2 bouyer * system time is and try again.
721 1.2 bouyer */
722 1.2 bouyer next = ci->ci_xen_hardclock_systime_ns + NS_PER_TICK;
723 1.2 bouyer error = HYPERVISOR_set_timer_op(next);
724 1.2 bouyer if (error)
725 1.2 bouyer goto again;
726 1.2 bouyer
727 1.2 bouyer /* Success! */
728 1.2 bouyer return 0;
729 1.2 bouyer }
730 1.2 bouyer
731 1.2 bouyer /*
732 1.2 bouyer * xen_cpu_initclocks()
733 1.2 bouyer *
734 1.2 bouyer * Initialize the Xen clocks on the current CPU.
735 1.2 bouyer */
736 1.2 bouyer void
737 1.2 bouyer xen_cpu_initclocks(void)
738 1.2 bouyer {
739 1.2 bouyer struct cpu_info *ci = curcpu();
740 1.2 bouyer
741 1.2 bouyer /* If this is the primary CPU, do global initialization first. */
742 1.2 bouyer if (ci == &cpu_info_primary) {
743 1.2 bouyer /* Initialize the systemwide Xen timecounter. */
744 1.2 bouyer tc_init(&xen_timecounter);
745 1.2 bouyer }
746 1.2 bouyer
747 1.2 bouyer /* Attach the event counters. */
748 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_cpu_tsc_backwards_evcnt,
749 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
750 1.2 bouyer "cpu tsc ran backwards");
751 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_tsc_delta_negative_evcnt,
752 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
753 1.2 bouyer "tsc delta went negative");
754 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_raw_systime_wraparound_evcnt,
755 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
756 1.2 bouyer "raw systime wrapped around");
757 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_raw_systime_backwards_evcnt,
758 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
759 1.2 bouyer "raw systime went backwards");
760 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_systime_backwards_hardclock_evcnt,
761 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
762 1.2 bouyer "systime went backwards in hardclock");
763 1.2 bouyer evcnt_attach_dynamic(&ci->ci_xen_missed_hardclock_evcnt,
764 1.2 bouyer EVCNT_TYPE_INTR, NULL, device_xname(ci->ci_dev),
765 1.2 bouyer "missed hardclock");
766 1.2 bouyer
767 1.2 bouyer /* Fire up the clocks. */
768 1.2 bouyer xen_resumeclocks(ci);
769 1.2 bouyer }
770 1.2 bouyer
771 1.2 bouyer /*
772 1.2 bouyer * xen_initclocks()
773 1.2 bouyer *
774 1.2 bouyer * Initialize the Xen global clock
775 1.2 bouyer */
776 1.2 bouyer void
777 1.2 bouyer xen_initclocks(void)
778 1.2 bouyer {
779 1.2 bouyer #ifdef DOM0OPS
780 1.2 bouyer /*
781 1.2 bouyer * If this is a privileged dom0, start pushing the wall
782 1.2 bouyer * clock time back to the Xen hypervisor.
783 1.2 bouyer */
784 1.2 bouyer if (xendomain_is_privileged())
785 1.2 bouyer xen_timepush_init();
786 1.2 bouyer #endif
787 1.2 bouyer }
788 1.2 bouyer
789 1.2 bouyer #ifdef DOM0OPS
790 1.2 bouyer
791 1.2 bouyer /*
792 1.2 bouyer * xen_timepush_init()
793 1.2 bouyer *
794 1.2 bouyer * Initialize callout to periodically set Xen hypervisor's wall
795 1.2 bouyer * clock time.
796 1.2 bouyer */
797 1.2 bouyer static void
798 1.2 bouyer xen_timepush_init(void)
799 1.2 bouyer {
800 1.2 bouyer struct sysctllog *log = NULL;
801 1.2 bouyer const struct sysctlnode *node = NULL;
802 1.2 bouyer int error;
803 1.2 bouyer
804 1.2 bouyer /* Start periodically updating the hypervisor's wall clock time. */
805 1.2 bouyer callout_init(&xen_timepush.ch, 0);
806 1.2 bouyer callout_setfunc(&xen_timepush.ch, xen_timepush_intr, NULL);
807 1.2 bouyer
808 1.2 bouyer /* Pick a default frequency for timepush. */
809 1.2 bouyer xen_timepush.ticks = 53*hz + 3; /* avoid exact # of min/sec */
810 1.2 bouyer
811 1.2 bouyer /* Create machdep.xen node. */
812 1.2 bouyer /* XXX Creation of the `machdep.xen' node should be elsewhere. */
813 1.2 bouyer error = sysctl_createv(&log, 0, NULL, &node, 0,
814 1.2 bouyer CTLTYPE_NODE, "xen",
815 1.2 bouyer SYSCTL_DESCR("Xen top level node"),
816 1.2 bouyer NULL, 0, NULL, 0,
817 1.2 bouyer CTL_MACHDEP, CTL_CREATE, CTL_EOL);
818 1.2 bouyer if (error)
819 1.2 bouyer goto fail;
820 1.2 bouyer KASSERT(node != NULL);
821 1.2 bouyer
822 1.2 bouyer /* Create int machdep.xen.timepush_ticks knob. */
823 1.2 bouyer error = sysctl_createv(&log, 0, NULL, NULL, CTLFLAG_READWRITE,
824 1.2 bouyer CTLTYPE_INT, "timepush_ticks",
825 1.2 bouyer SYSCTL_DESCR("How often to update the hypervisor's time-of-day;"
826 1.2 bouyer " 0 to disable"),
827 1.2 bouyer sysctl_xen_timepush, 0, &xen_timepush.ticks, 0,
828 1.2 bouyer CTL_CREATE, CTL_EOL);
829 1.2 bouyer if (error)
830 1.2 bouyer goto fail;
831 1.2 bouyer
832 1.2 bouyer /* Start the timepush callout. */
833 1.2 bouyer callout_schedule(&xen_timepush.ch, xen_timepush.ticks);
834 1.2 bouyer
835 1.2 bouyer /* Success! */
836 1.2 bouyer return;
837 1.2 bouyer
838 1.2 bouyer fail: sysctl_teardown(&log);
839 1.2 bouyer }
840 1.2 bouyer
841 1.2 bouyer /*
842 1.2 bouyer * xen_timepush_intr(cookie)
843 1.2 bouyer *
844 1.2 bouyer * Callout interrupt handler to push NetBSD's idea of the wall
845 1.2 bouyer * clock time, usually synchronized with NTP, back to the Xen
846 1.2 bouyer * hypervisor.
847 1.2 bouyer */
848 1.2 bouyer static void
849 1.2 bouyer xen_timepush_intr(void *cookie)
850 1.2 bouyer {
851 1.2 bouyer
852 1.2 bouyer resettodr();
853 1.2 bouyer if (xen_timepush.ticks)
854 1.2 bouyer callout_schedule(&xen_timepush.ch, xen_timepush.ticks);
855 1.2 bouyer }
856 1.2 bouyer
857 1.2 bouyer /*
858 1.2 bouyer * sysctl_xen_timepush(...)
859 1.2 bouyer *
860 1.2 bouyer * Sysctl handler to set machdep.xen.timepush_ticks.
861 1.2 bouyer */
862 1.2 bouyer static int
863 1.2 bouyer sysctl_xen_timepush(SYSCTLFN_ARGS)
864 1.2 bouyer {
865 1.2 bouyer struct sysctlnode node;
866 1.2 bouyer int ticks;
867 1.2 bouyer int error;
868 1.2 bouyer
869 1.2 bouyer ticks = xen_timepush.ticks;
870 1.2 bouyer node = *rnode;
871 1.2 bouyer node.sysctl_data = &ticks;
872 1.2 bouyer error = sysctl_lookup(SYSCTLFN_CALL(&node));
873 1.2 bouyer if (error || newp == NULL)
874 1.2 bouyer return error;
875 1.2 bouyer
876 1.2 bouyer if (ticks < 0)
877 1.2 bouyer return EINVAL;
878 1.2 bouyer
879 1.2 bouyer if (ticks != xen_timepush.ticks) {
880 1.2 bouyer xen_timepush.ticks = ticks;
881 1.2 bouyer
882 1.2 bouyer if (ticks == 0)
883 1.2 bouyer callout_stop(&xen_timepush.ch);
884 1.2 bouyer else
885 1.2 bouyer callout_schedule(&xen_timepush.ch, ticks);
886 1.2 bouyer }
887 1.2 bouyer
888 1.2 bouyer return 0;
889 1.2 bouyer }
890 1.2 bouyer
891 1.2 bouyer #endif /* DOM0OPS */
892 1.2 bouyer
893 1.2 bouyer #ifdef XENPV
894 1.2 bouyer static int xen_rtc_get(struct todr_chip_handle *, struct timeval *);
895 1.2 bouyer static int xen_rtc_set(struct todr_chip_handle *, struct timeval *);
896 1.2 bouyer static void xen_wallclock_time(struct timespec *);
897 1.2 bouyer /*
898 1.2 bouyer * xen time of day register:
899 1.2 bouyer *
900 1.2 bouyer * Xen wall clock time, plus a Xen vCPU system time adjustment.
901 1.2 bouyer */
902 1.2 bouyer static struct todr_chip_handle xen_todr_chip = {
903 1.2 bouyer .todr_gettime = xen_rtc_get,
904 1.2 bouyer .todr_settime = xen_rtc_set,
905 1.2 bouyer };
906 1.2 bouyer
907 1.2 bouyer /*
908 1.2 bouyer * startrtclock()
909 1.2 bouyer *
910 1.2 bouyer * Initialize the real-time clock from x86 machdep autoconf.
911 1.2 bouyer */
912 1.2 bouyer void
913 1.2 bouyer startrtclock(void)
914 1.2 bouyer {
915 1.2 bouyer
916 1.2 bouyer todr_attach(&xen_todr_chip);
917 1.2 bouyer }
918 1.2 bouyer
919 1.2 bouyer /*
920 1.2 bouyer * setstatclockrate(rate)
921 1.2 bouyer *
922 1.2 bouyer * Set the statclock to run at rate, in units of ticks per second.
923 1.2 bouyer *
924 1.2 bouyer * Currently Xen does not have a separate statclock, so this is a
925 1.2 bouyer * noop; instad the statclock runs in hardclock.
926 1.2 bouyer */
927 1.2 bouyer void
928 1.2 bouyer setstatclockrate(int rate)
929 1.2 bouyer {
930 1.2 bouyer }
931 1.2 bouyer
932 1.2 bouyer /*
933 1.2 bouyer * xen_rtc_get(todr, tv)
934 1.2 bouyer *
935 1.2 bouyer * Get the current real-time clock from the Xen wall clock time
936 1.2 bouyer * and vCPU system time adjustment.
937 1.2 bouyer */
938 1.2 bouyer static int
939 1.2 bouyer xen_rtc_get(struct todr_chip_handle *todr, struct timeval *tvp)
940 1.2 bouyer {
941 1.2 bouyer struct timespec ts;
942 1.2 bouyer
943 1.2 bouyer xen_wallclock_time(&ts);
944 1.2 bouyer TIMESPEC_TO_TIMEVAL(tvp, &ts);
945 1.2 bouyer
946 1.2 bouyer return 0;
947 1.2 bouyer }
948 1.2 bouyer
949 1.2 bouyer /*
950 1.2 bouyer * xen_rtc_set(todr, tv)
951 1.2 bouyer *
952 1.2 bouyer * Set the Xen wall clock time, if we can.
953 1.2 bouyer */
954 1.2 bouyer static int
955 1.2 bouyer xen_rtc_set(struct todr_chip_handle *todr, struct timeval *tvp)
956 1.2 bouyer {
957 1.2 bouyer #ifdef DOM0OPS
958 1.2 bouyer struct clock_ymdhms dt;
959 1.2 bouyer xen_platform_op_t op;
960 1.2 bouyer uint64_t systime_ns;
961 1.2 bouyer
962 1.2 bouyer if (xendomain_is_privileged()) {
963 1.2 bouyer /* Convert to ymdhms and set the x86 ISA RTC. */
964 1.2 bouyer clock_secs_to_ymdhms(tvp->tv_sec, &dt);
965 1.2 bouyer rtc_set_ymdhms(NULL, &dt);
966 1.2 bouyer
967 1.2 bouyer /* Get the global system time so we can preserve it. */
968 1.2 bouyer systime_ns = xen_global_systime_ns();
969 1.2 bouyer
970 1.2 bouyer /* Set the hypervisor wall clock time. */
971 1.2 bouyer op.cmd = XENPF_settime;
972 1.2 bouyer op.u.settime.secs = tvp->tv_sec;
973 1.2 bouyer op.u.settime.nsecs = tvp->tv_usec * 1000;
974 1.2 bouyer op.u.settime.system_time = systime_ns;
975 1.2 bouyer return HYPERVISOR_platform_op(&op);
976 1.2 bouyer }
977 1.2 bouyer #endif
978 1.2 bouyer
979 1.2 bouyer /* XXX Should this fail if not on privileged dom0? */
980 1.2 bouyer return 0;
981 1.2 bouyer }
982 1.2 bouyer
983 1.2 bouyer /*
984 1.2 bouyer * xen_wallclock_time(tsp)
985 1.2 bouyer *
986 1.2 bouyer * Return a snapshot of the current low-resolution wall clock
987 1.2 bouyer * time, as reported by the hypervisor, in tsp.
988 1.2 bouyer */
989 1.2 bouyer static void
990 1.2 bouyer xen_wallclock_time(struct timespec *tsp)
991 1.2 bouyer {
992 1.2 bouyer struct xen_wallclock_ticket ticket;
993 1.2 bouyer uint64_t systime_ns;
994 1.2 bouyer
995 1.2 bouyer int s = splsched(); /* make sure we won't be interrupted */
996 1.2 bouyer /* Read the last wall clock sample from the hypervisor. */
997 1.2 bouyer do {
998 1.2 bouyer xen_wallclock_enter(&ticket);
999 1.2 bouyer tsp->tv_sec = HYPERVISOR_shared_info->wc_sec;
1000 1.2 bouyer tsp->tv_nsec = HYPERVISOR_shared_info->wc_nsec;
1001 1.2 bouyer } while (!xen_wallclock_exit(&ticket));
1002 1.2 bouyer
1003 1.2 bouyer /* Get the global system time. */
1004 1.2 bouyer systime_ns = xen_global_systime_ns();
1005 1.2 bouyer splx(s);
1006 1.2 bouyer
1007 1.2 bouyer /* Add the system time to the wall clock time. */
1008 1.2 bouyer systime_ns += tsp->tv_nsec;
1009 1.2 bouyer tsp->tv_sec += systime_ns / 1000000000ull;
1010 1.2 bouyer tsp->tv_nsec = systime_ns % 1000000000ull;
1011 1.2 bouyer }
1012 1.2 bouyer
1013 1.2 bouyer #endif /* XENPV */
1014