1 1.30 thorpej /* $NetBSD: coda_namecache.c,v 1.30 2024/05/17 23:57:46 thorpej Exp $ */ 2 1.2 rvb 3 1.1 rvb /* 4 1.14 perry * 5 1.2 rvb * Coda: an Experimental Distributed File System 6 1.2 rvb * Release 3.1 7 1.14 perry * 8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University 9 1.2 rvb * All Rights Reserved 10 1.14 perry * 11 1.2 rvb * Permission to use, copy, modify and distribute this software and its 12 1.2 rvb * documentation is hereby granted, provided that both the copyright 13 1.2 rvb * notice and this permission notice appear in all copies of the 14 1.2 rvb * software, derivative works or modified versions, and any portions 15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and 16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents 17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its 18 1.2 rvb * derivatives. 19 1.14 perry * 20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS, 21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS 22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON 23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER 24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF 25 1.2 rvb * ANY DERIVATIVE WORK. 26 1.14 perry * 27 1.2 rvb * Carnegie Mellon encourages users of this software to return any 28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie 29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance. 30 1.14 perry * 31 1.14 perry * @(#) coda/coda_namecache.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $ 32 1.2 rvb */ 33 1.1 rvb 34 1.14 perry /* 35 1.1 rvb * Mach Operating System 36 1.1 rvb * Copyright (c) 1990 Carnegie-Mellon University 37 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University 38 1.1 rvb * All rights reserved. The CMU software License Agreement specifies 39 1.1 rvb * the terms and conditions for use and redistribution. 40 1.1 rvb */ 41 1.1 rvb 42 1.1 rvb /* 43 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon University. 44 1.1 rvb * Contributers include David Steere, James Kistler, and M. Satyanarayanan. 45 1.1 rvb */ 46 1.1 rvb 47 1.1 rvb /* 48 1.3 rvb * This module contains the routines to implement the CODA name cache. The 49 1.14 perry * purpose of this cache is to reduce the cost of translating pathnames 50 1.1 rvb * into Vice FIDs. Each entry in the cache contains the name of the file, 51 1.1 rvb * the vnode (FID) of the parent directory, and the cred structure of the 52 1.1 rvb * user accessing the file. 53 1.1 rvb * 54 1.1 rvb * The first time a file is accessed, it is looked up by the local Venus 55 1.1 rvb * which first insures that the user has access to the file. In addition 56 1.1 rvb * we are guaranteed that Venus will invalidate any name cache entries in 57 1.1 rvb * case the user no longer should be able to access the file. For these 58 1.1 rvb * reasons we do not need to keep access list information as well as a 59 1.1 rvb * cred structure for each entry. 60 1.1 rvb * 61 1.1 rvb * The table can be accessed through the routines cnc_init(), cnc_enter(), 62 1.1 rvb * cnc_lookup(), cnc_rmfidcred(), cnc_rmfid(), cnc_rmcred(), and cnc_purge(). 63 1.1 rvb * There are several other routines which aid in the implementation of the 64 1.1 rvb * hash table. 65 1.1 rvb */ 66 1.1 rvb 67 1.1 rvb /* 68 1.1 rvb * NOTES: rvb@cs 69 1.1 rvb * 1. The name cache holds a reference to every vnode in it. Hence files can not be 70 1.1 rvb * closed or made inactive until they are released. 71 1.3 rvb * 2. coda_nc_name(cp) was added to get a name for a cnode pointer for debugging. 72 1.3 rvb * 3. coda_nc_find() has debug code to detect when entries are stored with different 73 1.1 rvb * credentials. We don't understand yet, if/how entries are NOT EQ but still 74 1.1 rvb * EQUAL 75 1.1 rvb * 4. I wonder if this name cache could be replace by the vnode name cache. 76 1.1 rvb * The latter has no zapping functions, so probably not. 77 1.1 rvb */ 78 1.11 lukem 79 1.11 lukem #include <sys/cdefs.h> 80 1.30 thorpej __KERNEL_RCSID(0, "$NetBSD: coda_namecache.c,v 1.30 2024/05/17 23:57:46 thorpej Exp $"); 81 1.1 rvb 82 1.1 rvb #include <sys/param.h> 83 1.1 rvb #include <sys/errno.h> 84 1.1 rvb #include <sys/select.h> 85 1.18 elad #include <sys/kauth.h> 86 1.1 rvb 87 1.4 rvb #include <coda/coda.h> 88 1.4 rvb #include <coda/cnode.h> 89 1.4 rvb #include <coda/coda_namecache.h> 90 1.25 christos #include <coda/coda_subr.h> 91 1.5 rvb 92 1.14 perry /* 93 1.1 rvb * Declaration of the name cache data structure. 94 1.1 rvb */ 95 1.1 rvb 96 1.3 rvb int coda_nc_use = 1; /* Indicate use of CODA Name Cache */ 97 1.1 rvb 98 1.3 rvb int coda_nc_size = CODA_NC_CACHESIZE; /* size of the cache */ 99 1.3 rvb int coda_nc_hashsize = CODA_NC_HASHSIZE; /* size of the primary hash */ 100 1.1 rvb 101 1.3 rvb struct coda_cache *coda_nc_heap; /* pointer to the cache entries */ 102 1.3 rvb struct coda_hash *coda_nc_hash; /* hash table of cfscache pointers */ 103 1.3 rvb struct coda_lru coda_nc_lru; /* head of lru chain */ 104 1.1 rvb 105 1.3 rvb struct coda_nc_statistics coda_nc_stat; /* Keep various stats */ 106 1.1 rvb 107 1.14 perry /* 108 1.1 rvb * for testing purposes 109 1.1 rvb */ 110 1.3 rvb int coda_nc_debug = 0; 111 1.1 rvb 112 1.1 rvb /* 113 1.3 rvb * Entry points for the CODA Name Cache 114 1.1 rvb */ 115 1.3 rvb static struct coda_cache * 116 1.3 rvb coda_nc_find(struct cnode *dcp, const char *name, int namelen, 117 1.18 elad kauth_cred_t cred, int hash); 118 1.1 rvb static void 119 1.3 rvb coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat); 120 1.1 rvb 121 1.14 perry /* 122 1.1 rvb * Initialize the cache, the LRU structure and the Hash structure(s) 123 1.1 rvb */ 124 1.1 rvb 125 1.3 rvb #define TOTAL_CACHE_SIZE (sizeof(struct coda_cache) * coda_nc_size) 126 1.3 rvb #define TOTAL_HASH_SIZE (sizeof(struct coda_hash) * coda_nc_hashsize) 127 1.1 rvb 128 1.3 rvb int coda_nc_initialized = 0; /* Initially the cache has not been initialized */ 129 1.1 rvb 130 1.1 rvb void 131 1.3 rvb coda_nc_init(void) 132 1.1 rvb { 133 1.1 rvb int i; 134 1.1 rvb 135 1.1 rvb /* zero the statistics structure */ 136 1.14 perry 137 1.10 thorpej memset(&coda_nc_stat, 0, (sizeof(struct coda_nc_statistics))); 138 1.1 rvb 139 1.7 rvb #ifdef CODA_VERBOSE 140 1.3 rvb printf("CODA NAME CACHE: CACHE %d, HASH TBL %d\n", CODA_NC_CACHESIZE, CODA_NC_HASHSIZE); 141 1.5 rvb #endif 142 1.3 rvb CODA_ALLOC(coda_nc_heap, struct coda_cache *, TOTAL_CACHE_SIZE); 143 1.3 rvb CODA_ALLOC(coda_nc_hash, struct coda_hash *, TOTAL_HASH_SIZE); 144 1.14 perry 145 1.22 plunky memset(coda_nc_heap, 0, TOTAL_CACHE_SIZE); 146 1.22 plunky memset(coda_nc_hash, 0, TOTAL_HASH_SIZE); 147 1.14 perry 148 1.22 plunky TAILQ_INIT(&coda_nc_lru.head); 149 1.14 perry 150 1.3 rvb for (i=0; i < coda_nc_size; i++) { /* initialize the heap */ 151 1.22 plunky TAILQ_INSERT_HEAD(&coda_nc_lru.head, &coda_nc_heap[i], lru); 152 1.1 rvb } 153 1.14 perry 154 1.3 rvb for (i=0; i < coda_nc_hashsize; i++) { /* initialize the hashtable */ 155 1.22 plunky LIST_INIT(&coda_nc_hash[i].head); 156 1.1 rvb } 157 1.14 perry 158 1.3 rvb coda_nc_initialized++; 159 1.1 rvb } 160 1.1 rvb 161 1.1 rvb /* 162 1.28 andvar * Auxiliary routines -- shouldn't be entry points 163 1.1 rvb */ 164 1.1 rvb 165 1.3 rvb static struct coda_cache * 166 1.16 xtraeme coda_nc_find(struct cnode *dcp, const char *name, int namelen, 167 1.18 elad kauth_cred_t cred, int hash) 168 1.1 rvb { 169 1.14 perry /* 170 1.1 rvb * hash to find the appropriate bucket, look through the chain 171 1.14 perry * for the right entry (especially right cred, unless cred == 0) 172 1.1 rvb */ 173 1.3 rvb struct coda_cache *cncp; 174 1.1 rvb int count = 1; 175 1.1 rvb 176 1.14 perry CODA_NC_DEBUG(CODA_NC_FIND, 177 1.13 drochner myprintf(("coda_nc_find(dcp %p, name %s, len %d, cred %p, hash %d\n", 178 1.13 drochner dcp, name, namelen, cred, hash));) 179 1.1 rvb 180 1.22 plunky LIST_FOREACH(cncp, &coda_nc_hash[hash].head, hash) 181 1.1 rvb { 182 1.1 rvb 183 1.3 rvb if ((CODA_NAMEMATCH(cncp, name, namelen, dcp)) && 184 1.14 perry ((cred == 0) || (cncp->cred == cred))) 185 1.14 perry { 186 1.1 rvb /* compare cr_uid instead */ 187 1.3 rvb coda_nc_stat.Search_len += count; 188 1.1 rvb return(cncp); 189 1.1 rvb } 190 1.1 rvb #ifdef DEBUG 191 1.3 rvb else if (CODA_NAMEMATCH(cncp, name, namelen, dcp)) { 192 1.3 rvb printf("coda_nc_find: name %s, new cred = %p, cred = %p\n", 193 1.1 rvb name, cred, cncp->cred); 194 1.1 rvb printf("nref %d, nuid %d, ngid %d // oref %d, ocred %d, ogid %d\n", 195 1.18 elad kauth_cred_getrefcnt(cred), 196 1.18 elad kauth_cred_geteuid(cred), 197 1.18 elad kauth_cred_getegid(cred), 198 1.18 elad kauth_cred_getrefcnt(cncp->cred), 199 1.18 elad kauth_cred_geteuid(cncp->cred), 200 1.18 elad kauth_cred_getegid(cncp->cred)); 201 1.25 christos coda_print_cred(cred); 202 1.25 christos coda_print_cred(cncp->cred); 203 1.1 rvb } 204 1.1 rvb #endif 205 1.22 plunky count++; 206 1.1 rvb } 207 1.1 rvb 208 1.3 rvb return((struct coda_cache *)0); 209 1.1 rvb } 210 1.1 rvb 211 1.1 rvb /* 212 1.1 rvb * Enter a new (dir cnode, name) pair into the cache, updating the 213 1.1 rvb * LRU and Hash as needed. 214 1.1 rvb */ 215 1.1 rvb void 216 1.16 xtraeme coda_nc_enter(struct cnode *dcp, const char *name, int namelen, 217 1.18 elad kauth_cred_t cred, struct cnode *cp) 218 1.1 rvb { 219 1.3 rvb struct coda_cache *cncp; 220 1.1 rvb int hash; 221 1.14 perry 222 1.3 rvb if (coda_nc_use == 0) /* Cache is off */ 223 1.1 rvb return; 224 1.14 perry 225 1.14 perry CODA_NC_DEBUG(CODA_NC_ENTER, 226 1.1 rvb myprintf(("Enter: dcp %p cp %p name %s cred %p \n", 227 1.1 rvb dcp, cp, name, cred)); ) 228 1.14 perry 229 1.3 rvb if (namelen > CODA_NC_NAMELEN) { 230 1.14 perry CODA_NC_DEBUG(CODA_NC_ENTER, 231 1.1 rvb myprintf(("long name enter %s\n",name));) 232 1.3 rvb coda_nc_stat.long_name_enters++; /* record stats */ 233 1.1 rvb return; 234 1.1 rvb } 235 1.14 perry 236 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp); 237 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash); 238 1.14 perry if (cncp != (struct coda_cache *) 0) { 239 1.3 rvb coda_nc_stat.dbl_enters++; /* duplicate entry */ 240 1.1 rvb return; 241 1.1 rvb } 242 1.14 perry 243 1.3 rvb coda_nc_stat.enters++; /* record the enters statistic */ 244 1.14 perry 245 1.1 rvb /* Grab the next element in the lru chain */ 246 1.22 plunky cncp = TAILQ_FIRST(&coda_nc_lru.head); 247 1.22 plunky TAILQ_REMOVE(&coda_nc_lru.head, cncp, lru); 248 1.14 perry 249 1.3 rvb if (CODA_NC_VALID(cncp)) { 250 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate 251 1.1 rvb hash bucket length here, so we have to find the hash bucket 252 1.1 rvb */ 253 1.3 rvb coda_nc_hash[CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp)].length--; 254 1.14 perry 255 1.3 rvb coda_nc_stat.lru_rm++; /* zapped a valid entry */ 256 1.22 plunky LIST_REMOVE(cncp, hash); 257 1.14 perry vrele(CTOV(cncp->dcp)); 258 1.1 rvb vrele(CTOV(cncp->cp)); 259 1.18 elad kauth_cred_free(cncp->cred); 260 1.1 rvb } 261 1.14 perry 262 1.1 rvb /* 263 1.1 rvb * Put a hold on the current vnodes and fill in the cache entry. 264 1.1 rvb */ 265 1.1 rvb vref(CTOV(cp)); 266 1.1 rvb vref(CTOV(dcp)); 267 1.18 elad kauth_cred_hold(cred); 268 1.1 rvb cncp->dcp = dcp; 269 1.1 rvb cncp->cp = cp; 270 1.1 rvb cncp->namelen = namelen; 271 1.1 rvb cncp->cred = cred; 272 1.14 perry 273 1.24 tsutsui memcpy(cncp->name, name, (unsigned)namelen); 274 1.14 perry 275 1.1 rvb /* Insert into the lru and hash chains. */ 276 1.22 plunky TAILQ_INSERT_TAIL(&coda_nc_lru.head, cncp, lru); 277 1.22 plunky LIST_INSERT_HEAD(&coda_nc_hash[hash].head, cncp, hash); 278 1.3 rvb coda_nc_hash[hash].length++; /* Used for tuning */ 279 1.14 perry 280 1.3 rvb CODA_NC_DEBUG(CODA_NC_PRINTCODA_NC, print_coda_nc(); ) 281 1.1 rvb } 282 1.1 rvb 283 1.1 rvb /* 284 1.26 snj * Find the (dir cnode, name) pair in the cache, if its cred 285 1.1 rvb * matches the input, return it, otherwise return 0 286 1.1 rvb */ 287 1.1 rvb struct cnode * 288 1.16 xtraeme coda_nc_lookup(struct cnode *dcp, const char *name, int namelen, 289 1.18 elad kauth_cred_t cred) 290 1.1 rvb { 291 1.1 rvb int hash; 292 1.3 rvb struct coda_cache *cncp; 293 1.1 rvb 294 1.3 rvb if (coda_nc_use == 0) /* Cache is off */ 295 1.1 rvb return((struct cnode *) 0); 296 1.1 rvb 297 1.3 rvb if (namelen > CODA_NC_NAMELEN) { 298 1.14 perry CODA_NC_DEBUG(CODA_NC_LOOKUP, 299 1.1 rvb myprintf(("long name lookup %s\n",name));) 300 1.3 rvb coda_nc_stat.long_name_lookups++; /* record stats */ 301 1.1 rvb return((struct cnode *) 0); 302 1.1 rvb } 303 1.1 rvb 304 1.1 rvb /* Use the hash function to locate the starting point, 305 1.1 rvb then the search routine to go down the list looking for 306 1.1 rvb the correct cred. 307 1.1 rvb */ 308 1.1 rvb 309 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp); 310 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash); 311 1.3 rvb if (cncp == (struct coda_cache *) 0) { 312 1.3 rvb coda_nc_stat.misses++; /* record miss */ 313 1.1 rvb return((struct cnode *) 0); 314 1.1 rvb } 315 1.1 rvb 316 1.3 rvb coda_nc_stat.hits++; 317 1.1 rvb 318 1.1 rvb /* put this entry at the end of the LRU */ 319 1.22 plunky TAILQ_REMOVE(&coda_nc_lru.head, cncp, lru); 320 1.22 plunky TAILQ_INSERT_TAIL(&coda_nc_lru.head, cncp, lru); 321 1.1 rvb 322 1.1 rvb /* move it to the front of the hash chain */ 323 1.1 rvb /* don't need to change the hash bucket length */ 324 1.22 plunky LIST_REMOVE(cncp, hash); 325 1.22 plunky LIST_INSERT_HEAD(&coda_nc_hash[hash].head, cncp, hash); 326 1.1 rvb 327 1.14 perry CODA_NC_DEBUG(CODA_NC_LOOKUP, 328 1.1 rvb printf("lookup: dcp %p, name %s, cred %p = cp %p\n", 329 1.1 rvb dcp, name, cred, cncp->cp); ) 330 1.1 rvb 331 1.1 rvb return(cncp->cp); 332 1.1 rvb } 333 1.1 rvb 334 1.1 rvb static void 335 1.16 xtraeme coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat) 336 1.1 rvb { 337 1.14 perry /* 338 1.1 rvb * remove an entry -- vrele(cncp->dcp, cp), crfree(cred), 339 1.26 snj * remove it from its hash chain, and 340 1.1 rvb * place it at the head of the lru list. 341 1.1 rvb */ 342 1.3 rvb CODA_NC_DEBUG(CODA_NC_REMOVE, 343 1.13 drochner myprintf(("coda_nc_remove %s from parent %s\n", 344 1.13 drochner cncp->name, coda_f2s(&cncp->dcp->c_fid))); ) 345 1.14 perry 346 1.1 rvb 347 1.22 plunky LIST_REMOVE(cncp, hash); 348 1.22 plunky memset(&cncp->hash, 0, sizeof(cncp->hash)); 349 1.1 rvb 350 1.27 ad if ((dcstat == IS_DOWNCALL) && (vrefcnt(CTOV(cncp->dcp)) == 1)) { 351 1.1 rvb cncp->dcp->c_flags |= C_PURGING; 352 1.1 rvb } 353 1.14 perry vrele(CTOV(cncp->dcp)); 354 1.1 rvb 355 1.27 ad if ((dcstat == IS_DOWNCALL) && (vrefcnt(CTOV(cncp->cp)) == 1)) { 356 1.1 rvb cncp->cp->c_flags |= C_PURGING; 357 1.1 rvb } 358 1.14 perry vrele(CTOV(cncp->cp)); 359 1.1 rvb 360 1.18 elad kauth_cred_free(cncp->cred); 361 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE); 362 1.1 rvb 363 1.22 plunky /* move the null entry to the front for reuse */ 364 1.22 plunky TAILQ_REMOVE(&coda_nc_lru.head, cncp, lru); 365 1.22 plunky TAILQ_INSERT_HEAD(&coda_nc_lru.head, cncp, lru); 366 1.1 rvb } 367 1.1 rvb 368 1.1 rvb /* 369 1.1 rvb * Remove all entries with a parent which has the input fid. 370 1.1 rvb */ 371 1.1 rvb void 372 1.16 xtraeme coda_nc_zapParentfid(CodaFid *fid, enum dc_status dcstat) 373 1.1 rvb { 374 1.1 rvb /* To get to a specific fid, we might either have another hashing 375 1.1 rvb function or do a sequential search through the cache for the 376 1.1 rvb appropriate entries. The later may be acceptable since I don't 377 1.12 wiz think callbacks or whatever Case 1 covers are frequent occurrences. 378 1.1 rvb */ 379 1.3 rvb struct coda_cache *cncp, *ncncp; 380 1.1 rvb int i; 381 1.1 rvb 382 1.3 rvb if (coda_nc_use == 0) /* Cache is off */ 383 1.1 rvb return; 384 1.1 rvb 385 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPPFID, 386 1.13 drochner myprintf(("ZapParent: fid %s\n", coda_f2s(fid))); ) 387 1.1 rvb 388 1.3 rvb coda_nc_stat.zapPfids++; 389 1.1 rvb 390 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) { 391 1.1 rvb 392 1.1 rvb /* 393 1.1 rvb * Need to save the hash_next pointer in case we remove the 394 1.1 rvb * entry. remove causes hash_next to point to itself. 395 1.1 rvb */ 396 1.1 rvb 397 1.22 plunky ncncp = LIST_FIRST(&coda_nc_hash[i].head); 398 1.22 plunky while ((cncp = ncncp) != NULL) { 399 1.22 plunky ncncp = LIST_NEXT(cncp, hash); 400 1.22 plunky 401 1.13 drochner if (coda_fid_eq(&(cncp->dcp->c_fid), fid)) { 402 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */ 403 1.14 perry coda_nc_remove(cncp, dcstat); 404 1.1 rvb } 405 1.1 rvb } 406 1.1 rvb } 407 1.1 rvb } 408 1.1 rvb 409 1.1 rvb /* 410 1.1 rvb * Remove all entries which have the same fid as the input 411 1.1 rvb */ 412 1.1 rvb void 413 1.16 xtraeme coda_nc_zapfid(CodaFid *fid, enum dc_status dcstat) 414 1.1 rvb { 415 1.1 rvb /* See comment for zapParentfid. This routine will be used 416 1.14 perry if attributes are being cached. 417 1.1 rvb */ 418 1.3 rvb struct coda_cache *cncp, *ncncp; 419 1.1 rvb int i; 420 1.1 rvb 421 1.3 rvb if (coda_nc_use == 0) /* Cache is off */ 422 1.1 rvb return; 423 1.1 rvb 424 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPFID, 425 1.13 drochner myprintf(("Zapfid: fid %s\n", coda_f2s(fid))); ) 426 1.1 rvb 427 1.3 rvb coda_nc_stat.zapFids++; 428 1.1 rvb 429 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) { 430 1.22 plunky 431 1.22 plunky ncncp = LIST_FIRST(&coda_nc_hash[i].head); 432 1.22 plunky while ((cncp = ncncp) != NULL) { 433 1.22 plunky ncncp = LIST_NEXT(cncp, hash); 434 1.22 plunky 435 1.13 drochner if (coda_fid_eq(&cncp->cp->c_fid, fid)) { 436 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */ 437 1.14 perry coda_nc_remove(cncp, dcstat); 438 1.1 rvb } 439 1.1 rvb } 440 1.1 rvb } 441 1.1 rvb } 442 1.1 rvb 443 1.14 perry /* 444 1.1 rvb * Remove all entries which match the fid and the cred 445 1.1 rvb */ 446 1.1 rvb void 447 1.19 christos coda_nc_zapvnode(CodaFid *fid, kauth_cred_t cred, 448 1.20 christos enum dc_status dcstat) 449 1.1 rvb { 450 1.1 rvb /* See comment for zapfid. I don't think that one would ever 451 1.1 rvb want to zap a file with a specific cred from the kernel. 452 1.1 rvb We'll leave this one unimplemented. 453 1.1 rvb */ 454 1.3 rvb if (coda_nc_use == 0) /* Cache is off */ 455 1.1 rvb return; 456 1.1 rvb 457 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPVNODE, 458 1.13 drochner myprintf(("Zapvnode: fid %s cred %p\n", 459 1.13 drochner coda_f2s(fid), cred)); ) 460 1.1 rvb } 461 1.1 rvb 462 1.1 rvb /* 463 1.1 rvb * Remove all entries which have the (dir vnode, name) pair 464 1.1 rvb */ 465 1.1 rvb void 466 1.16 xtraeme coda_nc_zapfile(struct cnode *dcp, const char *name, int namelen) 467 1.1 rvb { 468 1.1 rvb /* use the hash function to locate the file, then zap all 469 1.1 rvb entries of it regardless of the cred. 470 1.1 rvb */ 471 1.3 rvb struct coda_cache *cncp; 472 1.1 rvb int hash; 473 1.1 rvb 474 1.3 rvb if (coda_nc_use == 0) /* Cache is off */ 475 1.1 rvb return; 476 1.1 rvb 477 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPFILE, 478 1.1 rvb myprintf(("Zapfile: dcp %p name %s \n", 479 1.1 rvb dcp, name)); ) 480 1.1 rvb 481 1.3 rvb if (namelen > CODA_NC_NAMELEN) { 482 1.3 rvb coda_nc_stat.long_remove++; /* record stats */ 483 1.1 rvb return; 484 1.1 rvb } 485 1.1 rvb 486 1.3 rvb coda_nc_stat.zapFile++; 487 1.1 rvb 488 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp); 489 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash); 490 1.1 rvb 491 1.1 rvb while (cncp) { 492 1.3 rvb coda_nc_hash[hash].length--; /* Used for tuning */ 493 1.1 rvb /* 1.3 */ 494 1.3 rvb coda_nc_remove(cncp, NOT_DOWNCALL); 495 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash); 496 1.1 rvb } 497 1.1 rvb } 498 1.1 rvb 499 1.14 perry /* 500 1.1 rvb * Remove all the entries for a particular user. Used when tokens expire. 501 1.1 rvb * A user is determined by his/her effective user id (id_uid). 502 1.1 rvb */ 503 1.1 rvb void 504 1.16 xtraeme coda_nc_purge_user(uid_t uid, enum dc_status dcstat) 505 1.1 rvb { 506 1.14 perry /* 507 1.1 rvb * I think the best approach is to go through the entire cache 508 1.1 rvb * via HASH or whatever and zap all entries which match the 509 1.1 rvb * input cred. Or just flush the whole cache. It might be 510 1.1 rvb * best to go through on basis of LRU since cache will almost 511 1.14 perry * always be full and LRU is more straightforward. 512 1.1 rvb */ 513 1.1 rvb 514 1.3 rvb struct coda_cache *cncp, *ncncp; 515 1.1 rvb int hash; 516 1.1 rvb 517 1.3 rvb if (coda_nc_use == 0) /* Cache is off */ 518 1.1 rvb return; 519 1.1 rvb 520 1.14 perry CODA_NC_DEBUG(CODA_NC_PURGEUSER, 521 1.8 rvb myprintf(("ZapDude: uid %x\n", uid)); ) 522 1.3 rvb coda_nc_stat.zapUsers++; 523 1.1 rvb 524 1.22 plunky ncncp = TAILQ_FIRST(&coda_nc_lru.head); 525 1.22 plunky while ((cncp = ncncp) != NULL) { 526 1.22 plunky ncncp = TAILQ_NEXT(cncp, lru); 527 1.1 rvb 528 1.3 rvb if ((CODA_NC_VALID(cncp)) && 529 1.18 elad (kauth_cred_geteuid(cncp->cred) == uid)) { 530 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate 531 1.1 rvb hash bucket length here, so we have to find the hash bucket 532 1.1 rvb */ 533 1.3 rvb hash = CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp); 534 1.3 rvb coda_nc_hash[hash].length--; /* For performance tuning */ 535 1.1 rvb 536 1.14 perry coda_nc_remove(cncp, dcstat); 537 1.1 rvb } 538 1.1 rvb } 539 1.1 rvb } 540 1.1 rvb 541 1.1 rvb /* 542 1.1 rvb * Flush the entire name cache. In response to a flush of the Venus cache. 543 1.1 rvb */ 544 1.1 rvb void 545 1.16 xtraeme coda_nc_flush(enum dc_status dcstat) 546 1.1 rvb { 547 1.1 rvb /* One option is to deallocate the current name cache and 548 1.1 rvb call init to start again. Or just deallocate, then rebuild. 549 1.14 perry Or again, we could just go through the array and zero the 550 1.14 perry appropriate fields. 551 1.1 rvb */ 552 1.14 perry 553 1.14 perry /* 554 1.1 rvb * Go through the whole lru chain and kill everything as we go. 555 1.1 rvb * I don't use remove since that would rebuild the lru chain 556 1.29 andvar * as it went and that seemed unnecessary. 557 1.1 rvb */ 558 1.3 rvb struct coda_cache *cncp; 559 1.1 rvb int i; 560 1.1 rvb 561 1.3 rvb if (coda_nc_use == 0) /* Cache is off */ 562 1.1 rvb return; 563 1.1 rvb 564 1.3 rvb coda_nc_stat.Flushes++; 565 1.1 rvb 566 1.22 plunky TAILQ_FOREACH(cncp, &coda_nc_lru.head, lru) { 567 1.22 plunky if (CODA_NC_VALID(cncp)) { /* only zero valid nodes */ 568 1.22 plunky LIST_REMOVE(cncp, hash); 569 1.22 plunky memset(&cncp->hash, 0, sizeof(cncp->hash)); 570 1.1 rvb 571 1.14 perry if ((dcstat == IS_DOWNCALL) 572 1.27 ad && (vrefcnt(CTOV(cncp->dcp)) == 1)) 573 1.1 rvb { 574 1.1 rvb cncp->dcp->c_flags |= C_PURGING; 575 1.1 rvb } 576 1.14 perry vrele(CTOV(cncp->dcp)); 577 1.1 rvb 578 1.21 ad if (CTOV(cncp->cp)->v_iflag & VI_TEXT) { 579 1.3 rvb if (coda_vmflush(cncp->cp)) 580 1.14 perry CODADEBUG(CODA_FLUSH, 581 1.13 drochner myprintf(("coda_nc_flush: %s busy\n", 582 1.13 drochner coda_f2s(&cncp->cp->c_fid))); ) 583 1.1 rvb } 584 1.1 rvb 585 1.14 perry if ((dcstat == IS_DOWNCALL) 586 1.27 ad && (vrefcnt(CTOV(cncp->cp)) == 1)) 587 1.1 rvb { 588 1.1 rvb cncp->cp->c_flags |= C_PURGING; 589 1.1 rvb } 590 1.14 perry vrele(CTOV(cncp->cp)); 591 1.1 rvb 592 1.18 elad kauth_cred_free(cncp->cred); 593 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE); 594 1.1 rvb } 595 1.1 rvb } 596 1.1 rvb 597 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) 598 1.3 rvb coda_nc_hash[i].length = 0; 599 1.1 rvb } 600 1.1 rvb 601 1.1 rvb /* 602 1.1 rvb * Debugging routines 603 1.1 rvb */ 604 1.1 rvb 605 1.14 perry /* 606 1.1 rvb * This routine should print out all the hash chains to the console. 607 1.1 rvb */ 608 1.1 rvb void 609 1.3 rvb print_coda_nc(void) 610 1.1 rvb { 611 1.1 rvb int hash; 612 1.3 rvb struct coda_cache *cncp; 613 1.1 rvb 614 1.3 rvb for (hash = 0; hash < coda_nc_hashsize; hash++) { 615 1.1 rvb myprintf(("\nhash %d\n",hash)); 616 1.1 rvb 617 1.22 plunky LIST_FOREACH(cncp, &coda_nc_hash[hash].head, hash) { 618 1.1 rvb myprintf(("cp %p dcp %p cred %p name %s\n", 619 1.1 rvb cncp->cp, cncp->dcp, 620 1.1 rvb cncp->cred, cncp->name)); 621 1.1 rvb } 622 1.1 rvb } 623 1.1 rvb } 624 1.1 rvb 625 1.1 rvb void 626 1.3 rvb coda_nc_gather_stats(void) 627 1.1 rvb { 628 1.15 christos int i, xmax = 0, sum = 0, temp, zeros = 0, ave, n; 629 1.1 rvb 630 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) { 631 1.3 rvb if (coda_nc_hash[i].length) { 632 1.3 rvb sum += coda_nc_hash[i].length; 633 1.1 rvb } else { 634 1.1 rvb zeros++; 635 1.1 rvb } 636 1.1 rvb 637 1.15 christos if (coda_nc_hash[i].length > xmax) 638 1.15 christos xmax = coda_nc_hash[i].length; 639 1.1 rvb } 640 1.1 rvb 641 1.1 rvb /* 642 1.14 perry * When computing the Arithmetic mean, only count slots which 643 1.1 rvb * are not empty in the distribution. 644 1.1 rvb */ 645 1.3 rvb coda_nc_stat.Sum_bucket_len = sum; 646 1.3 rvb coda_nc_stat.Num_zero_len = zeros; 647 1.15 christos coda_nc_stat.Max_bucket_len = xmax; 648 1.1 rvb 649 1.14 perry if ((n = coda_nc_hashsize - zeros) > 0) 650 1.1 rvb ave = sum / n; 651 1.1 rvb else 652 1.1 rvb ave = 0; 653 1.1 rvb 654 1.1 rvb sum = 0; 655 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) { 656 1.3 rvb if (coda_nc_hash[i].length) { 657 1.3 rvb temp = coda_nc_hash[i].length - ave; 658 1.1 rvb sum += temp * temp; 659 1.1 rvb } 660 1.1 rvb } 661 1.3 rvb coda_nc_stat.Sum2_bucket_len = sum; 662 1.1 rvb } 663 1.1 rvb 664 1.1 rvb /* 665 1.1 rvb * The purpose of this routine is to allow the hash and cache sizes to be 666 1.1 rvb * changed dynamically. This should only be used in controlled environments, 667 1.1 rvb * it makes no effort to lock other users from accessing the cache while it 668 1.1 rvb * is in an improper state (except by turning the cache off). 669 1.1 rvb */ 670 1.1 rvb int 671 1.16 xtraeme coda_nc_resize(int hashsize, int heapsize, enum dc_status dcstat) 672 1.1 rvb { 673 1.1 rvb if ((hashsize % 2) || (heapsize % 2)) { /* Illegal hash or cache sizes */ 674 1.1 rvb return(EINVAL); 675 1.14 perry } 676 1.14 perry 677 1.3 rvb coda_nc_use = 0; /* Turn the cache off */ 678 1.14 perry 679 1.3 rvb coda_nc_flush(dcstat); /* free any cnodes in the cache */ 680 1.14 perry 681 1.1 rvb /* WARNING: free must happen *before* size is reset */ 682 1.3 rvb CODA_FREE(coda_nc_heap,TOTAL_CACHE_SIZE); 683 1.3 rvb CODA_FREE(coda_nc_hash,TOTAL_HASH_SIZE); 684 1.14 perry 685 1.3 rvb coda_nc_hashsize = hashsize; 686 1.3 rvb coda_nc_size = heapsize; 687 1.14 perry 688 1.3 rvb coda_nc_init(); /* Set up a cache with the new size */ 689 1.14 perry 690 1.3 rvb coda_nc_use = 1; /* Turn the cache back on */ 691 1.1 rvb return(0); 692 1.1 rvb } 693 1.1 rvb 694 1.3 rvb char coda_nc_name_buf[CODA_MAXNAMLEN+1]; 695 1.1 rvb 696 1.1 rvb void 697 1.3 rvb coda_nc_name(struct cnode *cp) 698 1.1 rvb { 699 1.22 plunky struct coda_cache *cncp; 700 1.1 rvb int i; 701 1.1 rvb 702 1.3 rvb if (coda_nc_use == 0) /* Cache is off */ 703 1.1 rvb return; 704 1.1 rvb 705 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) { 706 1.22 plunky 707 1.22 plunky LIST_FOREACH(cncp, &coda_nc_hash[i].head, hash) { 708 1.1 rvb if (cncp->cp == cp) { 709 1.24 tsutsui memcpy(coda_nc_name_buf, cncp->name, cncp->namelen); 710 1.3 rvb coda_nc_name_buf[cncp->namelen] = 0; 711 1.1 rvb printf(" is %s (%p,%p)@%p", 712 1.3 rvb coda_nc_name_buf, cncp->cp, cncp->dcp, cncp); 713 1.1 rvb } 714 1.1 rvb 715 1.1 rvb } 716 1.1 rvb } 717 1.1 rvb } 718