coda_namecache.c revision 1.10 1 1.10 thorpej /* $NetBSD: coda_namecache.c,v 1.10 2001/07/18 16:12:31 thorpej Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.2 rvb *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.2 rvb *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.2 rvb *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.2 rvb *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.2 rvb *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.2 rvb *
31 1.4 rvb * @(#) coda/coda_namecache.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.1 rvb /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1990 Carnegie-Mellon University
37 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
38 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
39 1.1 rvb * the terms and conditions for use and redistribution.
40 1.1 rvb */
41 1.1 rvb
42 1.1 rvb /*
43 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon University.
44 1.1 rvb * Contributers include David Steere, James Kistler, and M. Satyanarayanan.
45 1.1 rvb */
46 1.1 rvb
47 1.1 rvb /*
48 1.3 rvb * This module contains the routines to implement the CODA name cache. The
49 1.1 rvb * purpose of this cache is to reduce the cost of translating pathnames
50 1.1 rvb * into Vice FIDs. Each entry in the cache contains the name of the file,
51 1.1 rvb * the vnode (FID) of the parent directory, and the cred structure of the
52 1.1 rvb * user accessing the file.
53 1.1 rvb *
54 1.1 rvb * The first time a file is accessed, it is looked up by the local Venus
55 1.1 rvb * which first insures that the user has access to the file. In addition
56 1.1 rvb * we are guaranteed that Venus will invalidate any name cache entries in
57 1.1 rvb * case the user no longer should be able to access the file. For these
58 1.1 rvb * reasons we do not need to keep access list information as well as a
59 1.1 rvb * cred structure for each entry.
60 1.1 rvb *
61 1.1 rvb * The table can be accessed through the routines cnc_init(), cnc_enter(),
62 1.1 rvb * cnc_lookup(), cnc_rmfidcred(), cnc_rmfid(), cnc_rmcred(), and cnc_purge().
63 1.1 rvb * There are several other routines which aid in the implementation of the
64 1.1 rvb * hash table.
65 1.1 rvb */
66 1.1 rvb
67 1.1 rvb /*
68 1.1 rvb * NOTES: rvb@cs
69 1.1 rvb * 1. The name cache holds a reference to every vnode in it. Hence files can not be
70 1.1 rvb * closed or made inactive until they are released.
71 1.3 rvb * 2. coda_nc_name(cp) was added to get a name for a cnode pointer for debugging.
72 1.3 rvb * 3. coda_nc_find() has debug code to detect when entries are stored with different
73 1.1 rvb * credentials. We don't understand yet, if/how entries are NOT EQ but still
74 1.1 rvb * EQUAL
75 1.1 rvb * 4. I wonder if this name cache could be replace by the vnode name cache.
76 1.1 rvb * The latter has no zapping functions, so probably not.
77 1.1 rvb */
78 1.1 rvb
79 1.1 rvb #include <sys/param.h>
80 1.1 rvb #include <sys/errno.h>
81 1.1 rvb #include <sys/malloc.h>
82 1.1 rvb #include <sys/select.h>
83 1.1 rvb
84 1.4 rvb #include <coda/coda.h>
85 1.4 rvb #include <coda/cnode.h>
86 1.4 rvb #include <coda/coda_namecache.h>
87 1.1 rvb
88 1.5 rvb #ifdef DEBUG
89 1.5 rvb #include <coda/coda_vnops.h>
90 1.5 rvb #endif
91 1.5 rvb
92 1.1 rvb #ifndef insque
93 1.1 rvb #include <sys/systm.h>
94 1.1 rvb #endif /* insque */
95 1.1 rvb
96 1.1 rvb /*
97 1.1 rvb * Declaration of the name cache data structure.
98 1.1 rvb */
99 1.1 rvb
100 1.3 rvb int coda_nc_use = 1; /* Indicate use of CODA Name Cache */
101 1.1 rvb
102 1.3 rvb int coda_nc_size = CODA_NC_CACHESIZE; /* size of the cache */
103 1.3 rvb int coda_nc_hashsize = CODA_NC_HASHSIZE; /* size of the primary hash */
104 1.1 rvb
105 1.3 rvb struct coda_cache *coda_nc_heap; /* pointer to the cache entries */
106 1.3 rvb struct coda_hash *coda_nc_hash; /* hash table of cfscache pointers */
107 1.3 rvb struct coda_lru coda_nc_lru; /* head of lru chain */
108 1.1 rvb
109 1.3 rvb struct coda_nc_statistics coda_nc_stat; /* Keep various stats */
110 1.1 rvb
111 1.1 rvb /*
112 1.1 rvb * for testing purposes
113 1.1 rvb */
114 1.3 rvb int coda_nc_debug = 0;
115 1.1 rvb
116 1.1 rvb /*
117 1.3 rvb * Entry points for the CODA Name Cache
118 1.1 rvb */
119 1.3 rvb static struct coda_cache *
120 1.3 rvb coda_nc_find(struct cnode *dcp, const char *name, int namelen,
121 1.1 rvb struct ucred *cred, int hash);
122 1.1 rvb static void
123 1.3 rvb coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat);
124 1.1 rvb
125 1.1 rvb /*
126 1.1 rvb * Initialize the cache, the LRU structure and the Hash structure(s)
127 1.1 rvb */
128 1.1 rvb
129 1.3 rvb #define TOTAL_CACHE_SIZE (sizeof(struct coda_cache) * coda_nc_size)
130 1.3 rvb #define TOTAL_HASH_SIZE (sizeof(struct coda_hash) * coda_nc_hashsize)
131 1.1 rvb
132 1.3 rvb int coda_nc_initialized = 0; /* Initially the cache has not been initialized */
133 1.1 rvb
134 1.1 rvb void
135 1.3 rvb coda_nc_init(void)
136 1.1 rvb {
137 1.1 rvb int i;
138 1.1 rvb
139 1.1 rvb /* zero the statistics structure */
140 1.1 rvb
141 1.10 thorpej memset(&coda_nc_stat, 0, (sizeof(struct coda_nc_statistics)));
142 1.1 rvb
143 1.7 rvb #ifdef CODA_VERBOSE
144 1.3 rvb printf("CODA NAME CACHE: CACHE %d, HASH TBL %d\n", CODA_NC_CACHESIZE, CODA_NC_HASHSIZE);
145 1.5 rvb #endif
146 1.3 rvb CODA_ALLOC(coda_nc_heap, struct coda_cache *, TOTAL_CACHE_SIZE);
147 1.3 rvb CODA_ALLOC(coda_nc_hash, struct coda_hash *, TOTAL_HASH_SIZE);
148 1.1 rvb
149 1.3 rvb coda_nc_lru.lru_next =
150 1.3 rvb coda_nc_lru.lru_prev = (struct coda_cache *)LRU_PART(&coda_nc_lru);
151 1.1 rvb
152 1.1 rvb
153 1.3 rvb for (i=0; i < coda_nc_size; i++) { /* initialize the heap */
154 1.3 rvb CODA_NC_LRUINS(&coda_nc_heap[i], &coda_nc_lru);
155 1.3 rvb CODA_NC_HSHNUL(&coda_nc_heap[i]);
156 1.3 rvb coda_nc_heap[i].cp = coda_nc_heap[i].dcp = (struct cnode *)0;
157 1.1 rvb }
158 1.1 rvb
159 1.3 rvb for (i=0; i < coda_nc_hashsize; i++) { /* initialize the hashtable */
160 1.3 rvb CODA_NC_HSHNUL((struct coda_cache *)&coda_nc_hash[i]);
161 1.1 rvb }
162 1.1 rvb
163 1.3 rvb coda_nc_initialized++;
164 1.1 rvb }
165 1.1 rvb
166 1.1 rvb /*
167 1.1 rvb * Auxillary routines -- shouldn't be entry points
168 1.1 rvb */
169 1.1 rvb
170 1.3 rvb static struct coda_cache *
171 1.3 rvb coda_nc_find(dcp, name, namelen, cred, hash)
172 1.1 rvb struct cnode *dcp;
173 1.1 rvb const char *name;
174 1.1 rvb int namelen;
175 1.1 rvb struct ucred *cred;
176 1.1 rvb int hash;
177 1.1 rvb {
178 1.1 rvb /*
179 1.1 rvb * hash to find the appropriate bucket, look through the chain
180 1.1 rvb * for the right entry (especially right cred, unless cred == 0)
181 1.1 rvb */
182 1.3 rvb struct coda_cache *cncp;
183 1.1 rvb int count = 1;
184 1.1 rvb
185 1.3 rvb CODA_NC_DEBUG(CODA_NC_FIND,
186 1.3 rvb myprintf(("coda_nc_find(dcp %p, name %s, len %d, cred %p, hash %d\n",
187 1.1 rvb dcp, name, namelen, cred, hash));)
188 1.1 rvb
189 1.3 rvb for (cncp = coda_nc_hash[hash].hash_next;
190 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
191 1.1 rvb cncp = cncp->hash_next, count++)
192 1.1 rvb {
193 1.1 rvb
194 1.3 rvb if ((CODA_NAMEMATCH(cncp, name, namelen, dcp)) &&
195 1.1 rvb ((cred == 0) || (cncp->cred == cred)))
196 1.1 rvb {
197 1.1 rvb /* compare cr_uid instead */
198 1.3 rvb coda_nc_stat.Search_len += count;
199 1.1 rvb return(cncp);
200 1.1 rvb }
201 1.1 rvb #ifdef DEBUG
202 1.3 rvb else if (CODA_NAMEMATCH(cncp, name, namelen, dcp)) {
203 1.3 rvb printf("coda_nc_find: name %s, new cred = %p, cred = %p\n",
204 1.1 rvb name, cred, cncp->cred);
205 1.1 rvb printf("nref %d, nuid %d, ngid %d // oref %d, ocred %d, ogid %d\n",
206 1.1 rvb cred->cr_ref, cred->cr_uid, cred->cr_gid,
207 1.1 rvb cncp->cred->cr_ref, cncp->cred->cr_uid, cncp->cred->cr_gid);
208 1.1 rvb print_cred(cred);
209 1.1 rvb print_cred(cncp->cred);
210 1.1 rvb }
211 1.1 rvb #endif
212 1.1 rvb }
213 1.1 rvb
214 1.3 rvb return((struct coda_cache *)0);
215 1.1 rvb }
216 1.1 rvb
217 1.1 rvb /*
218 1.1 rvb * Enter a new (dir cnode, name) pair into the cache, updating the
219 1.1 rvb * LRU and Hash as needed.
220 1.1 rvb */
221 1.1 rvb void
222 1.3 rvb coda_nc_enter(dcp, name, namelen, cred, cp)
223 1.1 rvb struct cnode *dcp;
224 1.1 rvb const char *name;
225 1.1 rvb int namelen;
226 1.1 rvb struct ucred *cred;
227 1.1 rvb struct cnode *cp;
228 1.1 rvb {
229 1.3 rvb struct coda_cache *cncp;
230 1.1 rvb int hash;
231 1.1 rvb
232 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
233 1.1 rvb return;
234 1.1 rvb
235 1.3 rvb CODA_NC_DEBUG(CODA_NC_ENTER,
236 1.1 rvb myprintf(("Enter: dcp %p cp %p name %s cred %p \n",
237 1.1 rvb dcp, cp, name, cred)); )
238 1.1 rvb
239 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
240 1.3 rvb CODA_NC_DEBUG(CODA_NC_ENTER,
241 1.1 rvb myprintf(("long name enter %s\n",name));)
242 1.3 rvb coda_nc_stat.long_name_enters++; /* record stats */
243 1.1 rvb return;
244 1.1 rvb }
245 1.1 rvb
246 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
247 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
248 1.3 rvb if (cncp != (struct coda_cache *) 0) {
249 1.3 rvb coda_nc_stat.dbl_enters++; /* duplicate entry */
250 1.1 rvb return;
251 1.1 rvb }
252 1.1 rvb
253 1.3 rvb coda_nc_stat.enters++; /* record the enters statistic */
254 1.1 rvb
255 1.1 rvb /* Grab the next element in the lru chain */
256 1.3 rvb cncp = CODA_NC_LRUGET(coda_nc_lru);
257 1.1 rvb
258 1.3 rvb CODA_NC_LRUREM(cncp); /* remove it from the lists */
259 1.1 rvb
260 1.3 rvb if (CODA_NC_VALID(cncp)) {
261 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
262 1.1 rvb hash bucket length here, so we have to find the hash bucket
263 1.1 rvb */
264 1.3 rvb coda_nc_hash[CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp)].length--;
265 1.1 rvb
266 1.3 rvb coda_nc_stat.lru_rm++; /* zapped a valid entry */
267 1.3 rvb CODA_NC_HSHREM(cncp);
268 1.1 rvb vrele(CTOV(cncp->dcp));
269 1.1 rvb vrele(CTOV(cncp->cp));
270 1.1 rvb crfree(cncp->cred);
271 1.1 rvb }
272 1.1 rvb
273 1.1 rvb /*
274 1.1 rvb * Put a hold on the current vnodes and fill in the cache entry.
275 1.1 rvb */
276 1.1 rvb vref(CTOV(cp));
277 1.1 rvb vref(CTOV(dcp));
278 1.1 rvb crhold(cred);
279 1.1 rvb cncp->dcp = dcp;
280 1.1 rvb cncp->cp = cp;
281 1.1 rvb cncp->namelen = namelen;
282 1.1 rvb cncp->cred = cred;
283 1.1 rvb
284 1.1 rvb bcopy(name, cncp->name, (unsigned)namelen);
285 1.1 rvb
286 1.1 rvb /* Insert into the lru and hash chains. */
287 1.1 rvb
288 1.3 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
289 1.3 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
290 1.3 rvb coda_nc_hash[hash].length++; /* Used for tuning */
291 1.1 rvb
292 1.3 rvb CODA_NC_DEBUG(CODA_NC_PRINTCODA_NC, print_coda_nc(); )
293 1.1 rvb }
294 1.1 rvb
295 1.1 rvb /*
296 1.1 rvb * Find the (dir cnode, name) pair in the cache, if it's cred
297 1.1 rvb * matches the input, return it, otherwise return 0
298 1.1 rvb */
299 1.1 rvb struct cnode *
300 1.3 rvb coda_nc_lookup(dcp, name, namelen, cred)
301 1.1 rvb struct cnode *dcp;
302 1.1 rvb const char *name;
303 1.1 rvb int namelen;
304 1.1 rvb struct ucred *cred;
305 1.1 rvb {
306 1.1 rvb int hash;
307 1.3 rvb struct coda_cache *cncp;
308 1.1 rvb
309 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
310 1.1 rvb return((struct cnode *) 0);
311 1.1 rvb
312 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
313 1.3 rvb CODA_NC_DEBUG(CODA_NC_LOOKUP,
314 1.1 rvb myprintf(("long name lookup %s\n",name));)
315 1.3 rvb coda_nc_stat.long_name_lookups++; /* record stats */
316 1.1 rvb return((struct cnode *) 0);
317 1.1 rvb }
318 1.1 rvb
319 1.1 rvb /* Use the hash function to locate the starting point,
320 1.1 rvb then the search routine to go down the list looking for
321 1.1 rvb the correct cred.
322 1.1 rvb */
323 1.1 rvb
324 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
325 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
326 1.3 rvb if (cncp == (struct coda_cache *) 0) {
327 1.3 rvb coda_nc_stat.misses++; /* record miss */
328 1.1 rvb return((struct cnode *) 0);
329 1.1 rvb }
330 1.1 rvb
331 1.3 rvb coda_nc_stat.hits++;
332 1.1 rvb
333 1.1 rvb /* put this entry at the end of the LRU */
334 1.3 rvb CODA_NC_LRUREM(cncp);
335 1.3 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
336 1.1 rvb
337 1.1 rvb /* move it to the front of the hash chain */
338 1.1 rvb /* don't need to change the hash bucket length */
339 1.3 rvb CODA_NC_HSHREM(cncp);
340 1.3 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
341 1.1 rvb
342 1.3 rvb CODA_NC_DEBUG(CODA_NC_LOOKUP,
343 1.1 rvb printf("lookup: dcp %p, name %s, cred %p = cp %p\n",
344 1.1 rvb dcp, name, cred, cncp->cp); )
345 1.1 rvb
346 1.1 rvb return(cncp->cp);
347 1.1 rvb }
348 1.1 rvb
349 1.1 rvb static void
350 1.3 rvb coda_nc_remove(cncp, dcstat)
351 1.3 rvb struct coda_cache *cncp;
352 1.1 rvb enum dc_status dcstat;
353 1.1 rvb {
354 1.1 rvb /*
355 1.1 rvb * remove an entry -- vrele(cncp->dcp, cp), crfree(cred),
356 1.1 rvb * remove it from it's hash chain, and
357 1.1 rvb * place it at the head of the lru list.
358 1.1 rvb */
359 1.3 rvb CODA_NC_DEBUG(CODA_NC_REMOVE,
360 1.3 rvb myprintf(("coda_nc_remove %s from parent %lx.%lx.%lx\n",
361 1.1 rvb cncp->name, (cncp->dcp)->c_fid.Volume,
362 1.1 rvb (cncp->dcp)->c_fid.Vnode, (cncp->dcp)->c_fid.Unique));)
363 1.1 rvb
364 1.3 rvb CODA_NC_HSHREM(cncp);
365 1.1 rvb
366 1.3 rvb CODA_NC_HSHNUL(cncp); /* have it be a null chain */
367 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->dcp)->v_usecount == 1)) {
368 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
369 1.1 rvb }
370 1.1 rvb vrele(CTOV(cncp->dcp));
371 1.1 rvb
372 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->cp)->v_usecount == 1)) {
373 1.1 rvb cncp->cp->c_flags |= C_PURGING;
374 1.1 rvb }
375 1.1 rvb vrele(CTOV(cncp->cp));
376 1.1 rvb
377 1.1 rvb crfree(cncp->cred);
378 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE);
379 1.1 rvb
380 1.1 rvb /* Put the null entry just after the least-recently-used entry */
381 1.1 rvb /* LRU_TOP adjusts the pointer to point to the top of the structure. */
382 1.3 rvb CODA_NC_LRUREM(cncp);
383 1.3 rvb CODA_NC_LRUINS(cncp, LRU_TOP(coda_nc_lru.lru_prev));
384 1.1 rvb }
385 1.1 rvb
386 1.1 rvb /*
387 1.1 rvb * Remove all entries with a parent which has the input fid.
388 1.1 rvb */
389 1.1 rvb void
390 1.3 rvb coda_nc_zapParentfid(fid, dcstat)
391 1.1 rvb ViceFid *fid;
392 1.1 rvb enum dc_status dcstat;
393 1.1 rvb {
394 1.1 rvb /* To get to a specific fid, we might either have another hashing
395 1.1 rvb function or do a sequential search through the cache for the
396 1.1 rvb appropriate entries. The later may be acceptable since I don't
397 1.1 rvb think callbacks or whatever Case 1 covers are frequent occurences.
398 1.1 rvb */
399 1.3 rvb struct coda_cache *cncp, *ncncp;
400 1.1 rvb int i;
401 1.1 rvb
402 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
403 1.1 rvb return;
404 1.1 rvb
405 1.3 rvb CODA_NC_DEBUG(CODA_NC_ZAPPFID,
406 1.1 rvb myprintf(("ZapParent: fid 0x%lx, 0x%lx, 0x%lx \n",
407 1.1 rvb fid->Volume, fid->Vnode, fid->Unique)); )
408 1.1 rvb
409 1.3 rvb coda_nc_stat.zapPfids++;
410 1.1 rvb
411 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
412 1.1 rvb
413 1.1 rvb /*
414 1.1 rvb * Need to save the hash_next pointer in case we remove the
415 1.1 rvb * entry. remove causes hash_next to point to itself.
416 1.1 rvb */
417 1.1 rvb
418 1.3 rvb for (cncp = coda_nc_hash[i].hash_next;
419 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
420 1.1 rvb cncp = ncncp) {
421 1.1 rvb ncncp = cncp->hash_next;
422 1.1 rvb if ((cncp->dcp->c_fid.Volume == fid->Volume) &&
423 1.1 rvb (cncp->dcp->c_fid.Vnode == fid->Vnode) &&
424 1.1 rvb (cncp->dcp->c_fid.Unique == fid->Unique)) {
425 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */
426 1.3 rvb coda_nc_remove(cncp, dcstat);
427 1.1 rvb }
428 1.1 rvb }
429 1.1 rvb }
430 1.1 rvb }
431 1.1 rvb
432 1.1 rvb /*
433 1.1 rvb * Remove all entries which have the same fid as the input
434 1.1 rvb */
435 1.1 rvb void
436 1.3 rvb coda_nc_zapfid(fid, dcstat)
437 1.1 rvb ViceFid *fid;
438 1.1 rvb enum dc_status dcstat;
439 1.1 rvb {
440 1.1 rvb /* See comment for zapParentfid. This routine will be used
441 1.1 rvb if attributes are being cached.
442 1.1 rvb */
443 1.3 rvb struct coda_cache *cncp, *ncncp;
444 1.1 rvb int i;
445 1.1 rvb
446 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
447 1.1 rvb return;
448 1.1 rvb
449 1.3 rvb CODA_NC_DEBUG(CODA_NC_ZAPFID,
450 1.1 rvb myprintf(("Zapfid: fid 0x%lx, 0x%lx, 0x%lx \n",
451 1.1 rvb fid->Volume, fid->Vnode, fid->Unique)); )
452 1.1 rvb
453 1.3 rvb coda_nc_stat.zapFids++;
454 1.1 rvb
455 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
456 1.3 rvb for (cncp = coda_nc_hash[i].hash_next;
457 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
458 1.1 rvb cncp = ncncp) {
459 1.1 rvb ncncp = cncp->hash_next;
460 1.1 rvb if ((cncp->cp->c_fid.Volume == fid->Volume) &&
461 1.1 rvb (cncp->cp->c_fid.Vnode == fid->Vnode) &&
462 1.1 rvb (cncp->cp->c_fid.Unique == fid->Unique)) {
463 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */
464 1.3 rvb coda_nc_remove(cncp, dcstat);
465 1.1 rvb }
466 1.1 rvb }
467 1.1 rvb }
468 1.1 rvb }
469 1.1 rvb
470 1.1 rvb /*
471 1.1 rvb * Remove all entries which match the fid and the cred
472 1.1 rvb */
473 1.1 rvb void
474 1.3 rvb coda_nc_zapvnode(fid, cred, dcstat)
475 1.1 rvb ViceFid *fid;
476 1.1 rvb struct ucred *cred;
477 1.1 rvb enum dc_status dcstat;
478 1.1 rvb {
479 1.1 rvb /* See comment for zapfid. I don't think that one would ever
480 1.1 rvb want to zap a file with a specific cred from the kernel.
481 1.1 rvb We'll leave this one unimplemented.
482 1.1 rvb */
483 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
484 1.1 rvb return;
485 1.1 rvb
486 1.3 rvb CODA_NC_DEBUG(CODA_NC_ZAPVNODE,
487 1.1 rvb myprintf(("Zapvnode: fid 0x%lx, 0x%lx, 0x%lx cred %p\n",
488 1.1 rvb fid->Volume, fid->Vnode, fid->Unique, cred)); )
489 1.1 rvb
490 1.1 rvb }
491 1.1 rvb
492 1.1 rvb /*
493 1.1 rvb * Remove all entries which have the (dir vnode, name) pair
494 1.1 rvb */
495 1.1 rvb void
496 1.3 rvb coda_nc_zapfile(dcp, name, namelen)
497 1.1 rvb struct cnode *dcp;
498 1.1 rvb const char *name;
499 1.1 rvb int namelen;
500 1.1 rvb {
501 1.1 rvb /* use the hash function to locate the file, then zap all
502 1.1 rvb entries of it regardless of the cred.
503 1.1 rvb */
504 1.3 rvb struct coda_cache *cncp;
505 1.1 rvb int hash;
506 1.1 rvb
507 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
508 1.1 rvb return;
509 1.1 rvb
510 1.3 rvb CODA_NC_DEBUG(CODA_NC_ZAPFILE,
511 1.1 rvb myprintf(("Zapfile: dcp %p name %s \n",
512 1.1 rvb dcp, name)); )
513 1.1 rvb
514 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
515 1.3 rvb coda_nc_stat.long_remove++; /* record stats */
516 1.1 rvb return;
517 1.1 rvb }
518 1.1 rvb
519 1.3 rvb coda_nc_stat.zapFile++;
520 1.1 rvb
521 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
522 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
523 1.1 rvb
524 1.1 rvb while (cncp) {
525 1.3 rvb coda_nc_hash[hash].length--; /* Used for tuning */
526 1.1 rvb /* 1.3 */
527 1.3 rvb coda_nc_remove(cncp, NOT_DOWNCALL);
528 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
529 1.1 rvb }
530 1.1 rvb }
531 1.1 rvb
532 1.1 rvb /*
533 1.1 rvb * Remove all the entries for a particular user. Used when tokens expire.
534 1.1 rvb * A user is determined by his/her effective user id (id_uid).
535 1.1 rvb */
536 1.1 rvb void
537 1.3 rvb coda_nc_purge_user(uid, dcstat)
538 1.1 rvb vuid_t uid;
539 1.1 rvb enum dc_status dcstat;
540 1.1 rvb {
541 1.1 rvb /*
542 1.1 rvb * I think the best approach is to go through the entire cache
543 1.1 rvb * via HASH or whatever and zap all entries which match the
544 1.1 rvb * input cred. Or just flush the whole cache. It might be
545 1.1 rvb * best to go through on basis of LRU since cache will almost
546 1.1 rvb * always be full and LRU is more straightforward.
547 1.1 rvb */
548 1.1 rvb
549 1.3 rvb struct coda_cache *cncp, *ncncp;
550 1.1 rvb int hash;
551 1.1 rvb
552 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
553 1.1 rvb return;
554 1.1 rvb
555 1.3 rvb CODA_NC_DEBUG(CODA_NC_PURGEUSER,
556 1.8 rvb myprintf(("ZapDude: uid %x\n", uid)); )
557 1.3 rvb coda_nc_stat.zapUsers++;
558 1.1 rvb
559 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
560 1.3 rvb cncp != (struct coda_cache *)(&coda_nc_lru);
561 1.1 rvb cncp = ncncp) {
562 1.3 rvb ncncp = CODA_NC_LRUGET(*cncp);
563 1.1 rvb
564 1.3 rvb if ((CODA_NC_VALID(cncp)) &&
565 1.1 rvb ((cncp->cred)->cr_uid == uid)) {
566 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
567 1.1 rvb hash bucket length here, so we have to find the hash bucket
568 1.1 rvb */
569 1.3 rvb hash = CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp);
570 1.3 rvb coda_nc_hash[hash].length--; /* For performance tuning */
571 1.1 rvb
572 1.3 rvb coda_nc_remove(cncp, dcstat);
573 1.1 rvb }
574 1.1 rvb }
575 1.1 rvb }
576 1.1 rvb
577 1.1 rvb /*
578 1.1 rvb * Flush the entire name cache. In response to a flush of the Venus cache.
579 1.1 rvb */
580 1.1 rvb void
581 1.3 rvb coda_nc_flush(dcstat)
582 1.1 rvb enum dc_status dcstat;
583 1.1 rvb {
584 1.1 rvb /* One option is to deallocate the current name cache and
585 1.1 rvb call init to start again. Or just deallocate, then rebuild.
586 1.1 rvb Or again, we could just go through the array and zero the
587 1.1 rvb appropriate fields.
588 1.1 rvb */
589 1.1 rvb
590 1.1 rvb /*
591 1.1 rvb * Go through the whole lru chain and kill everything as we go.
592 1.1 rvb * I don't use remove since that would rebuild the lru chain
593 1.1 rvb * as it went and that seemed unneccesary.
594 1.1 rvb */
595 1.3 rvb struct coda_cache *cncp;
596 1.1 rvb int i;
597 1.1 rvb
598 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
599 1.1 rvb return;
600 1.1 rvb
601 1.3 rvb coda_nc_stat.Flushes++;
602 1.1 rvb
603 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
604 1.3 rvb cncp != (struct coda_cache *)&coda_nc_lru;
605 1.3 rvb cncp = CODA_NC_LRUGET(*cncp)) {
606 1.3 rvb if (CODA_NC_VALID(cncp)) {
607 1.1 rvb
608 1.3 rvb CODA_NC_HSHREM(cncp); /* only zero valid nodes */
609 1.3 rvb CODA_NC_HSHNUL(cncp);
610 1.1 rvb if ((dcstat == IS_DOWNCALL)
611 1.1 rvb && (CTOV(cncp->dcp)->v_usecount == 1))
612 1.1 rvb {
613 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
614 1.1 rvb }
615 1.1 rvb vrele(CTOV(cncp->dcp));
616 1.1 rvb
617 1.1 rvb if (CTOV(cncp->cp)->v_flag & VTEXT) {
618 1.3 rvb if (coda_vmflush(cncp->cp))
619 1.3 rvb CODADEBUG(CODA_FLUSH,
620 1.3 rvb myprintf(("coda_nc_flush: (%lx.%lx.%lx) busy\n", cncp->cp->c_fid.Volume, cncp->cp->c_fid.Vnode, cncp->cp->c_fid.Unique)); )
621 1.1 rvb }
622 1.1 rvb
623 1.1 rvb if ((dcstat == IS_DOWNCALL)
624 1.1 rvb && (CTOV(cncp->cp)->v_usecount == 1))
625 1.1 rvb {
626 1.1 rvb cncp->cp->c_flags |= C_PURGING;
627 1.1 rvb }
628 1.1 rvb vrele(CTOV(cncp->cp));
629 1.1 rvb
630 1.1 rvb crfree(cncp->cred);
631 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE);
632 1.1 rvb }
633 1.1 rvb }
634 1.1 rvb
635 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++)
636 1.3 rvb coda_nc_hash[i].length = 0;
637 1.1 rvb }
638 1.1 rvb
639 1.1 rvb /*
640 1.1 rvb * Debugging routines
641 1.1 rvb */
642 1.1 rvb
643 1.1 rvb /*
644 1.1 rvb * This routine should print out all the hash chains to the console.
645 1.1 rvb */
646 1.1 rvb void
647 1.3 rvb print_coda_nc(void)
648 1.1 rvb {
649 1.1 rvb int hash;
650 1.3 rvb struct coda_cache *cncp;
651 1.1 rvb
652 1.3 rvb for (hash = 0; hash < coda_nc_hashsize; hash++) {
653 1.1 rvb myprintf(("\nhash %d\n",hash));
654 1.1 rvb
655 1.3 rvb for (cncp = coda_nc_hash[hash].hash_next;
656 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
657 1.1 rvb cncp = cncp->hash_next) {
658 1.1 rvb myprintf(("cp %p dcp %p cred %p name %s\n",
659 1.1 rvb cncp->cp, cncp->dcp,
660 1.1 rvb cncp->cred, cncp->name));
661 1.1 rvb }
662 1.1 rvb }
663 1.1 rvb }
664 1.1 rvb
665 1.1 rvb void
666 1.3 rvb coda_nc_gather_stats(void)
667 1.1 rvb {
668 1.1 rvb int i, max = 0, sum = 0, temp, zeros = 0, ave, n;
669 1.1 rvb
670 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
671 1.3 rvb if (coda_nc_hash[i].length) {
672 1.3 rvb sum += coda_nc_hash[i].length;
673 1.1 rvb } else {
674 1.1 rvb zeros++;
675 1.1 rvb }
676 1.1 rvb
677 1.3 rvb if (coda_nc_hash[i].length > max)
678 1.3 rvb max = coda_nc_hash[i].length;
679 1.1 rvb }
680 1.1 rvb
681 1.1 rvb /*
682 1.1 rvb * When computing the Arithmetic mean, only count slots which
683 1.1 rvb * are not empty in the distribution.
684 1.1 rvb */
685 1.3 rvb coda_nc_stat.Sum_bucket_len = sum;
686 1.3 rvb coda_nc_stat.Num_zero_len = zeros;
687 1.3 rvb coda_nc_stat.Max_bucket_len = max;
688 1.1 rvb
689 1.3 rvb if ((n = coda_nc_hashsize - zeros) > 0)
690 1.1 rvb ave = sum / n;
691 1.1 rvb else
692 1.1 rvb ave = 0;
693 1.1 rvb
694 1.1 rvb sum = 0;
695 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
696 1.3 rvb if (coda_nc_hash[i].length) {
697 1.3 rvb temp = coda_nc_hash[i].length - ave;
698 1.1 rvb sum += temp * temp;
699 1.1 rvb }
700 1.1 rvb }
701 1.3 rvb coda_nc_stat.Sum2_bucket_len = sum;
702 1.1 rvb }
703 1.1 rvb
704 1.1 rvb /*
705 1.1 rvb * The purpose of this routine is to allow the hash and cache sizes to be
706 1.1 rvb * changed dynamically. This should only be used in controlled environments,
707 1.1 rvb * it makes no effort to lock other users from accessing the cache while it
708 1.1 rvb * is in an improper state (except by turning the cache off).
709 1.1 rvb */
710 1.1 rvb int
711 1.3 rvb coda_nc_resize(hashsize, heapsize, dcstat)
712 1.1 rvb int hashsize, heapsize;
713 1.1 rvb enum dc_status dcstat;
714 1.1 rvb {
715 1.1 rvb if ((hashsize % 2) || (heapsize % 2)) { /* Illegal hash or cache sizes */
716 1.1 rvb return(EINVAL);
717 1.1 rvb }
718 1.1 rvb
719 1.3 rvb coda_nc_use = 0; /* Turn the cache off */
720 1.1 rvb
721 1.3 rvb coda_nc_flush(dcstat); /* free any cnodes in the cache */
722 1.1 rvb
723 1.1 rvb /* WARNING: free must happen *before* size is reset */
724 1.3 rvb CODA_FREE(coda_nc_heap,TOTAL_CACHE_SIZE);
725 1.3 rvb CODA_FREE(coda_nc_hash,TOTAL_HASH_SIZE);
726 1.1 rvb
727 1.3 rvb coda_nc_hashsize = hashsize;
728 1.3 rvb coda_nc_size = heapsize;
729 1.1 rvb
730 1.3 rvb coda_nc_init(); /* Set up a cache with the new size */
731 1.1 rvb
732 1.3 rvb coda_nc_use = 1; /* Turn the cache back on */
733 1.1 rvb return(0);
734 1.1 rvb }
735 1.1 rvb
736 1.3 rvb char coda_nc_name_buf[CODA_MAXNAMLEN+1];
737 1.1 rvb
738 1.1 rvb void
739 1.3 rvb coda_nc_name(struct cnode *cp)
740 1.1 rvb {
741 1.3 rvb struct coda_cache *cncp, *ncncp;
742 1.1 rvb int i;
743 1.1 rvb
744 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
745 1.1 rvb return;
746 1.1 rvb
747 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
748 1.3 rvb for (cncp = coda_nc_hash[i].hash_next;
749 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
750 1.1 rvb cncp = ncncp) {
751 1.1 rvb ncncp = cncp->hash_next;
752 1.1 rvb if (cncp->cp == cp) {
753 1.3 rvb bcopy(cncp->name, coda_nc_name_buf, cncp->namelen);
754 1.3 rvb coda_nc_name_buf[cncp->namelen] = 0;
755 1.1 rvb printf(" is %s (%p,%p)@%p",
756 1.3 rvb coda_nc_name_buf, cncp->cp, cncp->dcp, cncp);
757 1.1 rvb }
758 1.1 rvb
759 1.1 rvb }
760 1.1 rvb }
761 1.1 rvb }
762