coda_namecache.c revision 1.16 1 1.16 xtraeme /* $NetBSD: coda_namecache.c,v 1.16 2005/08/30 22:24:11 xtraeme Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.14 perry *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.14 perry *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.14 perry *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.14 perry *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.14 perry *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.14 perry *
31 1.14 perry * @(#) coda/coda_namecache.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.14 perry /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1990 Carnegie-Mellon University
37 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
38 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
39 1.1 rvb * the terms and conditions for use and redistribution.
40 1.1 rvb */
41 1.1 rvb
42 1.1 rvb /*
43 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon University.
44 1.1 rvb * Contributers include David Steere, James Kistler, and M. Satyanarayanan.
45 1.1 rvb */
46 1.1 rvb
47 1.1 rvb /*
48 1.3 rvb * This module contains the routines to implement the CODA name cache. The
49 1.14 perry * purpose of this cache is to reduce the cost of translating pathnames
50 1.1 rvb * into Vice FIDs. Each entry in the cache contains the name of the file,
51 1.1 rvb * the vnode (FID) of the parent directory, and the cred structure of the
52 1.1 rvb * user accessing the file.
53 1.1 rvb *
54 1.1 rvb * The first time a file is accessed, it is looked up by the local Venus
55 1.1 rvb * which first insures that the user has access to the file. In addition
56 1.1 rvb * we are guaranteed that Venus will invalidate any name cache entries in
57 1.1 rvb * case the user no longer should be able to access the file. For these
58 1.1 rvb * reasons we do not need to keep access list information as well as a
59 1.1 rvb * cred structure for each entry.
60 1.1 rvb *
61 1.1 rvb * The table can be accessed through the routines cnc_init(), cnc_enter(),
62 1.1 rvb * cnc_lookup(), cnc_rmfidcred(), cnc_rmfid(), cnc_rmcred(), and cnc_purge().
63 1.1 rvb * There are several other routines which aid in the implementation of the
64 1.1 rvb * hash table.
65 1.1 rvb */
66 1.1 rvb
67 1.1 rvb /*
68 1.1 rvb * NOTES: rvb@cs
69 1.1 rvb * 1. The name cache holds a reference to every vnode in it. Hence files can not be
70 1.1 rvb * closed or made inactive until they are released.
71 1.3 rvb * 2. coda_nc_name(cp) was added to get a name for a cnode pointer for debugging.
72 1.3 rvb * 3. coda_nc_find() has debug code to detect when entries are stored with different
73 1.1 rvb * credentials. We don't understand yet, if/how entries are NOT EQ but still
74 1.1 rvb * EQUAL
75 1.1 rvb * 4. I wonder if this name cache could be replace by the vnode name cache.
76 1.1 rvb * The latter has no zapping functions, so probably not.
77 1.1 rvb */
78 1.11 lukem
79 1.11 lukem #include <sys/cdefs.h>
80 1.16 xtraeme __KERNEL_RCSID(0, "$NetBSD: coda_namecache.c,v 1.16 2005/08/30 22:24:11 xtraeme Exp $");
81 1.1 rvb
82 1.1 rvb #include <sys/param.h>
83 1.1 rvb #include <sys/errno.h>
84 1.1 rvb #include <sys/malloc.h>
85 1.1 rvb #include <sys/select.h>
86 1.1 rvb
87 1.4 rvb #include <coda/coda.h>
88 1.4 rvb #include <coda/cnode.h>
89 1.4 rvb #include <coda/coda_namecache.h>
90 1.1 rvb
91 1.5 rvb #ifdef DEBUG
92 1.5 rvb #include <coda/coda_vnops.h>
93 1.5 rvb #endif
94 1.5 rvb
95 1.1 rvb #ifndef insque
96 1.1 rvb #include <sys/systm.h>
97 1.1 rvb #endif /* insque */
98 1.1 rvb
99 1.14 perry /*
100 1.1 rvb * Declaration of the name cache data structure.
101 1.1 rvb */
102 1.1 rvb
103 1.3 rvb int coda_nc_use = 1; /* Indicate use of CODA Name Cache */
104 1.1 rvb
105 1.3 rvb int coda_nc_size = CODA_NC_CACHESIZE; /* size of the cache */
106 1.3 rvb int coda_nc_hashsize = CODA_NC_HASHSIZE; /* size of the primary hash */
107 1.1 rvb
108 1.3 rvb struct coda_cache *coda_nc_heap; /* pointer to the cache entries */
109 1.3 rvb struct coda_hash *coda_nc_hash; /* hash table of cfscache pointers */
110 1.3 rvb struct coda_lru coda_nc_lru; /* head of lru chain */
111 1.1 rvb
112 1.3 rvb struct coda_nc_statistics coda_nc_stat; /* Keep various stats */
113 1.1 rvb
114 1.14 perry /*
115 1.1 rvb * for testing purposes
116 1.1 rvb */
117 1.3 rvb int coda_nc_debug = 0;
118 1.1 rvb
119 1.1 rvb /*
120 1.3 rvb * Entry points for the CODA Name Cache
121 1.1 rvb */
122 1.3 rvb static struct coda_cache *
123 1.3 rvb coda_nc_find(struct cnode *dcp, const char *name, int namelen,
124 1.1 rvb struct ucred *cred, int hash);
125 1.1 rvb static void
126 1.3 rvb coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat);
127 1.1 rvb
128 1.14 perry /*
129 1.1 rvb * Initialize the cache, the LRU structure and the Hash structure(s)
130 1.1 rvb */
131 1.1 rvb
132 1.3 rvb #define TOTAL_CACHE_SIZE (sizeof(struct coda_cache) * coda_nc_size)
133 1.3 rvb #define TOTAL_HASH_SIZE (sizeof(struct coda_hash) * coda_nc_hashsize)
134 1.1 rvb
135 1.3 rvb int coda_nc_initialized = 0; /* Initially the cache has not been initialized */
136 1.1 rvb
137 1.1 rvb void
138 1.3 rvb coda_nc_init(void)
139 1.1 rvb {
140 1.1 rvb int i;
141 1.1 rvb
142 1.1 rvb /* zero the statistics structure */
143 1.14 perry
144 1.10 thorpej memset(&coda_nc_stat, 0, (sizeof(struct coda_nc_statistics)));
145 1.1 rvb
146 1.7 rvb #ifdef CODA_VERBOSE
147 1.3 rvb printf("CODA NAME CACHE: CACHE %d, HASH TBL %d\n", CODA_NC_CACHESIZE, CODA_NC_HASHSIZE);
148 1.5 rvb #endif
149 1.3 rvb CODA_ALLOC(coda_nc_heap, struct coda_cache *, TOTAL_CACHE_SIZE);
150 1.3 rvb CODA_ALLOC(coda_nc_hash, struct coda_hash *, TOTAL_HASH_SIZE);
151 1.14 perry
152 1.14 perry coda_nc_lru.lru_next =
153 1.3 rvb coda_nc_lru.lru_prev = (struct coda_cache *)LRU_PART(&coda_nc_lru);
154 1.14 perry
155 1.14 perry
156 1.3 rvb for (i=0; i < coda_nc_size; i++) { /* initialize the heap */
157 1.3 rvb CODA_NC_LRUINS(&coda_nc_heap[i], &coda_nc_lru);
158 1.3 rvb CODA_NC_HSHNUL(&coda_nc_heap[i]);
159 1.3 rvb coda_nc_heap[i].cp = coda_nc_heap[i].dcp = (struct cnode *)0;
160 1.1 rvb }
161 1.14 perry
162 1.3 rvb for (i=0; i < coda_nc_hashsize; i++) { /* initialize the hashtable */
163 1.3 rvb CODA_NC_HSHNUL((struct coda_cache *)&coda_nc_hash[i]);
164 1.1 rvb }
165 1.14 perry
166 1.3 rvb coda_nc_initialized++;
167 1.1 rvb }
168 1.1 rvb
169 1.1 rvb /*
170 1.1 rvb * Auxillary routines -- shouldn't be entry points
171 1.1 rvb */
172 1.1 rvb
173 1.3 rvb static struct coda_cache *
174 1.16 xtraeme coda_nc_find(struct cnode *dcp, const char *name, int namelen,
175 1.16 xtraeme struct ucred *cred, int hash)
176 1.1 rvb {
177 1.14 perry /*
178 1.1 rvb * hash to find the appropriate bucket, look through the chain
179 1.14 perry * for the right entry (especially right cred, unless cred == 0)
180 1.1 rvb */
181 1.3 rvb struct coda_cache *cncp;
182 1.1 rvb int count = 1;
183 1.1 rvb
184 1.14 perry CODA_NC_DEBUG(CODA_NC_FIND,
185 1.13 drochner myprintf(("coda_nc_find(dcp %p, name %s, len %d, cred %p, hash %d\n",
186 1.13 drochner dcp, name, namelen, cred, hash));)
187 1.1 rvb
188 1.14 perry for (cncp = coda_nc_hash[hash].hash_next;
189 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
190 1.14 perry cncp = cncp->hash_next, count++)
191 1.1 rvb {
192 1.1 rvb
193 1.3 rvb if ((CODA_NAMEMATCH(cncp, name, namelen, dcp)) &&
194 1.14 perry ((cred == 0) || (cncp->cred == cred)))
195 1.14 perry {
196 1.1 rvb /* compare cr_uid instead */
197 1.3 rvb coda_nc_stat.Search_len += count;
198 1.1 rvb return(cncp);
199 1.1 rvb }
200 1.1 rvb #ifdef DEBUG
201 1.3 rvb else if (CODA_NAMEMATCH(cncp, name, namelen, dcp)) {
202 1.3 rvb printf("coda_nc_find: name %s, new cred = %p, cred = %p\n",
203 1.1 rvb name, cred, cncp->cred);
204 1.1 rvb printf("nref %d, nuid %d, ngid %d // oref %d, ocred %d, ogid %d\n",
205 1.1 rvb cred->cr_ref, cred->cr_uid, cred->cr_gid,
206 1.1 rvb cncp->cred->cr_ref, cncp->cred->cr_uid, cncp->cred->cr_gid);
207 1.1 rvb print_cred(cred);
208 1.1 rvb print_cred(cncp->cred);
209 1.1 rvb }
210 1.1 rvb #endif
211 1.1 rvb }
212 1.1 rvb
213 1.3 rvb return((struct coda_cache *)0);
214 1.1 rvb }
215 1.1 rvb
216 1.1 rvb /*
217 1.1 rvb * Enter a new (dir cnode, name) pair into the cache, updating the
218 1.1 rvb * LRU and Hash as needed.
219 1.1 rvb */
220 1.1 rvb void
221 1.16 xtraeme coda_nc_enter(struct cnode *dcp, const char *name, int namelen,
222 1.16 xtraeme struct ucred *cred, struct cnode *cp)
223 1.1 rvb {
224 1.3 rvb struct coda_cache *cncp;
225 1.1 rvb int hash;
226 1.14 perry
227 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
228 1.1 rvb return;
229 1.14 perry
230 1.14 perry CODA_NC_DEBUG(CODA_NC_ENTER,
231 1.1 rvb myprintf(("Enter: dcp %p cp %p name %s cred %p \n",
232 1.1 rvb dcp, cp, name, cred)); )
233 1.14 perry
234 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
235 1.14 perry CODA_NC_DEBUG(CODA_NC_ENTER,
236 1.1 rvb myprintf(("long name enter %s\n",name));)
237 1.3 rvb coda_nc_stat.long_name_enters++; /* record stats */
238 1.1 rvb return;
239 1.1 rvb }
240 1.14 perry
241 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
242 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
243 1.14 perry if (cncp != (struct coda_cache *) 0) {
244 1.3 rvb coda_nc_stat.dbl_enters++; /* duplicate entry */
245 1.1 rvb return;
246 1.1 rvb }
247 1.14 perry
248 1.3 rvb coda_nc_stat.enters++; /* record the enters statistic */
249 1.14 perry
250 1.1 rvb /* Grab the next element in the lru chain */
251 1.3 rvb cncp = CODA_NC_LRUGET(coda_nc_lru);
252 1.14 perry
253 1.3 rvb CODA_NC_LRUREM(cncp); /* remove it from the lists */
254 1.14 perry
255 1.3 rvb if (CODA_NC_VALID(cncp)) {
256 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
257 1.1 rvb hash bucket length here, so we have to find the hash bucket
258 1.1 rvb */
259 1.3 rvb coda_nc_hash[CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp)].length--;
260 1.14 perry
261 1.3 rvb coda_nc_stat.lru_rm++; /* zapped a valid entry */
262 1.3 rvb CODA_NC_HSHREM(cncp);
263 1.14 perry vrele(CTOV(cncp->dcp));
264 1.1 rvb vrele(CTOV(cncp->cp));
265 1.1 rvb crfree(cncp->cred);
266 1.1 rvb }
267 1.14 perry
268 1.1 rvb /*
269 1.1 rvb * Put a hold on the current vnodes and fill in the cache entry.
270 1.1 rvb */
271 1.1 rvb vref(CTOV(cp));
272 1.1 rvb vref(CTOV(dcp));
273 1.14 perry crhold(cred);
274 1.1 rvb cncp->dcp = dcp;
275 1.1 rvb cncp->cp = cp;
276 1.1 rvb cncp->namelen = namelen;
277 1.1 rvb cncp->cred = cred;
278 1.14 perry
279 1.1 rvb bcopy(name, cncp->name, (unsigned)namelen);
280 1.14 perry
281 1.1 rvb /* Insert into the lru and hash chains. */
282 1.14 perry
283 1.3 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
284 1.3 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
285 1.3 rvb coda_nc_hash[hash].length++; /* Used for tuning */
286 1.14 perry
287 1.3 rvb CODA_NC_DEBUG(CODA_NC_PRINTCODA_NC, print_coda_nc(); )
288 1.1 rvb }
289 1.1 rvb
290 1.1 rvb /*
291 1.1 rvb * Find the (dir cnode, name) pair in the cache, if it's cred
292 1.1 rvb * matches the input, return it, otherwise return 0
293 1.1 rvb */
294 1.1 rvb struct cnode *
295 1.16 xtraeme coda_nc_lookup(struct cnode *dcp, const char *name, int namelen,
296 1.16 xtraeme struct ucred *cred)
297 1.1 rvb {
298 1.1 rvb int hash;
299 1.3 rvb struct coda_cache *cncp;
300 1.1 rvb
301 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
302 1.1 rvb return((struct cnode *) 0);
303 1.1 rvb
304 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
305 1.14 perry CODA_NC_DEBUG(CODA_NC_LOOKUP,
306 1.1 rvb myprintf(("long name lookup %s\n",name));)
307 1.3 rvb coda_nc_stat.long_name_lookups++; /* record stats */
308 1.1 rvb return((struct cnode *) 0);
309 1.1 rvb }
310 1.1 rvb
311 1.1 rvb /* Use the hash function to locate the starting point,
312 1.1 rvb then the search routine to go down the list looking for
313 1.1 rvb the correct cred.
314 1.1 rvb */
315 1.1 rvb
316 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
317 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
318 1.3 rvb if (cncp == (struct coda_cache *) 0) {
319 1.3 rvb coda_nc_stat.misses++; /* record miss */
320 1.1 rvb return((struct cnode *) 0);
321 1.1 rvb }
322 1.1 rvb
323 1.3 rvb coda_nc_stat.hits++;
324 1.1 rvb
325 1.1 rvb /* put this entry at the end of the LRU */
326 1.3 rvb CODA_NC_LRUREM(cncp);
327 1.3 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
328 1.1 rvb
329 1.1 rvb /* move it to the front of the hash chain */
330 1.1 rvb /* don't need to change the hash bucket length */
331 1.3 rvb CODA_NC_HSHREM(cncp);
332 1.3 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
333 1.1 rvb
334 1.14 perry CODA_NC_DEBUG(CODA_NC_LOOKUP,
335 1.1 rvb printf("lookup: dcp %p, name %s, cred %p = cp %p\n",
336 1.1 rvb dcp, name, cred, cncp->cp); )
337 1.1 rvb
338 1.1 rvb return(cncp->cp);
339 1.1 rvb }
340 1.1 rvb
341 1.1 rvb static void
342 1.16 xtraeme coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat)
343 1.1 rvb {
344 1.14 perry /*
345 1.1 rvb * remove an entry -- vrele(cncp->dcp, cp), crfree(cred),
346 1.1 rvb * remove it from it's hash chain, and
347 1.1 rvb * place it at the head of the lru list.
348 1.1 rvb */
349 1.3 rvb CODA_NC_DEBUG(CODA_NC_REMOVE,
350 1.13 drochner myprintf(("coda_nc_remove %s from parent %s\n",
351 1.13 drochner cncp->name, coda_f2s(&cncp->dcp->c_fid))); )
352 1.14 perry
353 1.1 rvb
354 1.3 rvb CODA_NC_HSHREM(cncp);
355 1.1 rvb
356 1.3 rvb CODA_NC_HSHNUL(cncp); /* have it be a null chain */
357 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->dcp)->v_usecount == 1)) {
358 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
359 1.1 rvb }
360 1.14 perry vrele(CTOV(cncp->dcp));
361 1.1 rvb
362 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->cp)->v_usecount == 1)) {
363 1.1 rvb cncp->cp->c_flags |= C_PURGING;
364 1.1 rvb }
365 1.14 perry vrele(CTOV(cncp->cp));
366 1.1 rvb
367 1.14 perry crfree(cncp->cred);
368 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE);
369 1.1 rvb
370 1.1 rvb /* Put the null entry just after the least-recently-used entry */
371 1.1 rvb /* LRU_TOP adjusts the pointer to point to the top of the structure. */
372 1.3 rvb CODA_NC_LRUREM(cncp);
373 1.3 rvb CODA_NC_LRUINS(cncp, LRU_TOP(coda_nc_lru.lru_prev));
374 1.1 rvb }
375 1.1 rvb
376 1.1 rvb /*
377 1.1 rvb * Remove all entries with a parent which has the input fid.
378 1.1 rvb */
379 1.1 rvb void
380 1.16 xtraeme coda_nc_zapParentfid(CodaFid *fid, enum dc_status dcstat)
381 1.1 rvb {
382 1.1 rvb /* To get to a specific fid, we might either have another hashing
383 1.1 rvb function or do a sequential search through the cache for the
384 1.1 rvb appropriate entries. The later may be acceptable since I don't
385 1.12 wiz think callbacks or whatever Case 1 covers are frequent occurrences.
386 1.1 rvb */
387 1.3 rvb struct coda_cache *cncp, *ncncp;
388 1.1 rvb int i;
389 1.1 rvb
390 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
391 1.1 rvb return;
392 1.1 rvb
393 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPPFID,
394 1.13 drochner myprintf(("ZapParent: fid %s\n", coda_f2s(fid))); )
395 1.1 rvb
396 1.3 rvb coda_nc_stat.zapPfids++;
397 1.1 rvb
398 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
399 1.1 rvb
400 1.1 rvb /*
401 1.1 rvb * Need to save the hash_next pointer in case we remove the
402 1.1 rvb * entry. remove causes hash_next to point to itself.
403 1.1 rvb */
404 1.1 rvb
405 1.14 perry for (cncp = coda_nc_hash[i].hash_next;
406 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
407 1.1 rvb cncp = ncncp) {
408 1.1 rvb ncncp = cncp->hash_next;
409 1.13 drochner if (coda_fid_eq(&(cncp->dcp->c_fid), fid)) {
410 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */
411 1.14 perry coda_nc_remove(cncp, dcstat);
412 1.1 rvb }
413 1.1 rvb }
414 1.1 rvb }
415 1.1 rvb }
416 1.1 rvb
417 1.1 rvb /*
418 1.1 rvb * Remove all entries which have the same fid as the input
419 1.1 rvb */
420 1.1 rvb void
421 1.16 xtraeme coda_nc_zapfid(CodaFid *fid, enum dc_status dcstat)
422 1.1 rvb {
423 1.1 rvb /* See comment for zapParentfid. This routine will be used
424 1.14 perry if attributes are being cached.
425 1.1 rvb */
426 1.3 rvb struct coda_cache *cncp, *ncncp;
427 1.1 rvb int i;
428 1.1 rvb
429 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
430 1.1 rvb return;
431 1.1 rvb
432 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPFID,
433 1.13 drochner myprintf(("Zapfid: fid %s\n", coda_f2s(fid))); )
434 1.1 rvb
435 1.3 rvb coda_nc_stat.zapFids++;
436 1.1 rvb
437 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
438 1.14 perry for (cncp = coda_nc_hash[i].hash_next;
439 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
440 1.1 rvb cncp = ncncp) {
441 1.1 rvb ncncp = cncp->hash_next;
442 1.13 drochner if (coda_fid_eq(&cncp->cp->c_fid, fid)) {
443 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */
444 1.14 perry coda_nc_remove(cncp, dcstat);
445 1.1 rvb }
446 1.1 rvb }
447 1.1 rvb }
448 1.1 rvb }
449 1.1 rvb
450 1.14 perry /*
451 1.1 rvb * Remove all entries which match the fid and the cred
452 1.1 rvb */
453 1.1 rvb void
454 1.16 xtraeme coda_nc_zapvnode(CodaFid *fid, struct ucred *cred, enum dc_status dcstat)
455 1.1 rvb {
456 1.1 rvb /* See comment for zapfid. I don't think that one would ever
457 1.1 rvb want to zap a file with a specific cred from the kernel.
458 1.1 rvb We'll leave this one unimplemented.
459 1.1 rvb */
460 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
461 1.1 rvb return;
462 1.1 rvb
463 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPVNODE,
464 1.13 drochner myprintf(("Zapvnode: fid %s cred %p\n",
465 1.13 drochner coda_f2s(fid), cred)); )
466 1.1 rvb }
467 1.1 rvb
468 1.1 rvb /*
469 1.1 rvb * Remove all entries which have the (dir vnode, name) pair
470 1.1 rvb */
471 1.1 rvb void
472 1.16 xtraeme coda_nc_zapfile(struct cnode *dcp, const char *name, int namelen)
473 1.1 rvb {
474 1.1 rvb /* use the hash function to locate the file, then zap all
475 1.1 rvb entries of it regardless of the cred.
476 1.1 rvb */
477 1.3 rvb struct coda_cache *cncp;
478 1.1 rvb int hash;
479 1.1 rvb
480 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
481 1.1 rvb return;
482 1.1 rvb
483 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPFILE,
484 1.1 rvb myprintf(("Zapfile: dcp %p name %s \n",
485 1.1 rvb dcp, name)); )
486 1.1 rvb
487 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
488 1.3 rvb coda_nc_stat.long_remove++; /* record stats */
489 1.1 rvb return;
490 1.1 rvb }
491 1.1 rvb
492 1.3 rvb coda_nc_stat.zapFile++;
493 1.1 rvb
494 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
495 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
496 1.1 rvb
497 1.1 rvb while (cncp) {
498 1.3 rvb coda_nc_hash[hash].length--; /* Used for tuning */
499 1.1 rvb /* 1.3 */
500 1.3 rvb coda_nc_remove(cncp, NOT_DOWNCALL);
501 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
502 1.1 rvb }
503 1.1 rvb }
504 1.1 rvb
505 1.14 perry /*
506 1.1 rvb * Remove all the entries for a particular user. Used when tokens expire.
507 1.1 rvb * A user is determined by his/her effective user id (id_uid).
508 1.1 rvb */
509 1.1 rvb void
510 1.16 xtraeme coda_nc_purge_user(uid_t uid, enum dc_status dcstat)
511 1.1 rvb {
512 1.14 perry /*
513 1.1 rvb * I think the best approach is to go through the entire cache
514 1.1 rvb * via HASH or whatever and zap all entries which match the
515 1.1 rvb * input cred. Or just flush the whole cache. It might be
516 1.1 rvb * best to go through on basis of LRU since cache will almost
517 1.14 perry * always be full and LRU is more straightforward.
518 1.1 rvb */
519 1.1 rvb
520 1.3 rvb struct coda_cache *cncp, *ncncp;
521 1.1 rvb int hash;
522 1.1 rvb
523 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
524 1.1 rvb return;
525 1.1 rvb
526 1.14 perry CODA_NC_DEBUG(CODA_NC_PURGEUSER,
527 1.8 rvb myprintf(("ZapDude: uid %x\n", uid)); )
528 1.3 rvb coda_nc_stat.zapUsers++;
529 1.1 rvb
530 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
531 1.3 rvb cncp != (struct coda_cache *)(&coda_nc_lru);
532 1.1 rvb cncp = ncncp) {
533 1.3 rvb ncncp = CODA_NC_LRUGET(*cncp);
534 1.1 rvb
535 1.3 rvb if ((CODA_NC_VALID(cncp)) &&
536 1.1 rvb ((cncp->cred)->cr_uid == uid)) {
537 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
538 1.1 rvb hash bucket length here, so we have to find the hash bucket
539 1.1 rvb */
540 1.3 rvb hash = CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp);
541 1.3 rvb coda_nc_hash[hash].length--; /* For performance tuning */
542 1.1 rvb
543 1.14 perry coda_nc_remove(cncp, dcstat);
544 1.1 rvb }
545 1.1 rvb }
546 1.1 rvb }
547 1.1 rvb
548 1.1 rvb /*
549 1.1 rvb * Flush the entire name cache. In response to a flush of the Venus cache.
550 1.1 rvb */
551 1.1 rvb void
552 1.16 xtraeme coda_nc_flush(enum dc_status dcstat)
553 1.1 rvb {
554 1.1 rvb /* One option is to deallocate the current name cache and
555 1.1 rvb call init to start again. Or just deallocate, then rebuild.
556 1.14 perry Or again, we could just go through the array and zero the
557 1.14 perry appropriate fields.
558 1.1 rvb */
559 1.14 perry
560 1.14 perry /*
561 1.1 rvb * Go through the whole lru chain and kill everything as we go.
562 1.1 rvb * I don't use remove since that would rebuild the lru chain
563 1.1 rvb * as it went and that seemed unneccesary.
564 1.1 rvb */
565 1.3 rvb struct coda_cache *cncp;
566 1.1 rvb int i;
567 1.1 rvb
568 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
569 1.1 rvb return;
570 1.1 rvb
571 1.3 rvb coda_nc_stat.Flushes++;
572 1.1 rvb
573 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
574 1.3 rvb cncp != (struct coda_cache *)&coda_nc_lru;
575 1.3 rvb cncp = CODA_NC_LRUGET(*cncp)) {
576 1.3 rvb if (CODA_NC_VALID(cncp)) {
577 1.1 rvb
578 1.3 rvb CODA_NC_HSHREM(cncp); /* only zero valid nodes */
579 1.3 rvb CODA_NC_HSHNUL(cncp);
580 1.14 perry if ((dcstat == IS_DOWNCALL)
581 1.1 rvb && (CTOV(cncp->dcp)->v_usecount == 1))
582 1.1 rvb {
583 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
584 1.1 rvb }
585 1.14 perry vrele(CTOV(cncp->dcp));
586 1.1 rvb
587 1.1 rvb if (CTOV(cncp->cp)->v_flag & VTEXT) {
588 1.3 rvb if (coda_vmflush(cncp->cp))
589 1.14 perry CODADEBUG(CODA_FLUSH,
590 1.13 drochner myprintf(("coda_nc_flush: %s busy\n",
591 1.13 drochner coda_f2s(&cncp->cp->c_fid))); )
592 1.1 rvb }
593 1.1 rvb
594 1.14 perry if ((dcstat == IS_DOWNCALL)
595 1.1 rvb && (CTOV(cncp->cp)->v_usecount == 1))
596 1.1 rvb {
597 1.1 rvb cncp->cp->c_flags |= C_PURGING;
598 1.1 rvb }
599 1.14 perry vrele(CTOV(cncp->cp));
600 1.1 rvb
601 1.14 perry crfree(cncp->cred);
602 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE);
603 1.1 rvb }
604 1.1 rvb }
605 1.1 rvb
606 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++)
607 1.3 rvb coda_nc_hash[i].length = 0;
608 1.1 rvb }
609 1.1 rvb
610 1.1 rvb /*
611 1.1 rvb * Debugging routines
612 1.1 rvb */
613 1.1 rvb
614 1.14 perry /*
615 1.1 rvb * This routine should print out all the hash chains to the console.
616 1.1 rvb */
617 1.1 rvb void
618 1.3 rvb print_coda_nc(void)
619 1.1 rvb {
620 1.1 rvb int hash;
621 1.3 rvb struct coda_cache *cncp;
622 1.1 rvb
623 1.3 rvb for (hash = 0; hash < coda_nc_hashsize; hash++) {
624 1.1 rvb myprintf(("\nhash %d\n",hash));
625 1.1 rvb
626 1.14 perry for (cncp = coda_nc_hash[hash].hash_next;
627 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
628 1.1 rvb cncp = cncp->hash_next) {
629 1.1 rvb myprintf(("cp %p dcp %p cred %p name %s\n",
630 1.1 rvb cncp->cp, cncp->dcp,
631 1.1 rvb cncp->cred, cncp->name));
632 1.1 rvb }
633 1.1 rvb }
634 1.1 rvb }
635 1.1 rvb
636 1.1 rvb void
637 1.3 rvb coda_nc_gather_stats(void)
638 1.1 rvb {
639 1.15 christos int i, xmax = 0, sum = 0, temp, zeros = 0, ave, n;
640 1.1 rvb
641 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
642 1.3 rvb if (coda_nc_hash[i].length) {
643 1.3 rvb sum += coda_nc_hash[i].length;
644 1.1 rvb } else {
645 1.1 rvb zeros++;
646 1.1 rvb }
647 1.1 rvb
648 1.15 christos if (coda_nc_hash[i].length > xmax)
649 1.15 christos xmax = coda_nc_hash[i].length;
650 1.1 rvb }
651 1.1 rvb
652 1.1 rvb /*
653 1.14 perry * When computing the Arithmetic mean, only count slots which
654 1.1 rvb * are not empty in the distribution.
655 1.1 rvb */
656 1.3 rvb coda_nc_stat.Sum_bucket_len = sum;
657 1.3 rvb coda_nc_stat.Num_zero_len = zeros;
658 1.15 christos coda_nc_stat.Max_bucket_len = xmax;
659 1.1 rvb
660 1.14 perry if ((n = coda_nc_hashsize - zeros) > 0)
661 1.1 rvb ave = sum / n;
662 1.1 rvb else
663 1.1 rvb ave = 0;
664 1.1 rvb
665 1.1 rvb sum = 0;
666 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
667 1.3 rvb if (coda_nc_hash[i].length) {
668 1.3 rvb temp = coda_nc_hash[i].length - ave;
669 1.1 rvb sum += temp * temp;
670 1.1 rvb }
671 1.1 rvb }
672 1.3 rvb coda_nc_stat.Sum2_bucket_len = sum;
673 1.1 rvb }
674 1.1 rvb
675 1.1 rvb /*
676 1.1 rvb * The purpose of this routine is to allow the hash and cache sizes to be
677 1.1 rvb * changed dynamically. This should only be used in controlled environments,
678 1.1 rvb * it makes no effort to lock other users from accessing the cache while it
679 1.1 rvb * is in an improper state (except by turning the cache off).
680 1.1 rvb */
681 1.1 rvb int
682 1.16 xtraeme coda_nc_resize(int hashsize, int heapsize, enum dc_status dcstat)
683 1.1 rvb {
684 1.1 rvb if ((hashsize % 2) || (heapsize % 2)) { /* Illegal hash or cache sizes */
685 1.1 rvb return(EINVAL);
686 1.14 perry }
687 1.14 perry
688 1.3 rvb coda_nc_use = 0; /* Turn the cache off */
689 1.14 perry
690 1.3 rvb coda_nc_flush(dcstat); /* free any cnodes in the cache */
691 1.14 perry
692 1.1 rvb /* WARNING: free must happen *before* size is reset */
693 1.3 rvb CODA_FREE(coda_nc_heap,TOTAL_CACHE_SIZE);
694 1.3 rvb CODA_FREE(coda_nc_hash,TOTAL_HASH_SIZE);
695 1.14 perry
696 1.3 rvb coda_nc_hashsize = hashsize;
697 1.3 rvb coda_nc_size = heapsize;
698 1.14 perry
699 1.3 rvb coda_nc_init(); /* Set up a cache with the new size */
700 1.14 perry
701 1.3 rvb coda_nc_use = 1; /* Turn the cache back on */
702 1.1 rvb return(0);
703 1.1 rvb }
704 1.1 rvb
705 1.3 rvb char coda_nc_name_buf[CODA_MAXNAMLEN+1];
706 1.1 rvb
707 1.1 rvb void
708 1.3 rvb coda_nc_name(struct cnode *cp)
709 1.1 rvb {
710 1.3 rvb struct coda_cache *cncp, *ncncp;
711 1.1 rvb int i;
712 1.1 rvb
713 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
714 1.1 rvb return;
715 1.1 rvb
716 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
717 1.14 perry for (cncp = coda_nc_hash[i].hash_next;
718 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
719 1.1 rvb cncp = ncncp) {
720 1.1 rvb ncncp = cncp->hash_next;
721 1.1 rvb if (cncp->cp == cp) {
722 1.3 rvb bcopy(cncp->name, coda_nc_name_buf, cncp->namelen);
723 1.3 rvb coda_nc_name_buf[cncp->namelen] = 0;
724 1.1 rvb printf(" is %s (%p,%p)@%p",
725 1.3 rvb coda_nc_name_buf, cncp->cp, cncp->dcp, cncp);
726 1.1 rvb }
727 1.1 rvb
728 1.1 rvb }
729 1.1 rvb }
730 1.1 rvb }
731