coda_namecache.c revision 1.2 1 1.2 rvb /* $NetBSD: coda_namecache.c,v 1.2 1998/09/08 17:12:46 rvb Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.2 rvb *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.2 rvb *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.2 rvb *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.2 rvb *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.2 rvb *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.2 rvb *
31 1.2 rvb * @(#) cfs/cfs_namecache.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.1 rvb /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1990 Carnegie-Mellon University
37 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
38 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
39 1.1 rvb * the terms and conditions for use and redistribution.
40 1.1 rvb */
41 1.1 rvb
42 1.1 rvb /*
43 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon University.
44 1.1 rvb * Contributers include David Steere, James Kistler, and M. Satyanarayanan.
45 1.1 rvb */
46 1.1 rvb
47 1.1 rvb /*
48 1.1 rvb * HISTORY
49 1.1 rvb * $Log: coda_namecache.c,v $
50 1.2 rvb * Revision 1.2 1998/09/08 17:12:46 rvb
51 1.2 rvb * Pass2 complete
52 1.2 rvb *
53 1.1 rvb * Revision 1.1.1.1 1998/08/29 21:26:45 rvb
54 1.1 rvb * Very Preliminary Coda
55 1.1 rvb *
56 1.1 rvb * Revision 1.11 1998/08/28 18:12:16 rvb
57 1.1 rvb * Now it also works on FreeBSD -current. This code will be
58 1.1 rvb * committed to the FreeBSD -current and NetBSD -current
59 1.1 rvb * trees. It will then be tailored to the particular platform
60 1.1 rvb * by flushing conditional code.
61 1.1 rvb *
62 1.1 rvb * Revision 1.10 1998/08/18 17:05:14 rvb
63 1.1 rvb * Don't use __RCSID now
64 1.1 rvb *
65 1.1 rvb * Revision 1.9 1998/08/18 16:31:39 rvb
66 1.1 rvb * Sync the code for NetBSD -current; test on 1.3 later
67 1.1 rvb *
68 1.1 rvb * Revision 1.8 98/01/31 20:53:10 rvb
69 1.1 rvb * First version that works on FreeBSD 2.2.5
70 1.1 rvb *
71 1.1 rvb * Revision 1.7 98/01/23 11:53:39 rvb
72 1.1 rvb * Bring RVB_CFS1_1 to HEAD
73 1.1 rvb *
74 1.1 rvb * Revision 1.6.2.4 98/01/23 11:21:02 rvb
75 1.1 rvb * Sync with 2.2.5
76 1.1 rvb *
77 1.1 rvb * Revision 1.6.2.3 97/12/16 12:40:03 rvb
78 1.1 rvb * Sync with 1.3
79 1.1 rvb *
80 1.1 rvb * Revision 1.6.2.2 97/12/09 16:07:10 rvb
81 1.1 rvb * Sync with vfs/include/coda.h
82 1.1 rvb *
83 1.1 rvb * Revision 1.6.2.1 97/12/06 17:41:18 rvb
84 1.1 rvb * Sync with peters coda.h
85 1.1 rvb *
86 1.1 rvb * Revision 1.6 97/12/05 10:39:13 rvb
87 1.1 rvb * Read CHANGES
88 1.1 rvb *
89 1.1 rvb * Revision 1.5.4.7 97/11/25 08:08:43 rvb
90 1.1 rvb * cfs_venus ... done; until cred/vattr change
91 1.1 rvb *
92 1.1 rvb * Revision 1.5.4.6 97/11/24 15:44:43 rvb
93 1.1 rvb * Final cfs_venus.c w/o macros, but one locking bug
94 1.1 rvb *
95 1.1 rvb * Revision 1.5.4.5 97/11/20 11:46:38 rvb
96 1.1 rvb * Capture current cfs_venus
97 1.1 rvb *
98 1.1 rvb * Revision 1.5.4.4 97/11/18 10:27:13 rvb
99 1.1 rvb * cfs_nbsd.c is DEAD!!!; integrated into cfs_vf/vnops.c
100 1.1 rvb * cfs_nb_foo and cfs_foo are joined
101 1.1 rvb *
102 1.1 rvb * Revision 1.5.4.3 97/11/13 22:02:57 rvb
103 1.1 rvb * pass2 cfs_NetBSD.h mt
104 1.1 rvb *
105 1.1 rvb * Revision 1.5.4.2 97/11/12 12:09:35 rvb
106 1.1 rvb * reorg pass1
107 1.1 rvb *
108 1.1 rvb * Revision 1.5.4.1 97/10/28 23:10:12 rvb
109 1.1 rvb * >64Meg; venus can be killed!
110 1.1 rvb *
111 1.1 rvb * Revision 1.5 97/08/05 11:08:01 lily
112 1.1 rvb * Removed cfsnc_replace, replaced it with a cfs_find, unhash, and
113 1.1 rvb * rehash. This fixes a cnode leak and a bug in which the fid is
114 1.1 rvb * not actually replaced. (cfs_namecache.c, cfsnc.h, cfs_subr.c)
115 1.1 rvb *
116 1.1 rvb * Revision 1.4 96/12/12 22:10:57 bnoble
117 1.1 rvb * Fixed the "downcall invokes venus operation" deadlock in all known cases.
118 1.1 rvb * There may be more
119 1.1 rvb *
120 1.1 rvb * Revision 1.3 1996/11/08 18:06:09 bnoble
121 1.1 rvb * Minor changes in vnode operation signature, VOP_UPDATE signature, and
122 1.1 rvb * some newly defined bits in the include files.
123 1.1 rvb *
124 1.1 rvb * Revision 1.2 1996/01/02 16:56:50 bnoble
125 1.1 rvb * Added support for Coda MiniCache and raw inode calls (final commit)
126 1.1 rvb *
127 1.1 rvb * Revision 1.1.2.1 1995/12/20 01:57:15 bnoble
128 1.1 rvb * Added CFS-specific files
129 1.1 rvb *
130 1.1 rvb * Revision 3.1.1.1 1995/03/04 19:07:57 bnoble
131 1.1 rvb * Branch for NetBSD port revisions
132 1.1 rvb *
133 1.1 rvb * Revision 3.1 1995/03/04 19:07:56 bnoble
134 1.1 rvb * Bump to major revision 3 to prepare for NetBSD port
135 1.1 rvb *
136 1.1 rvb * Revision 2.3 1994/10/14 09:57:54 dcs
137 1.1 rvb * Made changes 'cause sun4s have braindead compilers
138 1.1 rvb *
139 1.1 rvb * Revision 2.2 94/08/28 19:37:35 luqi
140 1.1 rvb * Add a new CFS_REPLACE call to allow venus to replace a ViceFid in the
141 1.1 rvb * mini-cache.
142 1.1 rvb *
143 1.1 rvb * In "cfs.h":
144 1.1 rvb * Add CFS_REPLACE decl.
145 1.1 rvb *
146 1.1 rvb * In "cfs_namecache.c":
147 1.1 rvb * Add routine cfsnc_replace.
148 1.1 rvb *
149 1.1 rvb * In "cfs_subr.c":
150 1.1 rvb * Add case-statement to process CFS_REPLACE.
151 1.1 rvb *
152 1.1 rvb * In "cfsnc.h":
153 1.1 rvb * Add decl for CFSNC_REPLACE.
154 1.1 rvb *
155 1.1 rvb *
156 1.1 rvb * Revision 2.1 94/07/21 16:25:15 satya
157 1.1 rvb * Conversion to C++ 3.0; start of Coda Release 2.0
158 1.1 rvb *
159 1.1 rvb * Revision 1.2 92/10/27 17:58:21 lily
160 1.1 rvb * merge kernel/latest and alpha/src/cfs
161 1.1 rvb *
162 1.1 rvb * Revision 2.3 92/09/30 14:16:20 mja
163 1.1 rvb * call cfs_flush instead of calling inode_uncache_try directly
164 1.1 rvb * (from dcs). Also...
165 1.1 rvb *
166 1.1 rvb * Substituted rvb's history blurb so that we agree with Mach 2.5 sources.
167 1.1 rvb * [91/02/09 jjk]
168 1.1 rvb *
169 1.1 rvb * Added contributors blurb.
170 1.1 rvb * [90/12/13 jjk]
171 1.1 rvb *
172 1.1 rvb * Revision 2.2 90/07/05 11:26:30 mrt
173 1.1 rvb * Created for the Coda File System.
174 1.1 rvb * [90/05/23 dcs]
175 1.1 rvb *
176 1.1 rvb * Revision 1.3 90/05/31 17:01:24 dcs
177 1.1 rvb * Prepare for merge with facilities kernel.
178 1.1 rvb *
179 1.1 rvb *
180 1.1 rvb */
181 1.1 rvb
182 1.1 rvb /*
183 1.1 rvb * This module contains the routines to implement the CFS name cache. The
184 1.1 rvb * purpose of this cache is to reduce the cost of translating pathnames
185 1.1 rvb * into Vice FIDs. Each entry in the cache contains the name of the file,
186 1.1 rvb * the vnode (FID) of the parent directory, and the cred structure of the
187 1.1 rvb * user accessing the file.
188 1.1 rvb *
189 1.1 rvb * The first time a file is accessed, it is looked up by the local Venus
190 1.1 rvb * which first insures that the user has access to the file. In addition
191 1.1 rvb * we are guaranteed that Venus will invalidate any name cache entries in
192 1.1 rvb * case the user no longer should be able to access the file. For these
193 1.1 rvb * reasons we do not need to keep access list information as well as a
194 1.1 rvb * cred structure for each entry.
195 1.1 rvb *
196 1.1 rvb * The table can be accessed through the routines cnc_init(), cnc_enter(),
197 1.1 rvb * cnc_lookup(), cnc_rmfidcred(), cnc_rmfid(), cnc_rmcred(), and cnc_purge().
198 1.1 rvb * There are several other routines which aid in the implementation of the
199 1.1 rvb * hash table.
200 1.1 rvb */
201 1.1 rvb
202 1.1 rvb /*
203 1.1 rvb * NOTES: rvb@cs
204 1.1 rvb * 1. The name cache holds a reference to every vnode in it. Hence files can not be
205 1.1 rvb * closed or made inactive until they are released.
206 1.1 rvb * 2. cfsnc_name(cp) was added to get a name for a cnode pointer for debugging.
207 1.1 rvb * 3. cfsnc_find() has debug code to detect when entries are stored with different
208 1.1 rvb * credentials. We don't understand yet, if/how entries are NOT EQ but still
209 1.1 rvb * EQUAL
210 1.1 rvb * 4. I wonder if this name cache could be replace by the vnode name cache.
211 1.1 rvb * The latter has no zapping functions, so probably not.
212 1.1 rvb */
213 1.1 rvb
214 1.1 rvb #include <sys/param.h>
215 1.1 rvb #include <sys/errno.h>
216 1.1 rvb #include <sys/malloc.h>
217 1.1 rvb #include <sys/select.h>
218 1.1 rvb
219 1.1 rvb #include <cfs/coda.h>
220 1.1 rvb #include <cfs/cnode.h>
221 1.1 rvb #include <cfs/cfsnc.h>
222 1.1 rvb
223 1.1 rvb #ifndef insque
224 1.1 rvb #include <sys/systm.h>
225 1.1 rvb #endif /* insque */
226 1.1 rvb
227 1.1 rvb /*
228 1.1 rvb * Declaration of the name cache data structure.
229 1.1 rvb */
230 1.1 rvb
231 1.1 rvb int cfsnc_use = 1; /* Indicate use of CFS Name Cache */
232 1.1 rvb
233 1.1 rvb int cfsnc_size = CFSNC_CACHESIZE; /* size of the cache */
234 1.1 rvb int cfsnc_hashsize = CFSNC_HASHSIZE; /* size of the primary hash */
235 1.1 rvb
236 1.1 rvb struct cfscache *cfsncheap; /* pointer to the cache entries */
237 1.1 rvb struct cfshash *cfsnchash; /* hash table of cfscache pointers */
238 1.1 rvb struct cfslru cfsnc_lru; /* head of lru chain */
239 1.1 rvb
240 1.1 rvb struct cfsnc_statistics cfsnc_stat; /* Keep various stats */
241 1.1 rvb
242 1.1 rvb /*
243 1.1 rvb * for testing purposes
244 1.1 rvb */
245 1.1 rvb int cfsnc_debug = 0;
246 1.1 rvb
247 1.1 rvb /*
248 1.1 rvb * Entry points for the CFS Name Cache
249 1.1 rvb */
250 1.1 rvb static struct cfscache *
251 1.1 rvb cfsnc_find(struct cnode *dcp, const char *name, int namelen,
252 1.1 rvb struct ucred *cred, int hash);
253 1.1 rvb static void
254 1.1 rvb cfsnc_remove(struct cfscache *cncp, enum dc_status dcstat);
255 1.1 rvb
256 1.1 rvb /*
257 1.1 rvb * Initialize the cache, the LRU structure and the Hash structure(s)
258 1.1 rvb */
259 1.1 rvb
260 1.1 rvb #define TOTAL_CACHE_SIZE (sizeof(struct cfscache) * cfsnc_size)
261 1.1 rvb #define TOTAL_HASH_SIZE (sizeof(struct cfshash) * cfsnc_hashsize)
262 1.1 rvb
263 1.1 rvb int cfsnc_initialized = 0; /* Initially the cache has not been initialized */
264 1.1 rvb
265 1.1 rvb void
266 1.1 rvb cfsnc_init(void)
267 1.1 rvb {
268 1.1 rvb int i;
269 1.1 rvb
270 1.1 rvb /* zero the statistics structure */
271 1.1 rvb
272 1.1 rvb bzero(&cfsnc_stat, (sizeof(struct cfsnc_statistics)));
273 1.1 rvb
274 1.1 rvb printf("CFS NAME CACHE: CACHE %d, HASH TBL %d\n", CFSNC_CACHESIZE, CFSNC_HASHSIZE);
275 1.1 rvb CFS_ALLOC(cfsncheap, struct cfscache *, TOTAL_CACHE_SIZE);
276 1.1 rvb CFS_ALLOC(cfsnchash, struct cfshash *, TOTAL_HASH_SIZE);
277 1.1 rvb
278 1.1 rvb cfsnc_lru.lru_next =
279 1.1 rvb cfsnc_lru.lru_prev = (struct cfscache *)LRU_PART(&cfsnc_lru);
280 1.1 rvb
281 1.1 rvb
282 1.1 rvb for (i=0; i < cfsnc_size; i++) { /* initialize the heap */
283 1.1 rvb CFSNC_LRUINS(&cfsncheap[i], &cfsnc_lru);
284 1.1 rvb CFSNC_HSHNUL(&cfsncheap[i]);
285 1.1 rvb cfsncheap[i].cp = cfsncheap[i].dcp = (struct cnode *)0;
286 1.1 rvb }
287 1.1 rvb
288 1.1 rvb for (i=0; i < cfsnc_hashsize; i++) { /* initialize the hashtable */
289 1.1 rvb CFSNC_HSHNUL((struct cfscache *)&cfsnchash[i]);
290 1.1 rvb }
291 1.1 rvb
292 1.1 rvb cfsnc_initialized++;
293 1.1 rvb }
294 1.1 rvb
295 1.1 rvb /*
296 1.1 rvb * Auxillary routines -- shouldn't be entry points
297 1.1 rvb */
298 1.1 rvb
299 1.1 rvb static struct cfscache *
300 1.1 rvb cfsnc_find(dcp, name, namelen, cred, hash)
301 1.1 rvb struct cnode *dcp;
302 1.1 rvb const char *name;
303 1.1 rvb int namelen;
304 1.1 rvb struct ucred *cred;
305 1.1 rvb int hash;
306 1.1 rvb {
307 1.1 rvb /*
308 1.1 rvb * hash to find the appropriate bucket, look through the chain
309 1.1 rvb * for the right entry (especially right cred, unless cred == 0)
310 1.1 rvb */
311 1.1 rvb struct cfscache *cncp;
312 1.1 rvb int count = 1;
313 1.1 rvb
314 1.1 rvb CFSNC_DEBUG(CFSNC_FIND,
315 1.1 rvb myprintf(("cfsnc_find(dcp %p, name %s, len %d, cred %p, hash %d\n",
316 1.1 rvb dcp, name, namelen, cred, hash));)
317 1.1 rvb
318 1.1 rvb for (cncp = cfsnchash[hash].hash_next;
319 1.1 rvb cncp != (struct cfscache *)&cfsnchash[hash];
320 1.1 rvb cncp = cncp->hash_next, count++)
321 1.1 rvb {
322 1.1 rvb
323 1.1 rvb if ((CFS_NAMEMATCH(cncp, name, namelen, dcp)) &&
324 1.1 rvb ((cred == 0) || (cncp->cred == cred)))
325 1.1 rvb {
326 1.1 rvb /* compare cr_uid instead */
327 1.1 rvb cfsnc_stat.Search_len += count;
328 1.1 rvb return(cncp);
329 1.1 rvb }
330 1.1 rvb #ifdef DEBUG
331 1.1 rvb else if (CFS_NAMEMATCH(cncp, name, namelen, dcp)) {
332 1.1 rvb printf("cfsnc_find: name %s, new cred = %p, cred = %p\n",
333 1.1 rvb name, cred, cncp->cred);
334 1.1 rvb printf("nref %d, nuid %d, ngid %d // oref %d, ocred %d, ogid %d\n",
335 1.1 rvb cred->cr_ref, cred->cr_uid, cred->cr_gid,
336 1.1 rvb cncp->cred->cr_ref, cncp->cred->cr_uid, cncp->cred->cr_gid);
337 1.1 rvb print_cred(cred);
338 1.1 rvb print_cred(cncp->cred);
339 1.1 rvb }
340 1.1 rvb #endif
341 1.1 rvb }
342 1.1 rvb
343 1.1 rvb return((struct cfscache *)0);
344 1.1 rvb }
345 1.1 rvb
346 1.1 rvb /*
347 1.1 rvb * Enter a new (dir cnode, name) pair into the cache, updating the
348 1.1 rvb * LRU and Hash as needed.
349 1.1 rvb */
350 1.1 rvb void
351 1.1 rvb cfsnc_enter(dcp, name, namelen, cred, cp)
352 1.1 rvb struct cnode *dcp;
353 1.1 rvb const char *name;
354 1.1 rvb int namelen;
355 1.1 rvb struct ucred *cred;
356 1.1 rvb struct cnode *cp;
357 1.1 rvb {
358 1.1 rvb struct cfscache *cncp;
359 1.1 rvb int hash;
360 1.1 rvb
361 1.1 rvb if (cfsnc_use == 0) /* Cache is off */
362 1.1 rvb return;
363 1.1 rvb
364 1.1 rvb CFSNC_DEBUG(CFSNC_ENTER,
365 1.1 rvb myprintf(("Enter: dcp %p cp %p name %s cred %p \n",
366 1.1 rvb dcp, cp, name, cred)); )
367 1.1 rvb
368 1.1 rvb if (namelen > CFSNC_NAMELEN) {
369 1.1 rvb CFSNC_DEBUG(CFSNC_ENTER,
370 1.1 rvb myprintf(("long name enter %s\n",name));)
371 1.1 rvb cfsnc_stat.long_name_enters++; /* record stats */
372 1.1 rvb return;
373 1.1 rvb }
374 1.1 rvb
375 1.1 rvb hash = CFSNC_HASH(name, namelen, dcp);
376 1.1 rvb cncp = cfsnc_find(dcp, name, namelen, cred, hash);
377 1.1 rvb if (cncp != (struct cfscache *) 0) {
378 1.1 rvb cfsnc_stat.dbl_enters++; /* duplicate entry */
379 1.1 rvb return;
380 1.1 rvb }
381 1.1 rvb
382 1.1 rvb cfsnc_stat.enters++; /* record the enters statistic */
383 1.1 rvb
384 1.1 rvb /* Grab the next element in the lru chain */
385 1.1 rvb cncp = CFSNC_LRUGET(cfsnc_lru);
386 1.1 rvb
387 1.1 rvb CFSNC_LRUREM(cncp); /* remove it from the lists */
388 1.1 rvb
389 1.1 rvb if (CFSNC_VALID(cncp)) {
390 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
391 1.1 rvb hash bucket length here, so we have to find the hash bucket
392 1.1 rvb */
393 1.1 rvb cfsnchash[CFSNC_HASH(cncp->name, cncp->namelen, cncp->dcp)].length--;
394 1.1 rvb
395 1.1 rvb cfsnc_stat.lru_rm++; /* zapped a valid entry */
396 1.1 rvb CFSNC_HSHREM(cncp);
397 1.1 rvb vrele(CTOV(cncp->dcp));
398 1.1 rvb vrele(CTOV(cncp->cp));
399 1.1 rvb crfree(cncp->cred);
400 1.1 rvb }
401 1.1 rvb
402 1.1 rvb /*
403 1.1 rvb * Put a hold on the current vnodes and fill in the cache entry.
404 1.1 rvb */
405 1.1 rvb vref(CTOV(cp));
406 1.1 rvb vref(CTOV(dcp));
407 1.1 rvb crhold(cred);
408 1.1 rvb cncp->dcp = dcp;
409 1.1 rvb cncp->cp = cp;
410 1.1 rvb cncp->namelen = namelen;
411 1.1 rvb cncp->cred = cred;
412 1.1 rvb
413 1.1 rvb bcopy(name, cncp->name, (unsigned)namelen);
414 1.1 rvb
415 1.1 rvb /* Insert into the lru and hash chains. */
416 1.1 rvb
417 1.1 rvb CFSNC_LRUINS(cncp, &cfsnc_lru);
418 1.1 rvb CFSNC_HSHINS(cncp, &cfsnchash[hash]);
419 1.1 rvb cfsnchash[hash].length++; /* Used for tuning */
420 1.1 rvb
421 1.1 rvb CFSNC_DEBUG(CFSNC_PRINTCFSNC, print_cfsnc(); )
422 1.1 rvb }
423 1.1 rvb
424 1.1 rvb /*
425 1.1 rvb * Find the (dir cnode, name) pair in the cache, if it's cred
426 1.1 rvb * matches the input, return it, otherwise return 0
427 1.1 rvb */
428 1.1 rvb struct cnode *
429 1.1 rvb cfsnc_lookup(dcp, name, namelen, cred)
430 1.1 rvb struct cnode *dcp;
431 1.1 rvb const char *name;
432 1.1 rvb int namelen;
433 1.1 rvb struct ucred *cred;
434 1.1 rvb {
435 1.1 rvb int hash;
436 1.1 rvb struct cfscache *cncp;
437 1.1 rvb
438 1.1 rvb if (cfsnc_use == 0) /* Cache is off */
439 1.1 rvb return((struct cnode *) 0);
440 1.1 rvb
441 1.1 rvb if (namelen > CFSNC_NAMELEN) {
442 1.1 rvb CFSNC_DEBUG(CFSNC_LOOKUP,
443 1.1 rvb myprintf(("long name lookup %s\n",name));)
444 1.1 rvb cfsnc_stat.long_name_lookups++; /* record stats */
445 1.1 rvb return((struct cnode *) 0);
446 1.1 rvb }
447 1.1 rvb
448 1.1 rvb /* Use the hash function to locate the starting point,
449 1.1 rvb then the search routine to go down the list looking for
450 1.1 rvb the correct cred.
451 1.1 rvb */
452 1.1 rvb
453 1.1 rvb hash = CFSNC_HASH(name, namelen, dcp);
454 1.1 rvb cncp = cfsnc_find(dcp, name, namelen, cred, hash);
455 1.1 rvb if (cncp == (struct cfscache *) 0) {
456 1.1 rvb cfsnc_stat.misses++; /* record miss */
457 1.1 rvb return((struct cnode *) 0);
458 1.1 rvb }
459 1.1 rvb
460 1.1 rvb cfsnc_stat.hits++;
461 1.1 rvb
462 1.1 rvb /* put this entry at the end of the LRU */
463 1.1 rvb CFSNC_LRUREM(cncp);
464 1.1 rvb CFSNC_LRUINS(cncp, &cfsnc_lru);
465 1.1 rvb
466 1.1 rvb /* move it to the front of the hash chain */
467 1.1 rvb /* don't need to change the hash bucket length */
468 1.1 rvb CFSNC_HSHREM(cncp);
469 1.1 rvb CFSNC_HSHINS(cncp, &cfsnchash[hash]);
470 1.1 rvb
471 1.1 rvb CFSNC_DEBUG(CFSNC_LOOKUP,
472 1.1 rvb printf("lookup: dcp %p, name %s, cred %p = cp %p\n",
473 1.1 rvb dcp, name, cred, cncp->cp); )
474 1.1 rvb
475 1.1 rvb return(cncp->cp);
476 1.1 rvb }
477 1.1 rvb
478 1.1 rvb static void
479 1.1 rvb cfsnc_remove(cncp, dcstat)
480 1.1 rvb struct cfscache *cncp;
481 1.1 rvb enum dc_status dcstat;
482 1.1 rvb {
483 1.1 rvb /*
484 1.1 rvb * remove an entry -- vrele(cncp->dcp, cp), crfree(cred),
485 1.1 rvb * remove it from it's hash chain, and
486 1.1 rvb * place it at the head of the lru list.
487 1.1 rvb */
488 1.1 rvb CFSNC_DEBUG(CFSNC_REMOVE,
489 1.1 rvb myprintf(("cfsnc_remove %s from parent %lx.%lx.%lx\n",
490 1.1 rvb cncp->name, (cncp->dcp)->c_fid.Volume,
491 1.1 rvb (cncp->dcp)->c_fid.Vnode, (cncp->dcp)->c_fid.Unique));)
492 1.1 rvb
493 1.1 rvb CFSNC_HSHREM(cncp);
494 1.1 rvb
495 1.1 rvb CFSNC_HSHNUL(cncp); /* have it be a null chain */
496 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->dcp)->v_usecount == 1)) {
497 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
498 1.1 rvb }
499 1.1 rvb vrele(CTOV(cncp->dcp));
500 1.1 rvb
501 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->cp)->v_usecount == 1)) {
502 1.1 rvb cncp->cp->c_flags |= C_PURGING;
503 1.1 rvb }
504 1.1 rvb vrele(CTOV(cncp->cp));
505 1.1 rvb
506 1.1 rvb crfree(cncp->cred);
507 1.1 rvb bzero(DATA_PART(cncp),DATA_SIZE);
508 1.1 rvb
509 1.1 rvb /* Put the null entry just after the least-recently-used entry */
510 1.1 rvb /* LRU_TOP adjusts the pointer to point to the top of the structure. */
511 1.1 rvb CFSNC_LRUREM(cncp);
512 1.1 rvb CFSNC_LRUINS(cncp, LRU_TOP(cfsnc_lru.lru_prev));
513 1.1 rvb }
514 1.1 rvb
515 1.1 rvb /*
516 1.1 rvb * Remove all entries with a parent which has the input fid.
517 1.1 rvb */
518 1.1 rvb void
519 1.1 rvb cfsnc_zapParentfid(fid, dcstat)
520 1.1 rvb ViceFid *fid;
521 1.1 rvb enum dc_status dcstat;
522 1.1 rvb {
523 1.1 rvb /* To get to a specific fid, we might either have another hashing
524 1.1 rvb function or do a sequential search through the cache for the
525 1.1 rvb appropriate entries. The later may be acceptable since I don't
526 1.1 rvb think callbacks or whatever Case 1 covers are frequent occurences.
527 1.1 rvb */
528 1.1 rvb struct cfscache *cncp, *ncncp;
529 1.1 rvb int i;
530 1.1 rvb
531 1.1 rvb if (cfsnc_use == 0) /* Cache is off */
532 1.1 rvb return;
533 1.1 rvb
534 1.1 rvb CFSNC_DEBUG(CFSNC_ZAPPFID,
535 1.1 rvb myprintf(("ZapParent: fid 0x%lx, 0x%lx, 0x%lx \n",
536 1.1 rvb fid->Volume, fid->Vnode, fid->Unique)); )
537 1.1 rvb
538 1.1 rvb cfsnc_stat.zapPfids++;
539 1.1 rvb
540 1.1 rvb for (i = 0; i < cfsnc_hashsize; i++) {
541 1.1 rvb
542 1.1 rvb /*
543 1.1 rvb * Need to save the hash_next pointer in case we remove the
544 1.1 rvb * entry. remove causes hash_next to point to itself.
545 1.1 rvb */
546 1.1 rvb
547 1.1 rvb for (cncp = cfsnchash[i].hash_next;
548 1.1 rvb cncp != (struct cfscache *)&cfsnchash[i];
549 1.1 rvb cncp = ncncp) {
550 1.1 rvb ncncp = cncp->hash_next;
551 1.1 rvb if ((cncp->dcp->c_fid.Volume == fid->Volume) &&
552 1.1 rvb (cncp->dcp->c_fid.Vnode == fid->Vnode) &&
553 1.1 rvb (cncp->dcp->c_fid.Unique == fid->Unique)) {
554 1.1 rvb cfsnchash[i].length--; /* Used for tuning */
555 1.1 rvb cfsnc_remove(cncp, dcstat);
556 1.1 rvb }
557 1.1 rvb }
558 1.1 rvb }
559 1.1 rvb }
560 1.1 rvb
561 1.1 rvb /*
562 1.1 rvb * Remove all entries which have the same fid as the input
563 1.1 rvb */
564 1.1 rvb void
565 1.1 rvb cfsnc_zapfid(fid, dcstat)
566 1.1 rvb ViceFid *fid;
567 1.1 rvb enum dc_status dcstat;
568 1.1 rvb {
569 1.1 rvb /* See comment for zapParentfid. This routine will be used
570 1.1 rvb if attributes are being cached.
571 1.1 rvb */
572 1.1 rvb struct cfscache *cncp, *ncncp;
573 1.1 rvb int i;
574 1.1 rvb
575 1.1 rvb if (cfsnc_use == 0) /* Cache is off */
576 1.1 rvb return;
577 1.1 rvb
578 1.1 rvb CFSNC_DEBUG(CFSNC_ZAPFID,
579 1.1 rvb myprintf(("Zapfid: fid 0x%lx, 0x%lx, 0x%lx \n",
580 1.1 rvb fid->Volume, fid->Vnode, fid->Unique)); )
581 1.1 rvb
582 1.1 rvb cfsnc_stat.zapFids++;
583 1.1 rvb
584 1.1 rvb for (i = 0; i < cfsnc_hashsize; i++) {
585 1.1 rvb for (cncp = cfsnchash[i].hash_next;
586 1.1 rvb cncp != (struct cfscache *)&cfsnchash[i];
587 1.1 rvb cncp = ncncp) {
588 1.1 rvb ncncp = cncp->hash_next;
589 1.1 rvb if ((cncp->cp->c_fid.Volume == fid->Volume) &&
590 1.1 rvb (cncp->cp->c_fid.Vnode == fid->Vnode) &&
591 1.1 rvb (cncp->cp->c_fid.Unique == fid->Unique)) {
592 1.1 rvb cfsnchash[i].length--; /* Used for tuning */
593 1.1 rvb cfsnc_remove(cncp, dcstat);
594 1.1 rvb }
595 1.1 rvb }
596 1.1 rvb }
597 1.1 rvb }
598 1.1 rvb
599 1.1 rvb /*
600 1.1 rvb * Remove all entries which match the fid and the cred
601 1.1 rvb */
602 1.1 rvb void
603 1.1 rvb cfsnc_zapvnode(fid, cred, dcstat)
604 1.1 rvb ViceFid *fid;
605 1.1 rvb struct ucred *cred;
606 1.1 rvb enum dc_status dcstat;
607 1.1 rvb {
608 1.1 rvb /* See comment for zapfid. I don't think that one would ever
609 1.1 rvb want to zap a file with a specific cred from the kernel.
610 1.1 rvb We'll leave this one unimplemented.
611 1.1 rvb */
612 1.1 rvb if (cfsnc_use == 0) /* Cache is off */
613 1.1 rvb return;
614 1.1 rvb
615 1.1 rvb CFSNC_DEBUG(CFSNC_ZAPVNODE,
616 1.1 rvb myprintf(("Zapvnode: fid 0x%lx, 0x%lx, 0x%lx cred %p\n",
617 1.1 rvb fid->Volume, fid->Vnode, fid->Unique, cred)); )
618 1.1 rvb
619 1.1 rvb }
620 1.1 rvb
621 1.1 rvb /*
622 1.1 rvb * Remove all entries which have the (dir vnode, name) pair
623 1.1 rvb */
624 1.1 rvb void
625 1.1 rvb cfsnc_zapfile(dcp, name, namelen)
626 1.1 rvb struct cnode *dcp;
627 1.1 rvb const char *name;
628 1.1 rvb int namelen;
629 1.1 rvb {
630 1.1 rvb /* use the hash function to locate the file, then zap all
631 1.1 rvb entries of it regardless of the cred.
632 1.1 rvb */
633 1.1 rvb struct cfscache *cncp;
634 1.1 rvb int hash;
635 1.1 rvb
636 1.1 rvb if (cfsnc_use == 0) /* Cache is off */
637 1.1 rvb return;
638 1.1 rvb
639 1.1 rvb CFSNC_DEBUG(CFSNC_ZAPFILE,
640 1.1 rvb myprintf(("Zapfile: dcp %p name %s \n",
641 1.1 rvb dcp, name)); )
642 1.1 rvb
643 1.1 rvb if (namelen > CFSNC_NAMELEN) {
644 1.1 rvb cfsnc_stat.long_remove++; /* record stats */
645 1.1 rvb return;
646 1.1 rvb }
647 1.1 rvb
648 1.1 rvb cfsnc_stat.zapFile++;
649 1.1 rvb
650 1.1 rvb hash = CFSNC_HASH(name, namelen, dcp);
651 1.1 rvb cncp = cfsnc_find(dcp, name, namelen, 0, hash);
652 1.1 rvb
653 1.1 rvb while (cncp) {
654 1.1 rvb cfsnchash[hash].length--; /* Used for tuning */
655 1.1 rvb /* 1.3 */
656 1.1 rvb cfsnc_remove(cncp, NOT_DOWNCALL);
657 1.1 rvb cncp = cfsnc_find(dcp, name, namelen, 0, hash);
658 1.1 rvb }
659 1.1 rvb }
660 1.1 rvb
661 1.1 rvb /*
662 1.1 rvb * Remove all the entries for a particular user. Used when tokens expire.
663 1.1 rvb * A user is determined by his/her effective user id (id_uid).
664 1.1 rvb */
665 1.1 rvb void
666 1.1 rvb cfsnc_purge_user(uid, dcstat)
667 1.1 rvb vuid_t uid;
668 1.1 rvb enum dc_status dcstat;
669 1.1 rvb {
670 1.1 rvb /*
671 1.1 rvb * I think the best approach is to go through the entire cache
672 1.1 rvb * via HASH or whatever and zap all entries which match the
673 1.1 rvb * input cred. Or just flush the whole cache. It might be
674 1.1 rvb * best to go through on basis of LRU since cache will almost
675 1.1 rvb * always be full and LRU is more straightforward.
676 1.1 rvb */
677 1.1 rvb
678 1.1 rvb struct cfscache *cncp, *ncncp;
679 1.1 rvb int hash;
680 1.1 rvb
681 1.1 rvb if (cfsnc_use == 0) /* Cache is off */
682 1.1 rvb return;
683 1.1 rvb
684 1.1 rvb CFSNC_DEBUG(CFSNC_PURGEUSER,
685 1.1 rvb myprintf(("ZapDude: uid %lx\n", uid)); )
686 1.1 rvb cfsnc_stat.zapUsers++;
687 1.1 rvb
688 1.1 rvb for (cncp = CFSNC_LRUGET(cfsnc_lru);
689 1.1 rvb cncp != (struct cfscache *)(&cfsnc_lru);
690 1.1 rvb cncp = ncncp) {
691 1.1 rvb ncncp = CFSNC_LRUGET(*cncp);
692 1.1 rvb
693 1.1 rvb if ((CFSNC_VALID(cncp)) &&
694 1.1 rvb ((cncp->cred)->cr_uid == uid)) {
695 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
696 1.1 rvb hash bucket length here, so we have to find the hash bucket
697 1.1 rvb */
698 1.1 rvb hash = CFSNC_HASH(cncp->name, cncp->namelen, cncp->dcp);
699 1.1 rvb cfsnchash[hash].length--; /* For performance tuning */
700 1.1 rvb
701 1.1 rvb cfsnc_remove(cncp, dcstat);
702 1.1 rvb }
703 1.1 rvb }
704 1.1 rvb }
705 1.1 rvb
706 1.1 rvb /*
707 1.1 rvb * Flush the entire name cache. In response to a flush of the Venus cache.
708 1.1 rvb */
709 1.1 rvb void
710 1.1 rvb cfsnc_flush(dcstat)
711 1.1 rvb enum dc_status dcstat;
712 1.1 rvb {
713 1.1 rvb /* One option is to deallocate the current name cache and
714 1.1 rvb call init to start again. Or just deallocate, then rebuild.
715 1.1 rvb Or again, we could just go through the array and zero the
716 1.1 rvb appropriate fields.
717 1.1 rvb */
718 1.1 rvb
719 1.1 rvb /*
720 1.1 rvb * Go through the whole lru chain and kill everything as we go.
721 1.1 rvb * I don't use remove since that would rebuild the lru chain
722 1.1 rvb * as it went and that seemed unneccesary.
723 1.1 rvb */
724 1.1 rvb struct cfscache *cncp;
725 1.1 rvb int i;
726 1.1 rvb
727 1.1 rvb if (cfsnc_use == 0) /* Cache is off */
728 1.1 rvb return;
729 1.1 rvb
730 1.1 rvb cfsnc_stat.Flushes++;
731 1.1 rvb
732 1.1 rvb for (cncp = CFSNC_LRUGET(cfsnc_lru);
733 1.1 rvb cncp != (struct cfscache *)&cfsnc_lru;
734 1.1 rvb cncp = CFSNC_LRUGET(*cncp)) {
735 1.1 rvb if (CFSNC_VALID(cncp)) {
736 1.1 rvb
737 1.1 rvb CFSNC_HSHREM(cncp); /* only zero valid nodes */
738 1.1 rvb CFSNC_HSHNUL(cncp);
739 1.1 rvb if ((dcstat == IS_DOWNCALL)
740 1.1 rvb && (CTOV(cncp->dcp)->v_usecount == 1))
741 1.1 rvb {
742 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
743 1.1 rvb }
744 1.1 rvb vrele(CTOV(cncp->dcp));
745 1.1 rvb
746 1.1 rvb if (CTOV(cncp->cp)->v_flag & VTEXT) {
747 1.1 rvb if (cfs_vmflush(cncp->cp))
748 1.1 rvb CFSDEBUG(CFS_FLUSH,
749 1.1 rvb myprintf(("cfsnc_flush: (%lx.%lx.%lx) busy\n", cncp->cp->c_fid.Volume, cncp->cp->c_fid.Vnode, cncp->cp->c_fid.Unique)); )
750 1.1 rvb }
751 1.1 rvb
752 1.1 rvb if ((dcstat == IS_DOWNCALL)
753 1.1 rvb && (CTOV(cncp->cp)->v_usecount == 1))
754 1.1 rvb {
755 1.1 rvb cncp->cp->c_flags |= C_PURGING;
756 1.1 rvb }
757 1.1 rvb vrele(CTOV(cncp->cp));
758 1.1 rvb
759 1.1 rvb crfree(cncp->cred);
760 1.1 rvb bzero(DATA_PART(cncp),DATA_SIZE);
761 1.1 rvb }
762 1.1 rvb }
763 1.1 rvb
764 1.1 rvb for (i = 0; i < cfsnc_hashsize; i++)
765 1.1 rvb cfsnchash[i].length = 0;
766 1.1 rvb }
767 1.1 rvb
768 1.1 rvb /*
769 1.1 rvb * Debugging routines
770 1.1 rvb */
771 1.1 rvb
772 1.1 rvb /*
773 1.1 rvb * This routine should print out all the hash chains to the console.
774 1.1 rvb */
775 1.1 rvb void
776 1.1 rvb print_cfsnc(void)
777 1.1 rvb {
778 1.1 rvb int hash;
779 1.1 rvb struct cfscache *cncp;
780 1.1 rvb
781 1.1 rvb for (hash = 0; hash < cfsnc_hashsize; hash++) {
782 1.1 rvb myprintf(("\nhash %d\n",hash));
783 1.1 rvb
784 1.1 rvb for (cncp = cfsnchash[hash].hash_next;
785 1.1 rvb cncp != (struct cfscache *)&cfsnchash[hash];
786 1.1 rvb cncp = cncp->hash_next) {
787 1.1 rvb myprintf(("cp %p dcp %p cred %p name %s\n",
788 1.1 rvb cncp->cp, cncp->dcp,
789 1.1 rvb cncp->cred, cncp->name));
790 1.1 rvb }
791 1.1 rvb }
792 1.1 rvb }
793 1.1 rvb
794 1.1 rvb void
795 1.1 rvb cfsnc_gather_stats(void)
796 1.1 rvb {
797 1.1 rvb int i, max = 0, sum = 0, temp, zeros = 0, ave, n;
798 1.1 rvb
799 1.1 rvb for (i = 0; i < cfsnc_hashsize; i++) {
800 1.1 rvb if (cfsnchash[i].length) {
801 1.1 rvb sum += cfsnchash[i].length;
802 1.1 rvb } else {
803 1.1 rvb zeros++;
804 1.1 rvb }
805 1.1 rvb
806 1.1 rvb if (cfsnchash[i].length > max)
807 1.1 rvb max = cfsnchash[i].length;
808 1.1 rvb }
809 1.1 rvb
810 1.1 rvb /*
811 1.1 rvb * When computing the Arithmetic mean, only count slots which
812 1.1 rvb * are not empty in the distribution.
813 1.1 rvb */
814 1.1 rvb cfsnc_stat.Sum_bucket_len = sum;
815 1.1 rvb cfsnc_stat.Num_zero_len = zeros;
816 1.1 rvb cfsnc_stat.Max_bucket_len = max;
817 1.1 rvb
818 1.1 rvb if ((n = cfsnc_hashsize - zeros) > 0)
819 1.1 rvb ave = sum / n;
820 1.1 rvb else
821 1.1 rvb ave = 0;
822 1.1 rvb
823 1.1 rvb sum = 0;
824 1.1 rvb for (i = 0; i < cfsnc_hashsize; i++) {
825 1.1 rvb if (cfsnchash[i].length) {
826 1.1 rvb temp = cfsnchash[i].length - ave;
827 1.1 rvb sum += temp * temp;
828 1.1 rvb }
829 1.1 rvb }
830 1.1 rvb cfsnc_stat.Sum2_bucket_len = sum;
831 1.1 rvb }
832 1.1 rvb
833 1.1 rvb /*
834 1.1 rvb * The purpose of this routine is to allow the hash and cache sizes to be
835 1.1 rvb * changed dynamically. This should only be used in controlled environments,
836 1.1 rvb * it makes no effort to lock other users from accessing the cache while it
837 1.1 rvb * is in an improper state (except by turning the cache off).
838 1.1 rvb */
839 1.1 rvb int
840 1.1 rvb cfsnc_resize(hashsize, heapsize, dcstat)
841 1.1 rvb int hashsize, heapsize;
842 1.1 rvb enum dc_status dcstat;
843 1.1 rvb {
844 1.1 rvb if ((hashsize % 2) || (heapsize % 2)) { /* Illegal hash or cache sizes */
845 1.1 rvb return(EINVAL);
846 1.1 rvb }
847 1.1 rvb
848 1.1 rvb cfsnc_use = 0; /* Turn the cache off */
849 1.1 rvb
850 1.1 rvb cfsnc_flush(dcstat); /* free any cnodes in the cache */
851 1.1 rvb
852 1.1 rvb /* WARNING: free must happen *before* size is reset */
853 1.1 rvb CFS_FREE(cfsncheap,TOTAL_CACHE_SIZE);
854 1.1 rvb CFS_FREE(cfsnchash,TOTAL_HASH_SIZE);
855 1.1 rvb
856 1.1 rvb cfsnc_hashsize = hashsize;
857 1.1 rvb cfsnc_size = heapsize;
858 1.1 rvb
859 1.1 rvb cfsnc_init(); /* Set up a cache with the new size */
860 1.1 rvb
861 1.1 rvb cfsnc_use = 1; /* Turn the cache back on */
862 1.1 rvb return(0);
863 1.1 rvb }
864 1.1 rvb
865 1.1 rvb char cfsnc_name_buf[CFS_MAXNAMLEN+1];
866 1.1 rvb
867 1.1 rvb void
868 1.1 rvb cfsnc_name(struct cnode *cp)
869 1.1 rvb {
870 1.1 rvb struct cfscache *cncp, *ncncp;
871 1.1 rvb int i;
872 1.1 rvb
873 1.1 rvb if (cfsnc_use == 0) /* Cache is off */
874 1.1 rvb return;
875 1.1 rvb
876 1.1 rvb for (i = 0; i < cfsnc_hashsize; i++) {
877 1.1 rvb for (cncp = cfsnchash[i].hash_next;
878 1.1 rvb cncp != (struct cfscache *)&cfsnchash[i];
879 1.1 rvb cncp = ncncp) {
880 1.1 rvb ncncp = cncp->hash_next;
881 1.1 rvb if (cncp->cp == cp) {
882 1.1 rvb bcopy(cncp->name, cfsnc_name_buf, cncp->namelen);
883 1.1 rvb cfsnc_name_buf[cncp->namelen] = 0;
884 1.1 rvb printf(" is %s (%p,%p)@%p",
885 1.1 rvb cfsnc_name_buf, cncp->cp, cncp->dcp, cncp);
886 1.1 rvb }
887 1.1 rvb
888 }
889 }
890 }
891