coda_namecache.c revision 1.21 1 1.21 ad /* $NetBSD: coda_namecache.c,v 1.21 2007/10/10 20:42:21 ad Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.14 perry *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.14 perry *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.14 perry *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.14 perry *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.14 perry *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.14 perry *
31 1.14 perry * @(#) coda/coda_namecache.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.14 perry /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1990 Carnegie-Mellon University
37 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
38 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
39 1.1 rvb * the terms and conditions for use and redistribution.
40 1.1 rvb */
41 1.1 rvb
42 1.1 rvb /*
43 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon University.
44 1.1 rvb * Contributers include David Steere, James Kistler, and M. Satyanarayanan.
45 1.1 rvb */
46 1.1 rvb
47 1.1 rvb /*
48 1.3 rvb * This module contains the routines to implement the CODA name cache. The
49 1.14 perry * purpose of this cache is to reduce the cost of translating pathnames
50 1.1 rvb * into Vice FIDs. Each entry in the cache contains the name of the file,
51 1.1 rvb * the vnode (FID) of the parent directory, and the cred structure of the
52 1.1 rvb * user accessing the file.
53 1.1 rvb *
54 1.1 rvb * The first time a file is accessed, it is looked up by the local Venus
55 1.1 rvb * which first insures that the user has access to the file. In addition
56 1.1 rvb * we are guaranteed that Venus will invalidate any name cache entries in
57 1.1 rvb * case the user no longer should be able to access the file. For these
58 1.1 rvb * reasons we do not need to keep access list information as well as a
59 1.1 rvb * cred structure for each entry.
60 1.1 rvb *
61 1.1 rvb * The table can be accessed through the routines cnc_init(), cnc_enter(),
62 1.1 rvb * cnc_lookup(), cnc_rmfidcred(), cnc_rmfid(), cnc_rmcred(), and cnc_purge().
63 1.1 rvb * There are several other routines which aid in the implementation of the
64 1.1 rvb * hash table.
65 1.1 rvb */
66 1.1 rvb
67 1.1 rvb /*
68 1.1 rvb * NOTES: rvb@cs
69 1.1 rvb * 1. The name cache holds a reference to every vnode in it. Hence files can not be
70 1.1 rvb * closed or made inactive until they are released.
71 1.3 rvb * 2. coda_nc_name(cp) was added to get a name for a cnode pointer for debugging.
72 1.3 rvb * 3. coda_nc_find() has debug code to detect when entries are stored with different
73 1.1 rvb * credentials. We don't understand yet, if/how entries are NOT EQ but still
74 1.1 rvb * EQUAL
75 1.1 rvb * 4. I wonder if this name cache could be replace by the vnode name cache.
76 1.1 rvb * The latter has no zapping functions, so probably not.
77 1.1 rvb */
78 1.11 lukem
79 1.11 lukem #include <sys/cdefs.h>
80 1.21 ad __KERNEL_RCSID(0, "$NetBSD: coda_namecache.c,v 1.21 2007/10/10 20:42:21 ad Exp $");
81 1.1 rvb
82 1.1 rvb #include <sys/param.h>
83 1.1 rvb #include <sys/errno.h>
84 1.1 rvb #include <sys/malloc.h>
85 1.1 rvb #include <sys/select.h>
86 1.18 elad #include <sys/kauth.h>
87 1.1 rvb
88 1.4 rvb #include <coda/coda.h>
89 1.4 rvb #include <coda/cnode.h>
90 1.4 rvb #include <coda/coda_namecache.h>
91 1.1 rvb
92 1.5 rvb #ifdef DEBUG
93 1.5 rvb #include <coda/coda_vnops.h>
94 1.5 rvb #endif
95 1.5 rvb
96 1.1 rvb #ifndef insque
97 1.1 rvb #include <sys/systm.h>
98 1.1 rvb #endif /* insque */
99 1.1 rvb
100 1.14 perry /*
101 1.1 rvb * Declaration of the name cache data structure.
102 1.1 rvb */
103 1.1 rvb
104 1.3 rvb int coda_nc_use = 1; /* Indicate use of CODA Name Cache */
105 1.1 rvb
106 1.3 rvb int coda_nc_size = CODA_NC_CACHESIZE; /* size of the cache */
107 1.3 rvb int coda_nc_hashsize = CODA_NC_HASHSIZE; /* size of the primary hash */
108 1.1 rvb
109 1.3 rvb struct coda_cache *coda_nc_heap; /* pointer to the cache entries */
110 1.3 rvb struct coda_hash *coda_nc_hash; /* hash table of cfscache pointers */
111 1.3 rvb struct coda_lru coda_nc_lru; /* head of lru chain */
112 1.1 rvb
113 1.3 rvb struct coda_nc_statistics coda_nc_stat; /* Keep various stats */
114 1.1 rvb
115 1.14 perry /*
116 1.1 rvb * for testing purposes
117 1.1 rvb */
118 1.3 rvb int coda_nc_debug = 0;
119 1.1 rvb
120 1.1 rvb /*
121 1.3 rvb * Entry points for the CODA Name Cache
122 1.1 rvb */
123 1.3 rvb static struct coda_cache *
124 1.3 rvb coda_nc_find(struct cnode *dcp, const char *name, int namelen,
125 1.18 elad kauth_cred_t cred, int hash);
126 1.1 rvb static void
127 1.3 rvb coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat);
128 1.1 rvb
129 1.14 perry /*
130 1.1 rvb * Initialize the cache, the LRU structure and the Hash structure(s)
131 1.1 rvb */
132 1.1 rvb
133 1.3 rvb #define TOTAL_CACHE_SIZE (sizeof(struct coda_cache) * coda_nc_size)
134 1.3 rvb #define TOTAL_HASH_SIZE (sizeof(struct coda_hash) * coda_nc_hashsize)
135 1.1 rvb
136 1.3 rvb int coda_nc_initialized = 0; /* Initially the cache has not been initialized */
137 1.1 rvb
138 1.1 rvb void
139 1.3 rvb coda_nc_init(void)
140 1.1 rvb {
141 1.1 rvb int i;
142 1.1 rvb
143 1.1 rvb /* zero the statistics structure */
144 1.14 perry
145 1.10 thorpej memset(&coda_nc_stat, 0, (sizeof(struct coda_nc_statistics)));
146 1.1 rvb
147 1.7 rvb #ifdef CODA_VERBOSE
148 1.3 rvb printf("CODA NAME CACHE: CACHE %d, HASH TBL %d\n", CODA_NC_CACHESIZE, CODA_NC_HASHSIZE);
149 1.5 rvb #endif
150 1.3 rvb CODA_ALLOC(coda_nc_heap, struct coda_cache *, TOTAL_CACHE_SIZE);
151 1.3 rvb CODA_ALLOC(coda_nc_hash, struct coda_hash *, TOTAL_HASH_SIZE);
152 1.14 perry
153 1.14 perry coda_nc_lru.lru_next =
154 1.3 rvb coda_nc_lru.lru_prev = (struct coda_cache *)LRU_PART(&coda_nc_lru);
155 1.14 perry
156 1.14 perry
157 1.3 rvb for (i=0; i < coda_nc_size; i++) { /* initialize the heap */
158 1.3 rvb CODA_NC_LRUINS(&coda_nc_heap[i], &coda_nc_lru);
159 1.3 rvb CODA_NC_HSHNUL(&coda_nc_heap[i]);
160 1.3 rvb coda_nc_heap[i].cp = coda_nc_heap[i].dcp = (struct cnode *)0;
161 1.1 rvb }
162 1.14 perry
163 1.3 rvb for (i=0; i < coda_nc_hashsize; i++) { /* initialize the hashtable */
164 1.3 rvb CODA_NC_HSHNUL((struct coda_cache *)&coda_nc_hash[i]);
165 1.1 rvb }
166 1.14 perry
167 1.3 rvb coda_nc_initialized++;
168 1.1 rvb }
169 1.1 rvb
170 1.1 rvb /*
171 1.1 rvb * Auxillary routines -- shouldn't be entry points
172 1.1 rvb */
173 1.1 rvb
174 1.3 rvb static struct coda_cache *
175 1.16 xtraeme coda_nc_find(struct cnode *dcp, const char *name, int namelen,
176 1.18 elad kauth_cred_t cred, int hash)
177 1.1 rvb {
178 1.14 perry /*
179 1.1 rvb * hash to find the appropriate bucket, look through the chain
180 1.14 perry * for the right entry (especially right cred, unless cred == 0)
181 1.1 rvb */
182 1.3 rvb struct coda_cache *cncp;
183 1.1 rvb int count = 1;
184 1.1 rvb
185 1.14 perry CODA_NC_DEBUG(CODA_NC_FIND,
186 1.13 drochner myprintf(("coda_nc_find(dcp %p, name %s, len %d, cred %p, hash %d\n",
187 1.13 drochner dcp, name, namelen, cred, hash));)
188 1.1 rvb
189 1.14 perry for (cncp = coda_nc_hash[hash].hash_next;
190 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
191 1.14 perry cncp = cncp->hash_next, count++)
192 1.1 rvb {
193 1.1 rvb
194 1.3 rvb if ((CODA_NAMEMATCH(cncp, name, namelen, dcp)) &&
195 1.14 perry ((cred == 0) || (cncp->cred == cred)))
196 1.14 perry {
197 1.1 rvb /* compare cr_uid instead */
198 1.3 rvb coda_nc_stat.Search_len += count;
199 1.1 rvb return(cncp);
200 1.1 rvb }
201 1.1 rvb #ifdef DEBUG
202 1.3 rvb else if (CODA_NAMEMATCH(cncp, name, namelen, dcp)) {
203 1.3 rvb printf("coda_nc_find: name %s, new cred = %p, cred = %p\n",
204 1.1 rvb name, cred, cncp->cred);
205 1.1 rvb printf("nref %d, nuid %d, ngid %d // oref %d, ocred %d, ogid %d\n",
206 1.18 elad kauth_cred_getrefcnt(cred),
207 1.18 elad kauth_cred_geteuid(cred),
208 1.18 elad kauth_cred_getegid(cred),
209 1.18 elad kauth_cred_getrefcnt(cncp->cred),
210 1.18 elad kauth_cred_geteuid(cncp->cred),
211 1.18 elad kauth_cred_getegid(cncp->cred));
212 1.1 rvb print_cred(cred);
213 1.1 rvb print_cred(cncp->cred);
214 1.1 rvb }
215 1.1 rvb #endif
216 1.1 rvb }
217 1.1 rvb
218 1.3 rvb return((struct coda_cache *)0);
219 1.1 rvb }
220 1.1 rvb
221 1.1 rvb /*
222 1.1 rvb * Enter a new (dir cnode, name) pair into the cache, updating the
223 1.1 rvb * LRU and Hash as needed.
224 1.1 rvb */
225 1.1 rvb void
226 1.16 xtraeme coda_nc_enter(struct cnode *dcp, const char *name, int namelen,
227 1.18 elad kauth_cred_t cred, struct cnode *cp)
228 1.1 rvb {
229 1.3 rvb struct coda_cache *cncp;
230 1.1 rvb int hash;
231 1.14 perry
232 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
233 1.1 rvb return;
234 1.14 perry
235 1.14 perry CODA_NC_DEBUG(CODA_NC_ENTER,
236 1.1 rvb myprintf(("Enter: dcp %p cp %p name %s cred %p \n",
237 1.1 rvb dcp, cp, name, cred)); )
238 1.14 perry
239 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
240 1.14 perry CODA_NC_DEBUG(CODA_NC_ENTER,
241 1.1 rvb myprintf(("long name enter %s\n",name));)
242 1.3 rvb coda_nc_stat.long_name_enters++; /* record stats */
243 1.1 rvb return;
244 1.1 rvb }
245 1.14 perry
246 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
247 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
248 1.14 perry if (cncp != (struct coda_cache *) 0) {
249 1.3 rvb coda_nc_stat.dbl_enters++; /* duplicate entry */
250 1.1 rvb return;
251 1.1 rvb }
252 1.14 perry
253 1.3 rvb coda_nc_stat.enters++; /* record the enters statistic */
254 1.14 perry
255 1.1 rvb /* Grab the next element in the lru chain */
256 1.3 rvb cncp = CODA_NC_LRUGET(coda_nc_lru);
257 1.14 perry
258 1.3 rvb CODA_NC_LRUREM(cncp); /* remove it from the lists */
259 1.14 perry
260 1.3 rvb if (CODA_NC_VALID(cncp)) {
261 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
262 1.1 rvb hash bucket length here, so we have to find the hash bucket
263 1.1 rvb */
264 1.3 rvb coda_nc_hash[CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp)].length--;
265 1.14 perry
266 1.3 rvb coda_nc_stat.lru_rm++; /* zapped a valid entry */
267 1.3 rvb CODA_NC_HSHREM(cncp);
268 1.14 perry vrele(CTOV(cncp->dcp));
269 1.1 rvb vrele(CTOV(cncp->cp));
270 1.18 elad kauth_cred_free(cncp->cred);
271 1.1 rvb }
272 1.14 perry
273 1.1 rvb /*
274 1.1 rvb * Put a hold on the current vnodes and fill in the cache entry.
275 1.1 rvb */
276 1.1 rvb vref(CTOV(cp));
277 1.1 rvb vref(CTOV(dcp));
278 1.18 elad kauth_cred_hold(cred);
279 1.1 rvb cncp->dcp = dcp;
280 1.1 rvb cncp->cp = cp;
281 1.1 rvb cncp->namelen = namelen;
282 1.1 rvb cncp->cred = cred;
283 1.14 perry
284 1.1 rvb bcopy(name, cncp->name, (unsigned)namelen);
285 1.14 perry
286 1.1 rvb /* Insert into the lru and hash chains. */
287 1.14 perry
288 1.3 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
289 1.3 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
290 1.3 rvb coda_nc_hash[hash].length++; /* Used for tuning */
291 1.14 perry
292 1.3 rvb CODA_NC_DEBUG(CODA_NC_PRINTCODA_NC, print_coda_nc(); )
293 1.1 rvb }
294 1.1 rvb
295 1.1 rvb /*
296 1.1 rvb * Find the (dir cnode, name) pair in the cache, if it's cred
297 1.1 rvb * matches the input, return it, otherwise return 0
298 1.1 rvb */
299 1.1 rvb struct cnode *
300 1.16 xtraeme coda_nc_lookup(struct cnode *dcp, const char *name, int namelen,
301 1.18 elad kauth_cred_t cred)
302 1.1 rvb {
303 1.1 rvb int hash;
304 1.3 rvb struct coda_cache *cncp;
305 1.1 rvb
306 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
307 1.1 rvb return((struct cnode *) 0);
308 1.1 rvb
309 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
310 1.14 perry CODA_NC_DEBUG(CODA_NC_LOOKUP,
311 1.1 rvb myprintf(("long name lookup %s\n",name));)
312 1.3 rvb coda_nc_stat.long_name_lookups++; /* record stats */
313 1.1 rvb return((struct cnode *) 0);
314 1.1 rvb }
315 1.1 rvb
316 1.1 rvb /* Use the hash function to locate the starting point,
317 1.1 rvb then the search routine to go down the list looking for
318 1.1 rvb the correct cred.
319 1.1 rvb */
320 1.1 rvb
321 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
322 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
323 1.3 rvb if (cncp == (struct coda_cache *) 0) {
324 1.3 rvb coda_nc_stat.misses++; /* record miss */
325 1.1 rvb return((struct cnode *) 0);
326 1.1 rvb }
327 1.1 rvb
328 1.3 rvb coda_nc_stat.hits++;
329 1.1 rvb
330 1.1 rvb /* put this entry at the end of the LRU */
331 1.3 rvb CODA_NC_LRUREM(cncp);
332 1.3 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
333 1.1 rvb
334 1.1 rvb /* move it to the front of the hash chain */
335 1.1 rvb /* don't need to change the hash bucket length */
336 1.3 rvb CODA_NC_HSHREM(cncp);
337 1.3 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
338 1.1 rvb
339 1.14 perry CODA_NC_DEBUG(CODA_NC_LOOKUP,
340 1.1 rvb printf("lookup: dcp %p, name %s, cred %p = cp %p\n",
341 1.1 rvb dcp, name, cred, cncp->cp); )
342 1.1 rvb
343 1.1 rvb return(cncp->cp);
344 1.1 rvb }
345 1.1 rvb
346 1.1 rvb static void
347 1.16 xtraeme coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat)
348 1.1 rvb {
349 1.14 perry /*
350 1.1 rvb * remove an entry -- vrele(cncp->dcp, cp), crfree(cred),
351 1.1 rvb * remove it from it's hash chain, and
352 1.1 rvb * place it at the head of the lru list.
353 1.1 rvb */
354 1.3 rvb CODA_NC_DEBUG(CODA_NC_REMOVE,
355 1.13 drochner myprintf(("coda_nc_remove %s from parent %s\n",
356 1.13 drochner cncp->name, coda_f2s(&cncp->dcp->c_fid))); )
357 1.14 perry
358 1.1 rvb
359 1.3 rvb CODA_NC_HSHREM(cncp);
360 1.1 rvb
361 1.3 rvb CODA_NC_HSHNUL(cncp); /* have it be a null chain */
362 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->dcp)->v_usecount == 1)) {
363 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
364 1.1 rvb }
365 1.14 perry vrele(CTOV(cncp->dcp));
366 1.1 rvb
367 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->cp)->v_usecount == 1)) {
368 1.1 rvb cncp->cp->c_flags |= C_PURGING;
369 1.1 rvb }
370 1.14 perry vrele(CTOV(cncp->cp));
371 1.1 rvb
372 1.18 elad kauth_cred_free(cncp->cred);
373 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE);
374 1.1 rvb
375 1.1 rvb /* Put the null entry just after the least-recently-used entry */
376 1.1 rvb /* LRU_TOP adjusts the pointer to point to the top of the structure. */
377 1.3 rvb CODA_NC_LRUREM(cncp);
378 1.3 rvb CODA_NC_LRUINS(cncp, LRU_TOP(coda_nc_lru.lru_prev));
379 1.1 rvb }
380 1.1 rvb
381 1.1 rvb /*
382 1.1 rvb * Remove all entries with a parent which has the input fid.
383 1.1 rvb */
384 1.1 rvb void
385 1.16 xtraeme coda_nc_zapParentfid(CodaFid *fid, enum dc_status dcstat)
386 1.1 rvb {
387 1.1 rvb /* To get to a specific fid, we might either have another hashing
388 1.1 rvb function or do a sequential search through the cache for the
389 1.1 rvb appropriate entries. The later may be acceptable since I don't
390 1.12 wiz think callbacks or whatever Case 1 covers are frequent occurrences.
391 1.1 rvb */
392 1.3 rvb struct coda_cache *cncp, *ncncp;
393 1.1 rvb int i;
394 1.1 rvb
395 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
396 1.1 rvb return;
397 1.1 rvb
398 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPPFID,
399 1.13 drochner myprintf(("ZapParent: fid %s\n", coda_f2s(fid))); )
400 1.1 rvb
401 1.3 rvb coda_nc_stat.zapPfids++;
402 1.1 rvb
403 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
404 1.1 rvb
405 1.1 rvb /*
406 1.1 rvb * Need to save the hash_next pointer in case we remove the
407 1.1 rvb * entry. remove causes hash_next to point to itself.
408 1.1 rvb */
409 1.1 rvb
410 1.14 perry for (cncp = coda_nc_hash[i].hash_next;
411 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
412 1.1 rvb cncp = ncncp) {
413 1.1 rvb ncncp = cncp->hash_next;
414 1.13 drochner if (coda_fid_eq(&(cncp->dcp->c_fid), fid)) {
415 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */
416 1.14 perry coda_nc_remove(cncp, dcstat);
417 1.1 rvb }
418 1.1 rvb }
419 1.1 rvb }
420 1.1 rvb }
421 1.1 rvb
422 1.1 rvb /*
423 1.1 rvb * Remove all entries which have the same fid as the input
424 1.1 rvb */
425 1.1 rvb void
426 1.16 xtraeme coda_nc_zapfid(CodaFid *fid, enum dc_status dcstat)
427 1.1 rvb {
428 1.1 rvb /* See comment for zapParentfid. This routine will be used
429 1.14 perry if attributes are being cached.
430 1.1 rvb */
431 1.3 rvb struct coda_cache *cncp, *ncncp;
432 1.1 rvb int i;
433 1.1 rvb
434 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
435 1.1 rvb return;
436 1.1 rvb
437 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPFID,
438 1.13 drochner myprintf(("Zapfid: fid %s\n", coda_f2s(fid))); )
439 1.1 rvb
440 1.3 rvb coda_nc_stat.zapFids++;
441 1.1 rvb
442 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
443 1.14 perry for (cncp = coda_nc_hash[i].hash_next;
444 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
445 1.1 rvb cncp = ncncp) {
446 1.1 rvb ncncp = cncp->hash_next;
447 1.13 drochner if (coda_fid_eq(&cncp->cp->c_fid, fid)) {
448 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */
449 1.14 perry coda_nc_remove(cncp, dcstat);
450 1.1 rvb }
451 1.1 rvb }
452 1.1 rvb }
453 1.1 rvb }
454 1.1 rvb
455 1.14 perry /*
456 1.1 rvb * Remove all entries which match the fid and the cred
457 1.1 rvb */
458 1.1 rvb void
459 1.19 christos coda_nc_zapvnode(CodaFid *fid, kauth_cred_t cred,
460 1.20 christos enum dc_status dcstat)
461 1.1 rvb {
462 1.1 rvb /* See comment for zapfid. I don't think that one would ever
463 1.1 rvb want to zap a file with a specific cred from the kernel.
464 1.1 rvb We'll leave this one unimplemented.
465 1.1 rvb */
466 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
467 1.1 rvb return;
468 1.1 rvb
469 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPVNODE,
470 1.13 drochner myprintf(("Zapvnode: fid %s cred %p\n",
471 1.13 drochner coda_f2s(fid), cred)); )
472 1.1 rvb }
473 1.1 rvb
474 1.1 rvb /*
475 1.1 rvb * Remove all entries which have the (dir vnode, name) pair
476 1.1 rvb */
477 1.1 rvb void
478 1.16 xtraeme coda_nc_zapfile(struct cnode *dcp, const char *name, int namelen)
479 1.1 rvb {
480 1.1 rvb /* use the hash function to locate the file, then zap all
481 1.1 rvb entries of it regardless of the cred.
482 1.1 rvb */
483 1.3 rvb struct coda_cache *cncp;
484 1.1 rvb int hash;
485 1.1 rvb
486 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
487 1.1 rvb return;
488 1.1 rvb
489 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPFILE,
490 1.1 rvb myprintf(("Zapfile: dcp %p name %s \n",
491 1.1 rvb dcp, name)); )
492 1.1 rvb
493 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
494 1.3 rvb coda_nc_stat.long_remove++; /* record stats */
495 1.1 rvb return;
496 1.1 rvb }
497 1.1 rvb
498 1.3 rvb coda_nc_stat.zapFile++;
499 1.1 rvb
500 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
501 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
502 1.1 rvb
503 1.1 rvb while (cncp) {
504 1.3 rvb coda_nc_hash[hash].length--; /* Used for tuning */
505 1.1 rvb /* 1.3 */
506 1.3 rvb coda_nc_remove(cncp, NOT_DOWNCALL);
507 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
508 1.1 rvb }
509 1.1 rvb }
510 1.1 rvb
511 1.14 perry /*
512 1.1 rvb * Remove all the entries for a particular user. Used when tokens expire.
513 1.1 rvb * A user is determined by his/her effective user id (id_uid).
514 1.1 rvb */
515 1.1 rvb void
516 1.16 xtraeme coda_nc_purge_user(uid_t uid, enum dc_status dcstat)
517 1.1 rvb {
518 1.14 perry /*
519 1.1 rvb * I think the best approach is to go through the entire cache
520 1.1 rvb * via HASH or whatever and zap all entries which match the
521 1.1 rvb * input cred. Or just flush the whole cache. It might be
522 1.1 rvb * best to go through on basis of LRU since cache will almost
523 1.14 perry * always be full and LRU is more straightforward.
524 1.1 rvb */
525 1.1 rvb
526 1.3 rvb struct coda_cache *cncp, *ncncp;
527 1.1 rvb int hash;
528 1.1 rvb
529 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
530 1.1 rvb return;
531 1.1 rvb
532 1.14 perry CODA_NC_DEBUG(CODA_NC_PURGEUSER,
533 1.8 rvb myprintf(("ZapDude: uid %x\n", uid)); )
534 1.3 rvb coda_nc_stat.zapUsers++;
535 1.1 rvb
536 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
537 1.3 rvb cncp != (struct coda_cache *)(&coda_nc_lru);
538 1.1 rvb cncp = ncncp) {
539 1.3 rvb ncncp = CODA_NC_LRUGET(*cncp);
540 1.1 rvb
541 1.3 rvb if ((CODA_NC_VALID(cncp)) &&
542 1.18 elad (kauth_cred_geteuid(cncp->cred) == uid)) {
543 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
544 1.1 rvb hash bucket length here, so we have to find the hash bucket
545 1.1 rvb */
546 1.3 rvb hash = CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp);
547 1.3 rvb coda_nc_hash[hash].length--; /* For performance tuning */
548 1.1 rvb
549 1.14 perry coda_nc_remove(cncp, dcstat);
550 1.1 rvb }
551 1.1 rvb }
552 1.1 rvb }
553 1.1 rvb
554 1.1 rvb /*
555 1.1 rvb * Flush the entire name cache. In response to a flush of the Venus cache.
556 1.1 rvb */
557 1.1 rvb void
558 1.16 xtraeme coda_nc_flush(enum dc_status dcstat)
559 1.1 rvb {
560 1.1 rvb /* One option is to deallocate the current name cache and
561 1.1 rvb call init to start again. Or just deallocate, then rebuild.
562 1.14 perry Or again, we could just go through the array and zero the
563 1.14 perry appropriate fields.
564 1.1 rvb */
565 1.14 perry
566 1.14 perry /*
567 1.1 rvb * Go through the whole lru chain and kill everything as we go.
568 1.1 rvb * I don't use remove since that would rebuild the lru chain
569 1.1 rvb * as it went and that seemed unneccesary.
570 1.1 rvb */
571 1.3 rvb struct coda_cache *cncp;
572 1.1 rvb int i;
573 1.1 rvb
574 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
575 1.1 rvb return;
576 1.1 rvb
577 1.3 rvb coda_nc_stat.Flushes++;
578 1.1 rvb
579 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
580 1.3 rvb cncp != (struct coda_cache *)&coda_nc_lru;
581 1.3 rvb cncp = CODA_NC_LRUGET(*cncp)) {
582 1.3 rvb if (CODA_NC_VALID(cncp)) {
583 1.1 rvb
584 1.3 rvb CODA_NC_HSHREM(cncp); /* only zero valid nodes */
585 1.3 rvb CODA_NC_HSHNUL(cncp);
586 1.14 perry if ((dcstat == IS_DOWNCALL)
587 1.1 rvb && (CTOV(cncp->dcp)->v_usecount == 1))
588 1.1 rvb {
589 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
590 1.1 rvb }
591 1.14 perry vrele(CTOV(cncp->dcp));
592 1.1 rvb
593 1.21 ad if (CTOV(cncp->cp)->v_iflag & VI_TEXT) {
594 1.3 rvb if (coda_vmflush(cncp->cp))
595 1.14 perry CODADEBUG(CODA_FLUSH,
596 1.13 drochner myprintf(("coda_nc_flush: %s busy\n",
597 1.13 drochner coda_f2s(&cncp->cp->c_fid))); )
598 1.1 rvb }
599 1.1 rvb
600 1.14 perry if ((dcstat == IS_DOWNCALL)
601 1.1 rvb && (CTOV(cncp->cp)->v_usecount == 1))
602 1.1 rvb {
603 1.1 rvb cncp->cp->c_flags |= C_PURGING;
604 1.1 rvb }
605 1.14 perry vrele(CTOV(cncp->cp));
606 1.1 rvb
607 1.18 elad kauth_cred_free(cncp->cred);
608 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE);
609 1.1 rvb }
610 1.1 rvb }
611 1.1 rvb
612 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++)
613 1.3 rvb coda_nc_hash[i].length = 0;
614 1.1 rvb }
615 1.1 rvb
616 1.1 rvb /*
617 1.1 rvb * Debugging routines
618 1.1 rvb */
619 1.1 rvb
620 1.14 perry /*
621 1.1 rvb * This routine should print out all the hash chains to the console.
622 1.1 rvb */
623 1.1 rvb void
624 1.3 rvb print_coda_nc(void)
625 1.1 rvb {
626 1.1 rvb int hash;
627 1.3 rvb struct coda_cache *cncp;
628 1.1 rvb
629 1.3 rvb for (hash = 0; hash < coda_nc_hashsize; hash++) {
630 1.1 rvb myprintf(("\nhash %d\n",hash));
631 1.1 rvb
632 1.14 perry for (cncp = coda_nc_hash[hash].hash_next;
633 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
634 1.1 rvb cncp = cncp->hash_next) {
635 1.1 rvb myprintf(("cp %p dcp %p cred %p name %s\n",
636 1.1 rvb cncp->cp, cncp->dcp,
637 1.1 rvb cncp->cred, cncp->name));
638 1.1 rvb }
639 1.1 rvb }
640 1.1 rvb }
641 1.1 rvb
642 1.1 rvb void
643 1.3 rvb coda_nc_gather_stats(void)
644 1.1 rvb {
645 1.15 christos int i, xmax = 0, sum = 0, temp, zeros = 0, ave, n;
646 1.1 rvb
647 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
648 1.3 rvb if (coda_nc_hash[i].length) {
649 1.3 rvb sum += coda_nc_hash[i].length;
650 1.1 rvb } else {
651 1.1 rvb zeros++;
652 1.1 rvb }
653 1.1 rvb
654 1.15 christos if (coda_nc_hash[i].length > xmax)
655 1.15 christos xmax = coda_nc_hash[i].length;
656 1.1 rvb }
657 1.1 rvb
658 1.1 rvb /*
659 1.14 perry * When computing the Arithmetic mean, only count slots which
660 1.1 rvb * are not empty in the distribution.
661 1.1 rvb */
662 1.3 rvb coda_nc_stat.Sum_bucket_len = sum;
663 1.3 rvb coda_nc_stat.Num_zero_len = zeros;
664 1.15 christos coda_nc_stat.Max_bucket_len = xmax;
665 1.1 rvb
666 1.14 perry if ((n = coda_nc_hashsize - zeros) > 0)
667 1.1 rvb ave = sum / n;
668 1.1 rvb else
669 1.1 rvb ave = 0;
670 1.1 rvb
671 1.1 rvb sum = 0;
672 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
673 1.3 rvb if (coda_nc_hash[i].length) {
674 1.3 rvb temp = coda_nc_hash[i].length - ave;
675 1.1 rvb sum += temp * temp;
676 1.1 rvb }
677 1.1 rvb }
678 1.3 rvb coda_nc_stat.Sum2_bucket_len = sum;
679 1.1 rvb }
680 1.1 rvb
681 1.1 rvb /*
682 1.1 rvb * The purpose of this routine is to allow the hash and cache sizes to be
683 1.1 rvb * changed dynamically. This should only be used in controlled environments,
684 1.1 rvb * it makes no effort to lock other users from accessing the cache while it
685 1.1 rvb * is in an improper state (except by turning the cache off).
686 1.1 rvb */
687 1.1 rvb int
688 1.16 xtraeme coda_nc_resize(int hashsize, int heapsize, enum dc_status dcstat)
689 1.1 rvb {
690 1.1 rvb if ((hashsize % 2) || (heapsize % 2)) { /* Illegal hash or cache sizes */
691 1.1 rvb return(EINVAL);
692 1.14 perry }
693 1.14 perry
694 1.3 rvb coda_nc_use = 0; /* Turn the cache off */
695 1.14 perry
696 1.3 rvb coda_nc_flush(dcstat); /* free any cnodes in the cache */
697 1.14 perry
698 1.1 rvb /* WARNING: free must happen *before* size is reset */
699 1.3 rvb CODA_FREE(coda_nc_heap,TOTAL_CACHE_SIZE);
700 1.3 rvb CODA_FREE(coda_nc_hash,TOTAL_HASH_SIZE);
701 1.14 perry
702 1.3 rvb coda_nc_hashsize = hashsize;
703 1.3 rvb coda_nc_size = heapsize;
704 1.14 perry
705 1.3 rvb coda_nc_init(); /* Set up a cache with the new size */
706 1.14 perry
707 1.3 rvb coda_nc_use = 1; /* Turn the cache back on */
708 1.1 rvb return(0);
709 1.1 rvb }
710 1.1 rvb
711 1.3 rvb char coda_nc_name_buf[CODA_MAXNAMLEN+1];
712 1.1 rvb
713 1.1 rvb void
714 1.3 rvb coda_nc_name(struct cnode *cp)
715 1.1 rvb {
716 1.3 rvb struct coda_cache *cncp, *ncncp;
717 1.1 rvb int i;
718 1.1 rvb
719 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
720 1.1 rvb return;
721 1.1 rvb
722 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
723 1.14 perry for (cncp = coda_nc_hash[i].hash_next;
724 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
725 1.1 rvb cncp = ncncp) {
726 1.1 rvb ncncp = cncp->hash_next;
727 1.1 rvb if (cncp->cp == cp) {
728 1.3 rvb bcopy(cncp->name, coda_nc_name_buf, cncp->namelen);
729 1.3 rvb coda_nc_name_buf[cncp->namelen] = 0;
730 1.1 rvb printf(" is %s (%p,%p)@%p",
731 1.3 rvb coda_nc_name_buf, cncp->cp, cncp->dcp, cncp);
732 1.1 rvb }
733 1.1 rvb
734 1.1 rvb }
735 1.1 rvb }
736 1.1 rvb }
737