coda_namecache.c revision 1.22 1 1.22 plunky /* $NetBSD: coda_namecache.c,v 1.22 2007/11/22 22:26:18 plunky Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.14 perry *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.14 perry *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.14 perry *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.14 perry *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.14 perry *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.14 perry *
31 1.14 perry * @(#) coda/coda_namecache.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.14 perry /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1990 Carnegie-Mellon University
37 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
38 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
39 1.1 rvb * the terms and conditions for use and redistribution.
40 1.1 rvb */
41 1.1 rvb
42 1.1 rvb /*
43 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon University.
44 1.1 rvb * Contributers include David Steere, James Kistler, and M. Satyanarayanan.
45 1.1 rvb */
46 1.1 rvb
47 1.1 rvb /*
48 1.3 rvb * This module contains the routines to implement the CODA name cache. The
49 1.14 perry * purpose of this cache is to reduce the cost of translating pathnames
50 1.1 rvb * into Vice FIDs. Each entry in the cache contains the name of the file,
51 1.1 rvb * the vnode (FID) of the parent directory, and the cred structure of the
52 1.1 rvb * user accessing the file.
53 1.1 rvb *
54 1.1 rvb * The first time a file is accessed, it is looked up by the local Venus
55 1.1 rvb * which first insures that the user has access to the file. In addition
56 1.1 rvb * we are guaranteed that Venus will invalidate any name cache entries in
57 1.1 rvb * case the user no longer should be able to access the file. For these
58 1.1 rvb * reasons we do not need to keep access list information as well as a
59 1.1 rvb * cred structure for each entry.
60 1.1 rvb *
61 1.1 rvb * The table can be accessed through the routines cnc_init(), cnc_enter(),
62 1.1 rvb * cnc_lookup(), cnc_rmfidcred(), cnc_rmfid(), cnc_rmcred(), and cnc_purge().
63 1.1 rvb * There are several other routines which aid in the implementation of the
64 1.1 rvb * hash table.
65 1.1 rvb */
66 1.1 rvb
67 1.1 rvb /*
68 1.1 rvb * NOTES: rvb@cs
69 1.1 rvb * 1. The name cache holds a reference to every vnode in it. Hence files can not be
70 1.1 rvb * closed or made inactive until they are released.
71 1.3 rvb * 2. coda_nc_name(cp) was added to get a name for a cnode pointer for debugging.
72 1.3 rvb * 3. coda_nc_find() has debug code to detect when entries are stored with different
73 1.1 rvb * credentials. We don't understand yet, if/how entries are NOT EQ but still
74 1.1 rvb * EQUAL
75 1.1 rvb * 4. I wonder if this name cache could be replace by the vnode name cache.
76 1.1 rvb * The latter has no zapping functions, so probably not.
77 1.1 rvb */
78 1.11 lukem
79 1.11 lukem #include <sys/cdefs.h>
80 1.22 plunky __KERNEL_RCSID(0, "$NetBSD: coda_namecache.c,v 1.22 2007/11/22 22:26:18 plunky Exp $");
81 1.1 rvb
82 1.1 rvb #include <sys/param.h>
83 1.1 rvb #include <sys/errno.h>
84 1.1 rvb #include <sys/malloc.h>
85 1.1 rvb #include <sys/select.h>
86 1.18 elad #include <sys/kauth.h>
87 1.1 rvb
88 1.4 rvb #include <coda/coda.h>
89 1.4 rvb #include <coda/cnode.h>
90 1.4 rvb #include <coda/coda_namecache.h>
91 1.1 rvb
92 1.5 rvb #ifdef DEBUG
93 1.5 rvb #include <coda/coda_vnops.h>
94 1.5 rvb #endif
95 1.5 rvb
96 1.14 perry /*
97 1.1 rvb * Declaration of the name cache data structure.
98 1.1 rvb */
99 1.1 rvb
100 1.3 rvb int coda_nc_use = 1; /* Indicate use of CODA Name Cache */
101 1.1 rvb
102 1.3 rvb int coda_nc_size = CODA_NC_CACHESIZE; /* size of the cache */
103 1.3 rvb int coda_nc_hashsize = CODA_NC_HASHSIZE; /* size of the primary hash */
104 1.1 rvb
105 1.3 rvb struct coda_cache *coda_nc_heap; /* pointer to the cache entries */
106 1.3 rvb struct coda_hash *coda_nc_hash; /* hash table of cfscache pointers */
107 1.3 rvb struct coda_lru coda_nc_lru; /* head of lru chain */
108 1.1 rvb
109 1.3 rvb struct coda_nc_statistics coda_nc_stat; /* Keep various stats */
110 1.1 rvb
111 1.14 perry /*
112 1.1 rvb * for testing purposes
113 1.1 rvb */
114 1.3 rvb int coda_nc_debug = 0;
115 1.1 rvb
116 1.1 rvb /*
117 1.3 rvb * Entry points for the CODA Name Cache
118 1.1 rvb */
119 1.3 rvb static struct coda_cache *
120 1.3 rvb coda_nc_find(struct cnode *dcp, const char *name, int namelen,
121 1.18 elad kauth_cred_t cred, int hash);
122 1.1 rvb static void
123 1.3 rvb coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat);
124 1.1 rvb
125 1.14 perry /*
126 1.1 rvb * Initialize the cache, the LRU structure and the Hash structure(s)
127 1.1 rvb */
128 1.1 rvb
129 1.3 rvb #define TOTAL_CACHE_SIZE (sizeof(struct coda_cache) * coda_nc_size)
130 1.3 rvb #define TOTAL_HASH_SIZE (sizeof(struct coda_hash) * coda_nc_hashsize)
131 1.1 rvb
132 1.3 rvb int coda_nc_initialized = 0; /* Initially the cache has not been initialized */
133 1.1 rvb
134 1.1 rvb void
135 1.3 rvb coda_nc_init(void)
136 1.1 rvb {
137 1.1 rvb int i;
138 1.1 rvb
139 1.1 rvb /* zero the statistics structure */
140 1.14 perry
141 1.10 thorpej memset(&coda_nc_stat, 0, (sizeof(struct coda_nc_statistics)));
142 1.1 rvb
143 1.7 rvb #ifdef CODA_VERBOSE
144 1.3 rvb printf("CODA NAME CACHE: CACHE %d, HASH TBL %d\n", CODA_NC_CACHESIZE, CODA_NC_HASHSIZE);
145 1.5 rvb #endif
146 1.3 rvb CODA_ALLOC(coda_nc_heap, struct coda_cache *, TOTAL_CACHE_SIZE);
147 1.3 rvb CODA_ALLOC(coda_nc_hash, struct coda_hash *, TOTAL_HASH_SIZE);
148 1.14 perry
149 1.22 plunky memset(coda_nc_heap, 0, TOTAL_CACHE_SIZE);
150 1.22 plunky memset(coda_nc_hash, 0, TOTAL_HASH_SIZE);
151 1.14 perry
152 1.22 plunky TAILQ_INIT(&coda_nc_lru.head);
153 1.14 perry
154 1.3 rvb for (i=0; i < coda_nc_size; i++) { /* initialize the heap */
155 1.22 plunky TAILQ_INSERT_HEAD(&coda_nc_lru.head, &coda_nc_heap[i], lru);
156 1.1 rvb }
157 1.14 perry
158 1.3 rvb for (i=0; i < coda_nc_hashsize; i++) { /* initialize the hashtable */
159 1.22 plunky LIST_INIT(&coda_nc_hash[i].head);
160 1.1 rvb }
161 1.14 perry
162 1.3 rvb coda_nc_initialized++;
163 1.1 rvb }
164 1.1 rvb
165 1.1 rvb /*
166 1.1 rvb * Auxillary routines -- shouldn't be entry points
167 1.1 rvb */
168 1.1 rvb
169 1.3 rvb static struct coda_cache *
170 1.16 xtraeme coda_nc_find(struct cnode *dcp, const char *name, int namelen,
171 1.18 elad kauth_cred_t cred, int hash)
172 1.1 rvb {
173 1.14 perry /*
174 1.1 rvb * hash to find the appropriate bucket, look through the chain
175 1.14 perry * for the right entry (especially right cred, unless cred == 0)
176 1.1 rvb */
177 1.3 rvb struct coda_cache *cncp;
178 1.1 rvb int count = 1;
179 1.1 rvb
180 1.14 perry CODA_NC_DEBUG(CODA_NC_FIND,
181 1.13 drochner myprintf(("coda_nc_find(dcp %p, name %s, len %d, cred %p, hash %d\n",
182 1.13 drochner dcp, name, namelen, cred, hash));)
183 1.1 rvb
184 1.22 plunky LIST_FOREACH(cncp, &coda_nc_hash[hash].head, hash)
185 1.1 rvb {
186 1.1 rvb
187 1.3 rvb if ((CODA_NAMEMATCH(cncp, name, namelen, dcp)) &&
188 1.14 perry ((cred == 0) || (cncp->cred == cred)))
189 1.14 perry {
190 1.1 rvb /* compare cr_uid instead */
191 1.3 rvb coda_nc_stat.Search_len += count;
192 1.1 rvb return(cncp);
193 1.1 rvb }
194 1.1 rvb #ifdef DEBUG
195 1.3 rvb else if (CODA_NAMEMATCH(cncp, name, namelen, dcp)) {
196 1.3 rvb printf("coda_nc_find: name %s, new cred = %p, cred = %p\n",
197 1.1 rvb name, cred, cncp->cred);
198 1.1 rvb printf("nref %d, nuid %d, ngid %d // oref %d, ocred %d, ogid %d\n",
199 1.18 elad kauth_cred_getrefcnt(cred),
200 1.18 elad kauth_cred_geteuid(cred),
201 1.18 elad kauth_cred_getegid(cred),
202 1.18 elad kauth_cred_getrefcnt(cncp->cred),
203 1.18 elad kauth_cred_geteuid(cncp->cred),
204 1.18 elad kauth_cred_getegid(cncp->cred));
205 1.1 rvb print_cred(cred);
206 1.1 rvb print_cred(cncp->cred);
207 1.1 rvb }
208 1.1 rvb #endif
209 1.22 plunky count++;
210 1.1 rvb }
211 1.1 rvb
212 1.3 rvb return((struct coda_cache *)0);
213 1.1 rvb }
214 1.1 rvb
215 1.1 rvb /*
216 1.1 rvb * Enter a new (dir cnode, name) pair into the cache, updating the
217 1.1 rvb * LRU and Hash as needed.
218 1.1 rvb */
219 1.1 rvb void
220 1.16 xtraeme coda_nc_enter(struct cnode *dcp, const char *name, int namelen,
221 1.18 elad kauth_cred_t cred, struct cnode *cp)
222 1.1 rvb {
223 1.3 rvb struct coda_cache *cncp;
224 1.1 rvb int hash;
225 1.14 perry
226 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
227 1.1 rvb return;
228 1.14 perry
229 1.14 perry CODA_NC_DEBUG(CODA_NC_ENTER,
230 1.1 rvb myprintf(("Enter: dcp %p cp %p name %s cred %p \n",
231 1.1 rvb dcp, cp, name, cred)); )
232 1.14 perry
233 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
234 1.14 perry CODA_NC_DEBUG(CODA_NC_ENTER,
235 1.1 rvb myprintf(("long name enter %s\n",name));)
236 1.3 rvb coda_nc_stat.long_name_enters++; /* record stats */
237 1.1 rvb return;
238 1.1 rvb }
239 1.14 perry
240 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
241 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
242 1.14 perry if (cncp != (struct coda_cache *) 0) {
243 1.3 rvb coda_nc_stat.dbl_enters++; /* duplicate entry */
244 1.1 rvb return;
245 1.1 rvb }
246 1.14 perry
247 1.3 rvb coda_nc_stat.enters++; /* record the enters statistic */
248 1.14 perry
249 1.1 rvb /* Grab the next element in the lru chain */
250 1.22 plunky cncp = TAILQ_FIRST(&coda_nc_lru.head);
251 1.22 plunky TAILQ_REMOVE(&coda_nc_lru.head, cncp, lru);
252 1.14 perry
253 1.3 rvb if (CODA_NC_VALID(cncp)) {
254 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
255 1.1 rvb hash bucket length here, so we have to find the hash bucket
256 1.1 rvb */
257 1.3 rvb coda_nc_hash[CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp)].length--;
258 1.14 perry
259 1.3 rvb coda_nc_stat.lru_rm++; /* zapped a valid entry */
260 1.22 plunky LIST_REMOVE(cncp, hash);
261 1.14 perry vrele(CTOV(cncp->dcp));
262 1.1 rvb vrele(CTOV(cncp->cp));
263 1.18 elad kauth_cred_free(cncp->cred);
264 1.1 rvb }
265 1.14 perry
266 1.1 rvb /*
267 1.1 rvb * Put a hold on the current vnodes and fill in the cache entry.
268 1.1 rvb */
269 1.1 rvb vref(CTOV(cp));
270 1.1 rvb vref(CTOV(dcp));
271 1.18 elad kauth_cred_hold(cred);
272 1.1 rvb cncp->dcp = dcp;
273 1.1 rvb cncp->cp = cp;
274 1.1 rvb cncp->namelen = namelen;
275 1.1 rvb cncp->cred = cred;
276 1.14 perry
277 1.1 rvb bcopy(name, cncp->name, (unsigned)namelen);
278 1.14 perry
279 1.1 rvb /* Insert into the lru and hash chains. */
280 1.22 plunky TAILQ_INSERT_TAIL(&coda_nc_lru.head, cncp, lru);
281 1.22 plunky LIST_INSERT_HEAD(&coda_nc_hash[hash].head, cncp, hash);
282 1.3 rvb coda_nc_hash[hash].length++; /* Used for tuning */
283 1.14 perry
284 1.3 rvb CODA_NC_DEBUG(CODA_NC_PRINTCODA_NC, print_coda_nc(); )
285 1.1 rvb }
286 1.1 rvb
287 1.1 rvb /*
288 1.1 rvb * Find the (dir cnode, name) pair in the cache, if it's cred
289 1.1 rvb * matches the input, return it, otherwise return 0
290 1.1 rvb */
291 1.1 rvb struct cnode *
292 1.16 xtraeme coda_nc_lookup(struct cnode *dcp, const char *name, int namelen,
293 1.18 elad kauth_cred_t cred)
294 1.1 rvb {
295 1.1 rvb int hash;
296 1.3 rvb struct coda_cache *cncp;
297 1.1 rvb
298 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
299 1.1 rvb return((struct cnode *) 0);
300 1.1 rvb
301 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
302 1.14 perry CODA_NC_DEBUG(CODA_NC_LOOKUP,
303 1.1 rvb myprintf(("long name lookup %s\n",name));)
304 1.3 rvb coda_nc_stat.long_name_lookups++; /* record stats */
305 1.1 rvb return((struct cnode *) 0);
306 1.1 rvb }
307 1.1 rvb
308 1.1 rvb /* Use the hash function to locate the starting point,
309 1.1 rvb then the search routine to go down the list looking for
310 1.1 rvb the correct cred.
311 1.1 rvb */
312 1.1 rvb
313 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
314 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
315 1.3 rvb if (cncp == (struct coda_cache *) 0) {
316 1.3 rvb coda_nc_stat.misses++; /* record miss */
317 1.1 rvb return((struct cnode *) 0);
318 1.1 rvb }
319 1.1 rvb
320 1.3 rvb coda_nc_stat.hits++;
321 1.1 rvb
322 1.1 rvb /* put this entry at the end of the LRU */
323 1.22 plunky TAILQ_REMOVE(&coda_nc_lru.head, cncp, lru);
324 1.22 plunky TAILQ_INSERT_TAIL(&coda_nc_lru.head, cncp, lru);
325 1.1 rvb
326 1.1 rvb /* move it to the front of the hash chain */
327 1.1 rvb /* don't need to change the hash bucket length */
328 1.22 plunky LIST_REMOVE(cncp, hash);
329 1.22 plunky LIST_INSERT_HEAD(&coda_nc_hash[hash].head, cncp, hash);
330 1.1 rvb
331 1.14 perry CODA_NC_DEBUG(CODA_NC_LOOKUP,
332 1.1 rvb printf("lookup: dcp %p, name %s, cred %p = cp %p\n",
333 1.1 rvb dcp, name, cred, cncp->cp); )
334 1.1 rvb
335 1.1 rvb return(cncp->cp);
336 1.1 rvb }
337 1.1 rvb
338 1.1 rvb static void
339 1.16 xtraeme coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat)
340 1.1 rvb {
341 1.14 perry /*
342 1.1 rvb * remove an entry -- vrele(cncp->dcp, cp), crfree(cred),
343 1.1 rvb * remove it from it's hash chain, and
344 1.1 rvb * place it at the head of the lru list.
345 1.1 rvb */
346 1.3 rvb CODA_NC_DEBUG(CODA_NC_REMOVE,
347 1.13 drochner myprintf(("coda_nc_remove %s from parent %s\n",
348 1.13 drochner cncp->name, coda_f2s(&cncp->dcp->c_fid))); )
349 1.14 perry
350 1.1 rvb
351 1.22 plunky LIST_REMOVE(cncp, hash);
352 1.22 plunky memset(&cncp->hash, 0, sizeof(cncp->hash));
353 1.1 rvb
354 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->dcp)->v_usecount == 1)) {
355 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
356 1.1 rvb }
357 1.14 perry vrele(CTOV(cncp->dcp));
358 1.1 rvb
359 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->cp)->v_usecount == 1)) {
360 1.1 rvb cncp->cp->c_flags |= C_PURGING;
361 1.1 rvb }
362 1.14 perry vrele(CTOV(cncp->cp));
363 1.1 rvb
364 1.18 elad kauth_cred_free(cncp->cred);
365 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE);
366 1.1 rvb
367 1.22 plunky /* move the null entry to the front for reuse */
368 1.22 plunky TAILQ_REMOVE(&coda_nc_lru.head, cncp, lru);
369 1.22 plunky TAILQ_INSERT_HEAD(&coda_nc_lru.head, cncp, lru);
370 1.1 rvb }
371 1.1 rvb
372 1.1 rvb /*
373 1.1 rvb * Remove all entries with a parent which has the input fid.
374 1.1 rvb */
375 1.1 rvb void
376 1.16 xtraeme coda_nc_zapParentfid(CodaFid *fid, enum dc_status dcstat)
377 1.1 rvb {
378 1.1 rvb /* To get to a specific fid, we might either have another hashing
379 1.1 rvb function or do a sequential search through the cache for the
380 1.1 rvb appropriate entries. The later may be acceptable since I don't
381 1.12 wiz think callbacks or whatever Case 1 covers are frequent occurrences.
382 1.1 rvb */
383 1.3 rvb struct coda_cache *cncp, *ncncp;
384 1.1 rvb int i;
385 1.1 rvb
386 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
387 1.1 rvb return;
388 1.1 rvb
389 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPPFID,
390 1.13 drochner myprintf(("ZapParent: fid %s\n", coda_f2s(fid))); )
391 1.1 rvb
392 1.3 rvb coda_nc_stat.zapPfids++;
393 1.1 rvb
394 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
395 1.1 rvb
396 1.1 rvb /*
397 1.1 rvb * Need to save the hash_next pointer in case we remove the
398 1.1 rvb * entry. remove causes hash_next to point to itself.
399 1.1 rvb */
400 1.1 rvb
401 1.22 plunky ncncp = LIST_FIRST(&coda_nc_hash[i].head);
402 1.22 plunky while ((cncp = ncncp) != NULL) {
403 1.22 plunky ncncp = LIST_NEXT(cncp, hash);
404 1.22 plunky
405 1.13 drochner if (coda_fid_eq(&(cncp->dcp->c_fid), fid)) {
406 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */
407 1.14 perry coda_nc_remove(cncp, dcstat);
408 1.1 rvb }
409 1.1 rvb }
410 1.1 rvb }
411 1.1 rvb }
412 1.1 rvb
413 1.1 rvb /*
414 1.1 rvb * Remove all entries which have the same fid as the input
415 1.1 rvb */
416 1.1 rvb void
417 1.16 xtraeme coda_nc_zapfid(CodaFid *fid, enum dc_status dcstat)
418 1.1 rvb {
419 1.1 rvb /* See comment for zapParentfid. This routine will be used
420 1.14 perry if attributes are being cached.
421 1.1 rvb */
422 1.3 rvb struct coda_cache *cncp, *ncncp;
423 1.1 rvb int i;
424 1.1 rvb
425 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
426 1.1 rvb return;
427 1.1 rvb
428 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPFID,
429 1.13 drochner myprintf(("Zapfid: fid %s\n", coda_f2s(fid))); )
430 1.1 rvb
431 1.3 rvb coda_nc_stat.zapFids++;
432 1.1 rvb
433 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
434 1.22 plunky
435 1.22 plunky ncncp = LIST_FIRST(&coda_nc_hash[i].head);
436 1.22 plunky while ((cncp = ncncp) != NULL) {
437 1.22 plunky ncncp = LIST_NEXT(cncp, hash);
438 1.22 plunky
439 1.13 drochner if (coda_fid_eq(&cncp->cp->c_fid, fid)) {
440 1.3 rvb coda_nc_hash[i].length--; /* Used for tuning */
441 1.14 perry coda_nc_remove(cncp, dcstat);
442 1.1 rvb }
443 1.1 rvb }
444 1.1 rvb }
445 1.1 rvb }
446 1.1 rvb
447 1.14 perry /*
448 1.1 rvb * Remove all entries which match the fid and the cred
449 1.1 rvb */
450 1.1 rvb void
451 1.19 christos coda_nc_zapvnode(CodaFid *fid, kauth_cred_t cred,
452 1.20 christos enum dc_status dcstat)
453 1.1 rvb {
454 1.1 rvb /* See comment for zapfid. I don't think that one would ever
455 1.1 rvb want to zap a file with a specific cred from the kernel.
456 1.1 rvb We'll leave this one unimplemented.
457 1.1 rvb */
458 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
459 1.1 rvb return;
460 1.1 rvb
461 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPVNODE,
462 1.13 drochner myprintf(("Zapvnode: fid %s cred %p\n",
463 1.13 drochner coda_f2s(fid), cred)); )
464 1.1 rvb }
465 1.1 rvb
466 1.1 rvb /*
467 1.1 rvb * Remove all entries which have the (dir vnode, name) pair
468 1.1 rvb */
469 1.1 rvb void
470 1.16 xtraeme coda_nc_zapfile(struct cnode *dcp, const char *name, int namelen)
471 1.1 rvb {
472 1.1 rvb /* use the hash function to locate the file, then zap all
473 1.1 rvb entries of it regardless of the cred.
474 1.1 rvb */
475 1.3 rvb struct coda_cache *cncp;
476 1.1 rvb int hash;
477 1.1 rvb
478 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
479 1.1 rvb return;
480 1.1 rvb
481 1.14 perry CODA_NC_DEBUG(CODA_NC_ZAPFILE,
482 1.1 rvb myprintf(("Zapfile: dcp %p name %s \n",
483 1.1 rvb dcp, name)); )
484 1.1 rvb
485 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
486 1.3 rvb coda_nc_stat.long_remove++; /* record stats */
487 1.1 rvb return;
488 1.1 rvb }
489 1.1 rvb
490 1.3 rvb coda_nc_stat.zapFile++;
491 1.1 rvb
492 1.3 rvb hash = CODA_NC_HASH(name, namelen, dcp);
493 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
494 1.1 rvb
495 1.1 rvb while (cncp) {
496 1.3 rvb coda_nc_hash[hash].length--; /* Used for tuning */
497 1.1 rvb /* 1.3 */
498 1.3 rvb coda_nc_remove(cncp, NOT_DOWNCALL);
499 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
500 1.1 rvb }
501 1.1 rvb }
502 1.1 rvb
503 1.14 perry /*
504 1.1 rvb * Remove all the entries for a particular user. Used when tokens expire.
505 1.1 rvb * A user is determined by his/her effective user id (id_uid).
506 1.1 rvb */
507 1.1 rvb void
508 1.16 xtraeme coda_nc_purge_user(uid_t uid, enum dc_status dcstat)
509 1.1 rvb {
510 1.14 perry /*
511 1.1 rvb * I think the best approach is to go through the entire cache
512 1.1 rvb * via HASH or whatever and zap all entries which match the
513 1.1 rvb * input cred. Or just flush the whole cache. It might be
514 1.1 rvb * best to go through on basis of LRU since cache will almost
515 1.14 perry * always be full and LRU is more straightforward.
516 1.1 rvb */
517 1.1 rvb
518 1.3 rvb struct coda_cache *cncp, *ncncp;
519 1.1 rvb int hash;
520 1.1 rvb
521 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
522 1.1 rvb return;
523 1.1 rvb
524 1.14 perry CODA_NC_DEBUG(CODA_NC_PURGEUSER,
525 1.8 rvb myprintf(("ZapDude: uid %x\n", uid)); )
526 1.3 rvb coda_nc_stat.zapUsers++;
527 1.1 rvb
528 1.22 plunky ncncp = TAILQ_FIRST(&coda_nc_lru.head);
529 1.22 plunky while ((cncp = ncncp) != NULL) {
530 1.22 plunky ncncp = TAILQ_NEXT(cncp, lru);
531 1.1 rvb
532 1.3 rvb if ((CODA_NC_VALID(cncp)) &&
533 1.18 elad (kauth_cred_geteuid(cncp->cred) == uid)) {
534 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
535 1.1 rvb hash bucket length here, so we have to find the hash bucket
536 1.1 rvb */
537 1.3 rvb hash = CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp);
538 1.3 rvb coda_nc_hash[hash].length--; /* For performance tuning */
539 1.1 rvb
540 1.14 perry coda_nc_remove(cncp, dcstat);
541 1.1 rvb }
542 1.1 rvb }
543 1.1 rvb }
544 1.1 rvb
545 1.1 rvb /*
546 1.1 rvb * Flush the entire name cache. In response to a flush of the Venus cache.
547 1.1 rvb */
548 1.1 rvb void
549 1.16 xtraeme coda_nc_flush(enum dc_status dcstat)
550 1.1 rvb {
551 1.1 rvb /* One option is to deallocate the current name cache and
552 1.1 rvb call init to start again. Or just deallocate, then rebuild.
553 1.14 perry Or again, we could just go through the array and zero the
554 1.14 perry appropriate fields.
555 1.1 rvb */
556 1.14 perry
557 1.14 perry /*
558 1.1 rvb * Go through the whole lru chain and kill everything as we go.
559 1.1 rvb * I don't use remove since that would rebuild the lru chain
560 1.1 rvb * as it went and that seemed unneccesary.
561 1.1 rvb */
562 1.3 rvb struct coda_cache *cncp;
563 1.1 rvb int i;
564 1.1 rvb
565 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
566 1.1 rvb return;
567 1.1 rvb
568 1.3 rvb coda_nc_stat.Flushes++;
569 1.1 rvb
570 1.22 plunky TAILQ_FOREACH(cncp, &coda_nc_lru.head, lru) {
571 1.22 plunky if (CODA_NC_VALID(cncp)) { /* only zero valid nodes */
572 1.22 plunky LIST_REMOVE(cncp, hash);
573 1.22 plunky memset(&cncp->hash, 0, sizeof(cncp->hash));
574 1.1 rvb
575 1.14 perry if ((dcstat == IS_DOWNCALL)
576 1.1 rvb && (CTOV(cncp->dcp)->v_usecount == 1))
577 1.1 rvb {
578 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
579 1.1 rvb }
580 1.14 perry vrele(CTOV(cncp->dcp));
581 1.1 rvb
582 1.21 ad if (CTOV(cncp->cp)->v_iflag & VI_TEXT) {
583 1.3 rvb if (coda_vmflush(cncp->cp))
584 1.14 perry CODADEBUG(CODA_FLUSH,
585 1.13 drochner myprintf(("coda_nc_flush: %s busy\n",
586 1.13 drochner coda_f2s(&cncp->cp->c_fid))); )
587 1.1 rvb }
588 1.1 rvb
589 1.14 perry if ((dcstat == IS_DOWNCALL)
590 1.1 rvb && (CTOV(cncp->cp)->v_usecount == 1))
591 1.1 rvb {
592 1.1 rvb cncp->cp->c_flags |= C_PURGING;
593 1.1 rvb }
594 1.14 perry vrele(CTOV(cncp->cp));
595 1.1 rvb
596 1.18 elad kauth_cred_free(cncp->cred);
597 1.10 thorpej memset(DATA_PART(cncp), 0, DATA_SIZE);
598 1.1 rvb }
599 1.1 rvb }
600 1.1 rvb
601 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++)
602 1.3 rvb coda_nc_hash[i].length = 0;
603 1.1 rvb }
604 1.1 rvb
605 1.1 rvb /*
606 1.1 rvb * Debugging routines
607 1.1 rvb */
608 1.1 rvb
609 1.14 perry /*
610 1.1 rvb * This routine should print out all the hash chains to the console.
611 1.1 rvb */
612 1.1 rvb void
613 1.3 rvb print_coda_nc(void)
614 1.1 rvb {
615 1.1 rvb int hash;
616 1.3 rvb struct coda_cache *cncp;
617 1.1 rvb
618 1.3 rvb for (hash = 0; hash < coda_nc_hashsize; hash++) {
619 1.1 rvb myprintf(("\nhash %d\n",hash));
620 1.1 rvb
621 1.22 plunky LIST_FOREACH(cncp, &coda_nc_hash[hash].head, hash) {
622 1.1 rvb myprintf(("cp %p dcp %p cred %p name %s\n",
623 1.1 rvb cncp->cp, cncp->dcp,
624 1.1 rvb cncp->cred, cncp->name));
625 1.1 rvb }
626 1.1 rvb }
627 1.1 rvb }
628 1.1 rvb
629 1.1 rvb void
630 1.3 rvb coda_nc_gather_stats(void)
631 1.1 rvb {
632 1.15 christos int i, xmax = 0, sum = 0, temp, zeros = 0, ave, n;
633 1.1 rvb
634 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
635 1.3 rvb if (coda_nc_hash[i].length) {
636 1.3 rvb sum += coda_nc_hash[i].length;
637 1.1 rvb } else {
638 1.1 rvb zeros++;
639 1.1 rvb }
640 1.1 rvb
641 1.15 christos if (coda_nc_hash[i].length > xmax)
642 1.15 christos xmax = coda_nc_hash[i].length;
643 1.1 rvb }
644 1.1 rvb
645 1.1 rvb /*
646 1.14 perry * When computing the Arithmetic mean, only count slots which
647 1.1 rvb * are not empty in the distribution.
648 1.1 rvb */
649 1.3 rvb coda_nc_stat.Sum_bucket_len = sum;
650 1.3 rvb coda_nc_stat.Num_zero_len = zeros;
651 1.15 christos coda_nc_stat.Max_bucket_len = xmax;
652 1.1 rvb
653 1.14 perry if ((n = coda_nc_hashsize - zeros) > 0)
654 1.1 rvb ave = sum / n;
655 1.1 rvb else
656 1.1 rvb ave = 0;
657 1.1 rvb
658 1.1 rvb sum = 0;
659 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
660 1.3 rvb if (coda_nc_hash[i].length) {
661 1.3 rvb temp = coda_nc_hash[i].length - ave;
662 1.1 rvb sum += temp * temp;
663 1.1 rvb }
664 1.1 rvb }
665 1.3 rvb coda_nc_stat.Sum2_bucket_len = sum;
666 1.1 rvb }
667 1.1 rvb
668 1.1 rvb /*
669 1.1 rvb * The purpose of this routine is to allow the hash and cache sizes to be
670 1.1 rvb * changed dynamically. This should only be used in controlled environments,
671 1.1 rvb * it makes no effort to lock other users from accessing the cache while it
672 1.1 rvb * is in an improper state (except by turning the cache off).
673 1.1 rvb */
674 1.1 rvb int
675 1.16 xtraeme coda_nc_resize(int hashsize, int heapsize, enum dc_status dcstat)
676 1.1 rvb {
677 1.1 rvb if ((hashsize % 2) || (heapsize % 2)) { /* Illegal hash or cache sizes */
678 1.1 rvb return(EINVAL);
679 1.14 perry }
680 1.14 perry
681 1.3 rvb coda_nc_use = 0; /* Turn the cache off */
682 1.14 perry
683 1.3 rvb coda_nc_flush(dcstat); /* free any cnodes in the cache */
684 1.14 perry
685 1.1 rvb /* WARNING: free must happen *before* size is reset */
686 1.3 rvb CODA_FREE(coda_nc_heap,TOTAL_CACHE_SIZE);
687 1.3 rvb CODA_FREE(coda_nc_hash,TOTAL_HASH_SIZE);
688 1.14 perry
689 1.3 rvb coda_nc_hashsize = hashsize;
690 1.3 rvb coda_nc_size = heapsize;
691 1.14 perry
692 1.3 rvb coda_nc_init(); /* Set up a cache with the new size */
693 1.14 perry
694 1.3 rvb coda_nc_use = 1; /* Turn the cache back on */
695 1.1 rvb return(0);
696 1.1 rvb }
697 1.1 rvb
698 1.3 rvb char coda_nc_name_buf[CODA_MAXNAMLEN+1];
699 1.1 rvb
700 1.1 rvb void
701 1.3 rvb coda_nc_name(struct cnode *cp)
702 1.1 rvb {
703 1.22 plunky struct coda_cache *cncp;
704 1.1 rvb int i;
705 1.1 rvb
706 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
707 1.1 rvb return;
708 1.1 rvb
709 1.3 rvb for (i = 0; i < coda_nc_hashsize; i++) {
710 1.22 plunky
711 1.22 plunky LIST_FOREACH(cncp, &coda_nc_hash[i].head, hash) {
712 1.1 rvb if (cncp->cp == cp) {
713 1.3 rvb bcopy(cncp->name, coda_nc_name_buf, cncp->namelen);
714 1.3 rvb coda_nc_name_buf[cncp->namelen] = 0;
715 1.1 rvb printf(" is %s (%p,%p)@%p",
716 1.3 rvb coda_nc_name_buf, cncp->cp, cncp->dcp, cncp);
717 1.1 rvb }
718 1.1 rvb
719 1.1 rvb }
720 1.1 rvb }
721 1.1 rvb }
722