coda_namecache.c revision 1.5 1 1.5 rvb /* $NetBSD: coda_namecache.c,v 1.5 1998/09/25 15:01:12 rvb Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.2 rvb *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.2 rvb *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.2 rvb *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.2 rvb *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.2 rvb *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.2 rvb *
31 1.4 rvb * @(#) coda/coda_namecache.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.1 rvb /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1990 Carnegie-Mellon University
37 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
38 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
39 1.1 rvb * the terms and conditions for use and redistribution.
40 1.1 rvb */
41 1.1 rvb
42 1.1 rvb /*
43 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon University.
44 1.1 rvb * Contributers include David Steere, James Kistler, and M. Satyanarayanan.
45 1.1 rvb */
46 1.1 rvb
47 1.1 rvb /*
48 1.1 rvb * HISTORY
49 1.4 rvb * $Log: coda_namecache.c,v $
50 1.5 rvb * Revision 1.5 1998/09/25 15:01:12 rvb
51 1.5 rvb * Conditionalize "stray" printouts under DIAGNOSTIC and DEBUG.
52 1.5 rvb * Make files compile if DEBUG is on (from Alan Barrett). Finally,
53 1.4 rvb * make coda an lkm.
54 1.4 rvb *
55 1.4 rvb * Revision 1.4 1998/09/15 02:02:58 rvb
56 1.4 rvb * Final piece of rename cfs->coda
57 1.3 rvb *
58 1.3 rvb * Revision 1.3 1998/09/12 15:05:48 rvb
59 1.3 rvb * Change cfs/CFS in symbols, strings and constants to coda/CODA
60 1.2 rvb * to avoid fs conflicts.
61 1.2 rvb *
62 1.2 rvb * Revision 1.2 1998/09/08 17:12:46 rvb
63 1.1 rvb * Pass2 complete
64 1.1 rvb *
65 1.1 rvb * Revision 1.1.1.1 1998/08/29 21:26:45 rvb
66 1.1 rvb * Very Preliminary Coda
67 1.1 rvb *
68 1.1 rvb * Revision 1.11 1998/08/28 18:12:16 rvb
69 1.1 rvb * Now it also works on FreeBSD -current. This code will be
70 1.1 rvb * committed to the FreeBSD -current and NetBSD -current
71 1.1 rvb * trees. It will then be tailored to the particular platform
72 1.1 rvb * by flushing conditional code.
73 1.1 rvb *
74 1.1 rvb * Revision 1.10 1998/08/18 17:05:14 rvb
75 1.1 rvb * Don't use __RCSID now
76 1.1 rvb *
77 1.1 rvb * Revision 1.9 1998/08/18 16:31:39 rvb
78 1.1 rvb * Sync the code for NetBSD -current; test on 1.3 later
79 1.3 rvb *
80 1.1 rvb * Revision 1.8 98/01/31 20:53:10 rvb
81 1.1 rvb * First version that works on FreeBSD 2.2.5
82 1.1 rvb *
83 1.1 rvb * Revision 1.7 98/01/23 11:53:39 rvb
84 1.1 rvb * Bring RVB_CODA1_1 to HEAD
85 1.1 rvb *
86 1.1 rvb * Revision 1.6.2.4 98/01/23 11:21:02 rvb
87 1.1 rvb * Sync with 2.2.5
88 1.1 rvb *
89 1.1 rvb * Revision 1.6.2.3 97/12/16 12:40:03 rvb
90 1.1 rvb * Sync with 1.3
91 1.1 rvb *
92 1.1 rvb * Revision 1.6.2.2 97/12/09 16:07:10 rvb
93 1.1 rvb * Sync with vfs/include/coda.h
94 1.1 rvb *
95 1.1 rvb * Revision 1.6.2.1 97/12/06 17:41:18 rvb
96 1.1 rvb * Sync with peters coda.h
97 1.1 rvb *
98 1.1 rvb * Revision 1.6 97/12/05 10:39:13 rvb
99 1.1 rvb * Read CHANGES
100 1.1 rvb *
101 1.1 rvb * Revision 1.5.4.7 97/11/25 08:08:43 rvb
102 1.1 rvb * cfs_venus ... done; until cred/vattr change
103 1.1 rvb *
104 1.1 rvb * Revision 1.5.4.6 97/11/24 15:44:43 rvb
105 1.1 rvb * Final cfs_venus.c w/o macros, but one locking bug
106 1.1 rvb *
107 1.1 rvb * Revision 1.5.4.5 97/11/20 11:46:38 rvb
108 1.1 rvb * Capture current cfs_venus
109 1.1 rvb *
110 1.1 rvb * Revision 1.5.4.4 97/11/18 10:27:13 rvb
111 1.1 rvb * cfs_nbsd.c is DEAD!!!; integrated into cfs_vf/vnops.c
112 1.1 rvb * cfs_nb_foo and cfs_foo are joined
113 1.1 rvb *
114 1.1 rvb * Revision 1.5.4.3 97/11/13 22:02:57 rvb
115 1.1 rvb * pass2 cfs_NetBSD.h mt
116 1.1 rvb *
117 1.1 rvb * Revision 1.5.4.2 97/11/12 12:09:35 rvb
118 1.1 rvb * reorg pass1
119 1.3 rvb *
120 1.1 rvb * Revision 1.5.4.1 97/10/28 23:10:12 rvb
121 1.1 rvb * >64Meg; venus can be killed!
122 1.1 rvb *
123 1.1 rvb * Revision 1.5 97/08/05 11:08:01 lily
124 1.1 rvb * Removed cfsnc_replace, replaced it with a coda_find, unhash, and
125 1.1 rvb * rehash. This fixes a cnode leak and a bug in which the fid is
126 1.1 rvb * not actually replaced. (cfs_namecache.c, cfsnc.h, cfs_subr.c)
127 1.1 rvb *
128 1.1 rvb * Revision 1.4 96/12/12 22:10:57 bnoble
129 1.1 rvb * Fixed the "downcall invokes venus operation" deadlock in all known cases.
130 1.1 rvb * There may be more
131 1.1 rvb *
132 1.1 rvb * Revision 1.3 1996/11/08 18:06:09 bnoble
133 1.1 rvb * Minor changes in vnode operation signature, VOP_UPDATE signature, and
134 1.1 rvb * some newly defined bits in the include files.
135 1.3 rvb *
136 1.1 rvb * Revision 1.2 1996/01/02 16:56:50 bnoble
137 1.1 rvb * Added support for Coda MiniCache and raw inode calls (final commit)
138 1.1 rvb *
139 1.1 rvb * Revision 1.1.2.1 1995/12/20 01:57:15 bnoble
140 1.1 rvb * Added CODA-specific files
141 1.1 rvb *
142 1.1 rvb * Revision 3.1.1.1 1995/03/04 19:07:57 bnoble
143 1.1 rvb * Branch for NetBSD port revisions
144 1.1 rvb *
145 1.1 rvb * Revision 3.1 1995/03/04 19:07:56 bnoble
146 1.1 rvb * Bump to major revision 3 to prepare for NetBSD port
147 1.3 rvb *
148 1.1 rvb * Revision 2.3 1994/10/14 09:57:54 dcs
149 1.1 rvb * Made changes 'cause sun4s have braindead compilers
150 1.1 rvb *
151 1.3 rvb * Revision 2.2 94/08/28 19:37:35 luqi
152 1.1 rvb * Add a new CODA_REPLACE call to allow venus to replace a ViceFid in the
153 1.1 rvb * mini-cache.
154 1.1 rvb *
155 1.1 rvb * In "cfs.h":
156 1.1 rvb * Add CODA_REPLACE decl.
157 1.3 rvb *
158 1.1 rvb * In "cfs_namecache.c":
159 1.1 rvb * Add routine cfsnc_replace.
160 1.3 rvb *
161 1.1 rvb * In "cfs_subr.c":
162 1.1 rvb * Add case-statement to process CODA_REPLACE.
163 1.1 rvb *
164 1.1 rvb * In "cfsnc.h":
165 1.1 rvb * Add decl for CODA_NC_REPLACE.
166 1.1 rvb *
167 1.1 rvb *
168 1.1 rvb * Revision 2.1 94/07/21 16:25:15 satya
169 1.1 rvb * Conversion to C++ 3.0; start of Coda Release 2.0
170 1.3 rvb *
171 1.1 rvb * Revision 1.2 92/10/27 17:58:21 lily
172 1.1 rvb * merge kernel/latest and alpha/src/cfs
173 1.1 rvb *
174 1.1 rvb * Revision 2.3 92/09/30 14:16:20 mja
175 1.1 rvb * call coda_flush instead of calling inode_uncache_try directly
176 1.1 rvb * (from dcs). Also...
177 1.1 rvb *
178 1.1 rvb * Substituted rvb's history blurb so that we agree with Mach 2.5 sources.
179 1.1 rvb * [91/02/09 jjk]
180 1.1 rvb *
181 1.1 rvb * Added contributors blurb.
182 1.1 rvb * [90/12/13 jjk]
183 1.1 rvb *
184 1.1 rvb * Revision 2.2 90/07/05 11:26:30 mrt
185 1.1 rvb * Created for the Coda File System.
186 1.1 rvb * [90/05/23 dcs]
187 1.1 rvb *
188 1.1 rvb * Revision 1.3 90/05/31 17:01:24 dcs
189 1.1 rvb * Prepare for merge with facilities kernel.
190 1.3 rvb *
191 1.1 rvb *
192 1.1 rvb */
193 1.1 rvb
194 1.1 rvb /*
195 1.1 rvb * This module contains the routines to implement the CODA name cache. The
196 1.1 rvb * purpose of this cache is to reduce the cost of translating pathnames
197 1.1 rvb * into Vice FIDs. Each entry in the cache contains the name of the file,
198 1.1 rvb * the vnode (FID) of the parent directory, and the cred structure of the
199 1.1 rvb * user accessing the file.
200 1.1 rvb *
201 1.1 rvb * The first time a file is accessed, it is looked up by the local Venus
202 1.1 rvb * which first insures that the user has access to the file. In addition
203 1.1 rvb * we are guaranteed that Venus will invalidate any name cache entries in
204 1.1 rvb * case the user no longer should be able to access the file. For these
205 1.1 rvb * reasons we do not need to keep access list information as well as a
206 1.1 rvb * cred structure for each entry.
207 1.1 rvb *
208 1.1 rvb * The table can be accessed through the routines cnc_init(), cnc_enter(),
209 1.1 rvb * cnc_lookup(), cnc_rmfidcred(), cnc_rmfid(), cnc_rmcred(), and cnc_purge().
210 1.1 rvb * There are several other routines which aid in the implementation of the
211 1.1 rvb * hash table.
212 1.1 rvb */
213 1.3 rvb
214 1.3 rvb /*
215 1.1 rvb * NOTES: rvb@cs
216 1.1 rvb * 1. The name cache holds a reference to every vnode in it. Hence files can not be
217 1.1 rvb * closed or made inactive until they are released.
218 1.1 rvb * 2. coda_nc_name(cp) was added to get a name for a cnode pointer for debugging.
219 1.1 rvb * 3. coda_nc_find() has debug code to detect when entries are stored with different
220 1.1 rvb * credentials. We don't understand yet, if/how entries are NOT EQ but still
221 1.1 rvb * EQUAL
222 1.1 rvb * 4. I wonder if this name cache could be replace by the vnode name cache.
223 1.1 rvb * The latter has no zapping functions, so probably not.
224 1.1 rvb */
225 1.1 rvb
226 1.4 rvb #include <sys/param.h>
227 1.4 rvb #include <sys/errno.h>
228 1.4 rvb #include <sys/malloc.h>
229 1.1 rvb #include <sys/select.h>
230 1.5 rvb
231 1.5 rvb #include <coda/coda.h>
232 1.5 rvb #include <coda/cnode.h>
233 1.5 rvb #include <coda/coda_namecache.h>
234 1.1 rvb
235 1.1 rvb #ifdef DEBUG
236 1.1 rvb #include <coda/coda_vnops.h>
237 1.1 rvb #endif
238 1.1 rvb
239 1.1 rvb #ifndef insque
240 1.1 rvb #include <sys/systm.h>
241 1.1 rvb #endif /* insque */
242 1.3 rvb
243 1.1 rvb /*
244 1.3 rvb * Declaration of the name cache data structure.
245 1.3 rvb */
246 1.1 rvb
247 1.3 rvb int coda_nc_use = 1; /* Indicate use of CODA Name Cache */
248 1.3 rvb
249 1.3 rvb int coda_nc_size = CODA_NC_CACHESIZE; /* size of the cache */
250 1.1 rvb int coda_nc_hashsize = CODA_NC_HASHSIZE; /* size of the primary hash */
251 1.3 rvb
252 1.1 rvb struct coda_cache *coda_nc_heap; /* pointer to the cache entries */
253 1.1 rvb struct coda_hash *coda_nc_hash; /* hash table of cfscache pointers */
254 1.1 rvb struct coda_lru coda_nc_lru; /* head of lru chain */
255 1.1 rvb
256 1.3 rvb struct coda_nc_statistics coda_nc_stat; /* Keep various stats */
257 1.1 rvb
258 1.1 rvb /*
259 1.3 rvb * for testing purposes
260 1.1 rvb */
261 1.3 rvb int coda_nc_debug = 0;
262 1.3 rvb
263 1.1 rvb /*
264 1.1 rvb * Entry points for the CODA Name Cache
265 1.3 rvb */
266 1.1 rvb static struct coda_cache *
267 1.1 rvb coda_nc_find(struct cnode *dcp, const char *name, int namelen,
268 1.1 rvb struct ucred *cred, int hash);
269 1.1 rvb static void
270 1.1 rvb coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat);
271 1.3 rvb
272 1.3 rvb /*
273 1.1 rvb * Initialize the cache, the LRU structure and the Hash structure(s)
274 1.3 rvb */
275 1.1 rvb
276 1.1 rvb #define TOTAL_CACHE_SIZE (sizeof(struct coda_cache) * coda_nc_size)
277 1.3 rvb #define TOTAL_HASH_SIZE (sizeof(struct coda_hash) * coda_nc_hashsize)
278 1.1 rvb
279 1.1 rvb int coda_nc_initialized = 0; /* Initially the cache has not been initialized */
280 1.1 rvb
281 1.1 rvb void
282 1.1 rvb coda_nc_init(void)
283 1.3 rvb {
284 1.1 rvb int i;
285 1.5 rvb
286 1.3 rvb /* zero the statistics structure */
287 1.5 rvb
288 1.3 rvb bzero(&coda_nc_stat, (sizeof(struct coda_nc_statistics)));
289 1.3 rvb
290 1.1 rvb #ifdef DIAGNOSTIC
291 1.3 rvb printf("CODA NAME CACHE: CACHE %d, HASH TBL %d\n", CODA_NC_CACHESIZE, CODA_NC_HASHSIZE);
292 1.3 rvb #endif
293 1.1 rvb CODA_ALLOC(coda_nc_heap, struct coda_cache *, TOTAL_CACHE_SIZE);
294 1.1 rvb CODA_ALLOC(coda_nc_hash, struct coda_hash *, TOTAL_HASH_SIZE);
295 1.3 rvb
296 1.3 rvb coda_nc_lru.lru_next =
297 1.3 rvb coda_nc_lru.lru_prev = (struct coda_cache *)LRU_PART(&coda_nc_lru);
298 1.3 rvb
299 1.1 rvb
300 1.1 rvb for (i=0; i < coda_nc_size; i++) { /* initialize the heap */
301 1.3 rvb CODA_NC_LRUINS(&coda_nc_heap[i], &coda_nc_lru);
302 1.3 rvb CODA_NC_HSHNUL(&coda_nc_heap[i]);
303 1.1 rvb coda_nc_heap[i].cp = coda_nc_heap[i].dcp = (struct cnode *)0;
304 1.1 rvb }
305 1.3 rvb
306 1.1 rvb for (i=0; i < coda_nc_hashsize; i++) { /* initialize the hashtable */
307 1.1 rvb CODA_NC_HSHNUL((struct coda_cache *)&coda_nc_hash[i]);
308 1.1 rvb }
309 1.1 rvb
310 1.1 rvb coda_nc_initialized++;
311 1.1 rvb }
312 1.3 rvb
313 1.3 rvb /*
314 1.1 rvb * Auxillary routines -- shouldn't be entry points
315 1.1 rvb */
316 1.1 rvb
317 1.1 rvb static struct coda_cache *
318 1.1 rvb coda_nc_find(dcp, name, namelen, cred, hash)
319 1.1 rvb struct cnode *dcp;
320 1.1 rvb const char *name;
321 1.1 rvb int namelen;
322 1.1 rvb struct ucred *cred;
323 1.1 rvb int hash;
324 1.3 rvb {
325 1.1 rvb /*
326 1.1 rvb * hash to find the appropriate bucket, look through the chain
327 1.3 rvb * for the right entry (especially right cred, unless cred == 0)
328 1.3 rvb */
329 1.1 rvb struct coda_cache *cncp;
330 1.1 rvb int count = 1;
331 1.3 rvb
332 1.3 rvb CODA_NC_DEBUG(CODA_NC_FIND,
333 1.1 rvb myprintf(("coda_nc_find(dcp %p, name %s, len %d, cred %p, hash %d\n",
334 1.1 rvb dcp, name, namelen, cred, hash));)
335 1.1 rvb
336 1.3 rvb for (cncp = coda_nc_hash[hash].hash_next;
337 1.1 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
338 1.1 rvb cncp = cncp->hash_next, count++)
339 1.1 rvb {
340 1.3 rvb
341 1.1 rvb if ((CODA_NAMEMATCH(cncp, name, namelen, dcp)) &&
342 1.1 rvb ((cred == 0) || (cncp->cred == cred)))
343 1.1 rvb {
344 1.3 rvb /* compare cr_uid instead */
345 1.3 rvb coda_nc_stat.Search_len += count;
346 1.1 rvb return(cncp);
347 1.1 rvb }
348 1.1 rvb #ifdef DEBUG
349 1.1 rvb else if (CODA_NAMEMATCH(cncp, name, namelen, dcp)) {
350 1.1 rvb printf("coda_nc_find: name %s, new cred = %p, cred = %p\n",
351 1.1 rvb name, cred, cncp->cred);
352 1.1 rvb printf("nref %d, nuid %d, ngid %d // oref %d, ocred %d, ogid %d\n",
353 1.1 rvb cred->cr_ref, cred->cr_uid, cred->cr_gid,
354 1.1 rvb cncp->cred->cr_ref, cncp->cred->cr_uid, cncp->cred->cr_gid);
355 1.1 rvb print_cred(cred);
356 1.3 rvb print_cred(cncp->cred);
357 1.1 rvb }
358 1.1 rvb #endif
359 1.1 rvb }
360 1.1 rvb
361 1.1 rvb return((struct coda_cache *)0);
362 1.1 rvb }
363 1.1 rvb
364 1.3 rvb /*
365 1.1 rvb * Enter a new (dir cnode, name) pair into the cache, updating the
366 1.1 rvb * LRU and Hash as needed.
367 1.1 rvb */
368 1.1 rvb void
369 1.1 rvb coda_nc_enter(dcp, name, namelen, cred, cp)
370 1.1 rvb struct cnode *dcp;
371 1.3 rvb const char *name;
372 1.1 rvb int namelen;
373 1.1 rvb struct ucred *cred;
374 1.3 rvb struct cnode *cp;
375 1.1 rvb {
376 1.1 rvb struct coda_cache *cncp;
377 1.3 rvb int hash;
378 1.1 rvb
379 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
380 1.1 rvb return;
381 1.3 rvb
382 1.3 rvb CODA_NC_DEBUG(CODA_NC_ENTER,
383 1.1 rvb myprintf(("Enter: dcp %p cp %p name %s cred %p \n",
384 1.3 rvb dcp, cp, name, cred)); )
385 1.1 rvb
386 1.1 rvb if (namelen > CODA_NC_NAMELEN) {
387 1.1 rvb CODA_NC_DEBUG(CODA_NC_ENTER,
388 1.3 rvb myprintf(("long name enter %s\n",name));)
389 1.3 rvb coda_nc_stat.long_name_enters++; /* record stats */
390 1.3 rvb return;
391 1.3 rvb }
392 1.1 rvb
393 1.1 rvb hash = CODA_NC_HASH(name, namelen, dcp);
394 1.1 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
395 1.3 rvb if (cncp != (struct coda_cache *) 0) {
396 1.1 rvb coda_nc_stat.dbl_enters++; /* duplicate entry */
397 1.1 rvb return;
398 1.3 rvb }
399 1.1 rvb
400 1.3 rvb coda_nc_stat.enters++; /* record the enters statistic */
401 1.1 rvb
402 1.3 rvb /* Grab the next element in the lru chain */
403 1.1 rvb cncp = CODA_NC_LRUGET(coda_nc_lru);
404 1.1 rvb
405 1.1 rvb CODA_NC_LRUREM(cncp); /* remove it from the lists */
406 1.3 rvb
407 1.1 rvb if (CODA_NC_VALID(cncp)) {
408 1.3 rvb /* Seems really ugly, but we have to decrement the appropriate
409 1.3 rvb hash bucket length here, so we have to find the hash bucket
410 1.1 rvb */
411 1.1 rvb coda_nc_hash[CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp)].length--;
412 1.1 rvb
413 1.1 rvb coda_nc_stat.lru_rm++; /* zapped a valid entry */
414 1.1 rvb CODA_NC_HSHREM(cncp);
415 1.1 rvb vrele(CTOV(cncp->dcp));
416 1.1 rvb vrele(CTOV(cncp->cp));
417 1.1 rvb crfree(cncp->cred);
418 1.1 rvb }
419 1.1 rvb
420 1.1 rvb /*
421 1.1 rvb * Put a hold on the current vnodes and fill in the cache entry.
422 1.1 rvb */
423 1.1 rvb vref(CTOV(cp));
424 1.1 rvb vref(CTOV(dcp));
425 1.1 rvb crhold(cred);
426 1.1 rvb cncp->dcp = dcp;
427 1.1 rvb cncp->cp = cp;
428 1.1 rvb cncp->namelen = namelen;
429 1.1 rvb cncp->cred = cred;
430 1.3 rvb
431 1.3 rvb bcopy(name, cncp->name, (unsigned)namelen);
432 1.3 rvb
433 1.1 rvb /* Insert into the lru and hash chains. */
434 1.3 rvb
435 1.1 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
436 1.1 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
437 1.1 rvb coda_nc_hash[hash].length++; /* Used for tuning */
438 1.1 rvb
439 1.1 rvb CODA_NC_DEBUG(CODA_NC_PRINTCODA_NC, print_coda_nc(); )
440 1.1 rvb }
441 1.1 rvb
442 1.3 rvb /*
443 1.1 rvb * Find the (dir cnode, name) pair in the cache, if it's cred
444 1.1 rvb * matches the input, return it, otherwise return 0
445 1.1 rvb */
446 1.1 rvb struct cnode *
447 1.1 rvb coda_nc_lookup(dcp, name, namelen, cred)
448 1.1 rvb struct cnode *dcp;
449 1.3 rvb const char *name;
450 1.1 rvb int namelen;
451 1.3 rvb struct ucred *cred;
452 1.1 rvb {
453 1.1 rvb int hash;
454 1.3 rvb struct coda_cache *cncp;
455 1.3 rvb
456 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
457 1.3 rvb return((struct cnode *) 0);
458 1.1 rvb
459 1.1 rvb if (namelen > CODA_NC_NAMELEN) {
460 1.1 rvb CODA_NC_DEBUG(CODA_NC_LOOKUP,
461 1.1 rvb myprintf(("long name lookup %s\n",name));)
462 1.1 rvb coda_nc_stat.long_name_lookups++; /* record stats */
463 1.1 rvb return((struct cnode *) 0);
464 1.1 rvb }
465 1.1 rvb
466 1.3 rvb /* Use the hash function to locate the starting point,
467 1.3 rvb then the search routine to go down the list looking for
468 1.3 rvb the correct cred.
469 1.3 rvb */
470 1.1 rvb
471 1.1 rvb hash = CODA_NC_HASH(name, namelen, dcp);
472 1.1 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
473 1.3 rvb if (cncp == (struct coda_cache *) 0) {
474 1.1 rvb coda_nc_stat.misses++; /* record miss */
475 1.1 rvb return((struct cnode *) 0);
476 1.3 rvb }
477 1.3 rvb
478 1.1 rvb coda_nc_stat.hits++;
479 1.1 rvb
480 1.1 rvb /* put this entry at the end of the LRU */
481 1.3 rvb CODA_NC_LRUREM(cncp);
482 1.3 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
483 1.1 rvb
484 1.3 rvb /* move it to the front of the hash chain */
485 1.1 rvb /* don't need to change the hash bucket length */
486 1.1 rvb CODA_NC_HSHREM(cncp);
487 1.1 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
488 1.1 rvb
489 1.1 rvb CODA_NC_DEBUG(CODA_NC_LOOKUP,
490 1.1 rvb printf("lookup: dcp %p, name %s, cred %p = cp %p\n",
491 1.1 rvb dcp, name, cred, cncp->cp); )
492 1.3 rvb
493 1.3 rvb return(cncp->cp);
494 1.1 rvb }
495 1.1 rvb
496 1.1 rvb static void
497 1.1 rvb coda_nc_remove(cncp, dcstat)
498 1.1 rvb struct coda_cache *cncp;
499 1.1 rvb enum dc_status dcstat;
500 1.1 rvb {
501 1.3 rvb /*
502 1.3 rvb * remove an entry -- vrele(cncp->dcp, cp), crfree(cred),
503 1.1 rvb * remove it from it's hash chain, and
504 1.1 rvb * place it at the head of the lru list.
505 1.1 rvb */
506 1.3 rvb CODA_NC_DEBUG(CODA_NC_REMOVE,
507 1.1 rvb myprintf(("coda_nc_remove %s from parent %lx.%lx.%lx\n",
508 1.3 rvb cncp->name, (cncp->dcp)->c_fid.Volume,
509 1.1 rvb (cncp->dcp)->c_fid.Vnode, (cncp->dcp)->c_fid.Unique));)
510 1.1 rvb
511 1.1 rvb CODA_NC_HSHREM(cncp);
512 1.1 rvb
513 1.1 rvb CODA_NC_HSHNUL(cncp); /* have it be a null chain */
514 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->dcp)->v_usecount == 1)) {
515 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
516 1.1 rvb }
517 1.1 rvb vrele(CTOV(cncp->dcp));
518 1.1 rvb
519 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->cp)->v_usecount == 1)) {
520 1.1 rvb cncp->cp->c_flags |= C_PURGING;
521 1.1 rvb }
522 1.1 rvb vrele(CTOV(cncp->cp));
523 1.1 rvb
524 1.3 rvb crfree(cncp->cred);
525 1.3 rvb bzero(DATA_PART(cncp),DATA_SIZE);
526 1.1 rvb
527 1.1 rvb /* Put the null entry just after the least-recently-used entry */
528 1.1 rvb /* LRU_TOP adjusts the pointer to point to the top of the structure. */
529 1.1 rvb CODA_NC_LRUREM(cncp);
530 1.1 rvb CODA_NC_LRUINS(cncp, LRU_TOP(coda_nc_lru.lru_prev));
531 1.1 rvb }
532 1.3 rvb
533 1.1 rvb /*
534 1.1 rvb * Remove all entries with a parent which has the input fid.
535 1.1 rvb */
536 1.1 rvb void
537 1.1 rvb coda_nc_zapParentfid(fid, dcstat)
538 1.1 rvb ViceFid *fid;
539 1.1 rvb enum dc_status dcstat;
540 1.1 rvb {
541 1.3 rvb /* To get to a specific fid, we might either have another hashing
542 1.1 rvb function or do a sequential search through the cache for the
543 1.1 rvb appropriate entries. The later may be acceptable since I don't
544 1.3 rvb think callbacks or whatever Case 1 covers are frequent occurences.
545 1.1 rvb */
546 1.1 rvb struct coda_cache *cncp, *ncncp;
547 1.3 rvb int i;
548 1.1 rvb
549 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
550 1.1 rvb return;
551 1.3 rvb
552 1.1 rvb CODA_NC_DEBUG(CODA_NC_ZAPPFID,
553 1.3 rvb myprintf(("ZapParent: fid 0x%lx, 0x%lx, 0x%lx \n",
554 1.1 rvb fid->Volume, fid->Vnode, fid->Unique)); )
555 1.1 rvb
556 1.1 rvb coda_nc_stat.zapPfids++;
557 1.1 rvb
558 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
559 1.1 rvb
560 1.3 rvb /*
561 1.3 rvb * Need to save the hash_next pointer in case we remove the
562 1.1 rvb * entry. remove causes hash_next to point to itself.
563 1.1 rvb */
564 1.1 rvb
565 1.1 rvb for (cncp = coda_nc_hash[i].hash_next;
566 1.1 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
567 1.3 rvb cncp = ncncp) {
568 1.3 rvb ncncp = cncp->hash_next;
569 1.1 rvb if ((cncp->dcp->c_fid.Volume == fid->Volume) &&
570 1.1 rvb (cncp->dcp->c_fid.Vnode == fid->Vnode) &&
571 1.1 rvb (cncp->dcp->c_fid.Unique == fid->Unique)) {
572 1.1 rvb coda_nc_hash[i].length--; /* Used for tuning */
573 1.1 rvb coda_nc_remove(cncp, dcstat);
574 1.1 rvb }
575 1.1 rvb }
576 1.1 rvb }
577 1.1 rvb }
578 1.3 rvb
579 1.1 rvb /*
580 1.1 rvb * Remove all entries which have the same fid as the input
581 1.1 rvb */
582 1.1 rvb void
583 1.1 rvb coda_nc_zapfid(fid, dcstat)
584 1.1 rvb ViceFid *fid;
585 1.3 rvb enum dc_status dcstat;
586 1.1 rvb {
587 1.1 rvb /* See comment for zapParentfid. This routine will be used
588 1.3 rvb if attributes are being cached.
589 1.1 rvb */
590 1.1 rvb struct coda_cache *cncp, *ncncp;
591 1.3 rvb int i;
592 1.1 rvb
593 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
594 1.1 rvb return;
595 1.3 rvb
596 1.1 rvb CODA_NC_DEBUG(CODA_NC_ZAPFID,
597 1.3 rvb myprintf(("Zapfid: fid 0x%lx, 0x%lx, 0x%lx \n",
598 1.3 rvb fid->Volume, fid->Vnode, fid->Unique)); )
599 1.3 rvb
600 1.1 rvb coda_nc_stat.zapFids++;
601 1.1 rvb
602 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
603 1.1 rvb for (cncp = coda_nc_hash[i].hash_next;
604 1.1 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
605 1.3 rvb cncp = ncncp) {
606 1.3 rvb ncncp = cncp->hash_next;
607 1.1 rvb if ((cncp->cp->c_fid.Volume == fid->Volume) &&
608 1.1 rvb (cncp->cp->c_fid.Vnode == fid->Vnode) &&
609 1.1 rvb (cncp->cp->c_fid.Unique == fid->Unique)) {
610 1.1 rvb coda_nc_hash[i].length--; /* Used for tuning */
611 1.1 rvb coda_nc_remove(cncp, dcstat);
612 1.1 rvb }
613 1.1 rvb }
614 1.1 rvb }
615 1.1 rvb }
616 1.3 rvb
617 1.1 rvb /*
618 1.1 rvb * Remove all entries which match the fid and the cred
619 1.1 rvb */
620 1.1 rvb void
621 1.1 rvb coda_nc_zapvnode(fid, cred, dcstat)
622 1.1 rvb ViceFid *fid;
623 1.1 rvb struct ucred *cred;
624 1.1 rvb enum dc_status dcstat;
625 1.3 rvb {
626 1.1 rvb /* See comment for zapfid. I don't think that one would ever
627 1.1 rvb want to zap a file with a specific cred from the kernel.
628 1.3 rvb We'll leave this one unimplemented.
629 1.1 rvb */
630 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
631 1.1 rvb return;
632 1.1 rvb
633 1.1 rvb CODA_NC_DEBUG(CODA_NC_ZAPVNODE,
634 1.1 rvb myprintf(("Zapvnode: fid 0x%lx, 0x%lx, 0x%lx cred %p\n",
635 1.1 rvb fid->Volume, fid->Vnode, fid->Unique, cred)); )
636 1.1 rvb
637 1.1 rvb }
638 1.3 rvb
639 1.1 rvb /*
640 1.1 rvb * Remove all entries which have the (dir vnode, name) pair
641 1.1 rvb */
642 1.1 rvb void
643 1.1 rvb coda_nc_zapfile(dcp, name, namelen)
644 1.1 rvb struct cnode *dcp;
645 1.1 rvb const char *name;
646 1.3 rvb int namelen;
647 1.1 rvb {
648 1.1 rvb /* use the hash function to locate the file, then zap all
649 1.3 rvb entries of it regardless of the cred.
650 1.1 rvb */
651 1.1 rvb struct coda_cache *cncp;
652 1.3 rvb int hash;
653 1.1 rvb
654 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
655 1.1 rvb return;
656 1.3 rvb
657 1.3 rvb CODA_NC_DEBUG(CODA_NC_ZAPFILE,
658 1.1 rvb myprintf(("Zapfile: dcp %p name %s \n",
659 1.1 rvb dcp, name)); )
660 1.1 rvb
661 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
662 1.1 rvb coda_nc_stat.long_remove++; /* record stats */
663 1.3 rvb return;
664 1.3 rvb }
665 1.1 rvb
666 1.1 rvb coda_nc_stat.zapFile++;
667 1.3 rvb
668 1.1 rvb hash = CODA_NC_HASH(name, namelen, dcp);
669 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
670 1.3 rvb
671 1.1 rvb while (cncp) {
672 1.1 rvb coda_nc_hash[hash].length--; /* Used for tuning */
673 1.1 rvb /* 1.3 */
674 1.1 rvb coda_nc_remove(cncp, NOT_DOWNCALL);
675 1.1 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
676 1.1 rvb }
677 1.1 rvb }
678 1.1 rvb
679 1.3 rvb /*
680 1.1 rvb * Remove all the entries for a particular user. Used when tokens expire.
681 1.1 rvb * A user is determined by his/her effective user id (id_uid).
682 1.1 rvb */
683 1.1 rvb void
684 1.1 rvb coda_nc_purge_user(uid, dcstat)
685 1.1 rvb vuid_t uid;
686 1.1 rvb enum dc_status dcstat;
687 1.1 rvb {
688 1.1 rvb /*
689 1.1 rvb * I think the best approach is to go through the entire cache
690 1.1 rvb * via HASH or whatever and zap all entries which match the
691 1.3 rvb * input cred. Or just flush the whole cache. It might be
692 1.1 rvb * best to go through on basis of LRU since cache will almost
693 1.1 rvb * always be full and LRU is more straightforward.
694 1.3 rvb */
695 1.1 rvb
696 1.1 rvb struct coda_cache *cncp, *ncncp;
697 1.3 rvb int hash;
698 1.1 rvb
699 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
700 1.1 rvb return;
701 1.3 rvb
702 1.3 rvb CODA_NC_DEBUG(CODA_NC_PURGEUSER,
703 1.1 rvb myprintf(("ZapDude: uid %lx\n", uid)); )
704 1.3 rvb coda_nc_stat.zapUsers++;
705 1.1 rvb
706 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
707 1.1 rvb cncp != (struct coda_cache *)(&coda_nc_lru);
708 1.1 rvb cncp = ncncp) {
709 1.1 rvb ncncp = CODA_NC_LRUGET(*cncp);
710 1.1 rvb
711 1.3 rvb if ((CODA_NC_VALID(cncp)) &&
712 1.3 rvb ((cncp->cred)->cr_uid == uid)) {
713 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
714 1.3 rvb hash bucket length here, so we have to find the hash bucket
715 1.1 rvb */
716 1.1 rvb hash = CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp);
717 1.1 rvb coda_nc_hash[hash].length--; /* For performance tuning */
718 1.1 rvb
719 1.1 rvb coda_nc_remove(cncp, dcstat);
720 1.1 rvb }
721 1.1 rvb }
722 1.1 rvb }
723 1.3 rvb
724 1.1 rvb /*
725 1.1 rvb * Flush the entire name cache. In response to a flush of the Venus cache.
726 1.1 rvb */
727 1.1 rvb void
728 1.1 rvb coda_nc_flush(dcstat)
729 1.1 rvb enum dc_status dcstat;
730 1.1 rvb {
731 1.1 rvb /* One option is to deallocate the current name cache and
732 1.1 rvb call init to start again. Or just deallocate, then rebuild.
733 1.1 rvb Or again, we could just go through the array and zero the
734 1.1 rvb appropriate fields.
735 1.1 rvb */
736 1.1 rvb
737 1.3 rvb /*
738 1.1 rvb * Go through the whole lru chain and kill everything as we go.
739 1.1 rvb * I don't use remove since that would rebuild the lru chain
740 1.3 rvb * as it went and that seemed unneccesary.
741 1.1 rvb */
742 1.1 rvb struct coda_cache *cncp;
743 1.3 rvb int i;
744 1.1 rvb
745 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
746 1.3 rvb return;
747 1.3 rvb
748 1.3 rvb coda_nc_stat.Flushes++;
749 1.1 rvb
750 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
751 1.3 rvb cncp != (struct coda_cache *)&coda_nc_lru;
752 1.1 rvb cncp = CODA_NC_LRUGET(*cncp)) {
753 1.1 rvb if (CODA_NC_VALID(cncp)) {
754 1.1 rvb
755 1.1 rvb CODA_NC_HSHREM(cncp); /* only zero valid nodes */
756 1.1 rvb CODA_NC_HSHNUL(cncp);
757 1.1 rvb if ((dcstat == IS_DOWNCALL)
758 1.1 rvb && (CTOV(cncp->dcp)->v_usecount == 1))
759 1.1 rvb {
760 1.3 rvb cncp->dcp->c_flags |= C_PURGING;
761 1.3 rvb }
762 1.3 rvb vrele(CTOV(cncp->dcp));
763 1.1 rvb
764 1.1 rvb if (CTOV(cncp->cp)->v_flag & VTEXT) {
765 1.1 rvb if (coda_vmflush(cncp->cp))
766 1.1 rvb CODADEBUG(CODA_FLUSH,
767 1.1 rvb myprintf(("coda_nc_flush: (%lx.%lx.%lx) busy\n", cncp->cp->c_fid.Volume, cncp->cp->c_fid.Vnode, cncp->cp->c_fid.Unique)); )
768 1.1 rvb }
769 1.1 rvb
770 1.1 rvb if ((dcstat == IS_DOWNCALL)
771 1.1 rvb && (CTOV(cncp->cp)->v_usecount == 1))
772 1.1 rvb {
773 1.1 rvb cncp->cp->c_flags |= C_PURGING;
774 1.1 rvb }
775 1.1 rvb vrele(CTOV(cncp->cp));
776 1.1 rvb
777 1.3 rvb crfree(cncp->cred);
778 1.3 rvb bzero(DATA_PART(cncp),DATA_SIZE);
779 1.1 rvb }
780 1.1 rvb }
781 1.1 rvb
782 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++)
783 1.1 rvb coda_nc_hash[i].length = 0;
784 1.1 rvb }
785 1.1 rvb
786 1.1 rvb /*
787 1.1 rvb * Debugging routines
788 1.1 rvb */
789 1.3 rvb
790 1.1 rvb /*
791 1.1 rvb * This routine should print out all the hash chains to the console.
792 1.3 rvb */
793 1.1 rvb void
794 1.3 rvb print_coda_nc(void)
795 1.1 rvb {
796 1.1 rvb int hash;
797 1.3 rvb struct coda_cache *cncp;
798 1.3 rvb
799 1.1 rvb for (hash = 0; hash < coda_nc_hashsize; hash++) {
800 1.1 rvb myprintf(("\nhash %d\n",hash));
801 1.1 rvb
802 1.1 rvb for (cncp = coda_nc_hash[hash].hash_next;
803 1.1 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
804 1.1 rvb cncp = cncp->hash_next) {
805 1.1 rvb myprintf(("cp %p dcp %p cred %p name %s\n",
806 1.1 rvb cncp->cp, cncp->dcp,
807 1.1 rvb cncp->cred, cncp->name));
808 1.3 rvb }
809 1.1 rvb }
810 1.1 rvb }
811 1.1 rvb
812 1.3 rvb void
813 1.3 rvb coda_nc_gather_stats(void)
814 1.3 rvb {
815 1.1 rvb int i, max = 0, sum = 0, temp, zeros = 0, ave, n;
816 1.1 rvb
817 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
818 1.1 rvb if (coda_nc_hash[i].length) {
819 1.3 rvb sum += coda_nc_hash[i].length;
820 1.3 rvb } else {
821 1.1 rvb zeros++;
822 1.1 rvb }
823 1.1 rvb
824 1.1 rvb if (coda_nc_hash[i].length > max)
825 1.1 rvb max = coda_nc_hash[i].length;
826 1.1 rvb }
827 1.3 rvb
828 1.3 rvb /*
829 1.3 rvb * When computing the Arithmetic mean, only count slots which
830 1.1 rvb * are not empty in the distribution.
831 1.3 rvb */
832 1.1 rvb coda_nc_stat.Sum_bucket_len = sum;
833 1.1 rvb coda_nc_stat.Num_zero_len = zeros;
834 1.1 rvb coda_nc_stat.Max_bucket_len = max;
835 1.1 rvb
836 1.1 rvb if ((n = coda_nc_hashsize - zeros) > 0)
837 1.3 rvb ave = sum / n;
838 1.3 rvb else
839 1.3 rvb ave = 0;
840 1.1 rvb
841 1.1 rvb sum = 0;
842 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
843 1.3 rvb if (coda_nc_hash[i].length) {
844 1.1 rvb temp = coda_nc_hash[i].length - ave;
845 1.1 rvb sum += temp * temp;
846 1.1 rvb }
847 1.1 rvb }
848 1.1 rvb coda_nc_stat.Sum2_bucket_len = sum;
849 1.1 rvb }
850 1.1 rvb
851 1.1 rvb /*
852 1.1 rvb * The purpose of this routine is to allow the hash and cache sizes to be
853 1.3 rvb * changed dynamically. This should only be used in controlled environments,
854 1.1 rvb * it makes no effort to lock other users from accessing the cache while it
855 1.1 rvb * is in an improper state (except by turning the cache off).
856 1.1 rvb */
857 1.1 rvb int
858 1.1 rvb coda_nc_resize(hashsize, heapsize, dcstat)
859 1.1 rvb int hashsize, heapsize;
860 1.1 rvb enum dc_status dcstat;
861 1.3 rvb {
862 1.1 rvb if ((hashsize % 2) || (heapsize % 2)) { /* Illegal hash or cache sizes */
863 1.3 rvb return(EINVAL);
864 1.1 rvb }
865 1.1 rvb
866 1.3 rvb coda_nc_use = 0; /* Turn the cache off */
867 1.3 rvb
868 1.1 rvb coda_nc_flush(dcstat); /* free any cnodes in the cache */
869 1.3 rvb
870 1.3 rvb /* WARNING: free must happen *before* size is reset */
871 1.1 rvb CODA_FREE(coda_nc_heap,TOTAL_CACHE_SIZE);
872 1.3 rvb CODA_FREE(coda_nc_hash,TOTAL_HASH_SIZE);
873 1.1 rvb
874 1.3 rvb coda_nc_hashsize = hashsize;
875 1.1 rvb coda_nc_size = heapsize;
876 1.1 rvb
877 1.1 rvb coda_nc_init(); /* Set up a cache with the new size */
878 1.3 rvb
879 1.1 rvb coda_nc_use = 1; /* Turn the cache back on */
880 1.1 rvb return(0);
881 1.3 rvb }
882 1.1 rvb
883 1.3 rvb char coda_nc_name_buf[CODA_MAXNAMLEN+1];
884 1.1 rvb
885 1.1 rvb void
886 1.3 rvb coda_nc_name(struct cnode *cp)
887 1.1 rvb {
888 1.1 rvb struct coda_cache *cncp, *ncncp;
889 1.3 rvb int i;
890 1.3 rvb
891 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
892 1.1 rvb return;
893 1.1 rvb
894 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
895 1.3 rvb for (cncp = coda_nc_hash[i].hash_next;
896 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
897 1.1 rvb cncp = ncncp) {
898 1.3 rvb ncncp = cncp->hash_next;
899 1.1 rvb if (cncp->cp == cp) {
900 1.1 rvb bcopy(cncp->name, coda_nc_name_buf, cncp->namelen);
901 1.1 rvb coda_nc_name_buf[cncp->namelen] = 0;
902 1.1 rvb printf(" is %s (%p,%p)@%p",
903 1.1 rvb coda_nc_name_buf, cncp->cp, cncp->dcp, cncp);
904 }
905
906 }
907 }
908 }
909