coda_namecache.c revision 1.7 1 1.7 rvb /* $NetBSD: coda_namecache.c,v 1.7 1998/09/28 17:55:21 rvb Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.2 rvb *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.2 rvb *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.2 rvb *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.2 rvb *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.2 rvb *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.2 rvb *
31 1.4 rvb * @(#) coda/coda_namecache.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.1 rvb /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1990 Carnegie-Mellon University
37 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
38 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
39 1.1 rvb * the terms and conditions for use and redistribution.
40 1.1 rvb */
41 1.1 rvb
42 1.1 rvb /*
43 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon University.
44 1.1 rvb * Contributers include David Steere, James Kistler, and M. Satyanarayanan.
45 1.1 rvb */
46 1.1 rvb
47 1.1 rvb /*
48 1.1 rvb * HISTORY
49 1.4 rvb * $Log: coda_namecache.c,v $
50 1.7 rvb * Revision 1.7 1998/09/28 17:55:21 rvb
51 1.7 rvb * I want to distinguish from DEBUG printouts and CODA_VERBOSE printouts.
52 1.7 rvb * The latter are normal informational messages that are sometimes
53 1.7 rvb * interesting to view.
54 1.7 rvb *
55 1.6 tv * Revision 1.6 1998/09/26 15:24:46 tv
56 1.6 tv * DIAGNOSTIC -> DEBUG for all non-panic messages. DIAGNOSTIC is only for
57 1.6 tv * sanity checks and should not turn on any messages not already printed
58 1.6 tv * without it.
59 1.6 tv *
60 1.5 rvb * Revision 1.5 1998/09/25 15:01:12 rvb
61 1.5 rvb * Conditionalize "stray" printouts under DIAGNOSTIC and DEBUG.
62 1.5 rvb * Make files compile if DEBUG is on (from Alan Barrett). Finally,
63 1.4 rvb * make coda an lkm.
64 1.4 rvb *
65 1.4 rvb * Revision 1.4 1998/09/15 02:02:58 rvb
66 1.4 rvb * Final piece of rename cfs->coda
67 1.3 rvb *
68 1.3 rvb * Revision 1.3 1998/09/12 15:05:48 rvb
69 1.3 rvb * Change cfs/CFS in symbols, strings and constants to coda/CODA
70 1.2 rvb * to avoid fs conflicts.
71 1.2 rvb *
72 1.2 rvb * Revision 1.2 1998/09/08 17:12:46 rvb
73 1.1 rvb * Pass2 complete
74 1.1 rvb *
75 1.1 rvb * Revision 1.1.1.1 1998/08/29 21:26:45 rvb
76 1.1 rvb * Very Preliminary Coda
77 1.1 rvb *
78 1.1 rvb * Revision 1.11 1998/08/28 18:12:16 rvb
79 1.1 rvb * Now it also works on FreeBSD -current. This code will be
80 1.1 rvb * committed to the FreeBSD -current and NetBSD -current
81 1.1 rvb * trees. It will then be tailored to the particular platform
82 1.1 rvb * by flushing conditional code.
83 1.1 rvb *
84 1.1 rvb * Revision 1.10 1998/08/18 17:05:14 rvb
85 1.1 rvb * Don't use __RCSID now
86 1.1 rvb *
87 1.1 rvb * Revision 1.9 1998/08/18 16:31:39 rvb
88 1.1 rvb * Sync the code for NetBSD -current; test on 1.3 later
89 1.3 rvb *
90 1.1 rvb * Revision 1.8 98/01/31 20:53:10 rvb
91 1.1 rvb * First version that works on FreeBSD 2.2.5
92 1.1 rvb *
93 1.1 rvb * Revision 1.7 98/01/23 11:53:39 rvb
94 1.1 rvb * Bring RVB_CODA1_1 to HEAD
95 1.1 rvb *
96 1.1 rvb * Revision 1.6.2.4 98/01/23 11:21:02 rvb
97 1.1 rvb * Sync with 2.2.5
98 1.1 rvb *
99 1.1 rvb * Revision 1.6.2.3 97/12/16 12:40:03 rvb
100 1.1 rvb * Sync with 1.3
101 1.1 rvb *
102 1.1 rvb * Revision 1.6.2.2 97/12/09 16:07:10 rvb
103 1.1 rvb * Sync with vfs/include/coda.h
104 1.1 rvb *
105 1.1 rvb * Revision 1.6.2.1 97/12/06 17:41:18 rvb
106 1.1 rvb * Sync with peters coda.h
107 1.1 rvb *
108 1.1 rvb * Revision 1.6 97/12/05 10:39:13 rvb
109 1.1 rvb * Read CHANGES
110 1.1 rvb *
111 1.1 rvb * Revision 1.5.4.7 97/11/25 08:08:43 rvb
112 1.1 rvb * cfs_venus ... done; until cred/vattr change
113 1.1 rvb *
114 1.1 rvb * Revision 1.5.4.6 97/11/24 15:44:43 rvb
115 1.1 rvb * Final cfs_venus.c w/o macros, but one locking bug
116 1.1 rvb *
117 1.1 rvb * Revision 1.5.4.5 97/11/20 11:46:38 rvb
118 1.1 rvb * Capture current cfs_venus
119 1.1 rvb *
120 1.1 rvb * Revision 1.5.4.4 97/11/18 10:27:13 rvb
121 1.1 rvb * cfs_nbsd.c is DEAD!!!; integrated into cfs_vf/vnops.c
122 1.1 rvb * cfs_nb_foo and cfs_foo are joined
123 1.1 rvb *
124 1.1 rvb * Revision 1.5.4.3 97/11/13 22:02:57 rvb
125 1.1 rvb * pass2 cfs_NetBSD.h mt
126 1.1 rvb *
127 1.1 rvb * Revision 1.5.4.2 97/11/12 12:09:35 rvb
128 1.1 rvb * reorg pass1
129 1.3 rvb *
130 1.1 rvb * Revision 1.5.4.1 97/10/28 23:10:12 rvb
131 1.1 rvb * >64Meg; venus can be killed!
132 1.1 rvb *
133 1.1 rvb * Revision 1.5 97/08/05 11:08:01 lily
134 1.1 rvb * Removed cfsnc_replace, replaced it with a coda_find, unhash, and
135 1.1 rvb * rehash. This fixes a cnode leak and a bug in which the fid is
136 1.1 rvb * not actually replaced. (cfs_namecache.c, cfsnc.h, cfs_subr.c)
137 1.1 rvb *
138 1.1 rvb * Revision 1.4 96/12/12 22:10:57 bnoble
139 1.1 rvb * Fixed the "downcall invokes venus operation" deadlock in all known cases.
140 1.1 rvb * There may be more
141 1.1 rvb *
142 1.1 rvb * Revision 1.3 1996/11/08 18:06:09 bnoble
143 1.1 rvb * Minor changes in vnode operation signature, VOP_UPDATE signature, and
144 1.1 rvb * some newly defined bits in the include files.
145 1.3 rvb *
146 1.1 rvb * Revision 1.2 1996/01/02 16:56:50 bnoble
147 1.1 rvb * Added support for Coda MiniCache and raw inode calls (final commit)
148 1.1 rvb *
149 1.1 rvb * Revision 1.1.2.1 1995/12/20 01:57:15 bnoble
150 1.1 rvb * Added CODA-specific files
151 1.1 rvb *
152 1.1 rvb * Revision 3.1.1.1 1995/03/04 19:07:57 bnoble
153 1.1 rvb * Branch for NetBSD port revisions
154 1.1 rvb *
155 1.1 rvb * Revision 3.1 1995/03/04 19:07:56 bnoble
156 1.1 rvb * Bump to major revision 3 to prepare for NetBSD port
157 1.3 rvb *
158 1.1 rvb * Revision 2.3 1994/10/14 09:57:54 dcs
159 1.1 rvb * Made changes 'cause sun4s have braindead compilers
160 1.1 rvb *
161 1.3 rvb * Revision 2.2 94/08/28 19:37:35 luqi
162 1.1 rvb * Add a new CODA_REPLACE call to allow venus to replace a ViceFid in the
163 1.1 rvb * mini-cache.
164 1.1 rvb *
165 1.1 rvb * In "cfs.h":
166 1.1 rvb * Add CODA_REPLACE decl.
167 1.3 rvb *
168 1.1 rvb * In "cfs_namecache.c":
169 1.1 rvb * Add routine cfsnc_replace.
170 1.3 rvb *
171 1.1 rvb * In "cfs_subr.c":
172 1.1 rvb * Add case-statement to process CODA_REPLACE.
173 1.1 rvb *
174 1.1 rvb * In "cfsnc.h":
175 1.1 rvb * Add decl for CODA_NC_REPLACE.
176 1.1 rvb *
177 1.1 rvb *
178 1.1 rvb * Revision 2.1 94/07/21 16:25:15 satya
179 1.1 rvb * Conversion to C++ 3.0; start of Coda Release 2.0
180 1.3 rvb *
181 1.1 rvb * Revision 1.2 92/10/27 17:58:21 lily
182 1.1 rvb * merge kernel/latest and alpha/src/cfs
183 1.1 rvb *
184 1.1 rvb * Revision 2.3 92/09/30 14:16:20 mja
185 1.1 rvb * call coda_flush instead of calling inode_uncache_try directly
186 1.1 rvb * (from dcs). Also...
187 1.1 rvb *
188 1.1 rvb * Substituted rvb's history blurb so that we agree with Mach 2.5 sources.
189 1.1 rvb * [91/02/09 jjk]
190 1.1 rvb *
191 1.1 rvb * Added contributors blurb.
192 1.1 rvb * [90/12/13 jjk]
193 1.1 rvb *
194 1.1 rvb * Revision 2.2 90/07/05 11:26:30 mrt
195 1.1 rvb * Created for the Coda File System.
196 1.1 rvb * [90/05/23 dcs]
197 1.1 rvb *
198 1.1 rvb * Revision 1.3 90/05/31 17:01:24 dcs
199 1.1 rvb * Prepare for merge with facilities kernel.
200 1.3 rvb *
201 1.1 rvb *
202 1.1 rvb */
203 1.1 rvb
204 1.1 rvb /*
205 1.1 rvb * This module contains the routines to implement the CODA name cache. The
206 1.1 rvb * purpose of this cache is to reduce the cost of translating pathnames
207 1.1 rvb * into Vice FIDs. Each entry in the cache contains the name of the file,
208 1.1 rvb * the vnode (FID) of the parent directory, and the cred structure of the
209 1.1 rvb * user accessing the file.
210 1.1 rvb *
211 1.1 rvb * The first time a file is accessed, it is looked up by the local Venus
212 1.1 rvb * which first insures that the user has access to the file. In addition
213 1.1 rvb * we are guaranteed that Venus will invalidate any name cache entries in
214 1.1 rvb * case the user no longer should be able to access the file. For these
215 1.1 rvb * reasons we do not need to keep access list information as well as a
216 1.1 rvb * cred structure for each entry.
217 1.1 rvb *
218 1.1 rvb * The table can be accessed through the routines cnc_init(), cnc_enter(),
219 1.1 rvb * cnc_lookup(), cnc_rmfidcred(), cnc_rmfid(), cnc_rmcred(), and cnc_purge().
220 1.1 rvb * There are several other routines which aid in the implementation of the
221 1.1 rvb * hash table.
222 1.1 rvb */
223 1.3 rvb
224 1.3 rvb /*
225 1.1 rvb * NOTES: rvb@cs
226 1.1 rvb * 1. The name cache holds a reference to every vnode in it. Hence files can not be
227 1.1 rvb * closed or made inactive until they are released.
228 1.1 rvb * 2. coda_nc_name(cp) was added to get a name for a cnode pointer for debugging.
229 1.1 rvb * 3. coda_nc_find() has debug code to detect when entries are stored with different
230 1.1 rvb * credentials. We don't understand yet, if/how entries are NOT EQ but still
231 1.1 rvb * EQUAL
232 1.1 rvb * 4. I wonder if this name cache could be replace by the vnode name cache.
233 1.1 rvb * The latter has no zapping functions, so probably not.
234 1.1 rvb */
235 1.1 rvb
236 1.4 rvb #include <sys/param.h>
237 1.4 rvb #include <sys/errno.h>
238 1.4 rvb #include <sys/malloc.h>
239 1.1 rvb #include <sys/select.h>
240 1.5 rvb
241 1.5 rvb #include <coda/coda.h>
242 1.5 rvb #include <coda/cnode.h>
243 1.5 rvb #include <coda/coda_namecache.h>
244 1.1 rvb
245 1.1 rvb #ifdef DEBUG
246 1.1 rvb #include <coda/coda_vnops.h>
247 1.1 rvb #endif
248 1.1 rvb
249 1.1 rvb #ifndef insque
250 1.1 rvb #include <sys/systm.h>
251 1.1 rvb #endif /* insque */
252 1.3 rvb
253 1.1 rvb /*
254 1.3 rvb * Declaration of the name cache data structure.
255 1.3 rvb */
256 1.1 rvb
257 1.3 rvb int coda_nc_use = 1; /* Indicate use of CODA Name Cache */
258 1.3 rvb
259 1.3 rvb int coda_nc_size = CODA_NC_CACHESIZE; /* size of the cache */
260 1.1 rvb int coda_nc_hashsize = CODA_NC_HASHSIZE; /* size of the primary hash */
261 1.3 rvb
262 1.1 rvb struct coda_cache *coda_nc_heap; /* pointer to the cache entries */
263 1.1 rvb struct coda_hash *coda_nc_hash; /* hash table of cfscache pointers */
264 1.1 rvb struct coda_lru coda_nc_lru; /* head of lru chain */
265 1.1 rvb
266 1.3 rvb struct coda_nc_statistics coda_nc_stat; /* Keep various stats */
267 1.1 rvb
268 1.1 rvb /*
269 1.3 rvb * for testing purposes
270 1.1 rvb */
271 1.3 rvb int coda_nc_debug = 0;
272 1.3 rvb
273 1.1 rvb /*
274 1.1 rvb * Entry points for the CODA Name Cache
275 1.3 rvb */
276 1.1 rvb static struct coda_cache *
277 1.1 rvb coda_nc_find(struct cnode *dcp, const char *name, int namelen,
278 1.1 rvb struct ucred *cred, int hash);
279 1.1 rvb static void
280 1.1 rvb coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat);
281 1.3 rvb
282 1.3 rvb /*
283 1.1 rvb * Initialize the cache, the LRU structure and the Hash structure(s)
284 1.3 rvb */
285 1.1 rvb
286 1.1 rvb #define TOTAL_CACHE_SIZE (sizeof(struct coda_cache) * coda_nc_size)
287 1.3 rvb #define TOTAL_HASH_SIZE (sizeof(struct coda_hash) * coda_nc_hashsize)
288 1.1 rvb
289 1.1 rvb int coda_nc_initialized = 0; /* Initially the cache has not been initialized */
290 1.1 rvb
291 1.1 rvb void
292 1.1 rvb coda_nc_init(void)
293 1.3 rvb {
294 1.1 rvb int i;
295 1.7 rvb
296 1.3 rvb /* zero the statistics structure */
297 1.5 rvb
298 1.3 rvb bzero(&coda_nc_stat, (sizeof(struct coda_nc_statistics)));
299 1.3 rvb
300 1.1 rvb #ifdef CODA_VERBOSE
301 1.3 rvb printf("CODA NAME CACHE: CACHE %d, HASH TBL %d\n", CODA_NC_CACHESIZE, CODA_NC_HASHSIZE);
302 1.3 rvb #endif
303 1.1 rvb CODA_ALLOC(coda_nc_heap, struct coda_cache *, TOTAL_CACHE_SIZE);
304 1.1 rvb CODA_ALLOC(coda_nc_hash, struct coda_hash *, TOTAL_HASH_SIZE);
305 1.3 rvb
306 1.3 rvb coda_nc_lru.lru_next =
307 1.3 rvb coda_nc_lru.lru_prev = (struct coda_cache *)LRU_PART(&coda_nc_lru);
308 1.3 rvb
309 1.1 rvb
310 1.1 rvb for (i=0; i < coda_nc_size; i++) { /* initialize the heap */
311 1.3 rvb CODA_NC_LRUINS(&coda_nc_heap[i], &coda_nc_lru);
312 1.3 rvb CODA_NC_HSHNUL(&coda_nc_heap[i]);
313 1.1 rvb coda_nc_heap[i].cp = coda_nc_heap[i].dcp = (struct cnode *)0;
314 1.1 rvb }
315 1.3 rvb
316 1.1 rvb for (i=0; i < coda_nc_hashsize; i++) { /* initialize the hashtable */
317 1.1 rvb CODA_NC_HSHNUL((struct coda_cache *)&coda_nc_hash[i]);
318 1.1 rvb }
319 1.1 rvb
320 1.1 rvb coda_nc_initialized++;
321 1.1 rvb }
322 1.3 rvb
323 1.3 rvb /*
324 1.1 rvb * Auxillary routines -- shouldn't be entry points
325 1.1 rvb */
326 1.1 rvb
327 1.1 rvb static struct coda_cache *
328 1.1 rvb coda_nc_find(dcp, name, namelen, cred, hash)
329 1.1 rvb struct cnode *dcp;
330 1.1 rvb const char *name;
331 1.1 rvb int namelen;
332 1.1 rvb struct ucred *cred;
333 1.1 rvb int hash;
334 1.3 rvb {
335 1.1 rvb /*
336 1.1 rvb * hash to find the appropriate bucket, look through the chain
337 1.3 rvb * for the right entry (especially right cred, unless cred == 0)
338 1.3 rvb */
339 1.1 rvb struct coda_cache *cncp;
340 1.1 rvb int count = 1;
341 1.3 rvb
342 1.3 rvb CODA_NC_DEBUG(CODA_NC_FIND,
343 1.1 rvb myprintf(("coda_nc_find(dcp %p, name %s, len %d, cred %p, hash %d\n",
344 1.1 rvb dcp, name, namelen, cred, hash));)
345 1.1 rvb
346 1.3 rvb for (cncp = coda_nc_hash[hash].hash_next;
347 1.1 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
348 1.1 rvb cncp = cncp->hash_next, count++)
349 1.1 rvb {
350 1.3 rvb
351 1.1 rvb if ((CODA_NAMEMATCH(cncp, name, namelen, dcp)) &&
352 1.1 rvb ((cred == 0) || (cncp->cred == cred)))
353 1.1 rvb {
354 1.3 rvb /* compare cr_uid instead */
355 1.3 rvb coda_nc_stat.Search_len += count;
356 1.1 rvb return(cncp);
357 1.1 rvb }
358 1.1 rvb #ifdef DEBUG
359 1.1 rvb else if (CODA_NAMEMATCH(cncp, name, namelen, dcp)) {
360 1.1 rvb printf("coda_nc_find: name %s, new cred = %p, cred = %p\n",
361 1.1 rvb name, cred, cncp->cred);
362 1.1 rvb printf("nref %d, nuid %d, ngid %d // oref %d, ocred %d, ogid %d\n",
363 1.1 rvb cred->cr_ref, cred->cr_uid, cred->cr_gid,
364 1.1 rvb cncp->cred->cr_ref, cncp->cred->cr_uid, cncp->cred->cr_gid);
365 1.1 rvb print_cred(cred);
366 1.3 rvb print_cred(cncp->cred);
367 1.1 rvb }
368 1.1 rvb #endif
369 1.1 rvb }
370 1.1 rvb
371 1.1 rvb return((struct coda_cache *)0);
372 1.1 rvb }
373 1.1 rvb
374 1.3 rvb /*
375 1.1 rvb * Enter a new (dir cnode, name) pair into the cache, updating the
376 1.1 rvb * LRU and Hash as needed.
377 1.1 rvb */
378 1.1 rvb void
379 1.1 rvb coda_nc_enter(dcp, name, namelen, cred, cp)
380 1.1 rvb struct cnode *dcp;
381 1.3 rvb const char *name;
382 1.1 rvb int namelen;
383 1.1 rvb struct ucred *cred;
384 1.3 rvb struct cnode *cp;
385 1.1 rvb {
386 1.1 rvb struct coda_cache *cncp;
387 1.3 rvb int hash;
388 1.1 rvb
389 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
390 1.1 rvb return;
391 1.3 rvb
392 1.3 rvb CODA_NC_DEBUG(CODA_NC_ENTER,
393 1.1 rvb myprintf(("Enter: dcp %p cp %p name %s cred %p \n",
394 1.3 rvb dcp, cp, name, cred)); )
395 1.1 rvb
396 1.1 rvb if (namelen > CODA_NC_NAMELEN) {
397 1.1 rvb CODA_NC_DEBUG(CODA_NC_ENTER,
398 1.3 rvb myprintf(("long name enter %s\n",name));)
399 1.3 rvb coda_nc_stat.long_name_enters++; /* record stats */
400 1.3 rvb return;
401 1.3 rvb }
402 1.1 rvb
403 1.1 rvb hash = CODA_NC_HASH(name, namelen, dcp);
404 1.1 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
405 1.3 rvb if (cncp != (struct coda_cache *) 0) {
406 1.1 rvb coda_nc_stat.dbl_enters++; /* duplicate entry */
407 1.1 rvb return;
408 1.3 rvb }
409 1.1 rvb
410 1.3 rvb coda_nc_stat.enters++; /* record the enters statistic */
411 1.1 rvb
412 1.3 rvb /* Grab the next element in the lru chain */
413 1.1 rvb cncp = CODA_NC_LRUGET(coda_nc_lru);
414 1.1 rvb
415 1.1 rvb CODA_NC_LRUREM(cncp); /* remove it from the lists */
416 1.3 rvb
417 1.1 rvb if (CODA_NC_VALID(cncp)) {
418 1.3 rvb /* Seems really ugly, but we have to decrement the appropriate
419 1.3 rvb hash bucket length here, so we have to find the hash bucket
420 1.1 rvb */
421 1.1 rvb coda_nc_hash[CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp)].length--;
422 1.1 rvb
423 1.1 rvb coda_nc_stat.lru_rm++; /* zapped a valid entry */
424 1.1 rvb CODA_NC_HSHREM(cncp);
425 1.1 rvb vrele(CTOV(cncp->dcp));
426 1.1 rvb vrele(CTOV(cncp->cp));
427 1.1 rvb crfree(cncp->cred);
428 1.1 rvb }
429 1.1 rvb
430 1.1 rvb /*
431 1.1 rvb * Put a hold on the current vnodes and fill in the cache entry.
432 1.1 rvb */
433 1.1 rvb vref(CTOV(cp));
434 1.1 rvb vref(CTOV(dcp));
435 1.1 rvb crhold(cred);
436 1.1 rvb cncp->dcp = dcp;
437 1.1 rvb cncp->cp = cp;
438 1.1 rvb cncp->namelen = namelen;
439 1.1 rvb cncp->cred = cred;
440 1.3 rvb
441 1.3 rvb bcopy(name, cncp->name, (unsigned)namelen);
442 1.3 rvb
443 1.1 rvb /* Insert into the lru and hash chains. */
444 1.3 rvb
445 1.1 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
446 1.1 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
447 1.1 rvb coda_nc_hash[hash].length++; /* Used for tuning */
448 1.1 rvb
449 1.1 rvb CODA_NC_DEBUG(CODA_NC_PRINTCODA_NC, print_coda_nc(); )
450 1.1 rvb }
451 1.1 rvb
452 1.3 rvb /*
453 1.1 rvb * Find the (dir cnode, name) pair in the cache, if it's cred
454 1.1 rvb * matches the input, return it, otherwise return 0
455 1.1 rvb */
456 1.1 rvb struct cnode *
457 1.1 rvb coda_nc_lookup(dcp, name, namelen, cred)
458 1.1 rvb struct cnode *dcp;
459 1.3 rvb const char *name;
460 1.1 rvb int namelen;
461 1.3 rvb struct ucred *cred;
462 1.1 rvb {
463 1.1 rvb int hash;
464 1.3 rvb struct coda_cache *cncp;
465 1.3 rvb
466 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
467 1.3 rvb return((struct cnode *) 0);
468 1.1 rvb
469 1.1 rvb if (namelen > CODA_NC_NAMELEN) {
470 1.1 rvb CODA_NC_DEBUG(CODA_NC_LOOKUP,
471 1.1 rvb myprintf(("long name lookup %s\n",name));)
472 1.1 rvb coda_nc_stat.long_name_lookups++; /* record stats */
473 1.1 rvb return((struct cnode *) 0);
474 1.1 rvb }
475 1.1 rvb
476 1.3 rvb /* Use the hash function to locate the starting point,
477 1.3 rvb then the search routine to go down the list looking for
478 1.3 rvb the correct cred.
479 1.3 rvb */
480 1.1 rvb
481 1.1 rvb hash = CODA_NC_HASH(name, namelen, dcp);
482 1.1 rvb cncp = coda_nc_find(dcp, name, namelen, cred, hash);
483 1.3 rvb if (cncp == (struct coda_cache *) 0) {
484 1.1 rvb coda_nc_stat.misses++; /* record miss */
485 1.1 rvb return((struct cnode *) 0);
486 1.3 rvb }
487 1.3 rvb
488 1.1 rvb coda_nc_stat.hits++;
489 1.1 rvb
490 1.1 rvb /* put this entry at the end of the LRU */
491 1.3 rvb CODA_NC_LRUREM(cncp);
492 1.3 rvb CODA_NC_LRUINS(cncp, &coda_nc_lru);
493 1.1 rvb
494 1.3 rvb /* move it to the front of the hash chain */
495 1.1 rvb /* don't need to change the hash bucket length */
496 1.1 rvb CODA_NC_HSHREM(cncp);
497 1.1 rvb CODA_NC_HSHINS(cncp, &coda_nc_hash[hash]);
498 1.1 rvb
499 1.1 rvb CODA_NC_DEBUG(CODA_NC_LOOKUP,
500 1.1 rvb printf("lookup: dcp %p, name %s, cred %p = cp %p\n",
501 1.1 rvb dcp, name, cred, cncp->cp); )
502 1.3 rvb
503 1.3 rvb return(cncp->cp);
504 1.1 rvb }
505 1.1 rvb
506 1.1 rvb static void
507 1.1 rvb coda_nc_remove(cncp, dcstat)
508 1.1 rvb struct coda_cache *cncp;
509 1.1 rvb enum dc_status dcstat;
510 1.1 rvb {
511 1.3 rvb /*
512 1.3 rvb * remove an entry -- vrele(cncp->dcp, cp), crfree(cred),
513 1.1 rvb * remove it from it's hash chain, and
514 1.1 rvb * place it at the head of the lru list.
515 1.1 rvb */
516 1.3 rvb CODA_NC_DEBUG(CODA_NC_REMOVE,
517 1.1 rvb myprintf(("coda_nc_remove %s from parent %lx.%lx.%lx\n",
518 1.3 rvb cncp->name, (cncp->dcp)->c_fid.Volume,
519 1.1 rvb (cncp->dcp)->c_fid.Vnode, (cncp->dcp)->c_fid.Unique));)
520 1.1 rvb
521 1.1 rvb CODA_NC_HSHREM(cncp);
522 1.1 rvb
523 1.1 rvb CODA_NC_HSHNUL(cncp); /* have it be a null chain */
524 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->dcp)->v_usecount == 1)) {
525 1.1 rvb cncp->dcp->c_flags |= C_PURGING;
526 1.1 rvb }
527 1.1 rvb vrele(CTOV(cncp->dcp));
528 1.1 rvb
529 1.1 rvb if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->cp)->v_usecount == 1)) {
530 1.1 rvb cncp->cp->c_flags |= C_PURGING;
531 1.1 rvb }
532 1.1 rvb vrele(CTOV(cncp->cp));
533 1.1 rvb
534 1.3 rvb crfree(cncp->cred);
535 1.3 rvb bzero(DATA_PART(cncp),DATA_SIZE);
536 1.1 rvb
537 1.1 rvb /* Put the null entry just after the least-recently-used entry */
538 1.1 rvb /* LRU_TOP adjusts the pointer to point to the top of the structure. */
539 1.1 rvb CODA_NC_LRUREM(cncp);
540 1.1 rvb CODA_NC_LRUINS(cncp, LRU_TOP(coda_nc_lru.lru_prev));
541 1.1 rvb }
542 1.3 rvb
543 1.1 rvb /*
544 1.1 rvb * Remove all entries with a parent which has the input fid.
545 1.1 rvb */
546 1.1 rvb void
547 1.1 rvb coda_nc_zapParentfid(fid, dcstat)
548 1.1 rvb ViceFid *fid;
549 1.1 rvb enum dc_status dcstat;
550 1.1 rvb {
551 1.3 rvb /* To get to a specific fid, we might either have another hashing
552 1.1 rvb function or do a sequential search through the cache for the
553 1.1 rvb appropriate entries. The later may be acceptable since I don't
554 1.3 rvb think callbacks or whatever Case 1 covers are frequent occurences.
555 1.1 rvb */
556 1.1 rvb struct coda_cache *cncp, *ncncp;
557 1.3 rvb int i;
558 1.1 rvb
559 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
560 1.1 rvb return;
561 1.3 rvb
562 1.1 rvb CODA_NC_DEBUG(CODA_NC_ZAPPFID,
563 1.3 rvb myprintf(("ZapParent: fid 0x%lx, 0x%lx, 0x%lx \n",
564 1.1 rvb fid->Volume, fid->Vnode, fid->Unique)); )
565 1.1 rvb
566 1.1 rvb coda_nc_stat.zapPfids++;
567 1.1 rvb
568 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
569 1.1 rvb
570 1.3 rvb /*
571 1.3 rvb * Need to save the hash_next pointer in case we remove the
572 1.1 rvb * entry. remove causes hash_next to point to itself.
573 1.1 rvb */
574 1.1 rvb
575 1.1 rvb for (cncp = coda_nc_hash[i].hash_next;
576 1.1 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
577 1.3 rvb cncp = ncncp) {
578 1.3 rvb ncncp = cncp->hash_next;
579 1.1 rvb if ((cncp->dcp->c_fid.Volume == fid->Volume) &&
580 1.1 rvb (cncp->dcp->c_fid.Vnode == fid->Vnode) &&
581 1.1 rvb (cncp->dcp->c_fid.Unique == fid->Unique)) {
582 1.1 rvb coda_nc_hash[i].length--; /* Used for tuning */
583 1.1 rvb coda_nc_remove(cncp, dcstat);
584 1.1 rvb }
585 1.1 rvb }
586 1.1 rvb }
587 1.1 rvb }
588 1.3 rvb
589 1.1 rvb /*
590 1.1 rvb * Remove all entries which have the same fid as the input
591 1.1 rvb */
592 1.1 rvb void
593 1.1 rvb coda_nc_zapfid(fid, dcstat)
594 1.1 rvb ViceFid *fid;
595 1.3 rvb enum dc_status dcstat;
596 1.1 rvb {
597 1.1 rvb /* See comment for zapParentfid. This routine will be used
598 1.3 rvb if attributes are being cached.
599 1.1 rvb */
600 1.1 rvb struct coda_cache *cncp, *ncncp;
601 1.3 rvb int i;
602 1.1 rvb
603 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
604 1.1 rvb return;
605 1.3 rvb
606 1.1 rvb CODA_NC_DEBUG(CODA_NC_ZAPFID,
607 1.3 rvb myprintf(("Zapfid: fid 0x%lx, 0x%lx, 0x%lx \n",
608 1.3 rvb fid->Volume, fid->Vnode, fid->Unique)); )
609 1.3 rvb
610 1.1 rvb coda_nc_stat.zapFids++;
611 1.1 rvb
612 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
613 1.1 rvb for (cncp = coda_nc_hash[i].hash_next;
614 1.1 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
615 1.3 rvb cncp = ncncp) {
616 1.3 rvb ncncp = cncp->hash_next;
617 1.1 rvb if ((cncp->cp->c_fid.Volume == fid->Volume) &&
618 1.1 rvb (cncp->cp->c_fid.Vnode == fid->Vnode) &&
619 1.1 rvb (cncp->cp->c_fid.Unique == fid->Unique)) {
620 1.1 rvb coda_nc_hash[i].length--; /* Used for tuning */
621 1.1 rvb coda_nc_remove(cncp, dcstat);
622 1.1 rvb }
623 1.1 rvb }
624 1.1 rvb }
625 1.1 rvb }
626 1.3 rvb
627 1.1 rvb /*
628 1.1 rvb * Remove all entries which match the fid and the cred
629 1.1 rvb */
630 1.1 rvb void
631 1.1 rvb coda_nc_zapvnode(fid, cred, dcstat)
632 1.1 rvb ViceFid *fid;
633 1.1 rvb struct ucred *cred;
634 1.1 rvb enum dc_status dcstat;
635 1.3 rvb {
636 1.1 rvb /* See comment for zapfid. I don't think that one would ever
637 1.1 rvb want to zap a file with a specific cred from the kernel.
638 1.3 rvb We'll leave this one unimplemented.
639 1.1 rvb */
640 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
641 1.1 rvb return;
642 1.1 rvb
643 1.1 rvb CODA_NC_DEBUG(CODA_NC_ZAPVNODE,
644 1.1 rvb myprintf(("Zapvnode: fid 0x%lx, 0x%lx, 0x%lx cred %p\n",
645 1.1 rvb fid->Volume, fid->Vnode, fid->Unique, cred)); )
646 1.1 rvb
647 1.1 rvb }
648 1.3 rvb
649 1.1 rvb /*
650 1.1 rvb * Remove all entries which have the (dir vnode, name) pair
651 1.1 rvb */
652 1.1 rvb void
653 1.1 rvb coda_nc_zapfile(dcp, name, namelen)
654 1.1 rvb struct cnode *dcp;
655 1.1 rvb const char *name;
656 1.3 rvb int namelen;
657 1.1 rvb {
658 1.1 rvb /* use the hash function to locate the file, then zap all
659 1.3 rvb entries of it regardless of the cred.
660 1.1 rvb */
661 1.1 rvb struct coda_cache *cncp;
662 1.3 rvb int hash;
663 1.1 rvb
664 1.1 rvb if (coda_nc_use == 0) /* Cache is off */
665 1.1 rvb return;
666 1.3 rvb
667 1.3 rvb CODA_NC_DEBUG(CODA_NC_ZAPFILE,
668 1.1 rvb myprintf(("Zapfile: dcp %p name %s \n",
669 1.1 rvb dcp, name)); )
670 1.1 rvb
671 1.3 rvb if (namelen > CODA_NC_NAMELEN) {
672 1.1 rvb coda_nc_stat.long_remove++; /* record stats */
673 1.3 rvb return;
674 1.3 rvb }
675 1.1 rvb
676 1.1 rvb coda_nc_stat.zapFile++;
677 1.3 rvb
678 1.1 rvb hash = CODA_NC_HASH(name, namelen, dcp);
679 1.3 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
680 1.3 rvb
681 1.1 rvb while (cncp) {
682 1.1 rvb coda_nc_hash[hash].length--; /* Used for tuning */
683 1.1 rvb /* 1.3 */
684 1.1 rvb coda_nc_remove(cncp, NOT_DOWNCALL);
685 1.1 rvb cncp = coda_nc_find(dcp, name, namelen, 0, hash);
686 1.1 rvb }
687 1.1 rvb }
688 1.1 rvb
689 1.3 rvb /*
690 1.1 rvb * Remove all the entries for a particular user. Used when tokens expire.
691 1.1 rvb * A user is determined by his/her effective user id (id_uid).
692 1.1 rvb */
693 1.1 rvb void
694 1.1 rvb coda_nc_purge_user(uid, dcstat)
695 1.1 rvb vuid_t uid;
696 1.1 rvb enum dc_status dcstat;
697 1.1 rvb {
698 1.1 rvb /*
699 1.1 rvb * I think the best approach is to go through the entire cache
700 1.1 rvb * via HASH or whatever and zap all entries which match the
701 1.3 rvb * input cred. Or just flush the whole cache. It might be
702 1.1 rvb * best to go through on basis of LRU since cache will almost
703 1.1 rvb * always be full and LRU is more straightforward.
704 1.3 rvb */
705 1.1 rvb
706 1.1 rvb struct coda_cache *cncp, *ncncp;
707 1.3 rvb int hash;
708 1.1 rvb
709 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
710 1.1 rvb return;
711 1.3 rvb
712 1.3 rvb CODA_NC_DEBUG(CODA_NC_PURGEUSER,
713 1.1 rvb myprintf(("ZapDude: uid %lx\n", uid)); )
714 1.3 rvb coda_nc_stat.zapUsers++;
715 1.1 rvb
716 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
717 1.1 rvb cncp != (struct coda_cache *)(&coda_nc_lru);
718 1.1 rvb cncp = ncncp) {
719 1.1 rvb ncncp = CODA_NC_LRUGET(*cncp);
720 1.1 rvb
721 1.3 rvb if ((CODA_NC_VALID(cncp)) &&
722 1.3 rvb ((cncp->cred)->cr_uid == uid)) {
723 1.1 rvb /* Seems really ugly, but we have to decrement the appropriate
724 1.3 rvb hash bucket length here, so we have to find the hash bucket
725 1.1 rvb */
726 1.1 rvb hash = CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp);
727 1.1 rvb coda_nc_hash[hash].length--; /* For performance tuning */
728 1.1 rvb
729 1.1 rvb coda_nc_remove(cncp, dcstat);
730 1.1 rvb }
731 1.1 rvb }
732 1.1 rvb }
733 1.3 rvb
734 1.1 rvb /*
735 1.1 rvb * Flush the entire name cache. In response to a flush of the Venus cache.
736 1.1 rvb */
737 1.1 rvb void
738 1.1 rvb coda_nc_flush(dcstat)
739 1.1 rvb enum dc_status dcstat;
740 1.1 rvb {
741 1.1 rvb /* One option is to deallocate the current name cache and
742 1.1 rvb call init to start again. Or just deallocate, then rebuild.
743 1.1 rvb Or again, we could just go through the array and zero the
744 1.1 rvb appropriate fields.
745 1.1 rvb */
746 1.1 rvb
747 1.3 rvb /*
748 1.1 rvb * Go through the whole lru chain and kill everything as we go.
749 1.1 rvb * I don't use remove since that would rebuild the lru chain
750 1.3 rvb * as it went and that seemed unneccesary.
751 1.1 rvb */
752 1.1 rvb struct coda_cache *cncp;
753 1.3 rvb int i;
754 1.1 rvb
755 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
756 1.3 rvb return;
757 1.3 rvb
758 1.3 rvb coda_nc_stat.Flushes++;
759 1.1 rvb
760 1.3 rvb for (cncp = CODA_NC_LRUGET(coda_nc_lru);
761 1.3 rvb cncp != (struct coda_cache *)&coda_nc_lru;
762 1.1 rvb cncp = CODA_NC_LRUGET(*cncp)) {
763 1.1 rvb if (CODA_NC_VALID(cncp)) {
764 1.1 rvb
765 1.1 rvb CODA_NC_HSHREM(cncp); /* only zero valid nodes */
766 1.1 rvb CODA_NC_HSHNUL(cncp);
767 1.1 rvb if ((dcstat == IS_DOWNCALL)
768 1.1 rvb && (CTOV(cncp->dcp)->v_usecount == 1))
769 1.1 rvb {
770 1.3 rvb cncp->dcp->c_flags |= C_PURGING;
771 1.3 rvb }
772 1.3 rvb vrele(CTOV(cncp->dcp));
773 1.1 rvb
774 1.1 rvb if (CTOV(cncp->cp)->v_flag & VTEXT) {
775 1.1 rvb if (coda_vmflush(cncp->cp))
776 1.1 rvb CODADEBUG(CODA_FLUSH,
777 1.1 rvb myprintf(("coda_nc_flush: (%lx.%lx.%lx) busy\n", cncp->cp->c_fid.Volume, cncp->cp->c_fid.Vnode, cncp->cp->c_fid.Unique)); )
778 1.1 rvb }
779 1.1 rvb
780 1.1 rvb if ((dcstat == IS_DOWNCALL)
781 1.1 rvb && (CTOV(cncp->cp)->v_usecount == 1))
782 1.1 rvb {
783 1.1 rvb cncp->cp->c_flags |= C_PURGING;
784 1.1 rvb }
785 1.1 rvb vrele(CTOV(cncp->cp));
786 1.1 rvb
787 1.3 rvb crfree(cncp->cred);
788 1.3 rvb bzero(DATA_PART(cncp),DATA_SIZE);
789 1.1 rvb }
790 1.1 rvb }
791 1.1 rvb
792 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++)
793 1.1 rvb coda_nc_hash[i].length = 0;
794 1.1 rvb }
795 1.1 rvb
796 1.1 rvb /*
797 1.1 rvb * Debugging routines
798 1.1 rvb */
799 1.3 rvb
800 1.1 rvb /*
801 1.1 rvb * This routine should print out all the hash chains to the console.
802 1.3 rvb */
803 1.1 rvb void
804 1.3 rvb print_coda_nc(void)
805 1.1 rvb {
806 1.1 rvb int hash;
807 1.3 rvb struct coda_cache *cncp;
808 1.3 rvb
809 1.1 rvb for (hash = 0; hash < coda_nc_hashsize; hash++) {
810 1.1 rvb myprintf(("\nhash %d\n",hash));
811 1.1 rvb
812 1.1 rvb for (cncp = coda_nc_hash[hash].hash_next;
813 1.1 rvb cncp != (struct coda_cache *)&coda_nc_hash[hash];
814 1.1 rvb cncp = cncp->hash_next) {
815 1.1 rvb myprintf(("cp %p dcp %p cred %p name %s\n",
816 1.1 rvb cncp->cp, cncp->dcp,
817 1.1 rvb cncp->cred, cncp->name));
818 1.3 rvb }
819 1.1 rvb }
820 1.1 rvb }
821 1.1 rvb
822 1.3 rvb void
823 1.3 rvb coda_nc_gather_stats(void)
824 1.3 rvb {
825 1.1 rvb int i, max = 0, sum = 0, temp, zeros = 0, ave, n;
826 1.1 rvb
827 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
828 1.1 rvb if (coda_nc_hash[i].length) {
829 1.3 rvb sum += coda_nc_hash[i].length;
830 1.3 rvb } else {
831 1.1 rvb zeros++;
832 1.1 rvb }
833 1.1 rvb
834 1.1 rvb if (coda_nc_hash[i].length > max)
835 1.1 rvb max = coda_nc_hash[i].length;
836 1.1 rvb }
837 1.3 rvb
838 1.3 rvb /*
839 1.3 rvb * When computing the Arithmetic mean, only count slots which
840 1.1 rvb * are not empty in the distribution.
841 1.3 rvb */
842 1.1 rvb coda_nc_stat.Sum_bucket_len = sum;
843 1.1 rvb coda_nc_stat.Num_zero_len = zeros;
844 1.1 rvb coda_nc_stat.Max_bucket_len = max;
845 1.1 rvb
846 1.1 rvb if ((n = coda_nc_hashsize - zeros) > 0)
847 1.3 rvb ave = sum / n;
848 1.3 rvb else
849 1.3 rvb ave = 0;
850 1.1 rvb
851 1.1 rvb sum = 0;
852 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
853 1.3 rvb if (coda_nc_hash[i].length) {
854 1.1 rvb temp = coda_nc_hash[i].length - ave;
855 1.1 rvb sum += temp * temp;
856 1.1 rvb }
857 1.1 rvb }
858 1.1 rvb coda_nc_stat.Sum2_bucket_len = sum;
859 1.1 rvb }
860 1.1 rvb
861 1.1 rvb /*
862 1.1 rvb * The purpose of this routine is to allow the hash and cache sizes to be
863 1.3 rvb * changed dynamically. This should only be used in controlled environments,
864 1.1 rvb * it makes no effort to lock other users from accessing the cache while it
865 1.1 rvb * is in an improper state (except by turning the cache off).
866 1.1 rvb */
867 1.1 rvb int
868 1.1 rvb coda_nc_resize(hashsize, heapsize, dcstat)
869 1.1 rvb int hashsize, heapsize;
870 1.1 rvb enum dc_status dcstat;
871 1.3 rvb {
872 1.1 rvb if ((hashsize % 2) || (heapsize % 2)) { /* Illegal hash or cache sizes */
873 1.3 rvb return(EINVAL);
874 1.1 rvb }
875 1.1 rvb
876 1.3 rvb coda_nc_use = 0; /* Turn the cache off */
877 1.3 rvb
878 1.1 rvb coda_nc_flush(dcstat); /* free any cnodes in the cache */
879 1.3 rvb
880 1.3 rvb /* WARNING: free must happen *before* size is reset */
881 1.1 rvb CODA_FREE(coda_nc_heap,TOTAL_CACHE_SIZE);
882 1.3 rvb CODA_FREE(coda_nc_hash,TOTAL_HASH_SIZE);
883 1.1 rvb
884 1.3 rvb coda_nc_hashsize = hashsize;
885 1.1 rvb coda_nc_size = heapsize;
886 1.1 rvb
887 1.1 rvb coda_nc_init(); /* Set up a cache with the new size */
888 1.3 rvb
889 1.1 rvb coda_nc_use = 1; /* Turn the cache back on */
890 1.1 rvb return(0);
891 1.3 rvb }
892 1.1 rvb
893 1.3 rvb char coda_nc_name_buf[CODA_MAXNAMLEN+1];
894 1.1 rvb
895 1.1 rvb void
896 1.3 rvb coda_nc_name(struct cnode *cp)
897 1.1 rvb {
898 1.1 rvb struct coda_cache *cncp, *ncncp;
899 1.3 rvb int i;
900 1.3 rvb
901 1.3 rvb if (coda_nc_use == 0) /* Cache is off */
902 1.1 rvb return;
903 1.1 rvb
904 1.1 rvb for (i = 0; i < coda_nc_hashsize; i++) {
905 1.3 rvb for (cncp = coda_nc_hash[i].hash_next;
906 1.3 rvb cncp != (struct coda_cache *)&coda_nc_hash[i];
907 1.1 rvb cncp = ncncp) {
908 1.3 rvb ncncp = cncp->hash_next;
909 1.1 rvb if (cncp->cp == cp) {
910 1.1 rvb bcopy(cncp->name, coda_nc_name_buf, cncp->namelen);
911 1.1 rvb coda_nc_name_buf[cncp->namelen] = 0;
912 1.1 rvb printf(" is %s (%p,%p)@%p",
913 1.1 rvb coda_nc_name_buf, cncp->cp, cncp->dcp, cncp);
914 }
915
916 }
917 }
918 }
919