coda_psdev.c revision 1.38 1 1.38 ad /* $NetBSD: coda_psdev.c,v 1.38 2008/01/30 11:46:59 ad Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.27 perry *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.27 perry *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.27 perry *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.27 perry *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.27 perry *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.27 perry *
31 1.27 perry * @(#) coda/coda_psdev.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.27 perry /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
37 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
38 1.1 rvb * the terms and conditions for use and redistribution.
39 1.1 rvb */
40 1.1 rvb
41 1.1 rvb /*
42 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon
43 1.1 rvb * University. Contributers include David Steere, James Kistler, and
44 1.1 rvb * M. Satyanarayanan. */
45 1.1 rvb
46 1.24 jdolecek /* These routines define the pseudo device for communication between
47 1.27 perry * Coda's Venus and Minicache in Mach 2.6. They used to be in cfs_subr.c,
48 1.27 perry * but I moved them to make it easier to port the Minicache without
49 1.1 rvb * porting coda. -- DCS 10/12/94
50 1.24 jdolecek *
51 1.24 jdolecek * Following code depends on file-system CODA.
52 1.1 rvb */
53 1.1 rvb
54 1.1 rvb /* These routines are the device entry points for Venus. */
55 1.18 lukem
56 1.18 lukem #include <sys/cdefs.h>
57 1.38 ad __KERNEL_RCSID(0, "$NetBSD: coda_psdev.c,v 1.38 2008/01/30 11:46:59 ad Exp $");
58 1.1 rvb
59 1.3 rvb extern int coda_nc_initialized; /* Set if cache has been initialized */
60 1.1 rvb
61 1.5 rvb #ifdef _LKM
62 1.5 rvb #define NVCODA 4
63 1.5 rvb #else
64 1.3 rvb #include <vcoda.h>
65 1.5 rvb #endif
66 1.5 rvb
67 1.1 rvb #include <sys/param.h>
68 1.1 rvb #include <sys/systm.h>
69 1.1 rvb #include <sys/kernel.h>
70 1.1 rvb #include <sys/malloc.h>
71 1.1 rvb #include <sys/proc.h>
72 1.1 rvb #include <sys/mount.h>
73 1.1 rvb #include <sys/file.h>
74 1.1 rvb #include <sys/ioctl.h>
75 1.1 rvb #include <sys/poll.h>
76 1.1 rvb #include <sys/select.h>
77 1.20 gehenna #include <sys/conf.h>
78 1.1 rvb
79 1.16 thorpej #include <miscfs/syncfs/syncfs.h>
80 1.16 thorpej
81 1.4 rvb #include <coda/coda.h>
82 1.4 rvb #include <coda/cnode.h>
83 1.4 rvb #include <coda/coda_namecache.h>
84 1.4 rvb #include <coda/coda_io.h>
85 1.1 rvb
86 1.2 rvb #define CTL_C
87 1.2 rvb
88 1.3 rvb int coda_psdev_print_entry = 0;
89 1.8 rvb static
90 1.8 rvb int outstanding_upcalls = 0;
91 1.8 rvb int coda_call_sleep = PZERO - 1;
92 1.8 rvb #ifdef CTL_C
93 1.8 rvb int coda_pcatch = PCATCH;
94 1.8 rvb #else
95 1.8 rvb #endif
96 1.3 rvb
97 1.19 perry #define ENTRY if(coda_psdev_print_entry) myprintf(("Entered %s\n",__func__))
98 1.1 rvb
99 1.3 rvb void vcodaattach(int n);
100 1.20 gehenna
101 1.20 gehenna dev_type_open(vc_nb_open);
102 1.20 gehenna dev_type_close(vc_nb_close);
103 1.20 gehenna dev_type_read(vc_nb_read);
104 1.20 gehenna dev_type_write(vc_nb_write);
105 1.20 gehenna dev_type_ioctl(vc_nb_ioctl);
106 1.20 gehenna dev_type_poll(vc_nb_poll);
107 1.21 jdolecek dev_type_kqfilter(vc_nb_kqfilter);
108 1.20 gehenna
109 1.20 gehenna const struct cdevsw vcoda_cdevsw = {
110 1.20 gehenna vc_nb_open, vc_nb_close, vc_nb_read, vc_nb_write, vc_nb_ioctl,
111 1.32 christos nostop, notty, vc_nb_poll, nommap, vc_nb_kqfilter, D_OTHER,
112 1.20 gehenna };
113 1.1 rvb
114 1.1 rvb struct vmsg {
115 1.1 rvb struct queue vm_chain;
116 1.36 christos void * vm_data;
117 1.1 rvb u_short vm_flags;
118 1.1 rvb u_short vm_inSize; /* Size is at most 5000 bytes */
119 1.1 rvb u_short vm_outSize;
120 1.1 rvb u_short vm_opcode; /* copied from data to save ptr lookup */
121 1.1 rvb int vm_unique;
122 1.36 christos void * vm_sleep; /* Not used by Mach. */
123 1.1 rvb };
124 1.1 rvb
125 1.1 rvb #define VM_READ 1
126 1.1 rvb #define VM_WRITE 2
127 1.1 rvb #define VM_INTR 4
128 1.1 rvb
129 1.3 rvb /* vcodaattach: do nothing */
130 1.1 rvb void
131 1.34 christos vcodaattach(int n)
132 1.1 rvb {
133 1.1 rvb }
134 1.1 rvb
135 1.27 perry /*
136 1.1 rvb * These functions are written for NetBSD.
137 1.1 rvb */
138 1.27 perry int
139 1.34 christos vc_nb_open(dev_t dev, int flag, int mode,
140 1.34 christos struct lwp *l)
141 1.1 rvb {
142 1.13 augustss struct vcomm *vcp;
143 1.27 perry
144 1.1 rvb ENTRY;
145 1.1 rvb
146 1.3 rvb if (minor(dev) >= NVCODA || minor(dev) < 0)
147 1.1 rvb return(ENXIO);
148 1.27 perry
149 1.3 rvb if (!coda_nc_initialized)
150 1.3 rvb coda_nc_init();
151 1.27 perry
152 1.3 rvb vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
153 1.1 rvb if (VC_OPEN(vcp))
154 1.1 rvb return(EBUSY);
155 1.27 perry
156 1.17 thorpej memset(&(vcp->vc_selproc), 0, sizeof (struct selinfo));
157 1.1 rvb INIT_QUEUE(vcp->vc_requests);
158 1.1 rvb INIT_QUEUE(vcp->vc_replys);
159 1.1 rvb MARK_VC_OPEN(vcp);
160 1.27 perry
161 1.3 rvb coda_mnttbl[minor(dev)].mi_vfsp = NULL;
162 1.3 rvb coda_mnttbl[minor(dev)].mi_rootvp = NULL;
163 1.1 rvb
164 1.1 rvb return(0);
165 1.1 rvb }
166 1.1 rvb
167 1.27 perry int
168 1.34 christos vc_nb_close(dev_t dev, int flag, int mode, struct lwp *l)
169 1.1 rvb {
170 1.13 augustss struct vcomm *vcp;
171 1.13 augustss struct vmsg *vmp, *nvmp = NULL;
172 1.3 rvb struct coda_mntinfo *mi;
173 1.1 rvb int err;
174 1.27 perry
175 1.1 rvb ENTRY;
176 1.1 rvb
177 1.3 rvb if (minor(dev) >= NVCODA || minor(dev) < 0)
178 1.1 rvb return(ENXIO);
179 1.1 rvb
180 1.3 rvb mi = &coda_mnttbl[minor(dev)];
181 1.1 rvb vcp = &(mi->mi_vcomm);
182 1.27 perry
183 1.1 rvb if (!VC_OPEN(vcp))
184 1.1 rvb panic("vcclose: not open");
185 1.27 perry
186 1.1 rvb /* prevent future operations on this vfs from succeeding by auto-
187 1.1 rvb * unmounting any vfs mounted via this device. This frees user or
188 1.1 rvb * sysadm from having to remember where all mount points are located.
189 1.1 rvb * Put this before WAKEUPs to avoid queuing new messages between
190 1.1 rvb * the WAKEUP and the unmount (which can happen if we're unlucky)
191 1.1 rvb */
192 1.8 rvb if (!mi->mi_rootvp) {
193 1.8 rvb /* just a simple open/close w no mount */
194 1.8 rvb MARK_VC_CLOSED(vcp);
195 1.8 rvb return 0;
196 1.1 rvb }
197 1.8 rvb
198 1.8 rvb /* Let unmount know this is for real */
199 1.16 thorpej /*
200 1.16 thorpej * XXX Freeze syncer. Must do this before locking the
201 1.16 thorpej * mount point. See dounmount for details().
202 1.16 thorpej */
203 1.35 ad mutex_enter(&syncer_mutex);
204 1.8 rvb VTOC(mi->mi_rootvp)->c_flags |= C_UNMOUNTING;
205 1.38 ad if (vfs_busy(mi->mi_vfsp, RW_WRITER, NULL)) {
206 1.35 ad mutex_exit(&syncer_mutex);
207 1.8 rvb return (EBUSY);
208 1.16 thorpej }
209 1.8 rvb coda_unmounting(mi->mi_vfsp);
210 1.27 perry
211 1.1 rvb /* Wakeup clients so they can return. */
212 1.1 rvb for (vmp = (struct vmsg *)GETNEXT(vcp->vc_requests);
213 1.1 rvb !EOQ(vmp, vcp->vc_requests);
214 1.10 rvb vmp = nvmp)
215 1.27 perry {
216 1.9 rvb nvmp = (struct vmsg *)GETNEXT(vmp->vm_chain);
217 1.1 rvb /* Free signal request messages and don't wakeup cause
218 1.1 rvb no one is waiting. */
219 1.3 rvb if (vmp->vm_opcode == CODA_SIGNAL) {
220 1.36 christos CODA_FREE((void *)vmp->vm_data, (u_int)VC_IN_NO_DATA);
221 1.36 christos CODA_FREE((void *)vmp, (u_int)sizeof(struct vmsg));
222 1.1 rvb continue;
223 1.1 rvb }
224 1.27 perry outstanding_upcalls++;
225 1.1 rvb wakeup(&vmp->vm_sleep);
226 1.1 rvb }
227 1.8 rvb
228 1.1 rvb for (vmp = (struct vmsg *)GETNEXT(vcp->vc_replys);
229 1.1 rvb !EOQ(vmp, vcp->vc_replys);
230 1.1 rvb vmp = (struct vmsg *)GETNEXT(vmp->vm_chain))
231 1.1 rvb {
232 1.27 perry outstanding_upcalls++;
233 1.1 rvb wakeup(&vmp->vm_sleep);
234 1.1 rvb }
235 1.8 rvb
236 1.1 rvb MARK_VC_CLOSED(vcp);
237 1.8 rvb
238 1.8 rvb if (outstanding_upcalls) {
239 1.8 rvb #ifdef CODA_VERBOSE
240 1.8 rvb printf("presleep: outstanding_upcalls = %d\n", outstanding_upcalls);
241 1.8 rvb (void) tsleep(&outstanding_upcalls, coda_call_sleep, "coda_umount", 0);
242 1.8 rvb printf("postsleep: outstanding_upcalls = %d\n", outstanding_upcalls);
243 1.8 rvb #else
244 1.8 rvb (void) tsleep(&outstanding_upcalls, coda_call_sleep, "coda_umount", 0);
245 1.8 rvb #endif
246 1.8 rvb }
247 1.8 rvb
248 1.31 christos err = dounmount(mi->mi_vfsp, flag, l);
249 1.8 rvb if (err)
250 1.27 perry myprintf(("Error %d unmounting vfs in vcclose(%d)\n",
251 1.8 rvb err, minor(dev)));
252 1.1 rvb return 0;
253 1.1 rvb }
254 1.1 rvb
255 1.27 perry int
256 1.34 christos vc_nb_read(dev_t dev, struct uio *uiop, int flag)
257 1.1 rvb {
258 1.13 augustss struct vcomm * vcp;
259 1.13 augustss struct vmsg *vmp;
260 1.1 rvb int error = 0;
261 1.27 perry
262 1.1 rvb ENTRY;
263 1.1 rvb
264 1.3 rvb if (minor(dev) >= NVCODA || minor(dev) < 0)
265 1.1 rvb return(ENXIO);
266 1.27 perry
267 1.3 rvb vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
268 1.1 rvb /* Get message at head of request queue. */
269 1.1 rvb if (EMPTY(vcp->vc_requests))
270 1.1 rvb return(0); /* Nothing to read */
271 1.27 perry
272 1.1 rvb vmp = (struct vmsg *)GETNEXT(vcp->vc_requests);
273 1.27 perry
274 1.1 rvb /* Move the input args into userspace */
275 1.1 rvb uiop->uio_rw = UIO_READ;
276 1.1 rvb error = uiomove(vmp->vm_data, vmp->vm_inSize, uiop);
277 1.1 rvb if (error) {
278 1.1 rvb myprintf(("vcread: error (%d) on uiomove\n", error));
279 1.1 rvb error = EINVAL;
280 1.1 rvb }
281 1.1 rvb
282 1.27 perry #ifdef OLD_DIAGNOSTIC
283 1.1 rvb if (vmp->vm_chain.forw == 0 || vmp->vm_chain.back == 0)
284 1.1 rvb panic("vc_nb_read: bad chain");
285 1.1 rvb #endif
286 1.1 rvb
287 1.1 rvb REMQUE(vmp->vm_chain);
288 1.27 perry
289 1.1 rvb /* If request was a signal, free up the message and don't
290 1.1 rvb enqueue it in the reply queue. */
291 1.3 rvb if (vmp->vm_opcode == CODA_SIGNAL) {
292 1.3 rvb if (codadebug)
293 1.27 perry myprintf(("vcread: signal msg (%d, %d)\n",
294 1.1 rvb vmp->vm_opcode, vmp->vm_unique));
295 1.36 christos CODA_FREE((void *)vmp->vm_data, (u_int)VC_IN_NO_DATA);
296 1.36 christos CODA_FREE((void *)vmp, (u_int)sizeof(struct vmsg));
297 1.1 rvb return(error);
298 1.1 rvb }
299 1.27 perry
300 1.1 rvb vmp->vm_flags |= VM_READ;
301 1.1 rvb INSQUE(vmp->vm_chain, vcp->vc_replys);
302 1.27 perry
303 1.1 rvb return(error);
304 1.1 rvb }
305 1.1 rvb
306 1.1 rvb int
307 1.34 christos vc_nb_write(dev_t dev, struct uio *uiop, int flag)
308 1.1 rvb {
309 1.13 augustss struct vcomm * vcp;
310 1.13 augustss struct vmsg *vmp;
311 1.3 rvb struct coda_out_hdr *out;
312 1.1 rvb u_long seq;
313 1.1 rvb u_long opcode;
314 1.28 christos int tbuf[2];
315 1.1 rvb int error = 0;
316 1.1 rvb
317 1.1 rvb ENTRY;
318 1.1 rvb
319 1.3 rvb if (minor(dev) >= NVCODA || minor(dev) < 0)
320 1.1 rvb return(ENXIO);
321 1.27 perry
322 1.3 rvb vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
323 1.27 perry
324 1.1 rvb /* Peek at the opcode, unique without transfering the data. */
325 1.1 rvb uiop->uio_rw = UIO_WRITE;
326 1.36 christos error = uiomove((void *)tbuf, sizeof(int) * 2, uiop);
327 1.1 rvb if (error) {
328 1.1 rvb myprintf(("vcwrite: error (%d) on uiomove\n", error));
329 1.1 rvb return(EINVAL);
330 1.1 rvb }
331 1.27 perry
332 1.28 christos opcode = tbuf[0];
333 1.28 christos seq = tbuf[1];
334 1.27 perry
335 1.3 rvb if (codadebug)
336 1.1 rvb myprintf(("vcwrite got a call for %ld.%ld\n", opcode, seq));
337 1.27 perry
338 1.1 rvb if (DOWNCALL(opcode)) {
339 1.1 rvb union outputArgs pbuf;
340 1.27 perry
341 1.1 rvb /* get the rest of the data. */
342 1.1 rvb uiop->uio_rw = UIO_WRITE;
343 1.36 christos error = uiomove((void *)&pbuf.coda_purgeuser.oh.result, sizeof(pbuf) - (sizeof(int)*2), uiop);
344 1.1 rvb if (error) {
345 1.27 perry myprintf(("vcwrite: error (%d) on uiomove (Op %ld seq %ld)\n",
346 1.1 rvb error, opcode, seq));
347 1.1 rvb return(EINVAL);
348 1.1 rvb }
349 1.27 perry
350 1.1 rvb return handleDownCall(opcode, &pbuf);
351 1.1 rvb }
352 1.27 perry
353 1.1 rvb /* Look for the message on the (waiting for) reply queue. */
354 1.1 rvb for (vmp = (struct vmsg *)GETNEXT(vcp->vc_replys);
355 1.1 rvb !EOQ(vmp, vcp->vc_replys);
356 1.1 rvb vmp = (struct vmsg *)GETNEXT(vmp->vm_chain))
357 1.1 rvb {
358 1.1 rvb if (vmp->vm_unique == seq) break;
359 1.1 rvb }
360 1.27 perry
361 1.1 rvb if (EOQ(vmp, vcp->vc_replys)) {
362 1.3 rvb if (codadebug)
363 1.1 rvb myprintf(("vcwrite: msg (%ld, %ld) not found\n", opcode, seq));
364 1.27 perry
365 1.1 rvb return(ESRCH);
366 1.1 rvb }
367 1.27 perry
368 1.1 rvb /* Remove the message from the reply queue */
369 1.1 rvb REMQUE(vmp->vm_chain);
370 1.27 perry
371 1.1 rvb /* move data into response buffer. */
372 1.3 rvb out = (struct coda_out_hdr *)vmp->vm_data;
373 1.1 rvb /* Don't need to copy opcode and uniquifier. */
374 1.27 perry
375 1.1 rvb /* get the rest of the data. */
376 1.1 rvb if (vmp->vm_outSize < uiop->uio_resid) {
377 1.11 matt myprintf(("vcwrite: more data than asked for (%d < %lu)\n",
378 1.11 matt vmp->vm_outSize, (unsigned long) uiop->uio_resid));
379 1.1 rvb wakeup(&vmp->vm_sleep); /* Notify caller of the error. */
380 1.1 rvb return(EINVAL);
381 1.27 perry }
382 1.27 perry
383 1.28 christos tbuf[0] = uiop->uio_resid; /* Save this value. */
384 1.1 rvb uiop->uio_rw = UIO_WRITE;
385 1.36 christos error = uiomove((void *) &out->result, vmp->vm_outSize - (sizeof(int) * 2), uiop);
386 1.1 rvb if (error) {
387 1.27 perry myprintf(("vcwrite: error (%d) on uiomove (op %ld seq %ld)\n",
388 1.1 rvb error, opcode, seq));
389 1.1 rvb return(EINVAL);
390 1.1 rvb }
391 1.27 perry
392 1.1 rvb /* I don't think these are used, but just in case. */
393 1.1 rvb /* XXX - aren't these two already correct? -bnoble */
394 1.1 rvb out->opcode = opcode;
395 1.1 rvb out->unique = seq;
396 1.28 christos vmp->vm_outSize = tbuf[0]; /* Amount of data transferred? */
397 1.1 rvb vmp->vm_flags |= VM_WRITE;
398 1.1 rvb wakeup(&vmp->vm_sleep);
399 1.27 perry
400 1.1 rvb return(0);
401 1.1 rvb }
402 1.1 rvb
403 1.1 rvb int
404 1.36 christos vc_nb_ioctl(dev_t dev, u_long cmd, void *addr, int flag,
405 1.34 christos struct lwp *l)
406 1.1 rvb {
407 1.1 rvb ENTRY;
408 1.1 rvb
409 1.1 rvb switch(cmd) {
410 1.3 rvb case CODARESIZE: {
411 1.3 rvb struct coda_resize *data = (struct coda_resize *)addr;
412 1.3 rvb return(coda_nc_resize(data->hashsize, data->heapsize, IS_DOWNCALL));
413 1.1 rvb break;
414 1.1 rvb }
415 1.3 rvb case CODASTATS:
416 1.3 rvb if (coda_nc_use) {
417 1.3 rvb coda_nc_gather_stats();
418 1.1 rvb return(0);
419 1.1 rvb } else {
420 1.1 rvb return(ENODEV);
421 1.1 rvb }
422 1.1 rvb break;
423 1.3 rvb case CODAPRINT:
424 1.3 rvb if (coda_nc_use) {
425 1.3 rvb print_coda_nc();
426 1.1 rvb return(0);
427 1.1 rvb } else {
428 1.1 rvb return(ENODEV);
429 1.1 rvb }
430 1.1 rvb break;
431 1.9 rvb case CIOC_KERNEL_VERSION:
432 1.9 rvb switch (*(u_int *)addr) {
433 1.9 rvb case 0:
434 1.9 rvb *(u_int *)addr = coda_kernel_version;
435 1.9 rvb return 0;
436 1.9 rvb break;
437 1.9 rvb case 1:
438 1.9 rvb case 2:
439 1.9 rvb if (coda_kernel_version != *(u_int *)addr)
440 1.9 rvb return ENOENT;
441 1.9 rvb else
442 1.9 rvb return 0;
443 1.9 rvb default:
444 1.9 rvb return ENOENT;
445 1.9 rvb }
446 1.9 rvb break;
447 1.1 rvb default :
448 1.1 rvb return(EINVAL);
449 1.1 rvb break;
450 1.1 rvb }
451 1.1 rvb }
452 1.1 rvb
453 1.1 rvb int
454 1.31 christos vc_nb_poll(dev_t dev, int events, struct lwp *l)
455 1.1 rvb {
456 1.13 augustss struct vcomm *vcp;
457 1.1 rvb int event_msk = 0;
458 1.1 rvb
459 1.1 rvb ENTRY;
460 1.27 perry
461 1.3 rvb if (minor(dev) >= NVCODA || minor(dev) < 0)
462 1.1 rvb return(ENXIO);
463 1.27 perry
464 1.3 rvb vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
465 1.27 perry
466 1.1 rvb event_msk = events & (POLLIN|POLLRDNORM);
467 1.1 rvb if (!event_msk)
468 1.1 rvb return(0);
469 1.27 perry
470 1.1 rvb if (!EMPTY(vcp->vc_requests))
471 1.1 rvb return(events & (POLLIN|POLLRDNORM));
472 1.1 rvb
473 1.31 christos selrecord(l, &(vcp->vc_selproc));
474 1.27 perry
475 1.1 rvb return(0);
476 1.1 rvb }
477 1.1 rvb
478 1.21 jdolecek static void
479 1.21 jdolecek filt_vc_nb_detach(struct knote *kn)
480 1.21 jdolecek {
481 1.21 jdolecek struct vcomm *vcp = kn->kn_hook;
482 1.21 jdolecek
483 1.22 christos SLIST_REMOVE(&vcp->vc_selproc.sel_klist, kn, knote, kn_selnext);
484 1.21 jdolecek }
485 1.21 jdolecek
486 1.21 jdolecek static int
487 1.34 christos filt_vc_nb_read(struct knote *kn, long hint)
488 1.21 jdolecek {
489 1.27 perry struct vcomm *vcp = kn->kn_hook;
490 1.21 jdolecek struct vmsg *vmp;
491 1.21 jdolecek
492 1.21 jdolecek if (EMPTY(vcp->vc_requests))
493 1.21 jdolecek return (0);
494 1.21 jdolecek
495 1.21 jdolecek vmp = (struct vmsg *)GETNEXT(vcp->vc_requests);
496 1.21 jdolecek
497 1.21 jdolecek kn->kn_data = vmp->vm_inSize;
498 1.21 jdolecek return (1);
499 1.21 jdolecek }
500 1.21 jdolecek
501 1.21 jdolecek static const struct filterops vc_nb_read_filtops =
502 1.21 jdolecek { 1, NULL, filt_vc_nb_detach, filt_vc_nb_read };
503 1.21 jdolecek
504 1.21 jdolecek int
505 1.21 jdolecek vc_nb_kqfilter(dev_t dev, struct knote *kn)
506 1.21 jdolecek {
507 1.21 jdolecek struct vcomm *vcp;
508 1.21 jdolecek struct klist *klist;
509 1.21 jdolecek
510 1.21 jdolecek ENTRY;
511 1.27 perry
512 1.21 jdolecek if (minor(dev) >= NVCODA || minor(dev) < 0)
513 1.21 jdolecek return(ENXIO);
514 1.27 perry
515 1.21 jdolecek vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
516 1.21 jdolecek
517 1.21 jdolecek switch (kn->kn_filter) {
518 1.21 jdolecek case EVFILT_READ:
519 1.22 christos klist = &vcp->vc_selproc.sel_klist;
520 1.21 jdolecek kn->kn_fop = &vc_nb_read_filtops;
521 1.21 jdolecek break;
522 1.21 jdolecek
523 1.21 jdolecek default:
524 1.37 pooka return (EINVAL);
525 1.21 jdolecek }
526 1.21 jdolecek
527 1.21 jdolecek kn->kn_hook = vcp;
528 1.21 jdolecek
529 1.21 jdolecek SLIST_INSERT_HEAD(klist, kn, kn_selnext);
530 1.21 jdolecek
531 1.21 jdolecek return (0);
532 1.21 jdolecek }
533 1.21 jdolecek
534 1.1 rvb /*
535 1.1 rvb * Statistics
536 1.1 rvb */
537 1.3 rvb struct coda_clstat coda_clstat;
538 1.1 rvb
539 1.27 perry /*
540 1.23 wiz * Key question: whether to sleep interruptably or uninterruptably when
541 1.1 rvb * waiting for Venus. The former seems better (cause you can ^C a
542 1.1 rvb * job), but then GNU-EMACS completion breaks. Use tsleep with no
543 1.1 rvb * timeout, and no longjmp happens. But, when sleeping
544 1.1 rvb * "uninterruptibly", we don't get told if it returns abnormally
545 1.27 perry * (e.g. kill -9).
546 1.1 rvb */
547 1.1 rvb
548 1.1 rvb int
549 1.30 xtraeme coda_call(struct coda_mntinfo *mntinfo, int inSize, int *outSize,
550 1.36 christos void *buffer)
551 1.1 rvb {
552 1.1 rvb struct vcomm *vcp;
553 1.1 rvb struct vmsg *vmp;
554 1.1 rvb int error;
555 1.1 rvb #ifdef CTL_C
556 1.31 christos struct lwp *l = curlwp;
557 1.31 christos struct proc *p = l->l_proc;
558 1.4 rvb sigset_t psig_omask;
559 1.1 rvb int i;
560 1.35 ad psig_omask = l->l_sigmask; /* XXXSA */
561 1.1 rvb #endif
562 1.1 rvb if (mntinfo == NULL) {
563 1.1 rvb /* Unlikely, but could be a race condition with a dying warden */
564 1.1 rvb return ENODEV;
565 1.1 rvb }
566 1.1 rvb
567 1.1 rvb vcp = &(mntinfo->mi_vcomm);
568 1.27 perry
569 1.3 rvb coda_clstat.ncalls++;
570 1.3 rvb coda_clstat.reqs[((struct coda_in_hdr *)buffer)->opcode]++;
571 1.1 rvb
572 1.1 rvb if (!VC_OPEN(vcp))
573 1.1 rvb return(ENODEV);
574 1.1 rvb
575 1.3 rvb CODA_ALLOC(vmp,struct vmsg *,sizeof(struct vmsg));
576 1.1 rvb /* Format the request message. */
577 1.1 rvb vmp->vm_data = buffer;
578 1.1 rvb vmp->vm_flags = 0;
579 1.1 rvb vmp->vm_inSize = inSize;
580 1.27 perry vmp->vm_outSize
581 1.1 rvb = *outSize ? *outSize : inSize; /* |buffer| >= inSize */
582 1.3 rvb vmp->vm_opcode = ((struct coda_in_hdr *)buffer)->opcode;
583 1.1 rvb vmp->vm_unique = ++vcp->vc_seq;
584 1.3 rvb if (codadebug)
585 1.27 perry myprintf(("Doing a call for %d.%d\n",
586 1.1 rvb vmp->vm_opcode, vmp->vm_unique));
587 1.27 perry
588 1.1 rvb /* Fill in the common input args. */
589 1.3 rvb ((struct coda_in_hdr *)buffer)->unique = vmp->vm_unique;
590 1.1 rvb
591 1.1 rvb /* Append msg to request queue and poke Venus. */
592 1.1 rvb INSQUE(vmp->vm_chain, vcp->vc_requests);
593 1.21 jdolecek selnotify(&(vcp->vc_selproc), 0);
594 1.1 rvb
595 1.1 rvb /* We can be interrupted while we wait for Venus to process
596 1.1 rvb * our request. If the interrupt occurs before Venus has read
597 1.1 rvb * the request, we dequeue and return. If it occurs after the
598 1.1 rvb * read but before the reply, we dequeue, send a signal
599 1.1 rvb * message, and return. If it occurs after the reply we ignore
600 1.1 rvb * it. In no case do we want to restart the syscall. If it
601 1.1 rvb * was interrupted by a venus shutdown (vcclose), return
602 1.1 rvb * ENODEV. */
603 1.1 rvb
604 1.1 rvb /* Ignore return, We have to check anyway */
605 1.1 rvb #ifdef CTL_C
606 1.3 rvb /* This is work in progress. Setting coda_pcatch lets tsleep reawaken
607 1.1 rvb on a ^c or ^z. The problem is that emacs sets certain interrupts
608 1.1 rvb as SA_RESTART. This means that we should exit sleep handle the
609 1.1 rvb "signal" and then go to sleep again. Mostly this is done by letting
610 1.27 perry the syscall complete and be restarted. We are not idempotent and
611 1.1 rvb can not do this. A better solution is necessary.
612 1.1 rvb */
613 1.1 rvb i = 0;
614 1.1 rvb do {
615 1.3 rvb error = tsleep(&vmp->vm_sleep, (coda_call_sleep|coda_pcatch), "coda_call", hz*2);
616 1.1 rvb if (error == 0)
617 1.1 rvb break;
618 1.35 ad mutex_enter(&p->p_smutex);
619 1.35 ad if (error == EWOULDBLOCK) {
620 1.7 rvb #ifdef CODA_VERBOSE
621 1.3 rvb printf("coda_call: tsleep TIMEOUT %d sec\n", 2+2*i);
622 1.5 rvb #endif
623 1.35 ad } else if (sigispending(l, SIGIO)) {
624 1.35 ad sigaddset(&l->l_sigmask, SIGIO);
625 1.7 rvb #ifdef CODA_VERBOSE
626 1.3 rvb printf("coda_call: tsleep returns %d SIGIO, cnt %d\n", error, i);
627 1.5 rvb #endif
628 1.35 ad } else if (sigispending(l, SIGALRM)) {
629 1.35 ad sigaddset(&l->l_sigmask, SIGALRM);
630 1.8 rvb #ifdef CODA_VERBOSE
631 1.8 rvb printf("coda_call: tsleep returns %d SIGALRM, cnt %d\n", error, i);
632 1.8 rvb #endif
633 1.1 rvb } else {
634 1.4 rvb sigset_t tmp;
635 1.35 ad tmp = p->p_sigpend.sp_set; /* array assignment */
636 1.35 ad sigminusset(&l->l_sigmask, &tmp);
637 1.4 rvb
638 1.7 rvb #ifdef CODA_VERBOSE
639 1.3 rvb printf("coda_call: tsleep returns %d, cnt %d\n", error, i);
640 1.4 rvb printf("coda_call: siglist = %x.%x.%x.%x, sigmask = %x.%x.%x.%x, mask %x.%x.%x.%x\n",
641 1.35 ad p->p_sigpend.sp_set.__bits[0], p->p_sigpend.sp_set.__bits[1],
642 1.35 ad p->p_sigpend.sp_set.__bits[2], p->p_sigpend.sp_set.__bits[3],
643 1.35 ad l->l_sigmask.__bits[0], l->l_sigmask.__bits[1],
644 1.35 ad l->l_sigmask.__bits[2], l->l_sigmask.__bits[3],
645 1.4 rvb tmp.__bits[0], tmp.__bits[1], tmp.__bits[2], tmp.__bits[3]);
646 1.5 rvb #endif
647 1.35 ad mutex_exit(&p->p_smutex);
648 1.1 rvb break;
649 1.5 rvb #ifdef notyet
650 1.35 ad sigminusset(&l->l_sigmask, &p->p_sigpend.sp_set);
651 1.27 perry printf("coda_call: siglist = %x.%x.%x.%x, sigmask = %x.%x.%x.%x\n",
652 1.35 ad p->p_sigpend.sp_set.__bits[0], p->p_sigpend.sp_set.__bits[1],
653 1.35 ad p->p_sigpend.sp_set.__bits[2], p->p_sigpend.sp_set.__bits[3],
654 1.35 ad l->l_sigmask.__bits[0], l->l_sigmask.__bits[1],
655 1.35 ad l->l_sigmask.__bits[2], l->l_sigmask.__bits[3]);
656 1.5 rvb #endif
657 1.1 rvb }
658 1.35 ad mutex_exit(&p->p_smutex);
659 1.8 rvb } while (error && i++ < 128 && VC_OPEN(vcp));
660 1.35 ad l->l_sigmask = psig_omask; /* XXXSA */
661 1.1 rvb #else
662 1.3 rvb (void) tsleep(&vmp->vm_sleep, coda_call_sleep, "coda_call", 0);
663 1.1 rvb #endif
664 1.1 rvb if (VC_OPEN(vcp)) { /* Venus is still alive */
665 1.1 rvb /* Op went through, interrupt or not... */
666 1.1 rvb if (vmp->vm_flags & VM_WRITE) {
667 1.1 rvb error = 0;
668 1.1 rvb *outSize = vmp->vm_outSize;
669 1.1 rvb }
670 1.1 rvb
671 1.27 perry else if (!(vmp->vm_flags & VM_READ)) {
672 1.1 rvb /* Interrupted before venus read it. */
673 1.7 rvb #ifdef CODA_VERBOSE
674 1.7 rvb if (1)
675 1.7 rvb #else
676 1.5 rvb if (codadebug)
677 1.5 rvb #endif
678 1.1 rvb myprintf(("interrupted before read: op = %d.%d, flags = %x\n",
679 1.1 rvb vmp->vm_opcode, vmp->vm_unique, vmp->vm_flags));
680 1.1 rvb REMQUE(vmp->vm_chain);
681 1.1 rvb error = EINTR;
682 1.1 rvb }
683 1.27 perry
684 1.27 perry else {
685 1.1 rvb /* (!(vmp->vm_flags & VM_WRITE)) means interrupted after
686 1.1 rvb upcall started */
687 1.1 rvb /* Interrupted after start of upcall, send venus a signal */
688 1.3 rvb struct coda_in_hdr *dog;
689 1.1 rvb struct vmsg *svmp;
690 1.27 perry
691 1.7 rvb #ifdef CODA_VERBOSE
692 1.7 rvb if (1)
693 1.7 rvb #else
694 1.5 rvb if (codadebug)
695 1.5 rvb #endif
696 1.1 rvb myprintf(("Sending Venus a signal: op = %d.%d, flags = %x\n",
697 1.1 rvb vmp->vm_opcode, vmp->vm_unique, vmp->vm_flags));
698 1.27 perry
699 1.1 rvb REMQUE(vmp->vm_chain);
700 1.1 rvb error = EINTR;
701 1.27 perry
702 1.3 rvb CODA_ALLOC(svmp, struct vmsg *, sizeof (struct vmsg));
703 1.1 rvb
704 1.3 rvb CODA_ALLOC((svmp->vm_data), char *, sizeof (struct coda_in_hdr));
705 1.3 rvb dog = (struct coda_in_hdr *)svmp->vm_data;
706 1.27 perry
707 1.1 rvb svmp->vm_flags = 0;
708 1.3 rvb dog->opcode = svmp->vm_opcode = CODA_SIGNAL;
709 1.1 rvb dog->unique = svmp->vm_unique = vmp->vm_unique;
710 1.3 rvb svmp->vm_inSize = sizeof (struct coda_in_hdr);
711 1.3 rvb /*??? rvb */ svmp->vm_outSize = sizeof (struct coda_in_hdr);
712 1.27 perry
713 1.3 rvb if (codadebug)
714 1.3 rvb myprintf(("coda_call: enqueing signal msg (%d, %d)\n",
715 1.1 rvb svmp->vm_opcode, svmp->vm_unique));
716 1.27 perry
717 1.1 rvb /* insert at head of queue! */
718 1.1 rvb INSQUE(svmp->vm_chain, vcp->vc_requests);
719 1.21 jdolecek selnotify(&(vcp->vc_selproc), 0);
720 1.1 rvb }
721 1.1 rvb }
722 1.1 rvb
723 1.1 rvb else { /* If venus died (!VC_OPEN(vcp)) */
724 1.3 rvb if (codadebug)
725 1.1 rvb myprintf(("vcclose woke op %d.%d flags %d\n",
726 1.1 rvb vmp->vm_opcode, vmp->vm_unique, vmp->vm_flags));
727 1.27 perry
728 1.1 rvb error = ENODEV;
729 1.1 rvb }
730 1.1 rvb
731 1.3 rvb CODA_FREE(vmp, sizeof(struct vmsg));
732 1.8 rvb
733 1.8 rvb if (outstanding_upcalls > 0 && (--outstanding_upcalls == 0))
734 1.8 rvb wakeup(&outstanding_upcalls);
735 1.1 rvb
736 1.1 rvb if (!error)
737 1.3 rvb error = ((struct coda_out_hdr *)buffer)->result;
738 1.1 rvb return(error);
739 1.1 rvb }
740 1.4 rvb
741