coda_psdev.c revision 1.52 1 1.52 dholland /* $NetBSD: coda_psdev.c,v 1.52 2014/03/16 05:20:26 dholland Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.27 perry *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.27 perry *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.27 perry *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.27 perry *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.27 perry *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.27 perry *
31 1.27 perry * @(#) coda/coda_psdev.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.27 perry /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
37 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
38 1.1 rvb * the terms and conditions for use and redistribution.
39 1.1 rvb */
40 1.1 rvb
41 1.1 rvb /*
42 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon
43 1.1 rvb * University. Contributers include David Steere, James Kistler, and
44 1.1 rvb * M. Satyanarayanan. */
45 1.1 rvb
46 1.24 jdolecek /* These routines define the pseudo device for communication between
47 1.27 perry * Coda's Venus and Minicache in Mach 2.6. They used to be in cfs_subr.c,
48 1.27 perry * but I moved them to make it easier to port the Minicache without
49 1.1 rvb * porting coda. -- DCS 10/12/94
50 1.24 jdolecek *
51 1.24 jdolecek * Following code depends on file-system CODA.
52 1.1 rvb */
53 1.1 rvb
54 1.1 rvb /* These routines are the device entry points for Venus. */
55 1.18 lukem
56 1.18 lukem #include <sys/cdefs.h>
57 1.52 dholland __KERNEL_RCSID(0, "$NetBSD: coda_psdev.c,v 1.52 2014/03/16 05:20:26 dholland Exp $");
58 1.1 rvb
59 1.3 rvb extern int coda_nc_initialized; /* Set if cache has been initialized */
60 1.1 rvb
61 1.46 pooka #ifndef _KERNEL_OPT
62 1.5 rvb #define NVCODA 4
63 1.5 rvb #else
64 1.3 rvb #include <vcoda.h>
65 1.5 rvb #endif
66 1.5 rvb
67 1.1 rvb #include <sys/param.h>
68 1.1 rvb #include <sys/systm.h>
69 1.1 rvb #include <sys/kernel.h>
70 1.1 rvb #include <sys/malloc.h>
71 1.1 rvb #include <sys/proc.h>
72 1.1 rvb #include <sys/mount.h>
73 1.1 rvb #include <sys/file.h>
74 1.1 rvb #include <sys/ioctl.h>
75 1.1 rvb #include <sys/poll.h>
76 1.1 rvb #include <sys/select.h>
77 1.20 gehenna #include <sys/conf.h>
78 1.45 ad #include <sys/atomic.h>
79 1.48 christos #include <sys/module.h>
80 1.1 rvb
81 1.16 thorpej #include <miscfs/syncfs/syncfs.h>
82 1.16 thorpej
83 1.4 rvb #include <coda/coda.h>
84 1.4 rvb #include <coda/cnode.h>
85 1.4 rvb #include <coda/coda_namecache.h>
86 1.4 rvb #include <coda/coda_io.h>
87 1.1 rvb
88 1.2 rvb #define CTL_C
89 1.2 rvb
90 1.3 rvb int coda_psdev_print_entry = 0;
91 1.8 rvb static
92 1.8 rvb int outstanding_upcalls = 0;
93 1.8 rvb int coda_call_sleep = PZERO - 1;
94 1.8 rvb #ifdef CTL_C
95 1.8 rvb int coda_pcatch = PCATCH;
96 1.8 rvb #else
97 1.8 rvb #endif
98 1.3 rvb
99 1.48 christos int coda_kernel_version = CODA_KERNEL_VERSION;
100 1.48 christos
101 1.19 perry #define ENTRY if(coda_psdev_print_entry) myprintf(("Entered %s\n",__func__))
102 1.1 rvb
103 1.3 rvb void vcodaattach(int n);
104 1.20 gehenna
105 1.20 gehenna dev_type_open(vc_nb_open);
106 1.20 gehenna dev_type_close(vc_nb_close);
107 1.20 gehenna dev_type_read(vc_nb_read);
108 1.20 gehenna dev_type_write(vc_nb_write);
109 1.20 gehenna dev_type_ioctl(vc_nb_ioctl);
110 1.20 gehenna dev_type_poll(vc_nb_poll);
111 1.21 jdolecek dev_type_kqfilter(vc_nb_kqfilter);
112 1.20 gehenna
113 1.20 gehenna const struct cdevsw vcoda_cdevsw = {
114 1.52 dholland .d_open = vc_nb_open,
115 1.52 dholland .d_close = vc_nb_close,
116 1.52 dholland .d_read = vc_nb_read,
117 1.52 dholland .d_write = vc_nb_write,
118 1.52 dholland .d_ioctl = vc_nb_ioctl,
119 1.52 dholland .d_stop = nostop,
120 1.52 dholland .d_tty = notty,
121 1.52 dholland .d_poll = vc_nb_poll,
122 1.52 dholland .d_mmap = nommap,
123 1.52 dholland .d_kqfilter = vc_nb_kqfilter,
124 1.52 dholland .d_flag = D_OTHER,
125 1.20 gehenna };
126 1.1 rvb
127 1.1 rvb struct vmsg {
128 1.41 plunky TAILQ_ENTRY(vmsg) vm_chain;
129 1.36 christos void * vm_data;
130 1.1 rvb u_short vm_flags;
131 1.1 rvb u_short vm_inSize; /* Size is at most 5000 bytes */
132 1.1 rvb u_short vm_outSize;
133 1.1 rvb u_short vm_opcode; /* copied from data to save ptr lookup */
134 1.1 rvb int vm_unique;
135 1.36 christos void * vm_sleep; /* Not used by Mach. */
136 1.1 rvb };
137 1.1 rvb
138 1.48 christos struct coda_mntinfo coda_mnttbl[NVCODA];
139 1.48 christos
140 1.1 rvb #define VM_READ 1
141 1.1 rvb #define VM_WRITE 2
142 1.1 rvb #define VM_INTR 4
143 1.1 rvb
144 1.3 rvb /* vcodaattach: do nothing */
145 1.1 rvb void
146 1.34 christos vcodaattach(int n)
147 1.1 rvb {
148 1.1 rvb }
149 1.1 rvb
150 1.27 perry /*
151 1.1 rvb * These functions are written for NetBSD.
152 1.1 rvb */
153 1.27 perry int
154 1.34 christos vc_nb_open(dev_t dev, int flag, int mode,
155 1.34 christos struct lwp *l)
156 1.1 rvb {
157 1.13 augustss struct vcomm *vcp;
158 1.27 perry
159 1.1 rvb ENTRY;
160 1.1 rvb
161 1.47 christos if (minor(dev) >= NVCODA)
162 1.1 rvb return(ENXIO);
163 1.27 perry
164 1.3 rvb if (!coda_nc_initialized)
165 1.3 rvb coda_nc_init();
166 1.27 perry
167 1.3 rvb vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
168 1.1 rvb if (VC_OPEN(vcp))
169 1.1 rvb return(EBUSY);
170 1.27 perry
171 1.39 rmind selinit(&vcp->vc_selproc);
172 1.41 plunky TAILQ_INIT(&vcp->vc_requests);
173 1.41 plunky TAILQ_INIT(&vcp->vc_replies);
174 1.1 rvb MARK_VC_OPEN(vcp);
175 1.27 perry
176 1.3 rvb coda_mnttbl[minor(dev)].mi_vfsp = NULL;
177 1.3 rvb coda_mnttbl[minor(dev)].mi_rootvp = NULL;
178 1.1 rvb
179 1.1 rvb return(0);
180 1.1 rvb }
181 1.1 rvb
182 1.27 perry int
183 1.34 christos vc_nb_close(dev_t dev, int flag, int mode, struct lwp *l)
184 1.1 rvb {
185 1.13 augustss struct vcomm *vcp;
186 1.41 plunky struct vmsg *vmp;
187 1.3 rvb struct coda_mntinfo *mi;
188 1.1 rvb int err;
189 1.27 perry
190 1.1 rvb ENTRY;
191 1.1 rvb
192 1.47 christos if (minor(dev) >= NVCODA)
193 1.1 rvb return(ENXIO);
194 1.1 rvb
195 1.3 rvb mi = &coda_mnttbl[minor(dev)];
196 1.1 rvb vcp = &(mi->mi_vcomm);
197 1.27 perry
198 1.1 rvb if (!VC_OPEN(vcp))
199 1.1 rvb panic("vcclose: not open");
200 1.27 perry
201 1.1 rvb /* prevent future operations on this vfs from succeeding by auto-
202 1.1 rvb * unmounting any vfs mounted via this device. This frees user or
203 1.1 rvb * sysadm from having to remember where all mount points are located.
204 1.1 rvb * Put this before WAKEUPs to avoid queuing new messages between
205 1.1 rvb * the WAKEUP and the unmount (which can happen if we're unlucky)
206 1.1 rvb */
207 1.8 rvb if (!mi->mi_rootvp) {
208 1.8 rvb /* just a simple open/close w no mount */
209 1.8 rvb MARK_VC_CLOSED(vcp);
210 1.8 rvb return 0;
211 1.1 rvb }
212 1.8 rvb
213 1.8 rvb /* Let unmount know this is for real */
214 1.8 rvb VTOC(mi->mi_rootvp)->c_flags |= C_UNMOUNTING;
215 1.8 rvb coda_unmounting(mi->mi_vfsp);
216 1.27 perry
217 1.1 rvb /* Wakeup clients so they can return. */
218 1.41 plunky while ((vmp = TAILQ_FIRST(&vcp->vc_requests)) != NULL) {
219 1.41 plunky TAILQ_REMOVE(&vcp->vc_requests, vmp, vm_chain);
220 1.41 plunky
221 1.1 rvb /* Free signal request messages and don't wakeup cause
222 1.1 rvb no one is waiting. */
223 1.3 rvb if (vmp->vm_opcode == CODA_SIGNAL) {
224 1.40 plunky CODA_FREE(vmp->vm_data, VC_IN_NO_DATA);
225 1.40 plunky CODA_FREE(vmp, sizeof(struct vmsg));
226 1.1 rvb continue;
227 1.1 rvb }
228 1.27 perry outstanding_upcalls++;
229 1.1 rvb wakeup(&vmp->vm_sleep);
230 1.1 rvb }
231 1.8 rvb
232 1.41 plunky while ((vmp = TAILQ_FIRST(&vcp->vc_replies)) != NULL) {
233 1.41 plunky TAILQ_REMOVE(&vcp->vc_replies, vmp, vm_chain);
234 1.41 plunky
235 1.27 perry outstanding_upcalls++;
236 1.1 rvb wakeup(&vmp->vm_sleep);
237 1.1 rvb }
238 1.8 rvb
239 1.1 rvb MARK_VC_CLOSED(vcp);
240 1.8 rvb
241 1.8 rvb if (outstanding_upcalls) {
242 1.8 rvb #ifdef CODA_VERBOSE
243 1.8 rvb printf("presleep: outstanding_upcalls = %d\n", outstanding_upcalls);
244 1.8 rvb (void) tsleep(&outstanding_upcalls, coda_call_sleep, "coda_umount", 0);
245 1.8 rvb printf("postsleep: outstanding_upcalls = %d\n", outstanding_upcalls);
246 1.8 rvb #else
247 1.8 rvb (void) tsleep(&outstanding_upcalls, coda_call_sleep, "coda_umount", 0);
248 1.8 rvb #endif
249 1.8 rvb }
250 1.8 rvb
251 1.31 christos err = dounmount(mi->mi_vfsp, flag, l);
252 1.8 rvb if (err)
253 1.47 christos myprintf(("Error %d unmounting vfs in vcclose(%llu)\n",
254 1.47 christos err, (unsigned long long)minor(dev)));
255 1.39 rmind seldestroy(&vcp->vc_selproc);
256 1.1 rvb return 0;
257 1.1 rvb }
258 1.1 rvb
259 1.27 perry int
260 1.34 christos vc_nb_read(dev_t dev, struct uio *uiop, int flag)
261 1.1 rvb {
262 1.13 augustss struct vcomm * vcp;
263 1.13 augustss struct vmsg *vmp;
264 1.1 rvb int error = 0;
265 1.27 perry
266 1.1 rvb ENTRY;
267 1.1 rvb
268 1.47 christos if (minor(dev) >= NVCODA)
269 1.1 rvb return(ENXIO);
270 1.27 perry
271 1.3 rvb vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
272 1.41 plunky
273 1.1 rvb /* Get message at head of request queue. */
274 1.41 plunky vmp = TAILQ_FIRST(&vcp->vc_requests);
275 1.41 plunky if (vmp == NULL)
276 1.1 rvb return(0); /* Nothing to read */
277 1.27 perry
278 1.1 rvb /* Move the input args into userspace */
279 1.1 rvb uiop->uio_rw = UIO_READ;
280 1.1 rvb error = uiomove(vmp->vm_data, vmp->vm_inSize, uiop);
281 1.1 rvb if (error) {
282 1.1 rvb myprintf(("vcread: error (%d) on uiomove\n", error));
283 1.1 rvb error = EINVAL;
284 1.1 rvb }
285 1.1 rvb
286 1.41 plunky TAILQ_REMOVE(&vcp->vc_requests, vmp, vm_chain);
287 1.27 perry
288 1.1 rvb /* If request was a signal, free up the message and don't
289 1.1 rvb enqueue it in the reply queue. */
290 1.3 rvb if (vmp->vm_opcode == CODA_SIGNAL) {
291 1.3 rvb if (codadebug)
292 1.27 perry myprintf(("vcread: signal msg (%d, %d)\n",
293 1.1 rvb vmp->vm_opcode, vmp->vm_unique));
294 1.40 plunky CODA_FREE(vmp->vm_data, VC_IN_NO_DATA);
295 1.40 plunky CODA_FREE(vmp, sizeof(struct vmsg));
296 1.1 rvb return(error);
297 1.1 rvb }
298 1.27 perry
299 1.1 rvb vmp->vm_flags |= VM_READ;
300 1.41 plunky TAILQ_INSERT_TAIL(&vcp->vc_replies, vmp, vm_chain);
301 1.27 perry
302 1.1 rvb return(error);
303 1.1 rvb }
304 1.1 rvb
305 1.1 rvb int
306 1.34 christos vc_nb_write(dev_t dev, struct uio *uiop, int flag)
307 1.1 rvb {
308 1.13 augustss struct vcomm * vcp;
309 1.13 augustss struct vmsg *vmp;
310 1.3 rvb struct coda_out_hdr *out;
311 1.1 rvb u_long seq;
312 1.1 rvb u_long opcode;
313 1.28 christos int tbuf[2];
314 1.1 rvb int error = 0;
315 1.1 rvb
316 1.1 rvb ENTRY;
317 1.1 rvb
318 1.47 christos if (minor(dev) >= NVCODA)
319 1.1 rvb return(ENXIO);
320 1.27 perry
321 1.3 rvb vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
322 1.27 perry
323 1.1 rvb /* Peek at the opcode, unique without transfering the data. */
324 1.1 rvb uiop->uio_rw = UIO_WRITE;
325 1.40 plunky error = uiomove(tbuf, sizeof(int) * 2, uiop);
326 1.1 rvb if (error) {
327 1.1 rvb myprintf(("vcwrite: error (%d) on uiomove\n", error));
328 1.1 rvb return(EINVAL);
329 1.1 rvb }
330 1.27 perry
331 1.28 christos opcode = tbuf[0];
332 1.28 christos seq = tbuf[1];
333 1.27 perry
334 1.3 rvb if (codadebug)
335 1.1 rvb myprintf(("vcwrite got a call for %ld.%ld\n", opcode, seq));
336 1.27 perry
337 1.1 rvb if (DOWNCALL(opcode)) {
338 1.1 rvb union outputArgs pbuf;
339 1.27 perry
340 1.1 rvb /* get the rest of the data. */
341 1.1 rvb uiop->uio_rw = UIO_WRITE;
342 1.40 plunky error = uiomove(&pbuf.coda_purgeuser.oh.result, sizeof(pbuf) - (sizeof(int)*2), uiop);
343 1.1 rvb if (error) {
344 1.27 perry myprintf(("vcwrite: error (%d) on uiomove (Op %ld seq %ld)\n",
345 1.1 rvb error, opcode, seq));
346 1.1 rvb return(EINVAL);
347 1.1 rvb }
348 1.27 perry
349 1.1 rvb return handleDownCall(opcode, &pbuf);
350 1.1 rvb }
351 1.27 perry
352 1.1 rvb /* Look for the message on the (waiting for) reply queue. */
353 1.41 plunky TAILQ_FOREACH(vmp, &vcp->vc_replies, vm_chain) {
354 1.1 rvb if (vmp->vm_unique == seq) break;
355 1.1 rvb }
356 1.27 perry
357 1.41 plunky if (vmp == NULL) {
358 1.3 rvb if (codadebug)
359 1.1 rvb myprintf(("vcwrite: msg (%ld, %ld) not found\n", opcode, seq));
360 1.27 perry
361 1.1 rvb return(ESRCH);
362 1.41 plunky }
363 1.27 perry
364 1.1 rvb /* Remove the message from the reply queue */
365 1.41 plunky TAILQ_REMOVE(&vcp->vc_replies, vmp, vm_chain);
366 1.27 perry
367 1.1 rvb /* move data into response buffer. */
368 1.3 rvb out = (struct coda_out_hdr *)vmp->vm_data;
369 1.1 rvb /* Don't need to copy opcode and uniquifier. */
370 1.27 perry
371 1.1 rvb /* get the rest of the data. */
372 1.1 rvb if (vmp->vm_outSize < uiop->uio_resid) {
373 1.11 matt myprintf(("vcwrite: more data than asked for (%d < %lu)\n",
374 1.11 matt vmp->vm_outSize, (unsigned long) uiop->uio_resid));
375 1.1 rvb wakeup(&vmp->vm_sleep); /* Notify caller of the error. */
376 1.1 rvb return(EINVAL);
377 1.27 perry }
378 1.27 perry
379 1.28 christos tbuf[0] = uiop->uio_resid; /* Save this value. */
380 1.1 rvb uiop->uio_rw = UIO_WRITE;
381 1.40 plunky error = uiomove(&out->result, vmp->vm_outSize - (sizeof(int) * 2), uiop);
382 1.1 rvb if (error) {
383 1.27 perry myprintf(("vcwrite: error (%d) on uiomove (op %ld seq %ld)\n",
384 1.1 rvb error, opcode, seq));
385 1.1 rvb return(EINVAL);
386 1.1 rvb }
387 1.27 perry
388 1.1 rvb /* I don't think these are used, but just in case. */
389 1.1 rvb /* XXX - aren't these two already correct? -bnoble */
390 1.1 rvb out->opcode = opcode;
391 1.1 rvb out->unique = seq;
392 1.28 christos vmp->vm_outSize = tbuf[0]; /* Amount of data transferred? */
393 1.1 rvb vmp->vm_flags |= VM_WRITE;
394 1.1 rvb wakeup(&vmp->vm_sleep);
395 1.27 perry
396 1.1 rvb return(0);
397 1.1 rvb }
398 1.1 rvb
399 1.1 rvb int
400 1.36 christos vc_nb_ioctl(dev_t dev, u_long cmd, void *addr, int flag,
401 1.34 christos struct lwp *l)
402 1.1 rvb {
403 1.1 rvb ENTRY;
404 1.1 rvb
405 1.1 rvb switch(cmd) {
406 1.3 rvb case CODARESIZE: {
407 1.3 rvb struct coda_resize *data = (struct coda_resize *)addr;
408 1.3 rvb return(coda_nc_resize(data->hashsize, data->heapsize, IS_DOWNCALL));
409 1.1 rvb break;
410 1.1 rvb }
411 1.3 rvb case CODASTATS:
412 1.3 rvb if (coda_nc_use) {
413 1.3 rvb coda_nc_gather_stats();
414 1.1 rvb return(0);
415 1.1 rvb } else {
416 1.1 rvb return(ENODEV);
417 1.1 rvb }
418 1.1 rvb break;
419 1.3 rvb case CODAPRINT:
420 1.3 rvb if (coda_nc_use) {
421 1.3 rvb print_coda_nc();
422 1.1 rvb return(0);
423 1.1 rvb } else {
424 1.1 rvb return(ENODEV);
425 1.1 rvb }
426 1.1 rvb break;
427 1.9 rvb case CIOC_KERNEL_VERSION:
428 1.9 rvb switch (*(u_int *)addr) {
429 1.9 rvb case 0:
430 1.9 rvb *(u_int *)addr = coda_kernel_version;
431 1.9 rvb return 0;
432 1.9 rvb break;
433 1.9 rvb case 1:
434 1.9 rvb case 2:
435 1.9 rvb if (coda_kernel_version != *(u_int *)addr)
436 1.9 rvb return ENOENT;
437 1.9 rvb else
438 1.9 rvb return 0;
439 1.9 rvb default:
440 1.9 rvb return ENOENT;
441 1.9 rvb }
442 1.9 rvb break;
443 1.1 rvb default :
444 1.1 rvb return(EINVAL);
445 1.1 rvb break;
446 1.1 rvb }
447 1.1 rvb }
448 1.1 rvb
449 1.1 rvb int
450 1.31 christos vc_nb_poll(dev_t dev, int events, struct lwp *l)
451 1.1 rvb {
452 1.13 augustss struct vcomm *vcp;
453 1.1 rvb int event_msk = 0;
454 1.1 rvb
455 1.1 rvb ENTRY;
456 1.27 perry
457 1.47 christos if (minor(dev) >= NVCODA)
458 1.1 rvb return(ENXIO);
459 1.27 perry
460 1.3 rvb vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
461 1.27 perry
462 1.1 rvb event_msk = events & (POLLIN|POLLRDNORM);
463 1.1 rvb if (!event_msk)
464 1.1 rvb return(0);
465 1.27 perry
466 1.41 plunky if (!TAILQ_EMPTY(&vcp->vc_requests))
467 1.1 rvb return(events & (POLLIN|POLLRDNORM));
468 1.1 rvb
469 1.31 christos selrecord(l, &(vcp->vc_selproc));
470 1.27 perry
471 1.1 rvb return(0);
472 1.1 rvb }
473 1.1 rvb
474 1.21 jdolecek static void
475 1.21 jdolecek filt_vc_nb_detach(struct knote *kn)
476 1.21 jdolecek {
477 1.21 jdolecek struct vcomm *vcp = kn->kn_hook;
478 1.21 jdolecek
479 1.22 christos SLIST_REMOVE(&vcp->vc_selproc.sel_klist, kn, knote, kn_selnext);
480 1.21 jdolecek }
481 1.21 jdolecek
482 1.21 jdolecek static int
483 1.34 christos filt_vc_nb_read(struct knote *kn, long hint)
484 1.21 jdolecek {
485 1.27 perry struct vcomm *vcp = kn->kn_hook;
486 1.21 jdolecek struct vmsg *vmp;
487 1.21 jdolecek
488 1.41 plunky vmp = TAILQ_FIRST(&vcp->vc_requests);
489 1.41 plunky if (vmp == NULL)
490 1.21 jdolecek return (0);
491 1.21 jdolecek
492 1.21 jdolecek kn->kn_data = vmp->vm_inSize;
493 1.21 jdolecek return (1);
494 1.21 jdolecek }
495 1.21 jdolecek
496 1.21 jdolecek static const struct filterops vc_nb_read_filtops =
497 1.21 jdolecek { 1, NULL, filt_vc_nb_detach, filt_vc_nb_read };
498 1.21 jdolecek
499 1.21 jdolecek int
500 1.21 jdolecek vc_nb_kqfilter(dev_t dev, struct knote *kn)
501 1.21 jdolecek {
502 1.21 jdolecek struct vcomm *vcp;
503 1.21 jdolecek struct klist *klist;
504 1.21 jdolecek
505 1.21 jdolecek ENTRY;
506 1.27 perry
507 1.47 christos if (minor(dev) >= NVCODA)
508 1.21 jdolecek return(ENXIO);
509 1.27 perry
510 1.21 jdolecek vcp = &coda_mnttbl[minor(dev)].mi_vcomm;
511 1.21 jdolecek
512 1.21 jdolecek switch (kn->kn_filter) {
513 1.21 jdolecek case EVFILT_READ:
514 1.22 christos klist = &vcp->vc_selproc.sel_klist;
515 1.21 jdolecek kn->kn_fop = &vc_nb_read_filtops;
516 1.21 jdolecek break;
517 1.21 jdolecek
518 1.21 jdolecek default:
519 1.37 pooka return (EINVAL);
520 1.21 jdolecek }
521 1.21 jdolecek
522 1.21 jdolecek kn->kn_hook = vcp;
523 1.21 jdolecek
524 1.21 jdolecek SLIST_INSERT_HEAD(klist, kn, kn_selnext);
525 1.21 jdolecek
526 1.21 jdolecek return (0);
527 1.21 jdolecek }
528 1.21 jdolecek
529 1.1 rvb /*
530 1.1 rvb * Statistics
531 1.1 rvb */
532 1.3 rvb struct coda_clstat coda_clstat;
533 1.1 rvb
534 1.27 perry /*
535 1.23 wiz * Key question: whether to sleep interruptably or uninterruptably when
536 1.1 rvb * waiting for Venus. The former seems better (cause you can ^C a
537 1.1 rvb * job), but then GNU-EMACS completion breaks. Use tsleep with no
538 1.1 rvb * timeout, and no longjmp happens. But, when sleeping
539 1.1 rvb * "uninterruptibly", we don't get told if it returns abnormally
540 1.27 perry * (e.g. kill -9).
541 1.1 rvb */
542 1.1 rvb
543 1.1 rvb int
544 1.30 xtraeme coda_call(struct coda_mntinfo *mntinfo, int inSize, int *outSize,
545 1.36 christos void *buffer)
546 1.1 rvb {
547 1.1 rvb struct vcomm *vcp;
548 1.1 rvb struct vmsg *vmp;
549 1.1 rvb int error;
550 1.1 rvb #ifdef CTL_C
551 1.31 christos struct lwp *l = curlwp;
552 1.31 christos struct proc *p = l->l_proc;
553 1.4 rvb sigset_t psig_omask;
554 1.1 rvb int i;
555 1.35 ad psig_omask = l->l_sigmask; /* XXXSA */
556 1.1 rvb #endif
557 1.1 rvb if (mntinfo == NULL) {
558 1.1 rvb /* Unlikely, but could be a race condition with a dying warden */
559 1.1 rvb return ENODEV;
560 1.1 rvb }
561 1.1 rvb
562 1.1 rvb vcp = &(mntinfo->mi_vcomm);
563 1.27 perry
564 1.3 rvb coda_clstat.ncalls++;
565 1.3 rvb coda_clstat.reqs[((struct coda_in_hdr *)buffer)->opcode]++;
566 1.1 rvb
567 1.1 rvb if (!VC_OPEN(vcp))
568 1.1 rvb return(ENODEV);
569 1.1 rvb
570 1.3 rvb CODA_ALLOC(vmp,struct vmsg *,sizeof(struct vmsg));
571 1.1 rvb /* Format the request message. */
572 1.1 rvb vmp->vm_data = buffer;
573 1.1 rvb vmp->vm_flags = 0;
574 1.1 rvb vmp->vm_inSize = inSize;
575 1.27 perry vmp->vm_outSize
576 1.1 rvb = *outSize ? *outSize : inSize; /* |buffer| >= inSize */
577 1.3 rvb vmp->vm_opcode = ((struct coda_in_hdr *)buffer)->opcode;
578 1.1 rvb vmp->vm_unique = ++vcp->vc_seq;
579 1.3 rvb if (codadebug)
580 1.27 perry myprintf(("Doing a call for %d.%d\n",
581 1.1 rvb vmp->vm_opcode, vmp->vm_unique));
582 1.27 perry
583 1.1 rvb /* Fill in the common input args. */
584 1.3 rvb ((struct coda_in_hdr *)buffer)->unique = vmp->vm_unique;
585 1.1 rvb
586 1.1 rvb /* Append msg to request queue and poke Venus. */
587 1.41 plunky TAILQ_INSERT_TAIL(&vcp->vc_requests, vmp, vm_chain);
588 1.39 rmind selnotify(&(vcp->vc_selproc), 0, 0);
589 1.1 rvb
590 1.1 rvb /* We can be interrupted while we wait for Venus to process
591 1.1 rvb * our request. If the interrupt occurs before Venus has read
592 1.1 rvb * the request, we dequeue and return. If it occurs after the
593 1.1 rvb * read but before the reply, we dequeue, send a signal
594 1.1 rvb * message, and return. If it occurs after the reply we ignore
595 1.1 rvb * it. In no case do we want to restart the syscall. If it
596 1.1 rvb * was interrupted by a venus shutdown (vcclose), return
597 1.1 rvb * ENODEV. */
598 1.1 rvb
599 1.1 rvb /* Ignore return, We have to check anyway */
600 1.1 rvb #ifdef CTL_C
601 1.3 rvb /* This is work in progress. Setting coda_pcatch lets tsleep reawaken
602 1.1 rvb on a ^c or ^z. The problem is that emacs sets certain interrupts
603 1.1 rvb as SA_RESTART. This means that we should exit sleep handle the
604 1.1 rvb "signal" and then go to sleep again. Mostly this is done by letting
605 1.27 perry the syscall complete and be restarted. We are not idempotent and
606 1.1 rvb can not do this. A better solution is necessary.
607 1.1 rvb */
608 1.1 rvb i = 0;
609 1.1 rvb do {
610 1.3 rvb error = tsleep(&vmp->vm_sleep, (coda_call_sleep|coda_pcatch), "coda_call", hz*2);
611 1.1 rvb if (error == 0)
612 1.1 rvb break;
613 1.43 ad mutex_enter(p->p_lock);
614 1.35 ad if (error == EWOULDBLOCK) {
615 1.7 rvb #ifdef CODA_VERBOSE
616 1.3 rvb printf("coda_call: tsleep TIMEOUT %d sec\n", 2+2*i);
617 1.5 rvb #endif
618 1.35 ad } else if (sigispending(l, SIGIO)) {
619 1.35 ad sigaddset(&l->l_sigmask, SIGIO);
620 1.7 rvb #ifdef CODA_VERBOSE
621 1.3 rvb printf("coda_call: tsleep returns %d SIGIO, cnt %d\n", error, i);
622 1.5 rvb #endif
623 1.35 ad } else if (sigispending(l, SIGALRM)) {
624 1.35 ad sigaddset(&l->l_sigmask, SIGALRM);
625 1.8 rvb #ifdef CODA_VERBOSE
626 1.8 rvb printf("coda_call: tsleep returns %d SIGALRM, cnt %d\n", error, i);
627 1.8 rvb #endif
628 1.1 rvb } else {
629 1.4 rvb sigset_t tmp;
630 1.35 ad tmp = p->p_sigpend.sp_set; /* array assignment */
631 1.35 ad sigminusset(&l->l_sigmask, &tmp);
632 1.4 rvb
633 1.7 rvb #ifdef CODA_VERBOSE
634 1.3 rvb printf("coda_call: tsleep returns %d, cnt %d\n", error, i);
635 1.4 rvb printf("coda_call: siglist = %x.%x.%x.%x, sigmask = %x.%x.%x.%x, mask %x.%x.%x.%x\n",
636 1.35 ad p->p_sigpend.sp_set.__bits[0], p->p_sigpend.sp_set.__bits[1],
637 1.35 ad p->p_sigpend.sp_set.__bits[2], p->p_sigpend.sp_set.__bits[3],
638 1.35 ad l->l_sigmask.__bits[0], l->l_sigmask.__bits[1],
639 1.35 ad l->l_sigmask.__bits[2], l->l_sigmask.__bits[3],
640 1.4 rvb tmp.__bits[0], tmp.__bits[1], tmp.__bits[2], tmp.__bits[3]);
641 1.5 rvb #endif
642 1.43 ad mutex_exit(p->p_lock);
643 1.1 rvb break;
644 1.5 rvb #ifdef notyet
645 1.35 ad sigminusset(&l->l_sigmask, &p->p_sigpend.sp_set);
646 1.27 perry printf("coda_call: siglist = %x.%x.%x.%x, sigmask = %x.%x.%x.%x\n",
647 1.35 ad p->p_sigpend.sp_set.__bits[0], p->p_sigpend.sp_set.__bits[1],
648 1.35 ad p->p_sigpend.sp_set.__bits[2], p->p_sigpend.sp_set.__bits[3],
649 1.35 ad l->l_sigmask.__bits[0], l->l_sigmask.__bits[1],
650 1.35 ad l->l_sigmask.__bits[2], l->l_sigmask.__bits[3]);
651 1.5 rvb #endif
652 1.1 rvb }
653 1.43 ad mutex_exit(p->p_lock);
654 1.8 rvb } while (error && i++ < 128 && VC_OPEN(vcp));
655 1.35 ad l->l_sigmask = psig_omask; /* XXXSA */
656 1.1 rvb #else
657 1.3 rvb (void) tsleep(&vmp->vm_sleep, coda_call_sleep, "coda_call", 0);
658 1.1 rvb #endif
659 1.1 rvb if (VC_OPEN(vcp)) { /* Venus is still alive */
660 1.1 rvb /* Op went through, interrupt or not... */
661 1.1 rvb if (vmp->vm_flags & VM_WRITE) {
662 1.1 rvb error = 0;
663 1.1 rvb *outSize = vmp->vm_outSize;
664 1.1 rvb }
665 1.1 rvb
666 1.27 perry else if (!(vmp->vm_flags & VM_READ)) {
667 1.1 rvb /* Interrupted before venus read it. */
668 1.7 rvb #ifdef CODA_VERBOSE
669 1.7 rvb if (1)
670 1.7 rvb #else
671 1.5 rvb if (codadebug)
672 1.5 rvb #endif
673 1.1 rvb myprintf(("interrupted before read: op = %d.%d, flags = %x\n",
674 1.1 rvb vmp->vm_opcode, vmp->vm_unique, vmp->vm_flags));
675 1.41 plunky
676 1.41 plunky TAILQ_REMOVE(&vcp->vc_requests, vmp, vm_chain);
677 1.1 rvb error = EINTR;
678 1.1 rvb }
679 1.27 perry
680 1.27 perry else {
681 1.1 rvb /* (!(vmp->vm_flags & VM_WRITE)) means interrupted after
682 1.1 rvb upcall started */
683 1.1 rvb /* Interrupted after start of upcall, send venus a signal */
684 1.3 rvb struct coda_in_hdr *dog;
685 1.1 rvb struct vmsg *svmp;
686 1.27 perry
687 1.7 rvb #ifdef CODA_VERBOSE
688 1.7 rvb if (1)
689 1.7 rvb #else
690 1.5 rvb if (codadebug)
691 1.5 rvb #endif
692 1.1 rvb myprintf(("Sending Venus a signal: op = %d.%d, flags = %x\n",
693 1.1 rvb vmp->vm_opcode, vmp->vm_unique, vmp->vm_flags));
694 1.27 perry
695 1.41 plunky TAILQ_REMOVE(&vcp->vc_replies, vmp, vm_chain);
696 1.1 rvb error = EINTR;
697 1.27 perry
698 1.3 rvb CODA_ALLOC(svmp, struct vmsg *, sizeof (struct vmsg));
699 1.1 rvb
700 1.3 rvb CODA_ALLOC((svmp->vm_data), char *, sizeof (struct coda_in_hdr));
701 1.3 rvb dog = (struct coda_in_hdr *)svmp->vm_data;
702 1.27 perry
703 1.1 rvb svmp->vm_flags = 0;
704 1.3 rvb dog->opcode = svmp->vm_opcode = CODA_SIGNAL;
705 1.1 rvb dog->unique = svmp->vm_unique = vmp->vm_unique;
706 1.3 rvb svmp->vm_inSize = sizeof (struct coda_in_hdr);
707 1.3 rvb /*??? rvb */ svmp->vm_outSize = sizeof (struct coda_in_hdr);
708 1.27 perry
709 1.3 rvb if (codadebug)
710 1.3 rvb myprintf(("coda_call: enqueing signal msg (%d, %d)\n",
711 1.1 rvb svmp->vm_opcode, svmp->vm_unique));
712 1.27 perry
713 1.42 plunky /* insert at head of queue */
714 1.42 plunky TAILQ_INSERT_HEAD(&vcp->vc_requests, svmp, vm_chain);
715 1.39 rmind selnotify(&(vcp->vc_selproc), 0, 0);
716 1.1 rvb }
717 1.1 rvb }
718 1.1 rvb
719 1.1 rvb else { /* If venus died (!VC_OPEN(vcp)) */
720 1.3 rvb if (codadebug)
721 1.1 rvb myprintf(("vcclose woke op %d.%d flags %d\n",
722 1.1 rvb vmp->vm_opcode, vmp->vm_unique, vmp->vm_flags));
723 1.27 perry
724 1.1 rvb error = ENODEV;
725 1.1 rvb }
726 1.1 rvb
727 1.3 rvb CODA_FREE(vmp, sizeof(struct vmsg));
728 1.8 rvb
729 1.8 rvb if (outstanding_upcalls > 0 && (--outstanding_upcalls == 0))
730 1.8 rvb wakeup(&outstanding_upcalls);
731 1.1 rvb
732 1.1 rvb if (!error)
733 1.3 rvb error = ((struct coda_out_hdr *)buffer)->result;
734 1.1 rvb return(error);
735 1.1 rvb }
736 1.4 rvb
737 1.48 christos MODULE(MODULE_CLASS_DRIVER, vcoda, NULL);
738 1.48 christos
739 1.48 christos static int
740 1.48 christos vcoda_modcmd(modcmd_t cmd, void *arg)
741 1.48 christos {
742 1.50 christos int error = 0;
743 1.48 christos
744 1.48 christos switch (cmd) {
745 1.48 christos case MODULE_CMD_INIT:
746 1.48 christos #ifdef _MODULE
747 1.51 riz {
748 1.50 christos int cmajor, dmajor;
749 1.48 christos vcodaattach(NVCODA);
750 1.48 christos
751 1.50 christos dmajor = cmajor = -1;
752 1.48 christos return devsw_attach("vcoda", NULL, &dmajor,
753 1.48 christos &vcoda_cdevsw, &cmajor);
754 1.51 riz }
755 1.48 christos #endif
756 1.48 christos break;
757 1.48 christos
758 1.48 christos case MODULE_CMD_FINI:
759 1.48 christos #ifdef _MODULE
760 1.48 christos {
761 1.48 christos for (size_t i = 0; i < NVCODA; i++) {
762 1.48 christos struct vcomm *vcp = &coda_mnttbl[i].mi_vcomm;
763 1.48 christos if (VC_OPEN(vcp))
764 1.48 christos return EBUSY;
765 1.48 christos }
766 1.48 christos return devsw_detach(NULL, &vcoda_cdevsw);
767 1.48 christos }
768 1.48 christos #endif
769 1.48 christos break;
770 1.48 christos
771 1.48 christos case MODULE_CMD_STAT:
772 1.48 christos return ENOTTY;
773 1.48 christos
774 1.48 christos default:
775 1.48 christos return ENOTTY;
776 1.48 christos }
777 1.48 christos return error;
778 1.48 christos }
779