coda_subr.c revision 1.18 1 1.18 xtraeme /* $NetBSD: coda_subr.c,v 1.18 2005/08/30 22:24:11 xtraeme Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.17 perry *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.17 perry *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.17 perry *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.17 perry *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.17 perry *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.17 perry *
31 1.17 perry * @(#) coda/coda_subr.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.17 perry /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
37 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
38 1.1 rvb * the terms and conditions for use and redistribution.
39 1.1 rvb */
40 1.1 rvb
41 1.1 rvb /*
42 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon
43 1.1 rvb * University. Contributers include David Steere, James Kistler, and
44 1.1 rvb * M. Satyanarayanan. */
45 1.1 rvb
46 1.1 rvb /* NOTES: rvb
47 1.3 rvb * 1. Added coda_unmounting to mark all cnodes as being UNMOUNTING. This has to
48 1.1 rvb * be done before dounmount is called. Because some of the routines that
49 1.3 rvb * dounmount calls before coda_unmounted might try to force flushes to venus.
50 1.1 rvb * The vnode pager does this.
51 1.3 rvb * 2. coda_unmounting marks all cnodes scanning coda_cache.
52 1.1 rvb * 3. cfs_checkunmounting (under DEBUG) checks all cnodes by chasing the vnodes
53 1.1 rvb * under the /coda mount point.
54 1.3 rvb * 4. coda_cacheprint (under DEBUG) prints names with vnode/cnode address
55 1.1 rvb */
56 1.13 lukem
57 1.13 lukem #include <sys/cdefs.h>
58 1.18 xtraeme __KERNEL_RCSID(0, "$NetBSD: coda_subr.c,v 1.18 2005/08/30 22:24:11 xtraeme Exp $");
59 1.1 rvb
60 1.1 rvb #include <sys/param.h>
61 1.1 rvb #include <sys/systm.h>
62 1.1 rvb #include <sys/malloc.h>
63 1.1 rvb #include <sys/proc.h>
64 1.1 rvb #include <sys/select.h>
65 1.1 rvb #include <sys/mount.h>
66 1.1 rvb
67 1.4 rvb #include <coda/coda.h>
68 1.4 rvb #include <coda/cnode.h>
69 1.4 rvb #include <coda/coda_subr.h>
70 1.4 rvb #include <coda/coda_namecache.h>
71 1.1 rvb
72 1.16 mrg #ifdef _KERNEL_OPT
73 1.15 drochner #include "opt_coda_compat.h"
74 1.16 mrg #endif
75 1.15 drochner
76 1.3 rvb int coda_active = 0;
77 1.3 rvb int coda_reuse = 0;
78 1.3 rvb int coda_new = 0;
79 1.1 rvb
80 1.3 rvb struct cnode *coda_freelist = NULL;
81 1.3 rvb struct cnode *coda_cache[CODA_CACHESIZE];
82 1.1 rvb
83 1.15 drochner #define CNODE_NEXT(cp) ((cp)->c_next)
84 1.15 drochner
85 1.15 drochner #ifdef CODA_COMPAT_5
86 1.3 rvb #define coda_hash(fid) \
87 1.3 rvb (((fid)->Volume + (fid)->Vnode) & (CODA_CACHESIZE-1))
88 1.15 drochner #define IS_DIR(cnode) (cnode.Vnode & 0x1)
89 1.15 drochner #else
90 1.15 drochner #define coda_hash(fid) \
91 1.15 drochner (coda_f2i(fid) & (CODA_CACHESIZE-1))
92 1.15 drochner #define IS_DIR(cnode) (cnode.opaque[2] & 0x1)
93 1.15 drochner #endif
94 1.1 rvb
95 1.1 rvb /*
96 1.1 rvb * Allocate a cnode.
97 1.1 rvb */
98 1.1 rvb struct cnode *
99 1.3 rvb coda_alloc(void)
100 1.1 rvb {
101 1.1 rvb struct cnode *cp;
102 1.1 rvb
103 1.3 rvb if (coda_freelist) {
104 1.3 rvb cp = coda_freelist;
105 1.3 rvb coda_freelist = CNODE_NEXT(cp);
106 1.3 rvb coda_reuse++;
107 1.1 rvb }
108 1.1 rvb else {
109 1.3 rvb CODA_ALLOC(cp, struct cnode *, sizeof(struct cnode));
110 1.1 rvb /* NetBSD vnodes don't have any Pager info in them ('cause there are
111 1.1 rvb no external pagers, duh!) */
112 1.1 rvb #define VNODE_VM_INFO_INIT(vp) /* MT */
113 1.1 rvb VNODE_VM_INFO_INIT(CTOV(cp));
114 1.3 rvb coda_new++;
115 1.1 rvb }
116 1.12 thorpej memset(cp, 0, sizeof (struct cnode));
117 1.1 rvb
118 1.1 rvb return(cp);
119 1.1 rvb }
120 1.1 rvb
121 1.1 rvb /*
122 1.1 rvb * Deallocate a cnode.
123 1.1 rvb */
124 1.1 rvb void
125 1.18 xtraeme coda_free(struct cnode *cp)
126 1.1 rvb {
127 1.1 rvb
128 1.3 rvb CNODE_NEXT(cp) = coda_freelist;
129 1.3 rvb coda_freelist = cp;
130 1.1 rvb }
131 1.1 rvb
132 1.1 rvb /*
133 1.1 rvb * Put a cnode in the hash table
134 1.1 rvb */
135 1.1 rvb void
136 1.18 xtraeme coda_save(struct cnode *cp)
137 1.1 rvb {
138 1.3 rvb CNODE_NEXT(cp) = coda_cache[coda_hash(&cp->c_fid)];
139 1.3 rvb coda_cache[coda_hash(&cp->c_fid)] = cp;
140 1.1 rvb }
141 1.1 rvb
142 1.1 rvb /*
143 1.1 rvb * Remove a cnode from the hash table
144 1.1 rvb */
145 1.1 rvb void
146 1.18 xtraeme coda_unsave(struct cnode *cp)
147 1.1 rvb {
148 1.1 rvb struct cnode *ptr;
149 1.1 rvb struct cnode *ptrprev = NULL;
150 1.17 perry
151 1.17 perry ptr = coda_cache[coda_hash(&cp->c_fid)];
152 1.17 perry while (ptr != NULL) {
153 1.17 perry if (ptr == cp) {
154 1.1 rvb if (ptrprev == NULL) {
155 1.17 perry coda_cache[coda_hash(&cp->c_fid)]
156 1.1 rvb = CNODE_NEXT(ptr);
157 1.1 rvb } else {
158 1.1 rvb CNODE_NEXT(ptrprev) = CNODE_NEXT(ptr);
159 1.1 rvb }
160 1.1 rvb CNODE_NEXT(cp) = (struct cnode *)NULL;
161 1.17 perry
162 1.17 perry return;
163 1.17 perry }
164 1.1 rvb ptrprev = ptr;
165 1.1 rvb ptr = CNODE_NEXT(ptr);
166 1.17 perry }
167 1.1 rvb }
168 1.1 rvb
169 1.1 rvb /*
170 1.1 rvb * Lookup a cnode by fid. If the cnode is dying, it is bogus so skip it.
171 1.1 rvb * NOTE: this allows multiple cnodes with same fid -- dcs 1/25/95
172 1.1 rvb */
173 1.1 rvb struct cnode *
174 1.18 xtraeme coda_find(CodaFid *fid)
175 1.1 rvb {
176 1.1 rvb struct cnode *cp;
177 1.1 rvb
178 1.3 rvb cp = coda_cache[coda_hash(fid)];
179 1.1 rvb while (cp) {
180 1.15 drochner if (coda_fid_eq(&(cp->c_fid), fid) &&
181 1.1 rvb (!IS_UNMOUNTING(cp)))
182 1.1 rvb {
183 1.3 rvb coda_active++;
184 1.17 perry return(cp);
185 1.17 perry }
186 1.1 rvb cp = CNODE_NEXT(cp);
187 1.1 rvb }
188 1.1 rvb return(NULL);
189 1.1 rvb }
190 1.1 rvb
191 1.1 rvb /*
192 1.3 rvb * coda_kill is called as a side effect to vcopen. To prevent any
193 1.1 rvb * cnodes left around from an earlier run of a venus or warden from
194 1.1 rvb * causing problems with the new instance, mark any outstanding cnodes
195 1.1 rvb * as dying. Future operations on these cnodes should fail (excepting
196 1.3 rvb * coda_inactive of course!). Since multiple venii/wardens can be
197 1.1 rvb * running, only kill the cnodes for a particular entry in the
198 1.3 rvb * coda_mnttbl. -- DCS 12/1/94 */
199 1.1 rvb
200 1.1 rvb int
201 1.18 xtraeme coda_kill(struct mount *whoIam, enum dc_status dcstat)
202 1.1 rvb {
203 1.1 rvb int hash, count = 0;
204 1.1 rvb struct cnode *cp;
205 1.17 perry
206 1.17 perry /*
207 1.17 perry * Algorithm is as follows:
208 1.1 rvb * Second, flush whatever vnodes we can from the name cache.
209 1.17 perry *
210 1.1 rvb * Finally, step through whatever is left and mark them dying.
211 1.1 rvb * This prevents any operation at all.
212 1.2 rvb
213 1.1 rvb */
214 1.17 perry
215 1.1 rvb /* This is slightly overkill, but should work. Eventually it'd be
216 1.1 rvb * nice to only flush those entries from the namecache that
217 1.1 rvb * reference a vnode in this vfs. */
218 1.3 rvb coda_nc_flush(dcstat);
219 1.17 perry
220 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
221 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
222 1.1 rvb if (CTOV(cp)->v_mount == whoIam) {
223 1.1 rvb #ifdef DEBUG
224 1.3 rvb printf("coda_kill: vp %p, cp %p\n", CTOV(cp), cp);
225 1.1 rvb #endif
226 1.1 rvb count++;
227 1.17 perry CODADEBUG(CODA_FLUSH,
228 1.15 drochner myprintf(("Live cnode fid %s flags %d count %d\n",
229 1.15 drochner coda_f2s(&cp->c_fid),
230 1.1 rvb cp->c_flags,
231 1.1 rvb CTOV(cp)->v_usecount)); );
232 1.1 rvb }
233 1.1 rvb }
234 1.1 rvb }
235 1.1 rvb return count;
236 1.1 rvb }
237 1.1 rvb
238 1.1 rvb /*
239 1.1 rvb * There are two reasons why a cnode may be in use, it may be in the
240 1.17 perry * name cache or it may be executing.
241 1.1 rvb */
242 1.1 rvb void
243 1.18 xtraeme coda_flush(enum dc_status dcstat)
244 1.1 rvb {
245 1.1 rvb int hash;
246 1.1 rvb struct cnode *cp;
247 1.17 perry
248 1.3 rvb coda_clstat.ncalls++;
249 1.3 rvb coda_clstat.reqs[CODA_FLUSH]++;
250 1.17 perry
251 1.3 rvb coda_nc_flush(dcstat); /* flush files from the name cache */
252 1.1 rvb
253 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
254 1.17 perry for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
255 1.15 drochner if (!IS_DIR(cp->c_fid)) /* only files can be executed */
256 1.3 rvb coda_vmflush(cp);
257 1.1 rvb }
258 1.1 rvb }
259 1.1 rvb }
260 1.1 rvb
261 1.1 rvb /*
262 1.1 rvb * As a debugging measure, print out any cnodes that lived through a
263 1.17 perry * name cache flush.
264 1.1 rvb */
265 1.1 rvb void
266 1.3 rvb coda_testflush(void)
267 1.1 rvb {
268 1.1 rvb int hash;
269 1.1 rvb struct cnode *cp;
270 1.17 perry
271 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
272 1.3 rvb for (cp = coda_cache[hash];
273 1.1 rvb cp != NULL;
274 1.17 perry cp = CNODE_NEXT(cp)) {
275 1.15 drochner myprintf(("Live cnode fid %s count %d\n",
276 1.15 drochner coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount));
277 1.1 rvb }
278 1.1 rvb }
279 1.1 rvb }
280 1.1 rvb
281 1.1 rvb /*
282 1.1 rvb * First, step through all cnodes and mark them unmounting.
283 1.1 rvb * NetBSD kernels may try to fsync them now that venus
284 1.1 rvb * is dead, which would be a bad thing.
285 1.1 rvb *
286 1.1 rvb */
287 1.1 rvb void
288 1.18 xtraeme coda_unmounting(struct mount *whoIam)
289 1.17 perry {
290 1.1 rvb int hash;
291 1.1 rvb struct cnode *cp;
292 1.1 rvb
293 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
294 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
295 1.1 rvb if (CTOV(cp)->v_mount == whoIam) {
296 1.1 rvb if (cp->c_flags & (C_LOCKED|C_WANTED)) {
297 1.3 rvb printf("coda_unmounting: Unlocking %p\n", cp);
298 1.1 rvb cp->c_flags &= ~(C_LOCKED|C_WANTED);
299 1.1 rvb wakeup((caddr_t) cp);
300 1.1 rvb }
301 1.1 rvb cp->c_flags |= C_UNMOUNTING;
302 1.1 rvb }
303 1.1 rvb }
304 1.1 rvb }
305 1.1 rvb }
306 1.1 rvb
307 1.1 rvb #ifdef DEBUG
308 1.5 rvb void
309 1.18 xtraeme coda_checkunmounting(struct mount *mp)
310 1.17 perry {
311 1.9 augustss struct vnode *vp, *nvp;
312 1.1 rvb struct cnode *cp;
313 1.1 rvb int count = 0, bad = 0;
314 1.1 rvb loop:
315 1.1 rvb for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
316 1.1 rvb if (vp->v_mount != mp)
317 1.1 rvb goto loop;
318 1.1 rvb nvp = vp->v_mntvnodes.le_next;
319 1.1 rvb cp = VTOC(vp);
320 1.1 rvb count++;
321 1.1 rvb if (!(cp->c_flags & C_UNMOUNTING)) {
322 1.1 rvb bad++;
323 1.1 rvb printf("vp %p, cp %p missed\n", vp, cp);
324 1.1 rvb cp->c_flags |= C_UNMOUNTING;
325 1.1 rvb }
326 1.1 rvb }
327 1.1 rvb }
328 1.1 rvb
329 1.5 rvb void
330 1.18 xtraeme coda_cacheprint(struct mount *whoIam)
331 1.17 perry {
332 1.1 rvb int hash;
333 1.1 rvb struct cnode *cp;
334 1.1 rvb int count = 0;
335 1.1 rvb
336 1.3 rvb printf("coda_cacheprint: coda_ctlvp %p, cp %p", coda_ctlvp, VTOC(coda_ctlvp));
337 1.5 rvb coda_nc_name(VTOC(coda_ctlvp));
338 1.1 rvb printf("\n");
339 1.1 rvb
340 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
341 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
342 1.1 rvb if (CTOV(cp)->v_mount == whoIam) {
343 1.3 rvb printf("coda_cacheprint: vp %p, cp %p", CTOV(cp), cp);
344 1.3 rvb coda_nc_name(cp);
345 1.1 rvb printf("\n");
346 1.1 rvb count++;
347 1.1 rvb }
348 1.1 rvb }
349 1.1 rvb }
350 1.3 rvb printf("coda_cacheprint: count %d\n", count);
351 1.1 rvb }
352 1.1 rvb #endif
353 1.1 rvb
354 1.1 rvb /*
355 1.1 rvb * There are 6 cases where invalidations occur. The semantics of each
356 1.1 rvb * is listed here.
357 1.1 rvb *
358 1.3 rvb * CODA_FLUSH -- flush all entries from the name cache and the cnode cache.
359 1.3 rvb * CODA_PURGEUSER -- flush all entries from the name cache for a specific user
360 1.1 rvb * This call is a result of token expiration.
361 1.1 rvb *
362 1.1 rvb * The next two are the result of callbacks on a file or directory.
363 1.3 rvb * CODA_ZAPDIR -- flush the attributes for the dir from its cnode.
364 1.1 rvb * Zap all children of this directory from the namecache.
365 1.3 rvb * CODA_ZAPFILE -- flush the attributes for a file.
366 1.1 rvb *
367 1.1 rvb * The fifth is a result of Venus detecting an inconsistent file.
368 1.3 rvb * CODA_PURGEFID -- flush the attribute for the file
369 1.17 perry * If it is a dir (odd vnode), purge its
370 1.1 rvb * children from the namecache
371 1.1 rvb * remove the file from the namecache.
372 1.1 rvb *
373 1.1 rvb * The sixth allows Venus to replace local fids with global ones
374 1.1 rvb * during reintegration.
375 1.1 rvb *
376 1.17 perry * CODA_REPLACE -- replace one CodaFid with another throughout the name cache
377 1.1 rvb */
378 1.1 rvb
379 1.18 xtraeme int handleDownCall(int opcode, union outputArgs *out)
380 1.1 rvb {
381 1.1 rvb int error;
382 1.1 rvb
383 1.1 rvb /* Handle invalidate requests. */
384 1.1 rvb switch (opcode) {
385 1.3 rvb case CODA_FLUSH : {
386 1.1 rvb
387 1.3 rvb coda_flush(IS_DOWNCALL);
388 1.17 perry
389 1.3 rvb CODADEBUG(CODA_FLUSH,coda_testflush();) /* print remaining cnodes */
390 1.1 rvb return(0);
391 1.1 rvb }
392 1.17 perry
393 1.3 rvb case CODA_PURGEUSER : {
394 1.3 rvb coda_clstat.ncalls++;
395 1.3 rvb coda_clstat.reqs[CODA_PURGEUSER]++;
396 1.17 perry
397 1.1 rvb /* XXX - need to prevent fsync's */
398 1.15 drochner #ifdef CODA_COMPAT_5
399 1.3 rvb coda_nc_purge_user(out->coda_purgeuser.cred.cr_uid, IS_DOWNCALL);
400 1.15 drochner #else
401 1.15 drochner coda_nc_purge_user(out->coda_purgeuser.uid, IS_DOWNCALL);
402 1.15 drochner #endif
403 1.1 rvb return(0);
404 1.1 rvb }
405 1.17 perry
406 1.3 rvb case CODA_ZAPFILE : {
407 1.1 rvb struct cnode *cp;
408 1.1 rvb
409 1.1 rvb error = 0;
410 1.3 rvb coda_clstat.ncalls++;
411 1.3 rvb coda_clstat.reqs[CODA_ZAPFILE]++;
412 1.17 perry
413 1.15 drochner cp = coda_find(&out->coda_zapfile.Fid);
414 1.1 rvb if (cp != NULL) {
415 1.1 rvb vref(CTOV(cp));
416 1.17 perry
417 1.1 rvb cp->c_flags &= ~C_VATTR;
418 1.1 rvb if (CTOV(cp)->v_flag & VTEXT)
419 1.3 rvb error = coda_vmflush(cp);
420 1.11 lukem CODADEBUG(CODA_ZAPFILE, myprintf((
421 1.15 drochner "zapfile: fid = %s, refcnt = %d, error = %d\n",
422 1.15 drochner coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount - 1, error)););
423 1.1 rvb if (CTOV(cp)->v_usecount == 1) {
424 1.1 rvb cp->c_flags |= C_PURGING;
425 1.1 rvb }
426 1.1 rvb vrele(CTOV(cp));
427 1.1 rvb }
428 1.17 perry
429 1.1 rvb return(error);
430 1.1 rvb }
431 1.17 perry
432 1.3 rvb case CODA_ZAPDIR : {
433 1.1 rvb struct cnode *cp;
434 1.1 rvb
435 1.3 rvb coda_clstat.ncalls++;
436 1.3 rvb coda_clstat.reqs[CODA_ZAPDIR]++;
437 1.17 perry
438 1.15 drochner cp = coda_find(&out->coda_zapdir.Fid);
439 1.1 rvb if (cp != NULL) {
440 1.1 rvb vref(CTOV(cp));
441 1.17 perry
442 1.1 rvb cp->c_flags &= ~C_VATTR;
443 1.17 perry coda_nc_zapParentfid(&out->coda_zapdir.Fid, IS_DOWNCALL);
444 1.17 perry
445 1.11 lukem CODADEBUG(CODA_ZAPDIR, myprintf((
446 1.15 drochner "zapdir: fid = %s, refcnt = %d\n",
447 1.15 drochner coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount - 1)););
448 1.1 rvb if (CTOV(cp)->v_usecount == 1) {
449 1.1 rvb cp->c_flags |= C_PURGING;
450 1.1 rvb }
451 1.1 rvb vrele(CTOV(cp));
452 1.1 rvb }
453 1.17 perry
454 1.1 rvb return(0);
455 1.1 rvb }
456 1.17 perry
457 1.3 rvb case CODA_PURGEFID : {
458 1.1 rvb struct cnode *cp;
459 1.1 rvb
460 1.1 rvb error = 0;
461 1.3 rvb coda_clstat.ncalls++;
462 1.3 rvb coda_clstat.reqs[CODA_PURGEFID]++;
463 1.1 rvb
464 1.15 drochner cp = coda_find(&out->coda_purgefid.Fid);
465 1.1 rvb if (cp != NULL) {
466 1.1 rvb vref(CTOV(cp));
467 1.15 drochner if (IS_DIR(out->coda_purgefid.Fid)) { /* Vnode is a directory */
468 1.15 drochner coda_nc_zapParentfid(&out->coda_purgefid.Fid,
469 1.17 perry IS_DOWNCALL);
470 1.1 rvb }
471 1.1 rvb cp->c_flags &= ~C_VATTR;
472 1.15 drochner coda_nc_zapfid(&out->coda_purgefid.Fid, IS_DOWNCALL);
473 1.17 perry if (!(IS_DIR(out->coda_purgefid.Fid))
474 1.1 rvb && (CTOV(cp)->v_flag & VTEXT)) {
475 1.17 perry
476 1.3 rvb error = coda_vmflush(cp);
477 1.1 rvb }
478 1.15 drochner CODADEBUG(CODA_PURGEFID, myprintf((
479 1.15 drochner "purgefid: fid = %s, refcnt = %d, error = %d\n",
480 1.15 drochner coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount - 1, error)););
481 1.1 rvb if (CTOV(cp)->v_usecount == 1) {
482 1.1 rvb cp->c_flags |= C_PURGING;
483 1.1 rvb }
484 1.1 rvb vrele(CTOV(cp));
485 1.1 rvb }
486 1.1 rvb return(error);
487 1.1 rvb }
488 1.1 rvb
489 1.3 rvb case CODA_REPLACE : {
490 1.1 rvb struct cnode *cp = NULL;
491 1.1 rvb
492 1.3 rvb coda_clstat.ncalls++;
493 1.3 rvb coda_clstat.reqs[CODA_REPLACE]++;
494 1.17 perry
495 1.3 rvb cp = coda_find(&out->coda_replace.OldFid);
496 1.17 perry if (cp != NULL) {
497 1.1 rvb /* remove the cnode from the hash table, replace the fid, and reinsert */
498 1.1 rvb vref(CTOV(cp));
499 1.3 rvb coda_unsave(cp);
500 1.3 rvb cp->c_fid = out->coda_replace.NewFid;
501 1.3 rvb coda_save(cp);
502 1.3 rvb
503 1.15 drochner CODADEBUG(CODA_REPLACE, myprintf((
504 1.15 drochner "replace: oldfid = %s, newfid = %s, cp = %p\n",
505 1.15 drochner coda_f2s(&out->coda_replace.OldFid),
506 1.15 drochner coda_f2s(&cp->c_fid), cp));)
507 1.1 rvb vrele(CTOV(cp));
508 1.1 rvb }
509 1.1 rvb return (0);
510 1.1 rvb }
511 1.1 rvb default:
512 1.1 rvb myprintf(("handleDownCall: unknown opcode %d\n", opcode));
513 1.1 rvb return (EINVAL);
514 1.1 rvb }
515 1.1 rvb }
516 1.1 rvb
517 1.3 rvb /* coda_grab_vnode: lives in either cfs_mach.c or cfs_nbsd.c */
518 1.1 rvb
519 1.1 rvb int
520 1.18 xtraeme coda_vmflush(struct cnode *cp)
521 1.1 rvb {
522 1.1 rvb return 0;
523 1.1 rvb }
524 1.1 rvb
525 1.1 rvb
526 1.17 perry /*
527 1.1 rvb * kernel-internal debugging switches
528 1.1 rvb */
529 1.1 rvb
530 1.3 rvb void coda_debugon(void)
531 1.1 rvb {
532 1.3 rvb codadebug = -1;
533 1.3 rvb coda_nc_debug = -1;
534 1.3 rvb coda_vnop_print_entry = 1;
535 1.3 rvb coda_psdev_print_entry = 1;
536 1.3 rvb coda_vfsop_print_entry = 1;
537 1.3 rvb }
538 1.3 rvb
539 1.3 rvb void coda_debugoff(void)
540 1.3 rvb {
541 1.3 rvb codadebug = 0;
542 1.3 rvb coda_nc_debug = 0;
543 1.3 rvb coda_vnop_print_entry = 0;
544 1.3 rvb coda_psdev_print_entry = 0;
545 1.3 rvb coda_vfsop_print_entry = 0;
546 1.1 rvb }
547 1.1 rvb
548 1.1 rvb /*
549 1.1 rvb * Utilities used by both client and server
550 1.1 rvb * Standard levels:
551 1.1 rvb * 0) no debugging
552 1.1 rvb * 1) hard failures
553 1.1 rvb * 2) soft failures
554 1.1 rvb * 3) current test software
555 1.1 rvb * 4) main procedure entry points
556 1.1 rvb * 5) main procedure exit points
557 1.1 rvb * 6) utility procedure entry points
558 1.1 rvb * 7) utility procedure exit points
559 1.1 rvb * 8) obscure procedure entry points
560 1.1 rvb * 9) obscure procedure exit points
561 1.1 rvb * 10) random stuff
562 1.1 rvb * 11) all <= 1
563 1.1 rvb * 12) all <= 2
564 1.1 rvb * 13) all <= 3
565 1.1 rvb * ...
566 1.1 rvb */
567