coda_subr.c revision 1.25.2.2 1 1.25.2.2 yamt /* $NetBSD: coda_subr.c,v 1.25.2.2 2012/10/30 17:20:38 yamt Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.17 perry *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.17 perry *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.17 perry *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.17 perry *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.17 perry *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.17 perry *
31 1.17 perry * @(#) coda/coda_subr.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.17 perry /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
37 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
38 1.1 rvb * the terms and conditions for use and redistribution.
39 1.1 rvb */
40 1.1 rvb
41 1.1 rvb /*
42 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon
43 1.1 rvb * University. Contributers include David Steere, James Kistler, and
44 1.1 rvb * M. Satyanarayanan. */
45 1.1 rvb
46 1.1 rvb /* NOTES: rvb
47 1.3 rvb * 1. Added coda_unmounting to mark all cnodes as being UNMOUNTING. This has to
48 1.1 rvb * be done before dounmount is called. Because some of the routines that
49 1.3 rvb * dounmount calls before coda_unmounted might try to force flushes to venus.
50 1.1 rvb * The vnode pager does this.
51 1.3 rvb * 2. coda_unmounting marks all cnodes scanning coda_cache.
52 1.1 rvb * 3. cfs_checkunmounting (under DEBUG) checks all cnodes by chasing the vnodes
53 1.1 rvb * under the /coda mount point.
54 1.3 rvb * 4. coda_cacheprint (under DEBUG) prints names with vnode/cnode address
55 1.1 rvb */
56 1.13 lukem
57 1.13 lukem #include <sys/cdefs.h>
58 1.25.2.2 yamt __KERNEL_RCSID(0, "$NetBSD: coda_subr.c,v 1.25.2.2 2012/10/30 17:20:38 yamt Exp $");
59 1.1 rvb
60 1.1 rvb #include <sys/param.h>
61 1.1 rvb #include <sys/systm.h>
62 1.1 rvb #include <sys/malloc.h>
63 1.1 rvb #include <sys/proc.h>
64 1.1 rvb #include <sys/select.h>
65 1.1 rvb #include <sys/mount.h>
66 1.25.2.2 yamt #include <sys/kauth.h>
67 1.1 rvb
68 1.4 rvb #include <coda/coda.h>
69 1.4 rvb #include <coda/cnode.h>
70 1.4 rvb #include <coda/coda_subr.h>
71 1.4 rvb #include <coda/coda_namecache.h>
72 1.1 rvb
73 1.16 mrg #ifdef _KERNEL_OPT
74 1.15 drochner #include "opt_coda_compat.h"
75 1.16 mrg #endif
76 1.15 drochner
77 1.3 rvb int coda_active = 0;
78 1.3 rvb int coda_reuse = 0;
79 1.3 rvb int coda_new = 0;
80 1.1 rvb
81 1.3 rvb struct cnode *coda_freelist = NULL;
82 1.3 rvb struct cnode *coda_cache[CODA_CACHESIZE];
83 1.25.2.1 yamt MALLOC_DEFINE(M_CODA, "coda", "Coda file system structures and tables");
84 1.25.2.1 yamt
85 1.25.2.1 yamt int codadebug = 0;
86 1.25.2.1 yamt int coda_printf_delay = 0; /* in microseconds */
87 1.25.2.1 yamt int coda_vnop_print_entry = 0;
88 1.25.2.1 yamt int coda_vfsop_print_entry = 0;
89 1.1 rvb
90 1.15 drochner #define CNODE_NEXT(cp) ((cp)->c_next)
91 1.15 drochner
92 1.15 drochner #ifdef CODA_COMPAT_5
93 1.3 rvb #define coda_hash(fid) \
94 1.3 rvb (((fid)->Volume + (fid)->Vnode) & (CODA_CACHESIZE-1))
95 1.15 drochner #define IS_DIR(cnode) (cnode.Vnode & 0x1)
96 1.15 drochner #else
97 1.15 drochner #define coda_hash(fid) \
98 1.15 drochner (coda_f2i(fid) & (CODA_CACHESIZE-1))
99 1.15 drochner #define IS_DIR(cnode) (cnode.opaque[2] & 0x1)
100 1.15 drochner #endif
101 1.1 rvb
102 1.25.2.2 yamt struct vnode *coda_ctlvp;
103 1.25.2.2 yamt
104 1.1 rvb /*
105 1.1 rvb * Allocate a cnode.
106 1.1 rvb */
107 1.1 rvb struct cnode *
108 1.3 rvb coda_alloc(void)
109 1.1 rvb {
110 1.1 rvb struct cnode *cp;
111 1.1 rvb
112 1.3 rvb if (coda_freelist) {
113 1.3 rvb cp = coda_freelist;
114 1.3 rvb coda_freelist = CNODE_NEXT(cp);
115 1.3 rvb coda_reuse++;
116 1.1 rvb }
117 1.1 rvb else {
118 1.3 rvb CODA_ALLOC(cp, struct cnode *, sizeof(struct cnode));
119 1.1 rvb /* NetBSD vnodes don't have any Pager info in them ('cause there are
120 1.1 rvb no external pagers, duh!) */
121 1.1 rvb #define VNODE_VM_INFO_INIT(vp) /* MT */
122 1.1 rvb VNODE_VM_INFO_INIT(CTOV(cp));
123 1.3 rvb coda_new++;
124 1.1 rvb }
125 1.12 thorpej memset(cp, 0, sizeof (struct cnode));
126 1.1 rvb
127 1.1 rvb return(cp);
128 1.1 rvb }
129 1.1 rvb
130 1.1 rvb /*
131 1.1 rvb * Deallocate a cnode.
132 1.1 rvb */
133 1.1 rvb void
134 1.18 xtraeme coda_free(struct cnode *cp)
135 1.1 rvb {
136 1.1 rvb
137 1.3 rvb CNODE_NEXT(cp) = coda_freelist;
138 1.3 rvb coda_freelist = cp;
139 1.1 rvb }
140 1.1 rvb
141 1.1 rvb /*
142 1.1 rvb * Put a cnode in the hash table
143 1.1 rvb */
144 1.1 rvb void
145 1.18 xtraeme coda_save(struct cnode *cp)
146 1.1 rvb {
147 1.3 rvb CNODE_NEXT(cp) = coda_cache[coda_hash(&cp->c_fid)];
148 1.3 rvb coda_cache[coda_hash(&cp->c_fid)] = cp;
149 1.1 rvb }
150 1.1 rvb
151 1.1 rvb /*
152 1.1 rvb * Remove a cnode from the hash table
153 1.1 rvb */
154 1.1 rvb void
155 1.18 xtraeme coda_unsave(struct cnode *cp)
156 1.1 rvb {
157 1.1 rvb struct cnode *ptr;
158 1.1 rvb struct cnode *ptrprev = NULL;
159 1.17 perry
160 1.17 perry ptr = coda_cache[coda_hash(&cp->c_fid)];
161 1.17 perry while (ptr != NULL) {
162 1.17 perry if (ptr == cp) {
163 1.1 rvb if (ptrprev == NULL) {
164 1.17 perry coda_cache[coda_hash(&cp->c_fid)]
165 1.1 rvb = CNODE_NEXT(ptr);
166 1.1 rvb } else {
167 1.1 rvb CNODE_NEXT(ptrprev) = CNODE_NEXT(ptr);
168 1.1 rvb }
169 1.25 plunky CNODE_NEXT(cp) = NULL;
170 1.17 perry
171 1.17 perry return;
172 1.17 perry }
173 1.1 rvb ptrprev = ptr;
174 1.1 rvb ptr = CNODE_NEXT(ptr);
175 1.17 perry }
176 1.1 rvb }
177 1.1 rvb
178 1.1 rvb /*
179 1.1 rvb * Lookup a cnode by fid. If the cnode is dying, it is bogus so skip it.
180 1.1 rvb * NOTE: this allows multiple cnodes with same fid -- dcs 1/25/95
181 1.1 rvb */
182 1.1 rvb struct cnode *
183 1.18 xtraeme coda_find(CodaFid *fid)
184 1.1 rvb {
185 1.1 rvb struct cnode *cp;
186 1.1 rvb
187 1.3 rvb cp = coda_cache[coda_hash(fid)];
188 1.1 rvb while (cp) {
189 1.15 drochner if (coda_fid_eq(&(cp->c_fid), fid) &&
190 1.1 rvb (!IS_UNMOUNTING(cp)))
191 1.1 rvb {
192 1.3 rvb coda_active++;
193 1.17 perry return(cp);
194 1.17 perry }
195 1.1 rvb cp = CNODE_NEXT(cp);
196 1.1 rvb }
197 1.1 rvb return(NULL);
198 1.1 rvb }
199 1.1 rvb
200 1.1 rvb /*
201 1.3 rvb * coda_kill is called as a side effect to vcopen. To prevent any
202 1.1 rvb * cnodes left around from an earlier run of a venus or warden from
203 1.1 rvb * causing problems with the new instance, mark any outstanding cnodes
204 1.1 rvb * as dying. Future operations on these cnodes should fail (excepting
205 1.3 rvb * coda_inactive of course!). Since multiple venii/wardens can be
206 1.1 rvb * running, only kill the cnodes for a particular entry in the
207 1.3 rvb * coda_mnttbl. -- DCS 12/1/94 */
208 1.1 rvb
209 1.1 rvb int
210 1.18 xtraeme coda_kill(struct mount *whoIam, enum dc_status dcstat)
211 1.1 rvb {
212 1.1 rvb int hash, count = 0;
213 1.1 rvb struct cnode *cp;
214 1.17 perry
215 1.17 perry /*
216 1.17 perry * Algorithm is as follows:
217 1.1 rvb * Second, flush whatever vnodes we can from the name cache.
218 1.17 perry *
219 1.1 rvb * Finally, step through whatever is left and mark them dying.
220 1.1 rvb * This prevents any operation at all.
221 1.2 rvb
222 1.1 rvb */
223 1.17 perry
224 1.1 rvb /* This is slightly overkill, but should work. Eventually it'd be
225 1.1 rvb * nice to only flush those entries from the namecache that
226 1.1 rvb * reference a vnode in this vfs. */
227 1.3 rvb coda_nc_flush(dcstat);
228 1.17 perry
229 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
230 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
231 1.1 rvb if (CTOV(cp)->v_mount == whoIam) {
232 1.1 rvb #ifdef DEBUG
233 1.3 rvb printf("coda_kill: vp %p, cp %p\n", CTOV(cp), cp);
234 1.1 rvb #endif
235 1.1 rvb count++;
236 1.17 perry CODADEBUG(CODA_FLUSH,
237 1.15 drochner myprintf(("Live cnode fid %s flags %d count %d\n",
238 1.15 drochner coda_f2s(&cp->c_fid),
239 1.1 rvb cp->c_flags,
240 1.1 rvb CTOV(cp)->v_usecount)); );
241 1.1 rvb }
242 1.1 rvb }
243 1.1 rvb }
244 1.1 rvb return count;
245 1.1 rvb }
246 1.1 rvb
247 1.1 rvb /*
248 1.1 rvb * There are two reasons why a cnode may be in use, it may be in the
249 1.17 perry * name cache or it may be executing.
250 1.1 rvb */
251 1.1 rvb void
252 1.18 xtraeme coda_flush(enum dc_status dcstat)
253 1.1 rvb {
254 1.1 rvb int hash;
255 1.1 rvb struct cnode *cp;
256 1.17 perry
257 1.3 rvb coda_clstat.ncalls++;
258 1.3 rvb coda_clstat.reqs[CODA_FLUSH]++;
259 1.17 perry
260 1.3 rvb coda_nc_flush(dcstat); /* flush files from the name cache */
261 1.1 rvb
262 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
263 1.17 perry for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
264 1.15 drochner if (!IS_DIR(cp->c_fid)) /* only files can be executed */
265 1.3 rvb coda_vmflush(cp);
266 1.1 rvb }
267 1.1 rvb }
268 1.1 rvb }
269 1.1 rvb
270 1.1 rvb /*
271 1.1 rvb * As a debugging measure, print out any cnodes that lived through a
272 1.17 perry * name cache flush.
273 1.1 rvb */
274 1.1 rvb void
275 1.3 rvb coda_testflush(void)
276 1.1 rvb {
277 1.1 rvb int hash;
278 1.1 rvb struct cnode *cp;
279 1.17 perry
280 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
281 1.3 rvb for (cp = coda_cache[hash];
282 1.1 rvb cp != NULL;
283 1.17 perry cp = CNODE_NEXT(cp)) {
284 1.15 drochner myprintf(("Live cnode fid %s count %d\n",
285 1.15 drochner coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount));
286 1.1 rvb }
287 1.1 rvb }
288 1.1 rvb }
289 1.1 rvb
290 1.1 rvb /*
291 1.1 rvb * First, step through all cnodes and mark them unmounting.
292 1.1 rvb * NetBSD kernels may try to fsync them now that venus
293 1.1 rvb * is dead, which would be a bad thing.
294 1.1 rvb *
295 1.1 rvb */
296 1.1 rvb void
297 1.18 xtraeme coda_unmounting(struct mount *whoIam)
298 1.17 perry {
299 1.1 rvb int hash;
300 1.1 rvb struct cnode *cp;
301 1.1 rvb
302 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
303 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
304 1.1 rvb if (CTOV(cp)->v_mount == whoIam) {
305 1.1 rvb if (cp->c_flags & (C_LOCKED|C_WANTED)) {
306 1.3 rvb printf("coda_unmounting: Unlocking %p\n", cp);
307 1.1 rvb cp->c_flags &= ~(C_LOCKED|C_WANTED);
308 1.23 christos wakeup((void *) cp);
309 1.1 rvb }
310 1.1 rvb cp->c_flags |= C_UNMOUNTING;
311 1.1 rvb }
312 1.1 rvb }
313 1.1 rvb }
314 1.1 rvb }
315 1.1 rvb
316 1.1 rvb #ifdef DEBUG
317 1.5 rvb void
318 1.18 xtraeme coda_checkunmounting(struct mount *mp)
319 1.17 perry {
320 1.21 reinoud struct vnode *vp;
321 1.1 rvb struct cnode *cp;
322 1.1 rvb int count = 0, bad = 0;
323 1.1 rvb loop:
324 1.21 reinoud TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
325 1.1 rvb if (vp->v_mount != mp)
326 1.1 rvb goto loop;
327 1.1 rvb cp = VTOC(vp);
328 1.1 rvb count++;
329 1.1 rvb if (!(cp->c_flags & C_UNMOUNTING)) {
330 1.1 rvb bad++;
331 1.1 rvb printf("vp %p, cp %p missed\n", vp, cp);
332 1.1 rvb cp->c_flags |= C_UNMOUNTING;
333 1.1 rvb }
334 1.1 rvb }
335 1.1 rvb }
336 1.1 rvb
337 1.5 rvb void
338 1.18 xtraeme coda_cacheprint(struct mount *whoIam)
339 1.17 perry {
340 1.1 rvb int hash;
341 1.1 rvb struct cnode *cp;
342 1.1 rvb int count = 0;
343 1.1 rvb
344 1.3 rvb printf("coda_cacheprint: coda_ctlvp %p, cp %p", coda_ctlvp, VTOC(coda_ctlvp));
345 1.5 rvb coda_nc_name(VTOC(coda_ctlvp));
346 1.1 rvb printf("\n");
347 1.1 rvb
348 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
349 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
350 1.1 rvb if (CTOV(cp)->v_mount == whoIam) {
351 1.3 rvb printf("coda_cacheprint: vp %p, cp %p", CTOV(cp), cp);
352 1.3 rvb coda_nc_name(cp);
353 1.1 rvb printf("\n");
354 1.1 rvb count++;
355 1.1 rvb }
356 1.1 rvb }
357 1.1 rvb }
358 1.3 rvb printf("coda_cacheprint: count %d\n", count);
359 1.1 rvb }
360 1.1 rvb #endif
361 1.1 rvb
362 1.1 rvb /*
363 1.1 rvb * There are 6 cases where invalidations occur. The semantics of each
364 1.1 rvb * is listed here.
365 1.1 rvb *
366 1.3 rvb * CODA_FLUSH -- flush all entries from the name cache and the cnode cache.
367 1.3 rvb * CODA_PURGEUSER -- flush all entries from the name cache for a specific user
368 1.1 rvb * This call is a result of token expiration.
369 1.1 rvb *
370 1.1 rvb * The next two are the result of callbacks on a file or directory.
371 1.3 rvb * CODA_ZAPDIR -- flush the attributes for the dir from its cnode.
372 1.1 rvb * Zap all children of this directory from the namecache.
373 1.3 rvb * CODA_ZAPFILE -- flush the attributes for a file.
374 1.1 rvb *
375 1.1 rvb * The fifth is a result of Venus detecting an inconsistent file.
376 1.3 rvb * CODA_PURGEFID -- flush the attribute for the file
377 1.17 perry * If it is a dir (odd vnode), purge its
378 1.1 rvb * children from the namecache
379 1.1 rvb * remove the file from the namecache.
380 1.1 rvb *
381 1.1 rvb * The sixth allows Venus to replace local fids with global ones
382 1.1 rvb * during reintegration.
383 1.1 rvb *
384 1.17 perry * CODA_REPLACE -- replace one CodaFid with another throughout the name cache
385 1.1 rvb */
386 1.1 rvb
387 1.18 xtraeme int handleDownCall(int opcode, union outputArgs *out)
388 1.1 rvb {
389 1.1 rvb int error;
390 1.1 rvb
391 1.1 rvb /* Handle invalidate requests. */
392 1.1 rvb switch (opcode) {
393 1.3 rvb case CODA_FLUSH : {
394 1.1 rvb
395 1.3 rvb coda_flush(IS_DOWNCALL);
396 1.17 perry
397 1.3 rvb CODADEBUG(CODA_FLUSH,coda_testflush();) /* print remaining cnodes */
398 1.1 rvb return(0);
399 1.1 rvb }
400 1.17 perry
401 1.3 rvb case CODA_PURGEUSER : {
402 1.3 rvb coda_clstat.ncalls++;
403 1.3 rvb coda_clstat.reqs[CODA_PURGEUSER]++;
404 1.17 perry
405 1.1 rvb /* XXX - need to prevent fsync's */
406 1.15 drochner #ifdef CODA_COMPAT_5
407 1.3 rvb coda_nc_purge_user(out->coda_purgeuser.cred.cr_uid, IS_DOWNCALL);
408 1.15 drochner #else
409 1.15 drochner coda_nc_purge_user(out->coda_purgeuser.uid, IS_DOWNCALL);
410 1.15 drochner #endif
411 1.1 rvb return(0);
412 1.1 rvb }
413 1.17 perry
414 1.3 rvb case CODA_ZAPFILE : {
415 1.1 rvb struct cnode *cp;
416 1.1 rvb
417 1.1 rvb error = 0;
418 1.3 rvb coda_clstat.ncalls++;
419 1.3 rvb coda_clstat.reqs[CODA_ZAPFILE]++;
420 1.17 perry
421 1.15 drochner cp = coda_find(&out->coda_zapfile.Fid);
422 1.1 rvb if (cp != NULL) {
423 1.1 rvb vref(CTOV(cp));
424 1.17 perry
425 1.1 rvb cp->c_flags &= ~C_VATTR;
426 1.24 ad if (CTOV(cp)->v_iflag & VI_TEXT)
427 1.3 rvb error = coda_vmflush(cp);
428 1.11 lukem CODADEBUG(CODA_ZAPFILE, myprintf((
429 1.15 drochner "zapfile: fid = %s, refcnt = %d, error = %d\n",
430 1.15 drochner coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount - 1, error)););
431 1.1 rvb if (CTOV(cp)->v_usecount == 1) {
432 1.1 rvb cp->c_flags |= C_PURGING;
433 1.1 rvb }
434 1.1 rvb vrele(CTOV(cp));
435 1.1 rvb }
436 1.17 perry
437 1.1 rvb return(error);
438 1.1 rvb }
439 1.17 perry
440 1.3 rvb case CODA_ZAPDIR : {
441 1.1 rvb struct cnode *cp;
442 1.1 rvb
443 1.3 rvb coda_clstat.ncalls++;
444 1.3 rvb coda_clstat.reqs[CODA_ZAPDIR]++;
445 1.17 perry
446 1.15 drochner cp = coda_find(&out->coda_zapdir.Fid);
447 1.1 rvb if (cp != NULL) {
448 1.1 rvb vref(CTOV(cp));
449 1.17 perry
450 1.1 rvb cp->c_flags &= ~C_VATTR;
451 1.17 perry coda_nc_zapParentfid(&out->coda_zapdir.Fid, IS_DOWNCALL);
452 1.17 perry
453 1.11 lukem CODADEBUG(CODA_ZAPDIR, myprintf((
454 1.15 drochner "zapdir: fid = %s, refcnt = %d\n",
455 1.15 drochner coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount - 1)););
456 1.1 rvb if (CTOV(cp)->v_usecount == 1) {
457 1.1 rvb cp->c_flags |= C_PURGING;
458 1.1 rvb }
459 1.1 rvb vrele(CTOV(cp));
460 1.1 rvb }
461 1.17 perry
462 1.1 rvb return(0);
463 1.1 rvb }
464 1.17 perry
465 1.3 rvb case CODA_PURGEFID : {
466 1.1 rvb struct cnode *cp;
467 1.1 rvb
468 1.1 rvb error = 0;
469 1.3 rvb coda_clstat.ncalls++;
470 1.3 rvb coda_clstat.reqs[CODA_PURGEFID]++;
471 1.1 rvb
472 1.15 drochner cp = coda_find(&out->coda_purgefid.Fid);
473 1.1 rvb if (cp != NULL) {
474 1.1 rvb vref(CTOV(cp));
475 1.15 drochner if (IS_DIR(out->coda_purgefid.Fid)) { /* Vnode is a directory */
476 1.15 drochner coda_nc_zapParentfid(&out->coda_purgefid.Fid,
477 1.17 perry IS_DOWNCALL);
478 1.1 rvb }
479 1.1 rvb cp->c_flags &= ~C_VATTR;
480 1.15 drochner coda_nc_zapfid(&out->coda_purgefid.Fid, IS_DOWNCALL);
481 1.17 perry if (!(IS_DIR(out->coda_purgefid.Fid))
482 1.24 ad && (CTOV(cp)->v_iflag & VI_TEXT)) {
483 1.17 perry
484 1.3 rvb error = coda_vmflush(cp);
485 1.1 rvb }
486 1.15 drochner CODADEBUG(CODA_PURGEFID, myprintf((
487 1.15 drochner "purgefid: fid = %s, refcnt = %d, error = %d\n",
488 1.15 drochner coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount - 1, error)););
489 1.1 rvb if (CTOV(cp)->v_usecount == 1) {
490 1.1 rvb cp->c_flags |= C_PURGING;
491 1.1 rvb }
492 1.1 rvb vrele(CTOV(cp));
493 1.1 rvb }
494 1.1 rvb return(error);
495 1.1 rvb }
496 1.1 rvb
497 1.3 rvb case CODA_REPLACE : {
498 1.1 rvb struct cnode *cp = NULL;
499 1.1 rvb
500 1.3 rvb coda_clstat.ncalls++;
501 1.3 rvb coda_clstat.reqs[CODA_REPLACE]++;
502 1.17 perry
503 1.3 rvb cp = coda_find(&out->coda_replace.OldFid);
504 1.17 perry if (cp != NULL) {
505 1.1 rvb /* remove the cnode from the hash table, replace the fid, and reinsert */
506 1.1 rvb vref(CTOV(cp));
507 1.3 rvb coda_unsave(cp);
508 1.3 rvb cp->c_fid = out->coda_replace.NewFid;
509 1.3 rvb coda_save(cp);
510 1.3 rvb
511 1.15 drochner CODADEBUG(CODA_REPLACE, myprintf((
512 1.15 drochner "replace: oldfid = %s, newfid = %s, cp = %p\n",
513 1.15 drochner coda_f2s(&out->coda_replace.OldFid),
514 1.15 drochner coda_f2s(&cp->c_fid), cp));)
515 1.1 rvb vrele(CTOV(cp));
516 1.1 rvb }
517 1.1 rvb return (0);
518 1.1 rvb }
519 1.1 rvb default:
520 1.1 rvb myprintf(("handleDownCall: unknown opcode %d\n", opcode));
521 1.1 rvb return (EINVAL);
522 1.1 rvb }
523 1.1 rvb }
524 1.1 rvb
525 1.3 rvb /* coda_grab_vnode: lives in either cfs_mach.c or cfs_nbsd.c */
526 1.1 rvb
527 1.1 rvb int
528 1.22 christos coda_vmflush(struct cnode *cp)
529 1.1 rvb {
530 1.1 rvb return 0;
531 1.1 rvb }
532 1.1 rvb
533 1.1 rvb
534 1.17 perry /*
535 1.1 rvb * kernel-internal debugging switches
536 1.1 rvb */
537 1.1 rvb
538 1.3 rvb void coda_debugon(void)
539 1.1 rvb {
540 1.3 rvb codadebug = -1;
541 1.3 rvb coda_nc_debug = -1;
542 1.3 rvb coda_vnop_print_entry = 1;
543 1.3 rvb coda_psdev_print_entry = 1;
544 1.3 rvb coda_vfsop_print_entry = 1;
545 1.3 rvb }
546 1.3 rvb
547 1.3 rvb void coda_debugoff(void)
548 1.3 rvb {
549 1.3 rvb codadebug = 0;
550 1.3 rvb coda_nc_debug = 0;
551 1.3 rvb coda_vnop_print_entry = 0;
552 1.3 rvb coda_psdev_print_entry = 0;
553 1.3 rvb coda_vfsop_print_entry = 0;
554 1.1 rvb }
555 1.1 rvb
556 1.25.2.2 yamt /* How to print a ucred */
557 1.25.2.2 yamt void
558 1.25.2.2 yamt coda_print_cred(kauth_cred_t cred)
559 1.25.2.2 yamt {
560 1.25.2.2 yamt
561 1.25.2.2 yamt uint16_t ngroups;
562 1.25.2.2 yamt int i;
563 1.25.2.2 yamt
564 1.25.2.2 yamt myprintf(("ref %d\tuid %d\n", kauth_cred_getrefcnt(cred),
565 1.25.2.2 yamt kauth_cred_geteuid(cred)));
566 1.25.2.2 yamt
567 1.25.2.2 yamt ngroups = kauth_cred_ngroups(cred);
568 1.25.2.2 yamt for (i=0; i < ngroups; i++)
569 1.25.2.2 yamt myprintf(("\tgroup %d: (%d)\n", i, kauth_cred_group(cred, i)));
570 1.25.2.2 yamt myprintf(("\n"));
571 1.25.2.2 yamt
572 1.25.2.2 yamt }
573 1.25.2.2 yamt
574 1.1 rvb /*
575 1.1 rvb * Utilities used by both client and server
576 1.1 rvb * Standard levels:
577 1.1 rvb * 0) no debugging
578 1.1 rvb * 1) hard failures
579 1.1 rvb * 2) soft failures
580 1.1 rvb * 3) current test software
581 1.1 rvb * 4) main procedure entry points
582 1.1 rvb * 5) main procedure exit points
583 1.1 rvb * 6) utility procedure entry points
584 1.1 rvb * 7) utility procedure exit points
585 1.1 rvb * 8) obscure procedure entry points
586 1.1 rvb * 9) obscure procedure exit points
587 1.1 rvb * 10) random stuff
588 1.1 rvb * 11) all <= 1
589 1.1 rvb * 12) all <= 2
590 1.1 rvb * 13) all <= 3
591 1.1 rvb * ...
592 1.1 rvb */
593