coda_subr.c revision 1.9 1 1.9 augustss /* $NetBSD: coda_subr.c,v 1.9 2000/03/30 11:24:16 augustss Exp $ */
2 1.2 rvb
3 1.1 rvb /*
4 1.2 rvb *
5 1.2 rvb * Coda: an Experimental Distributed File System
6 1.2 rvb * Release 3.1
7 1.2 rvb *
8 1.2 rvb * Copyright (c) 1987-1998 Carnegie Mellon University
9 1.2 rvb * All Rights Reserved
10 1.2 rvb *
11 1.2 rvb * Permission to use, copy, modify and distribute this software and its
12 1.2 rvb * documentation is hereby granted, provided that both the copyright
13 1.2 rvb * notice and this permission notice appear in all copies of the
14 1.2 rvb * software, derivative works or modified versions, and any portions
15 1.2 rvb * thereof, and that both notices appear in supporting documentation, and
16 1.2 rvb * that credit is given to Carnegie Mellon University in all documents
17 1.2 rvb * and publicity pertaining to direct or indirect use of this code or its
18 1.2 rvb * derivatives.
19 1.2 rvb *
20 1.2 rvb * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS,
21 1.2 rvb * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS
22 1.2 rvb * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON
23 1.2 rvb * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
24 1.2 rvb * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
25 1.2 rvb * ANY DERIVATIVE WORK.
26 1.2 rvb *
27 1.2 rvb * Carnegie Mellon encourages users of this software to return any
28 1.2 rvb * improvements or extensions that they make, and to grant Carnegie
29 1.2 rvb * Mellon the rights to redistribute these changes without encumbrance.
30 1.2 rvb *
31 1.4 rvb * @(#) coda/coda_subr.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $
32 1.2 rvb */
33 1.1 rvb
34 1.1 rvb /*
35 1.1 rvb * Mach Operating System
36 1.1 rvb * Copyright (c) 1989 Carnegie-Mellon University
37 1.1 rvb * All rights reserved. The CMU software License Agreement specifies
38 1.1 rvb * the terms and conditions for use and redistribution.
39 1.1 rvb */
40 1.1 rvb
41 1.1 rvb /*
42 1.1 rvb * This code was written for the Coda file system at Carnegie Mellon
43 1.1 rvb * University. Contributers include David Steere, James Kistler, and
44 1.1 rvb * M. Satyanarayanan. */
45 1.1 rvb
46 1.1 rvb /* NOTES: rvb
47 1.3 rvb * 1. Added coda_unmounting to mark all cnodes as being UNMOUNTING. This has to
48 1.1 rvb * be done before dounmount is called. Because some of the routines that
49 1.3 rvb * dounmount calls before coda_unmounted might try to force flushes to venus.
50 1.1 rvb * The vnode pager does this.
51 1.3 rvb * 2. coda_unmounting marks all cnodes scanning coda_cache.
52 1.1 rvb * 3. cfs_checkunmounting (under DEBUG) checks all cnodes by chasing the vnodes
53 1.1 rvb * under the /coda mount point.
54 1.3 rvb * 4. coda_cacheprint (under DEBUG) prints names with vnode/cnode address
55 1.1 rvb */
56 1.1 rvb
57 1.5 rvb #ifdef _LKM
58 1.5 rvb #define NVCODA 4
59 1.5 rvb #else
60 1.3 rvb #include <vcoda.h>
61 1.5 rvb #endif
62 1.1 rvb
63 1.1 rvb #include <sys/param.h>
64 1.1 rvb #include <sys/systm.h>
65 1.1 rvb #include <sys/malloc.h>
66 1.1 rvb #include <sys/proc.h>
67 1.1 rvb #include <sys/select.h>
68 1.1 rvb #include <sys/mount.h>
69 1.1 rvb
70 1.4 rvb #include <coda/coda.h>
71 1.4 rvb #include <coda/cnode.h>
72 1.4 rvb #include <coda/coda_subr.h>
73 1.4 rvb #include <coda/coda_namecache.h>
74 1.1 rvb
75 1.3 rvb int coda_active = 0;
76 1.3 rvb int coda_reuse = 0;
77 1.3 rvb int coda_new = 0;
78 1.1 rvb
79 1.3 rvb struct cnode *coda_freelist = NULL;
80 1.3 rvb struct cnode *coda_cache[CODA_CACHESIZE];
81 1.1 rvb
82 1.3 rvb #define coda_hash(fid) \
83 1.3 rvb (((fid)->Volume + (fid)->Vnode) & (CODA_CACHESIZE-1))
84 1.1 rvb
85 1.1 rvb #define CNODE_NEXT(cp) ((cp)->c_next)
86 1.1 rvb
87 1.1 rvb #define ODD(vnode) ((vnode) & 0x1)
88 1.1 rvb
89 1.1 rvb /*
90 1.1 rvb * Allocate a cnode.
91 1.1 rvb */
92 1.1 rvb struct cnode *
93 1.3 rvb coda_alloc(void)
94 1.1 rvb {
95 1.1 rvb struct cnode *cp;
96 1.1 rvb
97 1.3 rvb if (coda_freelist) {
98 1.3 rvb cp = coda_freelist;
99 1.3 rvb coda_freelist = CNODE_NEXT(cp);
100 1.3 rvb coda_reuse++;
101 1.1 rvb }
102 1.1 rvb else {
103 1.3 rvb CODA_ALLOC(cp, struct cnode *, sizeof(struct cnode));
104 1.1 rvb /* NetBSD vnodes don't have any Pager info in them ('cause there are
105 1.1 rvb no external pagers, duh!) */
106 1.1 rvb #define VNODE_VM_INFO_INIT(vp) /* MT */
107 1.1 rvb VNODE_VM_INFO_INIT(CTOV(cp));
108 1.3 rvb coda_new++;
109 1.1 rvb }
110 1.1 rvb bzero(cp, sizeof (struct cnode));
111 1.1 rvb
112 1.1 rvb return(cp);
113 1.1 rvb }
114 1.1 rvb
115 1.1 rvb /*
116 1.1 rvb * Deallocate a cnode.
117 1.1 rvb */
118 1.1 rvb void
119 1.3 rvb coda_free(cp)
120 1.9 augustss struct cnode *cp;
121 1.1 rvb {
122 1.1 rvb
123 1.3 rvb CNODE_NEXT(cp) = coda_freelist;
124 1.3 rvb coda_freelist = cp;
125 1.1 rvb }
126 1.1 rvb
127 1.1 rvb /*
128 1.1 rvb * Put a cnode in the hash table
129 1.1 rvb */
130 1.1 rvb void
131 1.3 rvb coda_save(cp)
132 1.1 rvb struct cnode *cp;
133 1.1 rvb {
134 1.3 rvb CNODE_NEXT(cp) = coda_cache[coda_hash(&cp->c_fid)];
135 1.3 rvb coda_cache[coda_hash(&cp->c_fid)] = cp;
136 1.1 rvb }
137 1.1 rvb
138 1.1 rvb /*
139 1.1 rvb * Remove a cnode from the hash table
140 1.1 rvb */
141 1.1 rvb void
142 1.3 rvb coda_unsave(cp)
143 1.1 rvb struct cnode *cp;
144 1.1 rvb {
145 1.1 rvb struct cnode *ptr;
146 1.1 rvb struct cnode *ptrprev = NULL;
147 1.1 rvb
148 1.3 rvb ptr = coda_cache[coda_hash(&cp->c_fid)];
149 1.1 rvb while (ptr != NULL) {
150 1.1 rvb if (ptr == cp) {
151 1.1 rvb if (ptrprev == NULL) {
152 1.3 rvb coda_cache[coda_hash(&cp->c_fid)]
153 1.1 rvb = CNODE_NEXT(ptr);
154 1.1 rvb } else {
155 1.1 rvb CNODE_NEXT(ptrprev) = CNODE_NEXT(ptr);
156 1.1 rvb }
157 1.1 rvb CNODE_NEXT(cp) = (struct cnode *)NULL;
158 1.1 rvb
159 1.1 rvb return;
160 1.1 rvb }
161 1.1 rvb ptrprev = ptr;
162 1.1 rvb ptr = CNODE_NEXT(ptr);
163 1.1 rvb }
164 1.1 rvb }
165 1.1 rvb
166 1.1 rvb /*
167 1.1 rvb * Lookup a cnode by fid. If the cnode is dying, it is bogus so skip it.
168 1.1 rvb * NOTE: this allows multiple cnodes with same fid -- dcs 1/25/95
169 1.1 rvb */
170 1.1 rvb struct cnode *
171 1.3 rvb coda_find(fid)
172 1.1 rvb ViceFid *fid;
173 1.1 rvb {
174 1.1 rvb struct cnode *cp;
175 1.1 rvb
176 1.3 rvb cp = coda_cache[coda_hash(fid)];
177 1.1 rvb while (cp) {
178 1.1 rvb if ((cp->c_fid.Vnode == fid->Vnode) &&
179 1.1 rvb (cp->c_fid.Volume == fid->Volume) &&
180 1.1 rvb (cp->c_fid.Unique == fid->Unique) &&
181 1.1 rvb (!IS_UNMOUNTING(cp)))
182 1.1 rvb {
183 1.3 rvb coda_active++;
184 1.1 rvb return(cp);
185 1.1 rvb }
186 1.1 rvb cp = CNODE_NEXT(cp);
187 1.1 rvb }
188 1.1 rvb return(NULL);
189 1.1 rvb }
190 1.1 rvb
191 1.1 rvb /*
192 1.3 rvb * coda_kill is called as a side effect to vcopen. To prevent any
193 1.1 rvb * cnodes left around from an earlier run of a venus or warden from
194 1.1 rvb * causing problems with the new instance, mark any outstanding cnodes
195 1.1 rvb * as dying. Future operations on these cnodes should fail (excepting
196 1.3 rvb * coda_inactive of course!). Since multiple venii/wardens can be
197 1.1 rvb * running, only kill the cnodes for a particular entry in the
198 1.3 rvb * coda_mnttbl. -- DCS 12/1/94 */
199 1.1 rvb
200 1.1 rvb int
201 1.3 rvb coda_kill(whoIam, dcstat)
202 1.1 rvb struct mount *whoIam;
203 1.1 rvb enum dc_status dcstat;
204 1.1 rvb {
205 1.1 rvb int hash, count = 0;
206 1.1 rvb struct cnode *cp;
207 1.1 rvb
208 1.1 rvb /*
209 1.1 rvb * Algorithm is as follows:
210 1.1 rvb * Second, flush whatever vnodes we can from the name cache.
211 1.1 rvb *
212 1.1 rvb * Finally, step through whatever is left and mark them dying.
213 1.1 rvb * This prevents any operation at all.
214 1.2 rvb
215 1.1 rvb */
216 1.1 rvb
217 1.1 rvb /* This is slightly overkill, but should work. Eventually it'd be
218 1.1 rvb * nice to only flush those entries from the namecache that
219 1.1 rvb * reference a vnode in this vfs. */
220 1.3 rvb coda_nc_flush(dcstat);
221 1.1 rvb
222 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
223 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
224 1.1 rvb if (CTOV(cp)->v_mount == whoIam) {
225 1.1 rvb #ifdef DEBUG
226 1.3 rvb printf("coda_kill: vp %p, cp %p\n", CTOV(cp), cp);
227 1.1 rvb #endif
228 1.1 rvb count++;
229 1.3 rvb CODADEBUG(CODA_FLUSH,
230 1.7 soren myprintf(("Live cnode fid %lx.%lx.%lx flags %d count %ld\n",
231 1.1 rvb (cp->c_fid).Volume,
232 1.1 rvb (cp->c_fid).Vnode,
233 1.1 rvb (cp->c_fid).Unique,
234 1.1 rvb cp->c_flags,
235 1.1 rvb CTOV(cp)->v_usecount)); );
236 1.1 rvb }
237 1.1 rvb }
238 1.1 rvb }
239 1.1 rvb return count;
240 1.1 rvb }
241 1.1 rvb
242 1.1 rvb /*
243 1.1 rvb * There are two reasons why a cnode may be in use, it may be in the
244 1.1 rvb * name cache or it may be executing.
245 1.1 rvb */
246 1.1 rvb void
247 1.3 rvb coda_flush(dcstat)
248 1.1 rvb enum dc_status dcstat;
249 1.1 rvb {
250 1.1 rvb int hash;
251 1.1 rvb struct cnode *cp;
252 1.1 rvb
253 1.3 rvb coda_clstat.ncalls++;
254 1.3 rvb coda_clstat.reqs[CODA_FLUSH]++;
255 1.1 rvb
256 1.3 rvb coda_nc_flush(dcstat); /* flush files from the name cache */
257 1.1 rvb
258 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
259 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
260 1.1 rvb if (!ODD(cp->c_fid.Vnode)) /* only files can be executed */
261 1.3 rvb coda_vmflush(cp);
262 1.1 rvb }
263 1.1 rvb }
264 1.1 rvb }
265 1.1 rvb
266 1.1 rvb /*
267 1.1 rvb * As a debugging measure, print out any cnodes that lived through a
268 1.1 rvb * name cache flush.
269 1.1 rvb */
270 1.1 rvb void
271 1.3 rvb coda_testflush(void)
272 1.1 rvb {
273 1.1 rvb int hash;
274 1.1 rvb struct cnode *cp;
275 1.1 rvb
276 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
277 1.3 rvb for (cp = coda_cache[hash];
278 1.1 rvb cp != NULL;
279 1.1 rvb cp = CNODE_NEXT(cp)) {
280 1.7 soren myprintf(("Live cnode fid %lx.%lx.%lx count %ld\n",
281 1.1 rvb (cp->c_fid).Volume,(cp->c_fid).Vnode,
282 1.1 rvb (cp->c_fid).Unique, CTOV(cp)->v_usecount));
283 1.1 rvb }
284 1.1 rvb }
285 1.1 rvb }
286 1.1 rvb
287 1.1 rvb /*
288 1.1 rvb * First, step through all cnodes and mark them unmounting.
289 1.1 rvb * NetBSD kernels may try to fsync them now that venus
290 1.1 rvb * is dead, which would be a bad thing.
291 1.1 rvb *
292 1.1 rvb */
293 1.1 rvb void
294 1.3 rvb coda_unmounting(whoIam)
295 1.1 rvb struct mount *whoIam;
296 1.1 rvb {
297 1.1 rvb int hash;
298 1.1 rvb struct cnode *cp;
299 1.1 rvb
300 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
301 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
302 1.1 rvb if (CTOV(cp)->v_mount == whoIam) {
303 1.1 rvb if (cp->c_flags & (C_LOCKED|C_WANTED)) {
304 1.3 rvb printf("coda_unmounting: Unlocking %p\n", cp);
305 1.1 rvb cp->c_flags &= ~(C_LOCKED|C_WANTED);
306 1.1 rvb wakeup((caddr_t) cp);
307 1.1 rvb }
308 1.1 rvb cp->c_flags |= C_UNMOUNTING;
309 1.1 rvb }
310 1.1 rvb }
311 1.1 rvb }
312 1.1 rvb }
313 1.1 rvb
314 1.1 rvb #ifdef DEBUG
315 1.5 rvb void
316 1.3 rvb coda_checkunmounting(mp)
317 1.1 rvb struct mount *mp;
318 1.1 rvb {
319 1.9 augustss struct vnode *vp, *nvp;
320 1.1 rvb struct cnode *cp;
321 1.1 rvb int count = 0, bad = 0;
322 1.1 rvb loop:
323 1.1 rvb for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
324 1.1 rvb if (vp->v_mount != mp)
325 1.1 rvb goto loop;
326 1.1 rvb nvp = vp->v_mntvnodes.le_next;
327 1.1 rvb cp = VTOC(vp);
328 1.1 rvb count++;
329 1.1 rvb if (!(cp->c_flags & C_UNMOUNTING)) {
330 1.1 rvb bad++;
331 1.1 rvb printf("vp %p, cp %p missed\n", vp, cp);
332 1.1 rvb cp->c_flags |= C_UNMOUNTING;
333 1.1 rvb }
334 1.1 rvb }
335 1.1 rvb }
336 1.1 rvb
337 1.5 rvb void
338 1.3 rvb coda_cacheprint(whoIam)
339 1.1 rvb struct mount *whoIam;
340 1.1 rvb {
341 1.1 rvb int hash;
342 1.1 rvb struct cnode *cp;
343 1.1 rvb int count = 0;
344 1.1 rvb
345 1.3 rvb printf("coda_cacheprint: coda_ctlvp %p, cp %p", coda_ctlvp, VTOC(coda_ctlvp));
346 1.5 rvb coda_nc_name(VTOC(coda_ctlvp));
347 1.1 rvb printf("\n");
348 1.1 rvb
349 1.3 rvb for (hash = 0; hash < CODA_CACHESIZE; hash++) {
350 1.3 rvb for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) {
351 1.1 rvb if (CTOV(cp)->v_mount == whoIam) {
352 1.3 rvb printf("coda_cacheprint: vp %p, cp %p", CTOV(cp), cp);
353 1.3 rvb coda_nc_name(cp);
354 1.1 rvb printf("\n");
355 1.1 rvb count++;
356 1.1 rvb }
357 1.1 rvb }
358 1.1 rvb }
359 1.3 rvb printf("coda_cacheprint: count %d\n", count);
360 1.1 rvb }
361 1.1 rvb #endif
362 1.1 rvb
363 1.1 rvb /*
364 1.1 rvb * There are 6 cases where invalidations occur. The semantics of each
365 1.1 rvb * is listed here.
366 1.1 rvb *
367 1.3 rvb * CODA_FLUSH -- flush all entries from the name cache and the cnode cache.
368 1.3 rvb * CODA_PURGEUSER -- flush all entries from the name cache for a specific user
369 1.1 rvb * This call is a result of token expiration.
370 1.1 rvb *
371 1.1 rvb * The next two are the result of callbacks on a file or directory.
372 1.3 rvb * CODA_ZAPDIR -- flush the attributes for the dir from its cnode.
373 1.1 rvb * Zap all children of this directory from the namecache.
374 1.3 rvb * CODA_ZAPFILE -- flush the attributes for a file.
375 1.1 rvb *
376 1.1 rvb * The fifth is a result of Venus detecting an inconsistent file.
377 1.3 rvb * CODA_PURGEFID -- flush the attribute for the file
378 1.1 rvb * If it is a dir (odd vnode), purge its
379 1.1 rvb * children from the namecache
380 1.1 rvb * remove the file from the namecache.
381 1.1 rvb *
382 1.1 rvb * The sixth allows Venus to replace local fids with global ones
383 1.1 rvb * during reintegration.
384 1.1 rvb *
385 1.3 rvb * CODA_REPLACE -- replace one ViceFid with another throughout the name cache
386 1.1 rvb */
387 1.1 rvb
388 1.1 rvb int handleDownCall(opcode, out)
389 1.1 rvb int opcode; union outputArgs *out;
390 1.1 rvb {
391 1.1 rvb int error;
392 1.1 rvb
393 1.1 rvb /* Handle invalidate requests. */
394 1.1 rvb switch (opcode) {
395 1.3 rvb case CODA_FLUSH : {
396 1.1 rvb
397 1.3 rvb coda_flush(IS_DOWNCALL);
398 1.1 rvb
399 1.3 rvb CODADEBUG(CODA_FLUSH,coda_testflush();) /* print remaining cnodes */
400 1.1 rvb return(0);
401 1.1 rvb }
402 1.1 rvb
403 1.3 rvb case CODA_PURGEUSER : {
404 1.3 rvb coda_clstat.ncalls++;
405 1.3 rvb coda_clstat.reqs[CODA_PURGEUSER]++;
406 1.1 rvb
407 1.1 rvb /* XXX - need to prevent fsync's */
408 1.3 rvb coda_nc_purge_user(out->coda_purgeuser.cred.cr_uid, IS_DOWNCALL);
409 1.1 rvb return(0);
410 1.1 rvb }
411 1.1 rvb
412 1.3 rvb case CODA_ZAPFILE : {
413 1.1 rvb struct cnode *cp;
414 1.1 rvb
415 1.1 rvb error = 0;
416 1.3 rvb coda_clstat.ncalls++;
417 1.3 rvb coda_clstat.reqs[CODA_ZAPFILE]++;
418 1.1 rvb
419 1.3 rvb cp = coda_find(&out->coda_zapfile.CodaFid);
420 1.1 rvb if (cp != NULL) {
421 1.1 rvb vref(CTOV(cp));
422 1.1 rvb
423 1.1 rvb cp->c_flags &= ~C_VATTR;
424 1.1 rvb if (CTOV(cp)->v_flag & VTEXT)
425 1.3 rvb error = coda_vmflush(cp);
426 1.3 rvb CODADEBUG(CODA_ZAPFILE, myprintf(("zapfile: fid = (%lx.%lx.%lx),
427 1.7 soren refcnt = %ld, error = %d\n",
428 1.1 rvb cp->c_fid.Volume,
429 1.1 rvb cp->c_fid.Vnode,
430 1.1 rvb cp->c_fid.Unique,
431 1.1 rvb CTOV(cp)->v_usecount - 1, error)););
432 1.1 rvb if (CTOV(cp)->v_usecount == 1) {
433 1.1 rvb cp->c_flags |= C_PURGING;
434 1.1 rvb }
435 1.1 rvb vrele(CTOV(cp));
436 1.1 rvb }
437 1.1 rvb
438 1.1 rvb return(error);
439 1.1 rvb }
440 1.1 rvb
441 1.3 rvb case CODA_ZAPDIR : {
442 1.1 rvb struct cnode *cp;
443 1.1 rvb
444 1.3 rvb coda_clstat.ncalls++;
445 1.3 rvb coda_clstat.reqs[CODA_ZAPDIR]++;
446 1.1 rvb
447 1.3 rvb cp = coda_find(&out->coda_zapdir.CodaFid);
448 1.1 rvb if (cp != NULL) {
449 1.1 rvb vref(CTOV(cp));
450 1.1 rvb
451 1.1 rvb cp->c_flags &= ~C_VATTR;
452 1.3 rvb coda_nc_zapParentfid(&out->coda_zapdir.CodaFid, IS_DOWNCALL);
453 1.1 rvb
454 1.3 rvb CODADEBUG(CODA_ZAPDIR, myprintf(("zapdir: fid = (%lx.%lx.%lx),
455 1.7 soren refcnt = %ld\n",cp->c_fid.Volume,
456 1.1 rvb cp->c_fid.Vnode,
457 1.1 rvb cp->c_fid.Unique,
458 1.1 rvb CTOV(cp)->v_usecount - 1)););
459 1.1 rvb if (CTOV(cp)->v_usecount == 1) {
460 1.1 rvb cp->c_flags |= C_PURGING;
461 1.1 rvb }
462 1.1 rvb vrele(CTOV(cp));
463 1.1 rvb }
464 1.1 rvb
465 1.1 rvb return(0);
466 1.1 rvb }
467 1.1 rvb
468 1.3 rvb case CODA_PURGEFID : {
469 1.1 rvb struct cnode *cp;
470 1.1 rvb
471 1.1 rvb error = 0;
472 1.3 rvb coda_clstat.ncalls++;
473 1.3 rvb coda_clstat.reqs[CODA_PURGEFID]++;
474 1.1 rvb
475 1.3 rvb cp = coda_find(&out->coda_purgefid.CodaFid);
476 1.1 rvb if (cp != NULL) {
477 1.1 rvb vref(CTOV(cp));
478 1.3 rvb if (ODD(out->coda_purgefid.CodaFid.Vnode)) { /* Vnode is a directory */
479 1.3 rvb coda_nc_zapParentfid(&out->coda_purgefid.CodaFid,
480 1.1 rvb IS_DOWNCALL);
481 1.1 rvb }
482 1.1 rvb cp->c_flags &= ~C_VATTR;
483 1.3 rvb coda_nc_zapfid(&out->coda_purgefid.CodaFid, IS_DOWNCALL);
484 1.3 rvb if (!(ODD(out->coda_purgefid.CodaFid.Vnode))
485 1.1 rvb && (CTOV(cp)->v_flag & VTEXT)) {
486 1.1 rvb
487 1.3 rvb error = coda_vmflush(cp);
488 1.1 rvb }
489 1.7 soren CODADEBUG(CODA_PURGEFID, myprintf(("purgefid: fid = (%lx.%lx.%lx), refcnt = %ld, error = %d\n",
490 1.1 rvb cp->c_fid.Volume, cp->c_fid.Vnode,
491 1.1 rvb cp->c_fid.Unique,
492 1.1 rvb CTOV(cp)->v_usecount - 1, error)););
493 1.1 rvb if (CTOV(cp)->v_usecount == 1) {
494 1.1 rvb cp->c_flags |= C_PURGING;
495 1.1 rvb }
496 1.1 rvb vrele(CTOV(cp));
497 1.1 rvb }
498 1.1 rvb return(error);
499 1.1 rvb }
500 1.1 rvb
501 1.3 rvb case CODA_REPLACE : {
502 1.1 rvb struct cnode *cp = NULL;
503 1.1 rvb
504 1.3 rvb coda_clstat.ncalls++;
505 1.3 rvb coda_clstat.reqs[CODA_REPLACE]++;
506 1.1 rvb
507 1.3 rvb cp = coda_find(&out->coda_replace.OldFid);
508 1.1 rvb if (cp != NULL) {
509 1.1 rvb /* remove the cnode from the hash table, replace the fid, and reinsert */
510 1.1 rvb vref(CTOV(cp));
511 1.3 rvb coda_unsave(cp);
512 1.3 rvb cp->c_fid = out->coda_replace.NewFid;
513 1.3 rvb coda_save(cp);
514 1.3 rvb
515 1.3 rvb CODADEBUG(CODA_REPLACE, myprintf(("replace: oldfid = (%lx.%lx.%lx), newfid = (%lx.%lx.%lx), cp = %p\n",
516 1.3 rvb out->coda_replace.OldFid.Volume,
517 1.3 rvb out->coda_replace.OldFid.Vnode,
518 1.3 rvb out->coda_replace.OldFid.Unique,
519 1.1 rvb cp->c_fid.Volume, cp->c_fid.Vnode,
520 1.1 rvb cp->c_fid.Unique, cp));)
521 1.1 rvb vrele(CTOV(cp));
522 1.1 rvb }
523 1.1 rvb return (0);
524 1.1 rvb }
525 1.1 rvb default:
526 1.1 rvb myprintf(("handleDownCall: unknown opcode %d\n", opcode));
527 1.1 rvb return (EINVAL);
528 1.1 rvb }
529 1.1 rvb }
530 1.1 rvb
531 1.3 rvb /* coda_grab_vnode: lives in either cfs_mach.c or cfs_nbsd.c */
532 1.1 rvb
533 1.1 rvb int
534 1.3 rvb coda_vmflush(cp)
535 1.1 rvb struct cnode *cp;
536 1.1 rvb {
537 1.1 rvb return 0;
538 1.1 rvb }
539 1.1 rvb
540 1.1 rvb
541 1.1 rvb /*
542 1.1 rvb * kernel-internal debugging switches
543 1.1 rvb */
544 1.1 rvb
545 1.3 rvb void coda_debugon(void)
546 1.1 rvb {
547 1.3 rvb codadebug = -1;
548 1.3 rvb coda_nc_debug = -1;
549 1.3 rvb coda_vnop_print_entry = 1;
550 1.3 rvb coda_psdev_print_entry = 1;
551 1.3 rvb coda_vfsop_print_entry = 1;
552 1.3 rvb }
553 1.3 rvb
554 1.3 rvb void coda_debugoff(void)
555 1.3 rvb {
556 1.3 rvb codadebug = 0;
557 1.3 rvb coda_nc_debug = 0;
558 1.3 rvb coda_vnop_print_entry = 0;
559 1.3 rvb coda_psdev_print_entry = 0;
560 1.3 rvb coda_vfsop_print_entry = 0;
561 1.1 rvb }
562 1.1 rvb
563 1.1 rvb /*
564 1.1 rvb * Utilities used by both client and server
565 1.1 rvb * Standard levels:
566 1.1 rvb * 0) no debugging
567 1.1 rvb * 1) hard failures
568 1.1 rvb * 2) soft failures
569 1.1 rvb * 3) current test software
570 1.1 rvb * 4) main procedure entry points
571 1.1 rvb * 5) main procedure exit points
572 1.1 rvb * 6) utility procedure entry points
573 1.1 rvb * 7) utility procedure exit points
574 1.1 rvb * 8) obscure procedure entry points
575 1.1 rvb * 9) obscure procedure exit points
576 1.1 rvb * 10) random stuff
577 1.1 rvb * 11) all <= 1
578 1.1 rvb * 12) all <= 2
579 1.1 rvb * 13) all <= 3
580 1.1 rvb * ...
581 1.1 rvb */
582