linux_machdep.c revision 1.5 1 /* $NetBSD: linux_machdep.c,v 1.5 2005/05/22 14:52:12 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 2005 Emmanuel Dreyfus, all rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Emmanuel Dreyfus
17 * 4. The name of the author may not be used to endorse or promote
18 * products derived from this software without specific prior written
19 * permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE THE AUTHOR AND CONTRIBUTORS ``AS IS''
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
23 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35
36 __KERNEL_RCSID(0, "$NetBSD: linux_machdep.c,v 1.5 2005/05/22 14:52:12 fvdl Exp $");
37
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/systm.h>
41 #include <sys/signal.h>
42 #include <sys/exec.h>
43 #include <sys/proc.h>
44 #include <sys/ptrace.h> /* for process_read_fpregs() */
45 #include <sys/user.h>
46 #include <sys/ucontext.h>
47
48 #include <machine/reg.h>
49 #include <machine/pcb.h>
50 #include <machine/fpu.h>
51 #include <machine/mcontext.h>
52 #include <machine/specialreg.h>
53 #include <machine/vmparam.h>
54
55 #include <compat/linux/common/linux_signal.h>
56 #include <compat/linux/common/linux_errno.h>
57 #include <compat/linux/common/linux_exec.h>
58 #include <compat/linux/common/linux_ioctl.h>
59 #include <compat/linux/common/linux_prctl.h>
60 #include <compat/linux/common/linux_machdep.h>
61 #include <compat/linux/linux_syscall.h>
62 #include <compat/linux/linux_syscallargs.h>
63
64 static void linux_buildcontext(struct lwp *, void *, void *);
65
66 void
67 linux_setregs(l, epp, stack)
68 struct lwp *l;
69 struct exec_package *epp;
70 u_long stack;
71 {
72 struct pcb *pcb = &l->l_addr->u_pcb;
73 struct trapframe *tf;
74
75 /* If we were using the FPU, forget about it. */
76 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
77 fpusave_lwp(l, 0);
78
79 l->l_md.md_flags &= ~MDP_USEDFPU;
80 pcb->pcb_flags = 0;
81 pcb->pcb_savefpu.fp_fxsave.fx_fcw = __NetBSD_NPXCW__;
82 pcb->pcb_savefpu.fp_fxsave.fx_mxcsr = __INITIAL_MXCSR__;
83 pcb->pcb_savefpu.fp_fxsave.fx_mxcsr_mask = __INITIAL_MXCSR_MASK__;
84 pcb->pcb_fs = 0;
85 pcb->pcb_gs = 0;
86
87 l->l_proc->p_flag &= ~P_32;
88
89 tf = l->l_md.md_regs;
90 tf->tf_rax = 0;
91 tf->tf_rbx = 0;
92 tf->tf_rcx = epp->ep_entry;
93 tf->tf_rdx = 0;
94 tf->tf_rsi = 0;
95 tf->tf_rdi = 0;
96 tf->tf_rbp = 0;
97 tf->tf_rsp = stack;
98 tf->tf_r8 = 0;
99 tf->tf_r9 = 0;
100 tf->tf_r10 = 0;
101 tf->tf_r11 = 0;
102 tf->tf_r12 = 0;
103 tf->tf_r13 = 0;
104 tf->tf_r14 = 0;
105 tf->tf_r15 = 0;
106 tf->tf_rip = epp->ep_entry;
107 tf->tf_rflags = PSL_USERSET;
108 tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
109 tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL);
110 tf->tf_ds = 0;
111 tf->tf_es = 0;
112 tf->tf_fs = 0;
113 tf->tf_gs = 0;
114
115 return;
116 }
117
118 void
119 linux_sendsig(ksi, mask)
120 const ksiginfo_t *ksi;
121 const sigset_t *mask;
122 {
123 struct lwp *l = curlwp;
124 struct proc *p = l->l_proc;
125 struct sigacts *ps = p->p_sigacts;
126 int onstack;
127 int sig = ksi->ksi_signo;
128 struct linux_rt_sigframe *sfp, sigframe;
129 struct linux__fpstate *fpsp, fpstate;
130 struct fpreg fpregs;
131 struct trapframe *tf = l->l_md.md_regs;
132 sig_t catcher = SIGACTION(p, sig).sa_handler;
133 linux_sigset_t lmask;
134 char *sp;
135 int error;
136
137 /* Do we need to jump onto the signal stack? */
138 onstack =
139 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
140 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
141
142 /* Allocate space for the signal handler context. */
143 if (onstack)
144 sp = ((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
145 p->p_sigctx.ps_sigstk.ss_size);
146 else
147 sp = (caddr_t)tf->tf_rsp - 128;
148
149
150 /*
151 * Save FPU state, if any
152 */
153 if (l->l_md.md_flags & MDP_USEDFPU) {
154 sp = (char *)
155 (((long)sp - sizeof(struct linux__fpstate)) & ~0xfUL);
156 fpsp = (struct linux__fpstate *)sp;
157
158 (void)process_read_fpregs(l, &fpregs);
159 bzero(&fpstate, sizeof(fpstate));
160
161 fpstate.cwd = fpregs.fp_fcw;
162 fpstate.swd = fpregs.fp_fsw;
163 fpstate.twd = fpregs.fp_ftw;
164 fpstate.fop = fpregs.fp_fop;
165 fpstate.rip = fpregs.fp_rip;
166 fpstate.rdp = fpregs.fp_rdp;
167 fpstate.mxcsr = fpregs.fp_mxcsr;
168 fpstate.mxcsr_mask = fpregs.fp_mxcsr_mask;
169 memcpy(&fpstate.st_space, &fpregs.fp_st,
170 sizeof(fpstate.st_space));
171 memcpy(&fpstate.xmm_space, &fpregs.fp_xmm,
172 sizeof(fpstate.xmm_space));
173
174 if ((error = copyout(&fpstate, fpsp, sizeof(fpstate))) != 0) {
175 sigexit(l, SIGILL);
176 return;
177 }
178 } else {
179 fpsp = NULL;
180 }
181
182 /*
183 * Populate the rt_sigframe
184 */
185 sp = (char *)
186 ((((long)sp - sizeof(struct linux_rt_sigframe)) & ~0xfUL) - 8);
187 sfp = (struct linux_rt_sigframe *)sp;
188
189 bzero(&sigframe, sizeof(sigframe));
190 if (ps->sa_sigdesc[sig].sd_vers != 0)
191 sigframe.pretcode = (char *)ps->sa_sigdesc[sig].sd_tramp;
192 else
193 sigframe.pretcode = NULL;
194
195 /*
196 * The user context
197 */
198 sigframe.uc.luc_flags = 0;
199 sigframe.uc.luc_link = NULL;
200
201 /* This is used regardless of SA_ONSTACK in Linux */
202 sigframe.uc.luc_stack.ss_sp = p->p_sigctx.ps_sigstk.ss_sp;
203 sigframe.uc.luc_stack.ss_size = p->p_sigctx.ps_sigstk.ss_size;
204 sigframe.uc.luc_stack.ss_flags = 0;
205 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
206 sigframe.uc.luc_stack.ss_flags |= LINUX_SS_ONSTACK;
207 if (p->p_sigctx.ps_sigstk.ss_flags & SS_DISABLE)
208 sigframe.uc.luc_stack.ss_flags |= LINUX_SS_DISABLE;
209
210 sigframe.uc.luc_mcontext.r8 = tf->tf_r8;
211 sigframe.uc.luc_mcontext.r9 = tf->tf_r9;
212 sigframe.uc.luc_mcontext.r10 = tf->tf_r10;
213 sigframe.uc.luc_mcontext.r11 = tf->tf_r11;
214 sigframe.uc.luc_mcontext.r12 = tf->tf_r12;
215 sigframe.uc.luc_mcontext.r13 = tf->tf_r13;
216 sigframe.uc.luc_mcontext.r14 = tf->tf_r14;
217 sigframe.uc.luc_mcontext.r15 = tf->tf_r15;
218 sigframe.uc.luc_mcontext.rdi = tf->tf_rdi;
219 sigframe.uc.luc_mcontext.rsi = tf->tf_rsi;
220 sigframe.uc.luc_mcontext.rbp = tf->tf_rbp;
221 sigframe.uc.luc_mcontext.rbx = tf->tf_rbx;
222 sigframe.uc.luc_mcontext.rdx = tf->tf_rdx;
223 sigframe.uc.luc_mcontext.rcx = tf->tf_rcx;
224 sigframe.uc.luc_mcontext.rsp = tf->tf_rsp;
225 sigframe.uc.luc_mcontext.eflags = tf->tf_rflags;
226 sigframe.uc.luc_mcontext.cs = tf->tf_cs;
227 sigframe.uc.luc_mcontext.gs = tf->tf_gs;
228 sigframe.uc.luc_mcontext.fs = tf->tf_fs;
229 sigframe.uc.luc_mcontext.err = tf->tf_err;
230 sigframe.uc.luc_mcontext.trapno = tf->tf_trapno;
231 native_to_linux_sigset(&lmask, mask);
232 sigframe.uc.luc_mcontext.oldmask = lmask.sig[0];
233 sigframe.uc.luc_mcontext.cr2 = (long)l->l_addr->u_pcb.pcb_onfault;
234 sigframe.uc.luc_mcontext.fpstate = fpsp;
235 native_to_linux_sigset(&sigframe.uc.luc_sigmask, mask);
236
237 /*
238 * the siginfo structure
239 */
240 sigframe.info.lsi_signo = native_to_linux_signo[sig];
241 sigframe.info.lsi_errno = native_to_linux_errno[ksi->ksi_errno];
242 sigframe.info.lsi_code = ksi->ksi_code;
243
244 /* XXX This is a rought conversion, taken from i386 code */
245 switch (sigframe.info.lsi_signo) {
246 case LINUX_SIGILL:
247 case LINUX_SIGFPE:
248 case LINUX_SIGSEGV:
249 case LINUX_SIGBUS:
250 case LINUX_SIGTRAP:
251 sigframe.info._sifields._sigfault._addr = ksi->ksi_addr;
252 break;
253 case LINUX_SIGCHLD:
254 sigframe.info._sifields._sigchld._pid = ksi->ksi_pid;
255 sigframe.info._sifields._sigchld._uid = ksi->ksi_uid;
256 sigframe.info._sifields._sigchld._status = ksi->ksi_status;
257 sigframe.info._sifields._sigchld._utime = ksi->ksi_utime;
258 sigframe.info._sifields._sigchld._stime = ksi->ksi_stime;
259 break;
260 case LINUX_SIGIO:
261 sigframe.info._sifields._sigpoll._band = ksi->ksi_band;
262 sigframe.info._sifields._sigpoll._fd = ksi->ksi_fd;
263 break;
264 default:
265 sigframe.info._sifields._sigchld._pid = ksi->ksi_pid;
266 sigframe.info._sifields._sigchld._uid = ksi->ksi_uid;
267 if ((sigframe.info.lsi_signo == LINUX_SIGALRM) ||
268 (sigframe.info.lsi_signo >= LINUX_SIGRTMIN))
269 sigframe.info._sifields._timer._sigval.sival_ptr =
270 ksi->ksi_sigval.sival_ptr;
271 break;
272 }
273
274 if ((error = copyout(&sigframe, sp, sizeof(sigframe))) != 0) {
275 sigexit(l, SIGILL);
276 return;
277 }
278
279 /*
280 * Setup registers
281 * XXX for an unknown reason, the stack is shifted of 24 bytes
282 * when the signal handler is called. The +24 below is a dirty
283 * workaround, and the real problem should be fixed.
284 */
285 linux_buildcontext(l, catcher, sp + 24);
286 tf->tf_rdi = sigframe.info.lsi_signo;
287 tf->tf_rax = 0;
288 tf->tf_rsi = (long)&sfp->info;
289 tf->tf_rdx = (long)&sfp->uc;
290
291 /*
292 * Remember we use signal stack
293 */
294 if (onstack)
295 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
296 return;
297 }
298
299 int
300 linux_sys_modify_ldt(l, v, retval)
301 struct lwp *l;
302 void *v;
303 register_t *retval;
304 {
305 return 0;
306 }
307
308 int
309 linux_sys_iopl(l, v, retval)
310 struct lwp *l;
311 void *v;
312 register_t *retval;
313 {
314 return 0;
315 }
316
317 int
318 linux_sys_ioperm(l, v, retval)
319 struct lwp *l;
320 void *v;
321 register_t *retval;
322 {
323 return 0;
324 }
325
326 dev_t
327 linux_fakedev(dev, raw)
328 dev_t dev;
329 int raw;
330 {
331 return 0;
332 }
333
334 int
335 linux_machdepioctl(p, v, retval)
336 struct proc *p;
337 void *v;
338 register_t *retval;
339 {
340 return 0;
341 }
342
343 int
344 linux_sys_rt_sigreturn(l, v, retval)
345 struct lwp *l;
346 void *v;
347 register_t *retval;
348 {
349 struct linux_sys_rt_sigreturn_args /* {
350 syscallarg(struct linux_ucontext *) ucp;
351 } */ *uap = v;
352 struct linux_ucontext luctx;
353 struct trapframe *tf = l->l_md.md_regs;
354 struct linux_sigcontext *lsigctx;
355 struct linux__fpstate fpstate;
356 ucontext_t uctx;
357 mcontext_t *mctx;
358 struct fxsave64 *fxsave;
359 int error;
360
361 if ((error = copyin(SCARG(uap, ucp), &luctx, sizeof(luctx))) != 0) {
362 sigexit(l, SIGILL);
363 return error;
364 }
365 lsigctx = &luctx.luc_mcontext;
366
367 bzero(&uctx, sizeof(uctx));
368 mctx = (mcontext_t *)&uctx.uc_mcontext;
369 fxsave = (struct fxsave64 *)&mctx->__fpregs;
370
371 /*
372 * Set the flags. Linux always have CPU, stack and signal state,
373 * FPU is optional. uc_flags is not used to tell what we have.
374 */
375 uctx.uc_flags = (_UC_SIGMASK|_UC_CPU|_UC_STACK|_UC_CLRSTACK);
376 if (lsigctx->fpstate != NULL)
377 uctx.uc_flags |= _UC_FPU;
378 uctx.uc_link = NULL;
379
380 /*
381 * Signal set
382 */
383 linux_to_native_sigset(&uctx.uc_sigmask, &luctx.luc_sigmask);
384
385 /*
386 * CPU state
387 */
388 mctx->__gregs[_REG_R8] = lsigctx->r8;
389 mctx->__gregs[_REG_R9] = lsigctx->r9;
390 mctx->__gregs[_REG_R10] = lsigctx->r10;
391 mctx->__gregs[_REG_R11] = lsigctx->r11;
392 mctx->__gregs[_REG_R12] = lsigctx->r12;
393 mctx->__gregs[_REG_R13] = lsigctx->r13;
394 mctx->__gregs[_REG_R14] = lsigctx->r14;
395 mctx->__gregs[_REG_R15] = lsigctx->r15;
396 mctx->__gregs[_REG_RDI] = lsigctx->rdi;
397 mctx->__gregs[_REG_RSI] = lsigctx->rsi;
398 mctx->__gregs[_REG_RBP] = lsigctx->rbp;
399 mctx->__gregs[_REG_RBX] = lsigctx->rbx;
400 mctx->__gregs[_REG_RAX] = tf->tf_rax;
401 mctx->__gregs[_REG_RDX] = lsigctx->rdx;
402 mctx->__gregs[_REG_RCX] = lsigctx->rcx;
403 mctx->__gregs[_REG_RIP] = lsigctx->rip;
404 mctx->__gregs[_REG_RFL] = lsigctx->eflags;
405 mctx->__gregs[_REG_CS] = lsigctx->cs;
406 mctx->__gregs[_REG_GS] = lsigctx->gs;
407 mctx->__gregs[_REG_FS] = lsigctx->fs;
408 mctx->__gregs[_REG_ERR] = lsigctx->err;
409 mctx->__gregs[_REG_TRAPNO] = lsigctx->trapno;
410 mctx->__gregs[_REG_ES] = tf->tf_es;
411 mctx->__gregs[_REG_DS] = tf->tf_ds;
412 mctx->__gregs[_REG_URSP] = lsigctx->rsp; /* XXX */
413 mctx->__gregs[_REG_SS] = tf->tf_ss;
414
415 /*
416 * FPU state
417 */
418 if (lsigctx->fpstate != NULL) {
419 error = copyin(lsigctx->fpstate, &fpstate, sizeof(fpstate));
420 if (error != 0) {
421 sigexit(l, SIGILL);
422 return error;
423 }
424
425 fxsave->fx_fcw = fpstate.cwd;
426 fxsave->fx_fsw = fpstate.swd;
427 fxsave->fx_ftw = fpstate.twd;
428 fxsave->fx_fop = fpstate.fop;
429 fxsave->fx_rip = fpstate.rip;
430 fxsave->fx_rdp = fpstate.rdp;
431 fxsave->fx_mxcsr = fpstate.mxcsr;
432 fxsave->fx_mxcsr_mask = fpstate.mxcsr_mask;
433 memcpy(&fxsave->fx_st, &fpstate.st_space,
434 sizeof(fxsave->fx_st));
435 memcpy(&fxsave->fx_xmm, &fpstate.xmm_space,
436 sizeof(fxsave->fx_xmm));
437 }
438
439 /*
440 * And the stack
441 */
442 uctx.uc_stack.ss_flags = 0;
443 if (luctx.luc_stack.ss_flags & LINUX_SS_ONSTACK);
444 uctx.uc_stack.ss_flags = SS_ONSTACK;
445
446 if (luctx.luc_stack.ss_flags & LINUX_SS_DISABLE);
447 uctx.uc_stack.ss_flags = SS_DISABLE;
448
449 uctx.uc_stack.ss_sp = luctx.luc_stack.ss_sp;
450 uctx.uc_stack.ss_size = luctx.luc_stack.ss_size;
451
452 /*
453 * And let setucontext deal with that.
454 */
455 return setucontext(l, &uctx);
456 }
457
458 int
459 linux_sys_arch_prctl(l, v, retval)
460 struct lwp *l;
461 void *v;
462 register_t *retval;
463 {
464 struct linux_sys_arch_prctl_args /* {
465 syscallarg(int) code;
466 syscallarg(unsigned long) addr;
467 } */ *uap = v;
468 struct pcb *pcb = &l->l_addr->u_pcb;
469 struct trapframe *tf = l->l_md.md_regs;
470 int error;
471 uint64_t taddr;
472
473 switch(SCARG(uap, code)) {
474 case LINUX_ARCH_SET_GS:
475 taddr = SCARG(uap, addr);
476 if (taddr >= VM_MAXUSER_ADDRESS)
477 return EINVAL;
478 pcb->pcb_gs = taddr;
479 pcb->pcb_flags |= PCB_GS64;
480 if (l == curlwp)
481 wrmsr(MSR_KERNELGSBASE, taddr);
482 break;
483
484 case LINUX_ARCH_GET_GS:
485 if (pcb->pcb_flags & PCB_GS64)
486 taddr = pcb->pcb_gs;
487 else {
488 error = memseg_baseaddr(l, tf->tf_fs, NULL, 0, &taddr);
489 if (error != 0)
490 return error;
491 }
492 error = copyout(&taddr, (char *)SCARG(uap, addr), 8);
493 if (error != 0)
494 return error;
495 break;
496
497 case LINUX_ARCH_SET_FS:
498 taddr = SCARG(uap, addr);
499 if (taddr >= VM_MAXUSER_ADDRESS)
500 return EINVAL;
501 pcb->pcb_fs = taddr;
502 pcb->pcb_flags |= PCB_FS64;
503 if (l == curlwp)
504 wrmsr(MSR_FSBASE, taddr);
505 break;
506
507 case LINUX_ARCH_GET_FS:
508 if (pcb->pcb_flags & PCB_FS64)
509 taddr = pcb->pcb_fs;
510 else {
511 error = memseg_baseaddr(l, tf->tf_fs, NULL, 0, &taddr);
512 if (error != 0)
513 return error;
514 }
515 error = copyout(&taddr, (char *)SCARG(uap, addr), 8);
516 if (error != 0)
517 return error;
518 break;
519
520 default:
521 #ifdef DEBUG_LINUX
522 printf("linux_sys_arch_prctl: unexpected code %d\n",
523 SCARG(uap, code));
524 #endif
525 return EINVAL;
526 }
527
528 return 0;
529 }
530
531 const int linux_vsyscall_to_syscall[] = {
532 LINUX_SYS_gettimeofday,
533 LINUX_SYS_time,
534 LINUX_SYS_nosys,
535 LINUX_SYS_nosys,
536 };
537
538 int
539 linux_usertrap(struct lwp *l, vaddr_t trapaddr, void *arg)
540 {
541 struct trapframe *tf = arg;
542 uint64_t retaddr;
543 int vsyscallnr;
544
545 /*
546 * Check for a vsyscall. %rip must be the fault address,
547 * and the address must be in the Linux vsyscall area.
548 * Also, vsyscalls are only done at 1024-byte boundaries.
549 */
550
551 if (__predict_true(trapaddr < LINUX_VSYSCALL_START))
552 return 0;
553
554 if (trapaddr != tf->tf_rip)
555 return 0;
556
557 if ((tf->tf_rip & (LINUX_VSYSCALL_SIZE - 1)) != 0)
558 return 0;
559
560 vsyscallnr = (tf->tf_rip - LINUX_VSYSCALL_START) / LINUX_VSYSCALL_SIZE;
561
562 if (vsyscallnr > LINUX_VSYSCALL_MAXNR)
563 return 0;
564
565 /*
566 * Get the return address from the top of the stack,
567 * and fix up the return address.
568 * This assumes the faulting instruction was callq *reg,
569 * which is the only way that vsyscalls are ever entered.
570 */
571 if (copyin((void *)tf->tf_rsp, &retaddr, sizeof retaddr) != 0)
572 return 0;
573 tf->tf_rip = retaddr;
574 tf->tf_rax = linux_vsyscall_to_syscall[vsyscallnr];
575 tf->tf_rsp += 8; /* "pop" the return address */
576
577 #if 0
578 printf("usertrap: rip %p rsp %p retaddr %p vsys %d sys %d\n",
579 (void *)tf->tf_rip, (void *)tf->tf_rsp, (void *)retaddr,
580 vsyscallnr, (int)tf->tf_rax);
581 #endif
582
583 (*l->l_proc->p_md.md_syscall)(tf);
584
585 return 1;
586 }
587
588 static void
589 linux_buildcontext(struct lwp *l, void *catcher, void *f)
590 {
591 struct trapframe *tf = l->l_md.md_regs;
592
593 tf->tf_ds = GSEL(GUDATA_SEL, SEL_UPL);
594 tf->tf_rip = (u_int64_t)catcher;
595 tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
596 tf->tf_rflags &= ~(PSL_T|PSL_VM|PSL_AC);
597 tf->tf_rsp = (u_int64_t)f;
598 tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL);
599 }
600