linux_machdep.c revision 1.6 1 /* $NetBSD: linux_machdep.c,v 1.6 2005/05/22 19:31:15 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 2005 Emmanuel Dreyfus, all rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Emmanuel Dreyfus
17 * 4. The name of the author may not be used to endorse or promote
18 * products derived from this software without specific prior written
19 * permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE THE AUTHOR AND CONTRIBUTORS ``AS IS''
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
23 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35
36 __KERNEL_RCSID(0, "$NetBSD: linux_machdep.c,v 1.6 2005/05/22 19:31:15 fvdl Exp $");
37
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/systm.h>
41 #include <sys/signal.h>
42 #include <sys/exec.h>
43 #include <sys/proc.h>
44 #include <sys/ptrace.h> /* for process_read_fpregs() */
45 #include <sys/user.h>
46 #include <sys/ucontext.h>
47
48 #include <machine/reg.h>
49 #include <machine/pcb.h>
50 #include <machine/fpu.h>
51 #include <machine/mcontext.h>
52 #include <machine/specialreg.h>
53 #include <machine/vmparam.h>
54
55 #include <compat/linux/common/linux_signal.h>
56 #include <compat/linux/common/linux_errno.h>
57 #include <compat/linux/common/linux_exec.h>
58 #include <compat/linux/common/linux_ioctl.h>
59 #include <compat/linux/common/linux_prctl.h>
60 #include <compat/linux/common/linux_machdep.h>
61 #include <compat/linux/linux_syscall.h>
62 #include <compat/linux/linux_syscallargs.h>
63
64 static void linux_buildcontext(struct lwp *, void *, void *);
65
66 void
67 linux_setregs(l, epp, stack)
68 struct lwp *l;
69 struct exec_package *epp;
70 u_long stack;
71 {
72 struct pcb *pcb = &l->l_addr->u_pcb;
73 struct trapframe *tf;
74
75 /* If we were using the FPU, forget about it. */
76 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
77 fpusave_lwp(l, 0);
78
79 l->l_md.md_flags &= ~MDP_USEDFPU;
80 pcb->pcb_flags = 0;
81 pcb->pcb_savefpu.fp_fxsave.fx_fcw = __NetBSD_NPXCW__;
82 pcb->pcb_savefpu.fp_fxsave.fx_mxcsr = __INITIAL_MXCSR__;
83 pcb->pcb_savefpu.fp_fxsave.fx_mxcsr_mask = __INITIAL_MXCSR_MASK__;
84 pcb->pcb_fs = 0;
85 pcb->pcb_gs = 0;
86
87 l->l_proc->p_flag &= ~P_32;
88
89 tf = l->l_md.md_regs;
90 tf->tf_rax = 0;
91 tf->tf_rbx = 0;
92 tf->tf_rcx = epp->ep_entry;
93 tf->tf_rdx = 0;
94 tf->tf_rsi = 0;
95 tf->tf_rdi = 0;
96 tf->tf_rbp = 0;
97 tf->tf_rsp = stack;
98 tf->tf_r8 = 0;
99 tf->tf_r9 = 0;
100 tf->tf_r10 = 0;
101 tf->tf_r11 = 0;
102 tf->tf_r12 = 0;
103 tf->tf_r13 = 0;
104 tf->tf_r14 = 0;
105 tf->tf_r15 = 0;
106 tf->tf_rip = epp->ep_entry;
107 tf->tf_rflags = PSL_USERSET;
108 tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
109 tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL);
110 tf->tf_ds = 0;
111 tf->tf_es = 0;
112 tf->tf_fs = 0;
113 tf->tf_gs = 0;
114
115 return;
116 }
117
118 void
119 linux_sendsig(ksi, mask)
120 const ksiginfo_t *ksi;
121 const sigset_t *mask;
122 {
123 struct lwp *l = curlwp;
124 struct proc *p = l->l_proc;
125 struct sigacts *ps = p->p_sigacts;
126 int onstack;
127 int sig = ksi->ksi_signo;
128 struct linux_rt_sigframe *sfp, sigframe;
129 struct linux__fpstate *fpsp, fpstate;
130 struct fpreg fpregs;
131 struct trapframe *tf = l->l_md.md_regs;
132 sig_t catcher = SIGACTION(p, sig).sa_handler;
133 linux_sigset_t lmask;
134 char *sp;
135 int error;
136
137 /* Do we need to jump onto the signal stack? */
138 onstack =
139 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
140 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
141
142 /* Allocate space for the signal handler context. */
143 if (onstack)
144 sp = ((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
145 p->p_sigctx.ps_sigstk.ss_size);
146 else
147 sp = (caddr_t)tf->tf_rsp - 128;
148
149
150 /*
151 * Save FPU state, if any
152 */
153 if (l->l_md.md_flags & MDP_USEDFPU) {
154 sp = (char *)
155 (((long)sp - sizeof(struct linux__fpstate)) & ~0xfUL);
156 fpsp = (struct linux__fpstate *)sp;
157
158 (void)process_read_fpregs(l, &fpregs);
159 bzero(&fpstate, sizeof(fpstate));
160
161 fpstate.cwd = fpregs.fp_fcw;
162 fpstate.swd = fpregs.fp_fsw;
163 fpstate.twd = fpregs.fp_ftw;
164 fpstate.fop = fpregs.fp_fop;
165 fpstate.rip = fpregs.fp_rip;
166 fpstate.rdp = fpregs.fp_rdp;
167 fpstate.mxcsr = fpregs.fp_mxcsr;
168 fpstate.mxcsr_mask = fpregs.fp_mxcsr_mask;
169 memcpy(&fpstate.st_space, &fpregs.fp_st,
170 sizeof(fpstate.st_space));
171 memcpy(&fpstate.xmm_space, &fpregs.fp_xmm,
172 sizeof(fpstate.xmm_space));
173
174 if ((error = copyout(&fpstate, fpsp, sizeof(fpstate))) != 0) {
175 sigexit(l, SIGILL);
176 return;
177 }
178 } else {
179 fpsp = NULL;
180 }
181
182 /*
183 * Populate the rt_sigframe
184 */
185 sp = (char *)
186 ((((long)sp - sizeof(struct linux_rt_sigframe)) & ~0xfUL) - 8);
187 sfp = (struct linux_rt_sigframe *)sp;
188
189 bzero(&sigframe, sizeof(sigframe));
190 if (ps->sa_sigdesc[sig].sd_vers != 0)
191 sigframe.pretcode = (char *)ps->sa_sigdesc[sig].sd_tramp;
192 else
193 sigframe.pretcode = NULL;
194
195 /*
196 * The user context
197 */
198 sigframe.uc.luc_flags = 0;
199 sigframe.uc.luc_link = NULL;
200
201 /* This is used regardless of SA_ONSTACK in Linux */
202 sigframe.uc.luc_stack.ss_sp = p->p_sigctx.ps_sigstk.ss_sp;
203 sigframe.uc.luc_stack.ss_size = p->p_sigctx.ps_sigstk.ss_size;
204 sigframe.uc.luc_stack.ss_flags = 0;
205 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
206 sigframe.uc.luc_stack.ss_flags |= LINUX_SS_ONSTACK;
207 if (p->p_sigctx.ps_sigstk.ss_flags & SS_DISABLE)
208 sigframe.uc.luc_stack.ss_flags |= LINUX_SS_DISABLE;
209
210 sigframe.uc.luc_mcontext.r8 = tf->tf_r8;
211 sigframe.uc.luc_mcontext.r9 = tf->tf_r9;
212 sigframe.uc.luc_mcontext.r10 = tf->tf_r10;
213 sigframe.uc.luc_mcontext.r11 = tf->tf_r11;
214 sigframe.uc.luc_mcontext.r12 = tf->tf_r12;
215 sigframe.uc.luc_mcontext.r13 = tf->tf_r13;
216 sigframe.uc.luc_mcontext.r14 = tf->tf_r14;
217 sigframe.uc.luc_mcontext.r15 = tf->tf_r15;
218 sigframe.uc.luc_mcontext.rdi = tf->tf_rdi;
219 sigframe.uc.luc_mcontext.rsi = tf->tf_rsi;
220 sigframe.uc.luc_mcontext.rbp = tf->tf_rbp;
221 sigframe.uc.luc_mcontext.rbx = tf->tf_rbx;
222 sigframe.uc.luc_mcontext.rdx = tf->tf_rdx;
223 sigframe.uc.luc_mcontext.rcx = tf->tf_rcx;
224 sigframe.uc.luc_mcontext.rsp = tf->tf_rsp;
225 sigframe.uc.luc_mcontext.rip = tf->tf_rip;
226 sigframe.uc.luc_mcontext.eflags = tf->tf_rflags;
227 sigframe.uc.luc_mcontext.cs = tf->tf_cs;
228 sigframe.uc.luc_mcontext.gs = tf->tf_gs;
229 sigframe.uc.luc_mcontext.fs = tf->tf_fs;
230 sigframe.uc.luc_mcontext.err = tf->tf_err;
231 sigframe.uc.luc_mcontext.trapno = tf->tf_trapno;
232 native_to_linux_sigset(&lmask, mask);
233 sigframe.uc.luc_mcontext.oldmask = lmask.sig[0];
234 sigframe.uc.luc_mcontext.cr2 = (long)l->l_addr->u_pcb.pcb_onfault;
235 sigframe.uc.luc_mcontext.fpstate = fpsp;
236 native_to_linux_sigset(&sigframe.uc.luc_sigmask, mask);
237
238 /*
239 * the siginfo structure
240 */
241 sigframe.info.lsi_signo = native_to_linux_signo[sig];
242 sigframe.info.lsi_errno = native_to_linux_errno[ksi->ksi_errno];
243 sigframe.info.lsi_code = ksi->ksi_code;
244
245 /* XXX This is a rought conversion, taken from i386 code */
246 switch (sigframe.info.lsi_signo) {
247 case LINUX_SIGILL:
248 case LINUX_SIGFPE:
249 case LINUX_SIGSEGV:
250 case LINUX_SIGBUS:
251 case LINUX_SIGTRAP:
252 sigframe.info._sifields._sigfault._addr = ksi->ksi_addr;
253 break;
254 case LINUX_SIGCHLD:
255 sigframe.info._sifields._sigchld._pid = ksi->ksi_pid;
256 sigframe.info._sifields._sigchld._uid = ksi->ksi_uid;
257 sigframe.info._sifields._sigchld._status = ksi->ksi_status;
258 sigframe.info._sifields._sigchld._utime = ksi->ksi_utime;
259 sigframe.info._sifields._sigchld._stime = ksi->ksi_stime;
260 break;
261 case LINUX_SIGIO:
262 sigframe.info._sifields._sigpoll._band = ksi->ksi_band;
263 sigframe.info._sifields._sigpoll._fd = ksi->ksi_fd;
264 break;
265 default:
266 sigframe.info._sifields._sigchld._pid = ksi->ksi_pid;
267 sigframe.info._sifields._sigchld._uid = ksi->ksi_uid;
268 if ((sigframe.info.lsi_signo == LINUX_SIGALRM) ||
269 (sigframe.info.lsi_signo >= LINUX_SIGRTMIN))
270 sigframe.info._sifields._timer._sigval.sival_ptr =
271 ksi->ksi_sigval.sival_ptr;
272 break;
273 }
274
275 if ((error = copyout(&sigframe, sp, sizeof(sigframe))) != 0) {
276 sigexit(l, SIGILL);
277 return;
278 }
279
280 linux_buildcontext(l, catcher, sp);
281 tf->tf_rdi = sigframe.info.lsi_signo;
282 tf->tf_rax = 0;
283 tf->tf_rsi = (long)&sfp->info;
284 tf->tf_rdx = (long)&sfp->uc;
285
286 /*
287 * Remember we use signal stack
288 */
289 if (onstack)
290 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
291 return;
292 }
293
294 int
295 linux_sys_modify_ldt(l, v, retval)
296 struct lwp *l;
297 void *v;
298 register_t *retval;
299 {
300 return 0;
301 }
302
303 int
304 linux_sys_iopl(l, v, retval)
305 struct lwp *l;
306 void *v;
307 register_t *retval;
308 {
309 return 0;
310 }
311
312 int
313 linux_sys_ioperm(l, v, retval)
314 struct lwp *l;
315 void *v;
316 register_t *retval;
317 {
318 return 0;
319 }
320
321 dev_t
322 linux_fakedev(dev, raw)
323 dev_t dev;
324 int raw;
325 {
326 return 0;
327 }
328
329 int
330 linux_machdepioctl(p, v, retval)
331 struct proc *p;
332 void *v;
333 register_t *retval;
334 {
335 return 0;
336 }
337
338 int
339 linux_sys_rt_sigreturn(l, v, retval)
340 struct lwp *l;
341 void *v;
342 register_t *retval;
343 {
344 struct linux_ucontext *luctx;
345 struct trapframe *tf = l->l_md.md_regs;
346 struct linux_sigcontext *lsigctx;
347 struct linux__fpstate fpstate;
348 struct linux_rt_sigframe frame, *fp;
349 ucontext_t uctx;
350 mcontext_t *mctx;
351 struct fxsave64 *fxsave;
352 int error;
353
354 fp = (struct linux_rt_sigframe *)(tf->tf_rsp - 8);
355 if ((error = copyin(fp, &frame, sizeof(frame))) != 0) {
356 sigexit(l, SIGILL);
357 return error;
358 }
359 luctx = &frame.uc;
360 lsigctx = &luctx->luc_mcontext;
361
362 bzero(&uctx, sizeof(uctx));
363 mctx = (mcontext_t *)&uctx.uc_mcontext;
364 fxsave = (struct fxsave64 *)&mctx->__fpregs;
365
366 /*
367 * Set the flags. Linux always have CPU, stack and signal state,
368 * FPU is optional. uc_flags is not used to tell what we have.
369 */
370 uctx.uc_flags = (_UC_SIGMASK|_UC_CPU|_UC_STACK|_UC_CLRSTACK);
371 if (lsigctx->fpstate != NULL)
372 uctx.uc_flags |= _UC_FPU;
373 uctx.uc_link = NULL;
374
375 /*
376 * Signal set
377 */
378 linux_to_native_sigset(&uctx.uc_sigmask, &luctx->luc_sigmask);
379
380 /*
381 * CPU state
382 */
383 mctx->__gregs[_REG_R8] = lsigctx->r8;
384 mctx->__gregs[_REG_R9] = lsigctx->r9;
385 mctx->__gregs[_REG_R10] = lsigctx->r10;
386 mctx->__gregs[_REG_R11] = lsigctx->r11;
387 mctx->__gregs[_REG_R12] = lsigctx->r12;
388 mctx->__gregs[_REG_R13] = lsigctx->r13;
389 mctx->__gregs[_REG_R14] = lsigctx->r14;
390 mctx->__gregs[_REG_R15] = lsigctx->r15;
391 mctx->__gregs[_REG_RDI] = lsigctx->rdi;
392 mctx->__gregs[_REG_RSI] = lsigctx->rsi;
393 mctx->__gregs[_REG_RBP] = lsigctx->rbp;
394 mctx->__gregs[_REG_RBX] = lsigctx->rbx;
395 mctx->__gregs[_REG_RAX] = tf->tf_rax;
396 mctx->__gregs[_REG_RDX] = lsigctx->rdx;
397 mctx->__gregs[_REG_RCX] = lsigctx->rcx;
398 mctx->__gregs[_REG_RIP] = lsigctx->rip;
399 mctx->__gregs[_REG_RFL] = lsigctx->eflags;
400 mctx->__gregs[_REG_CS] = lsigctx->cs;
401 mctx->__gregs[_REG_GS] = lsigctx->gs;
402 mctx->__gregs[_REG_FS] = lsigctx->fs;
403 mctx->__gregs[_REG_ERR] = lsigctx->err;
404 mctx->__gregs[_REG_TRAPNO] = lsigctx->trapno;
405 mctx->__gregs[_REG_ES] = tf->tf_es;
406 mctx->__gregs[_REG_DS] = tf->tf_ds;
407 mctx->__gregs[_REG_URSP] = lsigctx->rsp; /* XXX */
408 mctx->__gregs[_REG_SS] = tf->tf_ss;
409
410 /*
411 * FPU state
412 */
413 if (lsigctx->fpstate != NULL) {
414 error = copyin(lsigctx->fpstate, &fpstate, sizeof(fpstate));
415 if (error != 0) {
416 sigexit(l, SIGILL);
417 return error;
418 }
419
420 fxsave->fx_fcw = fpstate.cwd;
421 fxsave->fx_fsw = fpstate.swd;
422 fxsave->fx_ftw = fpstate.twd;
423 fxsave->fx_fop = fpstate.fop;
424 fxsave->fx_rip = fpstate.rip;
425 fxsave->fx_rdp = fpstate.rdp;
426 fxsave->fx_mxcsr = fpstate.mxcsr;
427 fxsave->fx_mxcsr_mask = fpstate.mxcsr_mask;
428 memcpy(&fxsave->fx_st, &fpstate.st_space,
429 sizeof(fxsave->fx_st));
430 memcpy(&fxsave->fx_xmm, &fpstate.xmm_space,
431 sizeof(fxsave->fx_xmm));
432 }
433
434 /*
435 * And the stack
436 */
437 uctx.uc_stack.ss_flags = 0;
438 if (luctx->luc_stack.ss_flags & LINUX_SS_ONSTACK);
439 uctx.uc_stack.ss_flags = SS_ONSTACK;
440
441 if (luctx->luc_stack.ss_flags & LINUX_SS_DISABLE);
442 uctx.uc_stack.ss_flags = SS_DISABLE;
443
444 uctx.uc_stack.ss_sp = luctx->luc_stack.ss_sp;
445 uctx.uc_stack.ss_size = luctx->luc_stack.ss_size;
446
447 /*
448 * And let setucontext deal with that.
449 */
450 return setucontext(l, &uctx);
451 }
452
453 int
454 linux_sys_arch_prctl(l, v, retval)
455 struct lwp *l;
456 void *v;
457 register_t *retval;
458 {
459 struct linux_sys_arch_prctl_args /* {
460 syscallarg(int) code;
461 syscallarg(unsigned long) addr;
462 } */ *uap = v;
463 struct pcb *pcb = &l->l_addr->u_pcb;
464 struct trapframe *tf = l->l_md.md_regs;
465 int error;
466 uint64_t taddr;
467
468 switch(SCARG(uap, code)) {
469 case LINUX_ARCH_SET_GS:
470 taddr = SCARG(uap, addr);
471 if (taddr >= VM_MAXUSER_ADDRESS)
472 return EINVAL;
473 pcb->pcb_gs = taddr;
474 pcb->pcb_flags |= PCB_GS64;
475 if (l == curlwp)
476 wrmsr(MSR_KERNELGSBASE, taddr);
477 break;
478
479 case LINUX_ARCH_GET_GS:
480 if (pcb->pcb_flags & PCB_GS64)
481 taddr = pcb->pcb_gs;
482 else {
483 error = memseg_baseaddr(l, tf->tf_fs, NULL, 0, &taddr);
484 if (error != 0)
485 return error;
486 }
487 error = copyout(&taddr, (char *)SCARG(uap, addr), 8);
488 if (error != 0)
489 return error;
490 break;
491
492 case LINUX_ARCH_SET_FS:
493 taddr = SCARG(uap, addr);
494 if (taddr >= VM_MAXUSER_ADDRESS)
495 return EINVAL;
496 pcb->pcb_fs = taddr;
497 pcb->pcb_flags |= PCB_FS64;
498 if (l == curlwp)
499 wrmsr(MSR_FSBASE, taddr);
500 break;
501
502 case LINUX_ARCH_GET_FS:
503 if (pcb->pcb_flags & PCB_FS64)
504 taddr = pcb->pcb_fs;
505 else {
506 error = memseg_baseaddr(l, tf->tf_fs, NULL, 0, &taddr);
507 if (error != 0)
508 return error;
509 }
510 error = copyout(&taddr, (char *)SCARG(uap, addr), 8);
511 if (error != 0)
512 return error;
513 break;
514
515 default:
516 #ifdef DEBUG_LINUX
517 printf("linux_sys_arch_prctl: unexpected code %d\n",
518 SCARG(uap, code));
519 #endif
520 return EINVAL;
521 }
522
523 return 0;
524 }
525
526 const int linux_vsyscall_to_syscall[] = {
527 LINUX_SYS_gettimeofday,
528 LINUX_SYS_time,
529 LINUX_SYS_nosys,
530 LINUX_SYS_nosys,
531 };
532
533 int
534 linux_usertrap(struct lwp *l, vaddr_t trapaddr, void *arg)
535 {
536 struct trapframe *tf = arg;
537 uint64_t retaddr;
538 int vsyscallnr;
539
540 /*
541 * Check for a vsyscall. %rip must be the fault address,
542 * and the address must be in the Linux vsyscall area.
543 * Also, vsyscalls are only done at 1024-byte boundaries.
544 */
545
546 if (__predict_true(trapaddr < LINUX_VSYSCALL_START))
547 return 0;
548
549 if (trapaddr != tf->tf_rip)
550 return 0;
551
552 if ((tf->tf_rip & (LINUX_VSYSCALL_SIZE - 1)) != 0)
553 return 0;
554
555 vsyscallnr = (tf->tf_rip - LINUX_VSYSCALL_START) / LINUX_VSYSCALL_SIZE;
556
557 if (vsyscallnr > LINUX_VSYSCALL_MAXNR)
558 return 0;
559
560 /*
561 * Get the return address from the top of the stack,
562 * and fix up the return address.
563 * This assumes the faulting instruction was callq *reg,
564 * which is the only way that vsyscalls are ever entered.
565 */
566 if (copyin((void *)tf->tf_rsp, &retaddr, sizeof retaddr) != 0)
567 return 0;
568 tf->tf_rip = retaddr;
569 tf->tf_rax = linux_vsyscall_to_syscall[vsyscallnr];
570 tf->tf_rsp += 8; /* "pop" the return address */
571
572 #if 0
573 printf("usertrap: rip %p rsp %p retaddr %p vsys %d sys %d\n",
574 (void *)tf->tf_rip, (void *)tf->tf_rsp, (void *)retaddr,
575 vsyscallnr, (int)tf->tf_rax);
576 #endif
577
578 (*l->l_proc->p_md.md_syscall)(tf);
579
580 return 1;
581 }
582
583 static void
584 linux_buildcontext(struct lwp *l, void *catcher, void *f)
585 {
586 struct trapframe *tf = l->l_md.md_regs;
587
588 tf->tf_ds = GSEL(GUDATA_SEL, SEL_UPL);
589 tf->tf_rip = (u_int64_t)catcher;
590 tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
591 tf->tf_rflags &= ~(PSL_T|PSL_VM|PSL_AC);
592 tf->tf_rsp = (u_int64_t)f;
593 tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL);
594 }
595