linux_misc.c revision 1.121.2.7 1 /* $NetBSD: linux_misc.c,v 1.121.2.7 2004/09/24 10:53:18 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Linux compatibility module. Try to deal with various Linux system calls.
42 */
43
44 /*
45 * These functions have been moved to multiarch to allow
46 * selection of which machines include them to be
47 * determined by the individual files.linux_<arch> files.
48 *
49 * Function in multiarch:
50 * linux_sys_break : linux_break.c
51 * linux_sys_alarm : linux_misc_notalpha.c
52 * linux_sys_getresgid : linux_misc_notalpha.c
53 * linux_sys_nice : linux_misc_notalpha.c
54 * linux_sys_readdir : linux_misc_notalpha.c
55 * linux_sys_setresgid : linux_misc_notalpha.c
56 * linux_sys_time : linux_misc_notalpha.c
57 * linux_sys_utime : linux_misc_notalpha.c
58 * linux_sys_waitpid : linux_misc_notalpha.c
59 * linux_sys_old_mmap : linux_oldmmap.c
60 * linux_sys_oldolduname : linux_oldolduname.c
61 * linux_sys_oldselect : linux_oldselect.c
62 * linux_sys_olduname : linux_olduname.c
63 * linux_sys_pipe : linux_pipe.c
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.121.2.7 2004/09/24 10:53:18 skrll Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/proc.h>
73 #include <sys/dirent.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/ioctl.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/mbuf.h>
81 #include <sys/mman.h>
82 #include <sys/mount.h>
83 #include <sys/reboot.h>
84 #include <sys/resource.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signal.h>
87 #include <sys/signalvar.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/times.h>
91 #include <sys/vnode.h>
92 #include <sys/uio.h>
93 #include <sys/wait.h>
94 #include <sys/utsname.h>
95 #include <sys/unistd.h>
96 #include <sys/swap.h> /* for SWAP_ON */
97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
98
99 #include <sys/ptrace.h>
100 #include <machine/ptrace.h>
101
102 #include <sys/sa.h>
103 #include <sys/syscallargs.h>
104
105 #include <compat/linux/common/linux_types.h>
106 #include <compat/linux/common/linux_signal.h>
107
108 #include <compat/linux/linux_syscallargs.h>
109
110 #include <compat/linux/common/linux_fcntl.h>
111 #include <compat/linux/common/linux_mmap.h>
112 #include <compat/linux/common/linux_dirent.h>
113 #include <compat/linux/common/linux_util.h>
114 #include <compat/linux/common/linux_misc.h>
115 #include <compat/linux/common/linux_ptrace.h>
116 #include <compat/linux/common/linux_reboot.h>
117 #include <compat/linux/common/linux_emuldata.h>
118
119 const int linux_ptrace_request_map[] = {
120 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
121 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
122 LINUX_PTRACE_PEEKDATA, PT_READ_D,
123 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
124 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
125 LINUX_PTRACE_CONT, PT_CONTINUE,
126 LINUX_PTRACE_KILL, PT_KILL,
127 LINUX_PTRACE_ATTACH, PT_ATTACH,
128 LINUX_PTRACE_DETACH, PT_DETACH,
129 #ifdef PT_STEP
130 LINUX_PTRACE_SINGLESTEP, PT_STEP,
131 #endif
132 -1
133 };
134
135 const struct linux_mnttypes linux_fstypes[] = {
136 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
137 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
138 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
139 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
140 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
141 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
142 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
143 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
144 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
146 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
148 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
150 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
152 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
153 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
155 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC }
158 };
159 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
160
161 #ifdef DEBUG_LINUX
162 #define DPRINTF(a) uprintf a
163 #else
164 #define DPRINTF(a)
165 #endif
166
167 /* Local linux_misc.c functions: */
168 static void bsd_to_linux_statfs __P((const struct statvfs *,
169 struct linux_statfs *));
170 static int linux_to_bsd_limit __P((int));
171 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *,
172 const struct linux_sys_mmap_args *));
173 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *,
174 register_t *, off_t));
175
176
177 /*
178 * The information on a terminated (or stopped) process needs
179 * to be converted in order for Linux binaries to get a valid signal
180 * number out of it.
181 */
182 void
183 bsd_to_linux_wstat(st)
184 int *st;
185 {
186
187 int sig;
188
189 if (WIFSIGNALED(*st)) {
190 sig = WTERMSIG(*st);
191 if (sig >= 0 && sig < NSIG)
192 *st= (*st& ~0177) | native_to_linux_signo[sig];
193 } else if (WIFSTOPPED(*st)) {
194 sig = WSTOPSIG(*st);
195 if (sig >= 0 && sig < NSIG)
196 *st = (*st & ~0xff00) |
197 (native_to_linux_signo[sig] << 8);
198 }
199 }
200
201 /*
202 * This is very much the same as waitpid()
203 */
204 int
205 linux_sys_wait4(l, v, retval)
206 struct lwp *l;
207 void *v;
208 register_t *retval;
209 {
210 struct linux_sys_wait4_args /* {
211 syscallarg(int) pid;
212 syscallarg(int *) status;
213 syscallarg(int) options;
214 syscallarg(struct rusage *) rusage;
215 } */ *uap = v;
216 struct proc *p = l->l_proc;
217 struct sys_wait4_args w4a;
218 int error, *status, tstat, options, linux_options;
219 caddr_t sg;
220
221 if (SCARG(uap, status) != NULL) {
222 sg = stackgap_init(p, 0);
223 status = (int *) stackgap_alloc(p, &sg, sizeof *status);
224 } else
225 status = NULL;
226
227 linux_options = SCARG(uap, options);
228 options = 0;
229 if (linux_options &
230 ~(LINUX_WAIT4_WNOHANG|LINUX_WAIT4_WUNTRACED|LINUX_WAIT4_WALL|
231 LINUX_WAIT4_WCLONE))
232 return (EINVAL);
233
234 if (linux_options & LINUX_WAIT4_WNOHANG)
235 options |= WNOHANG;
236 if (linux_options & LINUX_WAIT4_WUNTRACED)
237 options |= WUNTRACED;
238 if (linux_options & LINUX_WAIT4_WALL)
239 options |= WALLSIG;
240 if (linux_options & LINUX_WAIT4_WCLONE)
241 options |= WALTSIG;
242
243 SCARG(&w4a, pid) = SCARG(uap, pid);
244 SCARG(&w4a, status) = status;
245 SCARG(&w4a, options) = options;
246 SCARG(&w4a, rusage) = SCARG(uap, rusage);
247
248 if ((error = sys_wait4(l, &w4a, retval)))
249 return error;
250
251 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD);
252
253 if (status != NULL) {
254 if ((error = copyin(status, &tstat, sizeof tstat)))
255 return error;
256
257 bsd_to_linux_wstat(&tstat);
258 return copyout(&tstat, SCARG(uap, status), sizeof tstat);
259 }
260
261 return 0;
262 }
263
264 /*
265 * Linux brk(2). The check if the new address is >= the old one is
266 * done in the kernel in Linux. NetBSD does it in the library.
267 */
268 int
269 linux_sys_brk(l, v, retval)
270 struct lwp *l;
271 void *v;
272 register_t *retval;
273 {
274 struct linux_sys_brk_args /* {
275 syscallarg(char *) nsize;
276 } */ *uap = v;
277 struct proc *p = l->l_proc;
278 char *nbrk = SCARG(uap, nsize);
279 struct sys_obreak_args oba;
280 struct vmspace *vm = p->p_vmspace;
281 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
282
283 SCARG(&oba, nsize) = nbrk;
284
285 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
286 ed->s->p_break = (char*)nbrk;
287 else
288 nbrk = ed->s->p_break;
289
290 retval[0] = (register_t)nbrk;
291
292 return 0;
293 }
294
295 /*
296 * Convert NetBSD statvfs structure to Linux statfs structure.
297 * Linux doesn't have f_flag, and we can't set f_frsize due
298 * to glibc statvfs() bug (see below).
299 */
300 static void
301 bsd_to_linux_statfs(bsp, lsp)
302 const struct statvfs *bsp;
303 struct linux_statfs *lsp;
304 {
305 int i;
306
307 for (i = 0; i < linux_fstypes_cnt; i++) {
308 if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
309 lsp->l_ftype = linux_fstypes[i].linux;
310 break;
311 }
312 }
313
314 if (i == linux_fstypes_cnt) {
315 DPRINTF(("unhandled fstype in linux emulation: %s\n",
316 bsp->f_fstypename));
317 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
318 }
319
320 /*
321 * The sizes are expressed in number of blocks. The block
322 * size used for the size is f_frsize for POSIX-compliant
323 * statvfs. Linux statfs uses f_bsize as the block size
324 * (f_frsize used to not be available in Linux struct statfs).
325 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block
326 * counts for different f_frsize if f_frsize is provided by the kernel.
327 * POSIX conforming apps thus get wrong size if f_frsize
328 * is different to f_bsize. Thus, we just pretend we don't
329 * support f_frsize.
330 */
331
332 lsp->l_fbsize = bsp->f_frsize;
333 lsp->l_ffrsize = 0; /* compat */
334 lsp->l_fblocks = bsp->f_blocks;
335 lsp->l_fbfree = bsp->f_bfree;
336 lsp->l_fbavail = bsp->f_bavail;
337 lsp->l_ffiles = bsp->f_files;
338 lsp->l_fffree = bsp->f_ffree;
339 /* Linux sets the fsid to 0..., we don't */
340 lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
341 lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
342 lsp->l_fnamelen = bsp->f_namemax;
343 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
344 }
345
346 /*
347 * Implement the fs stat functions. Straightforward.
348 */
349 int
350 linux_sys_statfs(l, v, retval)
351 struct lwp *l;
352 void *v;
353 register_t *retval;
354 {
355 struct linux_sys_statfs_args /* {
356 syscallarg(const char *) path;
357 syscallarg(struct linux_statfs *) sp;
358 } */ *uap = v;
359 struct proc *p = l->l_proc;
360 struct statvfs btmp, *bsp;
361 struct linux_statfs ltmp;
362 struct sys_statvfs1_args bsa;
363 caddr_t sg;
364 int error;
365
366 sg = stackgap_init(p, 0);
367 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
368
369 CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
370
371 SCARG(&bsa, path) = SCARG(uap, path);
372 SCARG(&bsa, buf) = bsp;
373 SCARG(&bsa, flags) = ST_WAIT;
374
375 if ((error = sys_statvfs1(l, &bsa, retval)))
376 return error;
377
378 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
379 return error;
380
381 bsd_to_linux_statfs(&btmp, <mp);
382
383 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
384 }
385
386 int
387 linux_sys_fstatfs(l, v, retval)
388 struct lwp *l;
389 void *v;
390 register_t *retval;
391 {
392 struct linux_sys_fstatfs_args /* {
393 syscallarg(int) fd;
394 syscallarg(struct linux_statfs *) sp;
395 } */ *uap = v;
396 struct proc *p = l->l_proc;
397 struct statvfs btmp, *bsp;
398 struct linux_statfs ltmp;
399 struct sys_fstatvfs1_args bsa;
400 caddr_t sg;
401 int error;
402
403 sg = stackgap_init(p, 0);
404 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
405
406 SCARG(&bsa, fd) = SCARG(uap, fd);
407 SCARG(&bsa, buf) = bsp;
408 SCARG(&bsa, flags) = ST_WAIT;
409
410 if ((error = sys_fstatvfs1(l, &bsa, retval)))
411 return error;
412
413 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
414 return error;
415
416 bsd_to_linux_statfs(&btmp, <mp);
417
418 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
419 }
420
421 /*
422 * uname(). Just copy the info from the various strings stored in the
423 * kernel, and put it in the Linux utsname structure. That structure
424 * is almost the same as the NetBSD one, only it has fields 65 characters
425 * long, and an extra domainname field.
426 */
427 int
428 linux_sys_uname(l, v, retval)
429 struct lwp *l;
430 void *v;
431 register_t *retval;
432 {
433 struct linux_sys_uname_args /* {
434 syscallarg(struct linux_utsname *) up;
435 } */ *uap = v;
436 struct linux_utsname luts;
437
438 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
439 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
440 strncpy(luts.l_release, linux_release, sizeof(luts.l_release));
441 strncpy(luts.l_version, linux_version, sizeof(luts.l_version));
442 strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
443 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
444
445 return copyout(&luts, SCARG(uap, up), sizeof(luts));
446 }
447
448 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
449 /* Used indirectly on: arm, i386, m68k */
450
451 /*
452 * New type Linux mmap call.
453 * Only called directly on machines with >= 6 free regs.
454 */
455 int
456 linux_sys_mmap(l, v, retval)
457 struct lwp *l;
458 void *v;
459 register_t *retval;
460 {
461 struct linux_sys_mmap_args /* {
462 syscallarg(unsigned long) addr;
463 syscallarg(size_t) len;
464 syscallarg(int) prot;
465 syscallarg(int) flags;
466 syscallarg(int) fd;
467 syscallarg(linux_off_t) offset;
468 } */ *uap = v;
469
470 if (SCARG(uap, offset) & PAGE_MASK)
471 return EINVAL;
472
473 return linux_mmap(l, uap, retval, SCARG(uap, offset));
474 }
475
476 /*
477 * Guts of most architectures' mmap64() implementations. This shares
478 * its list of arguments with linux_sys_mmap().
479 *
480 * The difference in linux_sys_mmap2() is that "offset" is actually
481 * (offset / pagesize), not an absolute byte count. This translation
482 * to pagesize offsets is done inside glibc between the mmap64() call
483 * point, and the actual syscall.
484 */
485 int
486 linux_sys_mmap2(l, v, retval)
487 struct lwp *l;
488 void *v;
489 register_t *retval;
490 {
491 struct linux_sys_mmap2_args /* {
492 syscallarg(unsigned long) addr;
493 syscallarg(size_t) len;
494 syscallarg(int) prot;
495 syscallarg(int) flags;
496 syscallarg(int) fd;
497 syscallarg(linux_off_t) offset;
498 } */ *uap = v;
499
500 return linux_mmap(l, uap, retval,
501 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
502 }
503
504 /*
505 * Massage arguments and call system mmap(2).
506 */
507 static int
508 linux_mmap(l, uap, retval, offset)
509 struct lwp *l;
510 struct linux_sys_mmap_args *uap;
511 register_t *retval;
512 off_t offset;
513 {
514 struct sys_mmap_args cma;
515 int error;
516 size_t mmoff=0;
517
518 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
519 /*
520 * Request for stack-like memory segment. On linux, this
521 * works by mmap()ping (small) segment, which is automatically
522 * extended when page fault happens below the currently
523 * allocated area. We emulate this by allocating (typically
524 * bigger) segment sized at current stack size limit, and
525 * offsetting the requested and returned address accordingly.
526 * Since physical pages are only allocated on-demand, this
527 * is effectively identical.
528 */
529 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
530
531 if (SCARG(uap, len) < ssl) {
532 /* Compute the address offset */
533 mmoff = round_page(ssl) - SCARG(uap, len);
534
535 if (SCARG(uap, addr))
536 SCARG(uap, addr) -= mmoff;
537
538 SCARG(uap, len) = (size_t) ssl;
539 }
540 }
541
542 linux_to_bsd_mmap_args(&cma, uap);
543 SCARG(&cma, pos) = offset;
544
545 error = sys_mmap(l, &cma, retval);
546 if (error)
547 return (error);
548
549 /* Shift the returned address for stack-like segment if necessary */
550 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
551 retval[0] += mmoff;
552
553 return (0);
554 }
555
556 static void
557 linux_to_bsd_mmap_args(cma, uap)
558 struct sys_mmap_args *cma;
559 const struct linux_sys_mmap_args *uap;
560 {
561 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
562
563 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
564 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
565 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
566 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
567 /* XXX XAX ERH: Any other flags here? There are more defined... */
568
569 SCARG(cma, addr) = (void *)SCARG(uap, addr);
570 SCARG(cma, len) = SCARG(uap, len);
571 SCARG(cma, prot) = SCARG(uap, prot);
572 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
573 SCARG(cma, prot) |= VM_PROT_READ;
574 SCARG(cma, flags) = flags;
575 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
576 SCARG(cma, pad) = 0;
577 }
578
579 int
580 linux_sys_mremap(l, v, retval)
581 struct lwp *l;
582 void *v;
583 register_t *retval;
584 {
585 struct linux_sys_mremap_args /* {
586 syscallarg(void *) old_address;
587 syscallarg(size_t) old_size;
588 syscallarg(size_t) new_size;
589 syscallarg(u_long) flags;
590 } */ *uap = v;
591 struct sys_munmap_args mua;
592 size_t old_size, new_size;
593 int error;
594
595 old_size = round_page(SCARG(uap, old_size));
596 new_size = round_page(SCARG(uap, new_size));
597
598 /*
599 * Growing mapped region.
600 */
601 if (new_size > old_size) {
602 /*
603 * XXX Implement me. What we probably want to do is
604 * XXX dig out the guts of the old mapping, mmap that
605 * XXX object again with the new size, then munmap
606 * XXX the old mapping.
607 */
608 *retval = 0;
609 return (ENOMEM);
610 }
611
612 /*
613 * Shrinking mapped region.
614 */
615 if (new_size < old_size) {
616 SCARG(&mua, addr) = (caddr_t)SCARG(uap, old_address) +
617 new_size;
618 SCARG(&mua, len) = old_size - new_size;
619 error = sys_munmap(l, &mua, retval);
620 *retval = error ? 0 : (register_t)SCARG(uap, old_address);
621 return (error);
622 }
623
624 /*
625 * No change.
626 */
627 *retval = (register_t)SCARG(uap, old_address);
628 return (0);
629 }
630
631 int
632 linux_sys_msync(l, v, retval)
633 struct lwp *l;
634 void *v;
635 register_t *retval;
636 {
637 struct linux_sys_msync_args /* {
638 syscallarg(caddr_t) addr;
639 syscallarg(int) len;
640 syscallarg(int) fl;
641 } */ *uap = v;
642
643 struct sys___msync13_args bma;
644
645 /* flags are ignored */
646 SCARG(&bma, addr) = SCARG(uap, addr);
647 SCARG(&bma, len) = SCARG(uap, len);
648 SCARG(&bma, flags) = SCARG(uap, fl);
649
650 return sys___msync13(l, &bma, retval);
651 }
652
653 int
654 linux_sys_mprotect(l, v, retval)
655 struct lwp *l;
656 void *v;
657 register_t *retval;
658 {
659 struct linux_sys_mprotect_args /* {
660 syscallarg(const void *) start;
661 syscallarg(unsigned long) len;
662 syscallarg(int) prot;
663 } */ *uap = v;
664 unsigned long end, start = (unsigned long)SCARG(uap, start), len;
665 int prot = SCARG(uap, prot);
666 struct vm_map_entry *entry;
667 struct vm_map *map = &l->l_proc->p_vmspace->vm_map;
668
669 if (start & PAGE_MASK)
670 return EINVAL;
671
672 len = round_page(SCARG(uap, len));
673 end = start + len;
674
675 if (end < start)
676 return EINVAL;
677 else if (end == start)
678 return 0;
679
680 if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
681 return EINVAL;
682
683 vm_map_lock(map);
684 #ifdef notdef
685 VM_MAP_RANGE_CHECK(map, start, end);
686 #endif
687 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
688 vm_map_unlock(map);
689 return ENOMEM;
690 }
691 vm_map_unlock(map);
692 return uvm_map_protect(map, start, end, prot, FALSE);
693 }
694
695 /*
696 * This code is partly stolen from src/lib/libc/compat-43/times.c
697 */
698
699 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
700
701 int
702 linux_sys_times(l, v, retval)
703 struct lwp *l;
704 void *v;
705 register_t *retval;
706 {
707 struct linux_sys_times_args /* {
708 syscallarg(struct times *) tms;
709 } */ *uap = v;
710 struct proc *p = l->l_proc;
711 struct timeval t;
712 int error, s;
713
714 if (SCARG(uap, tms)) {
715 struct linux_tms ltms;
716 struct rusage ru;
717
718 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL);
719 ltms.ltms_utime = CONVTCK(ru.ru_utime);
720 ltms.ltms_stime = CONVTCK(ru.ru_stime);
721
722 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
723 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
724
725 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
726 return error;
727 }
728
729 s = splclock();
730 timersub(&time, &boottime, &t);
731 splx(s);
732
733 retval[0] = ((linux_clock_t)(CONVTCK(t)));
734 return 0;
735 }
736
737 #undef CONVTCK
738
739 /*
740 * Linux 'readdir' call. This code is mostly taken from the
741 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
742 * an attempt has been made to keep it a little cleaner (failing
743 * miserably, because of the cruft needed if count 1 is passed).
744 *
745 * The d_off field should contain the offset of the next valid entry,
746 * but in Linux it has the offset of the entry itself. We emulate
747 * that bug here.
748 *
749 * Read in BSD-style entries, convert them, and copy them out.
750 *
751 * Note that this doesn't handle union-mounted filesystems.
752 */
753 int
754 linux_sys_getdents(l, v, retval)
755 struct lwp *l;
756 void *v;
757 register_t *retval;
758 {
759 struct linux_sys_getdents_args /* {
760 syscallarg(int) fd;
761 syscallarg(struct linux_dirent *) dent;
762 syscallarg(unsigned int) count;
763 } */ *uap = v;
764 struct proc *p = l->l_proc;
765 struct dirent *bdp;
766 struct vnode *vp;
767 caddr_t inp, buf; /* BSD-format */
768 int len, reclen; /* BSD-format */
769 caddr_t outp; /* Linux-format */
770 int resid, linux_reclen = 0; /* Linux-format */
771 struct file *fp;
772 struct uio auio;
773 struct iovec aiov;
774 struct linux_dirent idb;
775 off_t off; /* true file offset */
776 int buflen, error, eofflag, nbytes, oldcall;
777 struct vattr va;
778 off_t *cookiebuf = NULL, *cookie;
779 int ncookies;
780
781 /* getvnode() will use the descriptor for us */
782 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
783 return (error);
784
785 if ((fp->f_flag & FREAD) == 0) {
786 error = EBADF;
787 goto out1;
788 }
789
790 vp = (struct vnode *)fp->f_data;
791 if (vp->v_type != VDIR) {
792 error = EINVAL;
793 goto out1;
794 }
795
796 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)))
797 goto out1;
798
799 nbytes = SCARG(uap, count);
800 if (nbytes == 1) { /* emulating old, broken behaviour */
801 nbytes = sizeof (idb);
802 buflen = max(va.va_blocksize, nbytes);
803 oldcall = 1;
804 } else {
805 buflen = min(MAXBSIZE, nbytes);
806 if (buflen < va.va_blocksize)
807 buflen = va.va_blocksize;
808 oldcall = 0;
809 }
810 buf = malloc(buflen, M_TEMP, M_WAITOK);
811
812 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
813 off = fp->f_offset;
814 again:
815 aiov.iov_base = buf;
816 aiov.iov_len = buflen;
817 auio.uio_iov = &aiov;
818 auio.uio_iovcnt = 1;
819 auio.uio_rw = UIO_READ;
820 auio.uio_segflg = UIO_SYSSPACE;
821 auio.uio_lwp = NULL;
822 auio.uio_resid = buflen;
823 auio.uio_offset = off;
824 /*
825 * First we read into the malloc'ed buffer, then
826 * we massage it into user space, one record at a time.
827 */
828 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
829 &ncookies);
830 if (error)
831 goto out;
832
833 inp = buf;
834 outp = (caddr_t)SCARG(uap, dent);
835 resid = nbytes;
836 if ((len = buflen - auio.uio_resid) == 0)
837 goto eof;
838
839 for (cookie = cookiebuf; len > 0; len -= reclen) {
840 bdp = (struct dirent *)inp;
841 reclen = bdp->d_reclen;
842 if (reclen & 3)
843 panic("linux_readdir");
844 if (bdp->d_fileno == 0) {
845 inp += reclen; /* it is a hole; squish it out */
846 off = *cookie++;
847 continue;
848 }
849 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
850 if (reclen > len || resid < linux_reclen) {
851 /* entry too big for buffer, so just stop */
852 outp++;
853 break;
854 }
855 /*
856 * Massage in place to make a Linux-shaped dirent (otherwise
857 * we have to worry about touching user memory outside of
858 * the copyout() call).
859 */
860 idb.d_ino = bdp->d_fileno;
861 /*
862 * The old readdir() call misuses the offset and reclen fields.
863 */
864 if (oldcall) {
865 idb.d_off = (linux_off_t)linux_reclen;
866 idb.d_reclen = (u_short)bdp->d_namlen;
867 } else {
868 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
869 compat_offseterr(vp, "linux_getdents");
870 error = EINVAL;
871 goto out;
872 }
873 idb.d_off = (linux_off_t)off;
874 idb.d_reclen = (u_short)linux_reclen;
875 }
876 strcpy(idb.d_name, bdp->d_name);
877 if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
878 goto out;
879 /* advance past this real entry */
880 inp += reclen;
881 off = *cookie++; /* each entry points to itself */
882 /* advance output past Linux-shaped entry */
883 outp += linux_reclen;
884 resid -= linux_reclen;
885 if (oldcall)
886 break;
887 }
888
889 /* if we squished out the whole block, try again */
890 if (outp == (caddr_t)SCARG(uap, dent))
891 goto again;
892 fp->f_offset = off; /* update the vnode offset */
893
894 if (oldcall)
895 nbytes = resid + linux_reclen;
896
897 eof:
898 *retval = nbytes - resid;
899 out:
900 VOP_UNLOCK(vp, 0);
901 if (cookiebuf)
902 free(cookiebuf, M_TEMP);
903 free(buf, M_TEMP);
904 out1:
905 FILE_UNUSE(fp, l);
906 return error;
907 }
908
909 /*
910 * Even when just using registers to pass arguments to syscalls you can
911 * have 5 of them on the i386. So this newer version of select() does
912 * this.
913 */
914 int
915 linux_sys_select(l, v, retval)
916 struct lwp *l;
917 void *v;
918 register_t *retval;
919 {
920 struct linux_sys_select_args /* {
921 syscallarg(int) nfds;
922 syscallarg(fd_set *) readfds;
923 syscallarg(fd_set *) writefds;
924 syscallarg(fd_set *) exceptfds;
925 syscallarg(struct timeval *) timeout;
926 } */ *uap = v;
927
928 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
929 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
930 }
931
932 /*
933 * Common code for the old and new versions of select(). A couple of
934 * things are important:
935 * 1) return the amount of time left in the 'timeout' parameter
936 * 2) select never returns ERESTART on Linux, always return EINTR
937 */
938 int
939 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
940 struct lwp *l;
941 register_t *retval;
942 int nfds;
943 fd_set *readfds, *writefds, *exceptfds;
944 struct timeval *timeout;
945 {
946 struct sys_select_args bsa;
947 struct proc *p = l->l_proc;
948 struct timeval tv0, tv1, utv, *tvp;
949 caddr_t sg;
950 int error;
951
952 SCARG(&bsa, nd) = nfds;
953 SCARG(&bsa, in) = readfds;
954 SCARG(&bsa, ou) = writefds;
955 SCARG(&bsa, ex) = exceptfds;
956 SCARG(&bsa, tv) = timeout;
957
958 /*
959 * Store current time for computation of the amount of
960 * time left.
961 */
962 if (timeout) {
963 if ((error = copyin(timeout, &utv, sizeof(utv))))
964 return error;
965 if (itimerfix(&utv)) {
966 /*
967 * The timeval was invalid. Convert it to something
968 * valid that will act as it does under Linux.
969 */
970 sg = stackgap_init(p, 0);
971 tvp = stackgap_alloc(p, &sg, sizeof(utv));
972 utv.tv_sec += utv.tv_usec / 1000000;
973 utv.tv_usec %= 1000000;
974 if (utv.tv_usec < 0) {
975 utv.tv_sec -= 1;
976 utv.tv_usec += 1000000;
977 }
978 if (utv.tv_sec < 0)
979 timerclear(&utv);
980 if ((error = copyout(&utv, tvp, sizeof(utv))))
981 return error;
982 SCARG(&bsa, tv) = tvp;
983 }
984 microtime(&tv0);
985 }
986
987 error = sys_select(l, &bsa, retval);
988 if (error) {
989 /*
990 * See fs/select.c in the Linux kernel. Without this,
991 * Maelstrom doesn't work.
992 */
993 if (error == ERESTART)
994 error = EINTR;
995 return error;
996 }
997
998 if (timeout) {
999 if (*retval) {
1000 /*
1001 * Compute how much time was left of the timeout,
1002 * by subtracting the current time and the time
1003 * before we started the call, and subtracting
1004 * that result from the user-supplied value.
1005 */
1006 microtime(&tv1);
1007 timersub(&tv1, &tv0, &tv1);
1008 timersub(&utv, &tv1, &utv);
1009 if (utv.tv_sec < 0)
1010 timerclear(&utv);
1011 } else
1012 timerclear(&utv);
1013 if ((error = copyout(&utv, timeout, sizeof(utv))))
1014 return error;
1015 }
1016
1017 return 0;
1018 }
1019
1020 /*
1021 * Get the process group of a certain process. Look it up
1022 * and return the value.
1023 */
1024 int
1025 linux_sys_getpgid(l, v, retval)
1026 struct lwp *l;
1027 void *v;
1028 register_t *retval;
1029 {
1030 struct linux_sys_getpgid_args /* {
1031 syscallarg(int) pid;
1032 } */ *uap = v;
1033 struct proc *p = l->l_proc;
1034 struct proc *targp;
1035
1036 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
1037 if ((targp = pfind(SCARG(uap, pid))) == 0)
1038 return ESRCH;
1039 }
1040 else
1041 targp = p;
1042
1043 retval[0] = targp->p_pgid;
1044 return 0;
1045 }
1046
1047 /*
1048 * Set the 'personality' (emulation mode) for the current process. Only
1049 * accept the Linux personality here (0). This call is needed because
1050 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1051 * ELF binaries run in Linux mode, not SVR4 mode.
1052 */
1053 int
1054 linux_sys_personality(l, v, retval)
1055 struct lwp *l;
1056 void *v;
1057 register_t *retval;
1058 {
1059 struct linux_sys_personality_args /* {
1060 syscallarg(int) per;
1061 } */ *uap = v;
1062
1063 if (SCARG(uap, per) != 0)
1064 return EINVAL;
1065 retval[0] = 0;
1066 return 0;
1067 }
1068
1069 #if defined(__i386__) || defined(__m68k__)
1070 /*
1071 * The calls are here because of type conversions.
1072 */
1073 int
1074 linux_sys_setreuid16(l, v, retval)
1075 struct lwp *l;
1076 void *v;
1077 register_t *retval;
1078 {
1079 struct linux_sys_setreuid16_args /* {
1080 syscallarg(int) ruid;
1081 syscallarg(int) euid;
1082 } */ *uap = v;
1083 struct sys_setreuid_args bsa;
1084
1085 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1086 (uid_t)-1 : SCARG(uap, ruid);
1087 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1088 (uid_t)-1 : SCARG(uap, euid);
1089
1090 return sys_setreuid(l, &bsa, retval);
1091 }
1092
1093 int
1094 linux_sys_setregid16(l, v, retval)
1095 struct lwp *l;
1096 void *v;
1097 register_t *retval;
1098 {
1099 struct linux_sys_setregid16_args /* {
1100 syscallarg(int) rgid;
1101 syscallarg(int) egid;
1102 } */ *uap = v;
1103 struct sys_setregid_args bsa;
1104
1105 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1106 (uid_t)-1 : SCARG(uap, rgid);
1107 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1108 (uid_t)-1 : SCARG(uap, egid);
1109
1110 return sys_setregid(l, &bsa, retval);
1111 }
1112
1113 int
1114 linux_sys_setresuid16(l, v, retval)
1115 struct lwp *l;
1116 void *v;
1117 register_t *retval;
1118 {
1119 struct linux_sys_setresuid16_args /* {
1120 syscallarg(uid_t) ruid;
1121 syscallarg(uid_t) euid;
1122 syscallarg(uid_t) suid;
1123 } */ *uap = v;
1124 struct linux_sys_setresuid16_args lsa;
1125
1126 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1127 (uid_t)-1 : SCARG(uap, ruid);
1128 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1129 (uid_t)-1 : SCARG(uap, euid);
1130 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
1131 (uid_t)-1 : SCARG(uap, suid);
1132
1133 return linux_sys_setresuid(l, &lsa, retval);
1134 }
1135
1136 int
1137 linux_sys_setresgid16(l, v, retval)
1138 struct lwp *l;
1139 void *v;
1140 register_t *retval;
1141 {
1142 struct linux_sys_setresgid16_args /* {
1143 syscallarg(gid_t) rgid;
1144 syscallarg(gid_t) egid;
1145 syscallarg(gid_t) sgid;
1146 } */ *uap = v;
1147 struct linux_sys_setresgid16_args lsa;
1148
1149 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1150 (gid_t)-1 : SCARG(uap, rgid);
1151 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1152 (gid_t)-1 : SCARG(uap, egid);
1153 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
1154 (gid_t)-1 : SCARG(uap, sgid);
1155
1156 return linux_sys_setresgid(l, &lsa, retval);
1157 }
1158
1159 int
1160 linux_sys_getgroups16(l, v, retval)
1161 struct lwp *l;
1162 void *v;
1163 register_t *retval;
1164 {
1165 struct linux_sys_getgroups16_args /* {
1166 syscallarg(int) gidsetsize;
1167 syscallarg(linux_gid_t *) gidset;
1168 } */ *uap = v;
1169 struct proc *p = l->l_proc;
1170 caddr_t sg;
1171 int n, error, i;
1172 struct sys_getgroups_args bsa;
1173 gid_t *bset, *kbset;
1174 linux_gid_t *lset;
1175 struct pcred *pc = p->p_cred;
1176
1177 n = SCARG(uap, gidsetsize);
1178 if (n < 0)
1179 return EINVAL;
1180 error = 0;
1181 bset = kbset = NULL;
1182 lset = NULL;
1183 if (n > 0) {
1184 n = min(pc->pc_ucred->cr_ngroups, n);
1185 sg = stackgap_init(p, 0);
1186 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1187 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1188 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1189 if (bset == NULL || kbset == NULL || lset == NULL)
1190 return ENOMEM;
1191 SCARG(&bsa, gidsetsize) = n;
1192 SCARG(&bsa, gidset) = bset;
1193 error = sys_getgroups(l, &bsa, retval);
1194 if (error != 0)
1195 goto out;
1196 error = copyin(bset, kbset, n * sizeof (gid_t));
1197 if (error != 0)
1198 goto out;
1199 for (i = 0; i < n; i++)
1200 lset[i] = (linux_gid_t)kbset[i];
1201 error = copyout(lset, SCARG(uap, gidset),
1202 n * sizeof (linux_gid_t));
1203 } else
1204 *retval = pc->pc_ucred->cr_ngroups;
1205 out:
1206 if (kbset != NULL)
1207 free(kbset, M_TEMP);
1208 if (lset != NULL)
1209 free(lset, M_TEMP);
1210 return error;
1211 }
1212
1213 int
1214 linux_sys_setgroups16(l, v, retval)
1215 struct lwp *l;
1216 void *v;
1217 register_t *retval;
1218 {
1219 struct linux_sys_setgroups16_args /* {
1220 syscallarg(int) gidsetsize;
1221 syscallarg(linux_gid_t *) gidset;
1222 } */ *uap = v;
1223 struct proc *p = l->l_proc;
1224 caddr_t sg;
1225 int n;
1226 int error, i;
1227 struct sys_setgroups_args bsa;
1228 gid_t *bset, *kbset;
1229 linux_gid_t *lset;
1230
1231 n = SCARG(uap, gidsetsize);
1232 if (n < 0 || n > NGROUPS)
1233 return EINVAL;
1234 sg = stackgap_init(p, 0);
1235 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1236 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1237 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1238 if (lset == NULL || bset == NULL)
1239 return ENOMEM;
1240 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t));
1241 if (error != 0)
1242 goto out;
1243 for (i = 0; i < n; i++)
1244 kbset[i] = (gid_t)lset[i];
1245 error = copyout(kbset, bset, n * sizeof (gid_t));
1246 if (error != 0)
1247 goto out;
1248 SCARG(&bsa, gidsetsize) = n;
1249 SCARG(&bsa, gidset) = bset;
1250 error = sys_setgroups(l, &bsa, retval);
1251
1252 out:
1253 if (lset != NULL)
1254 free(lset, M_TEMP);
1255 if (kbset != NULL)
1256 free(kbset, M_TEMP);
1257
1258 return error;
1259 }
1260
1261 #endif /* __i386__ || __m68k__ */
1262
1263 /*
1264 * We have nonexistent fsuid equal to uid.
1265 * If modification is requested, refuse.
1266 */
1267 int
1268 linux_sys_setfsuid(l, v, retval)
1269 struct lwp *l;
1270 void *v;
1271 register_t *retval;
1272 {
1273 struct linux_sys_setfsuid_args /* {
1274 syscallarg(uid_t) uid;
1275 } */ *uap = v;
1276 struct proc *p = l->l_proc;
1277 uid_t uid;
1278
1279 uid = SCARG(uap, uid);
1280 if (p->p_cred->p_ruid != uid)
1281 return sys_nosys(l, v, retval);
1282 else
1283 return (0);
1284 }
1285
1286 /* XXX XXX XXX */
1287 #ifndef alpha
1288 int
1289 linux_sys_getfsuid(l, v, retval)
1290 struct lwp *l;
1291 void *v;
1292 register_t *retval;
1293 {
1294 return sys_getuid(l, v, retval);
1295 }
1296 #endif
1297
1298 int
1299 linux_sys_setresuid(l, v, retval)
1300 struct lwp *l;
1301 void *v;
1302 register_t *retval;
1303 {
1304 struct linux_sys_setresuid_args /* {
1305 syscallarg(uid_t) ruid;
1306 syscallarg(uid_t) euid;
1307 syscallarg(uid_t) suid;
1308 } */ *uap = v;
1309
1310 /*
1311 * Note: These checks are a little different than the NetBSD
1312 * setreuid(2) call performs. This precisely follows the
1313 * behavior of the Linux kernel.
1314 */
1315
1316 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1317 SCARG(uap, suid),
1318 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1319 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1320 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1321 }
1322
1323 int
1324 linux_sys_getresuid(l, v, retval)
1325 struct lwp *l;
1326 void *v;
1327 register_t *retval;
1328 {
1329 struct linux_sys_getresuid_args /* {
1330 syscallarg(uid_t *) ruid;
1331 syscallarg(uid_t *) euid;
1332 syscallarg(uid_t *) suid;
1333 } */ *uap = v;
1334 struct proc *p = l->l_proc;
1335 struct pcred *pc = p->p_cred;
1336 int error;
1337
1338 /*
1339 * Linux copies these values out to userspace like so:
1340 *
1341 * 1. Copy out ruid.
1342 * 2. If that succeeds, copy out euid.
1343 * 3. If both of those succeed, copy out suid.
1344 */
1345 if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid),
1346 sizeof(uid_t))) != 0)
1347 return (error);
1348
1349 if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid),
1350 sizeof(uid_t))) != 0)
1351 return (error);
1352
1353 return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t)));
1354 }
1355
1356 int
1357 linux_sys_ptrace(l, v, retval)
1358 struct lwp *l;
1359 void *v;
1360 register_t *retval;
1361 {
1362 struct linux_sys_ptrace_args /* {
1363 i386, m68k, powerpc: T=int
1364 alpha: T=long
1365 syscallarg(T) request;
1366 syscallarg(T) pid;
1367 syscallarg(T) addr;
1368 syscallarg(T) data;
1369 } */ *uap = v;
1370 const int *ptr;
1371 int request;
1372 int error;
1373
1374 ptr = linux_ptrace_request_map;
1375 request = SCARG(uap, request);
1376 while (*ptr != -1)
1377 if (*ptr++ == request) {
1378 struct sys_ptrace_args pta;
1379
1380 SCARG(&pta, req) = *ptr;
1381 SCARG(&pta, pid) = SCARG(uap, pid);
1382 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr);
1383 SCARG(&pta, data) = SCARG(uap, data);
1384
1385 /*
1386 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1387 * to continue where the process left off previously.
1388 * The same thing is achieved by addr == (caddr_t) 1
1389 * on NetBSD, so rewrite 'addr' appropriately.
1390 */
1391 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1392 SCARG(&pta, addr) = (caddr_t) 1;
1393
1394 error = sys_ptrace(l, &pta, retval);
1395 if (error)
1396 return error;
1397 switch (request) {
1398 case LINUX_PTRACE_PEEKTEXT:
1399 case LINUX_PTRACE_PEEKDATA:
1400 error = copyout (retval,
1401 (caddr_t)SCARG(uap, data), sizeof *retval);
1402 *retval = SCARG(uap, data);
1403 break;
1404 default:
1405 break;
1406 }
1407 return error;
1408 }
1409 else
1410 ptr++;
1411
1412 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1413 }
1414
1415 int
1416 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
1417 {
1418 struct linux_sys_reboot_args /* {
1419 syscallarg(int) magic1;
1420 syscallarg(int) magic2;
1421 syscallarg(int) cmd;
1422 syscallarg(void *) arg;
1423 } */ *uap = v;
1424 struct sys_reboot_args /* {
1425 syscallarg(int) opt;
1426 syscallarg(char *) bootstr;
1427 } */ sra;
1428 struct proc *p = l->l_proc;
1429 int error;
1430
1431 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1432 return(error);
1433
1434 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1435 return(EINVAL);
1436 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1437 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1438 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1439 return(EINVAL);
1440
1441 switch (SCARG(uap, cmd)) {
1442 case LINUX_REBOOT_CMD_RESTART:
1443 SCARG(&sra, opt) = RB_AUTOBOOT;
1444 break;
1445 case LINUX_REBOOT_CMD_HALT:
1446 SCARG(&sra, opt) = RB_HALT;
1447 break;
1448 case LINUX_REBOOT_CMD_POWER_OFF:
1449 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1450 break;
1451 case LINUX_REBOOT_CMD_RESTART2:
1452 /* Reboot with an argument. */
1453 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1454 SCARG(&sra, bootstr) = SCARG(uap, arg);
1455 break;
1456 case LINUX_REBOOT_CMD_CAD_ON:
1457 return(EINVAL); /* We don't implement ctrl-alt-delete */
1458 case LINUX_REBOOT_CMD_CAD_OFF:
1459 return(0);
1460 default:
1461 return(EINVAL);
1462 }
1463
1464 return(sys_reboot(l, &sra, retval));
1465 }
1466
1467 /*
1468 * Copy of compat_12_sys_swapon().
1469 */
1470 int
1471 linux_sys_swapon(l, v, retval)
1472 struct lwp *l;
1473 void *v;
1474 register_t *retval;
1475 {
1476 struct sys_swapctl_args ua;
1477 struct linux_sys_swapon_args /* {
1478 syscallarg(const char *) name;
1479 } */ *uap = v;
1480
1481 SCARG(&ua, cmd) = SWAP_ON;
1482 SCARG(&ua, arg) = (void *)SCARG(uap, name);
1483 SCARG(&ua, misc) = 0; /* priority */
1484 return (sys_swapctl(l, &ua, retval));
1485 }
1486
1487 /*
1488 * Stop swapping to the file or block device specified by path.
1489 */
1490 int
1491 linux_sys_swapoff(l, v, retval)
1492 struct lwp *l;
1493 void *v;
1494 register_t *retval;
1495 {
1496 struct sys_swapctl_args ua;
1497 struct linux_sys_swapoff_args /* {
1498 syscallarg(const char *) path;
1499 } */ *uap = v;
1500
1501 SCARG(&ua, cmd) = SWAP_OFF;
1502 SCARG(&ua, arg) = (void *)SCARG(uap, path);
1503 return (sys_swapctl(l, &ua, retval));
1504 }
1505
1506 /*
1507 * Copy of compat_09_sys_setdomainname()
1508 */
1509 /* ARGSUSED */
1510 int
1511 linux_sys_setdomainname(l, v, retval)
1512 struct lwp *l;
1513 void *v;
1514 register_t *retval;
1515 {
1516 struct linux_sys_setdomainname_args /* {
1517 syscallarg(char *) domainname;
1518 syscallarg(int) len;
1519 } */ *uap = v;
1520 int name[2];
1521
1522 name[0] = CTL_KERN;
1523 name[1] = KERN_DOMAINNAME;
1524 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1525 SCARG(uap, len), l));
1526 }
1527
1528 /*
1529 * sysinfo()
1530 */
1531 /* ARGSUSED */
1532 int
1533 linux_sys_sysinfo(l, v, retval)
1534 struct lwp *l;
1535 void *v;
1536 register_t *retval;
1537 {
1538 struct linux_sys_sysinfo_args /* {
1539 syscallarg(struct linux_sysinfo *) arg;
1540 } */ *uap = v;
1541 struct linux_sysinfo si;
1542 struct loadavg *la;
1543
1544 si.uptime = time.tv_sec - boottime.tv_sec;
1545 la = &averunnable;
1546 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1547 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1548 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1549 si.totalram = ctob(physmem);
1550 si.freeram = uvmexp.free * uvmexp.pagesize;
1551 si.sharedram = 0; /* XXX */
1552 si.bufferram = uvmexp.filepages * uvmexp.pagesize;
1553 si.totalswap = uvmexp.swpages * uvmexp.pagesize;
1554 si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1555 si.procs = nprocs;
1556
1557 /* The following are only present in newer Linux kernels. */
1558 si.totalbig = 0;
1559 si.freebig = 0;
1560 si.mem_unit = 1;
1561
1562 return (copyout(&si, SCARG(uap, arg), sizeof si));
1563 }
1564
1565 #define bsd_to_linux_rlimit1(l, b, f) \
1566 (l)->f = ((b)->f == RLIM_INFINITY || \
1567 ((b)->f & 0xffffffff00000000ULL) != 0) ? \
1568 LINUX_RLIM_INFINITY : (int32_t)(b)->f
1569 #define bsd_to_linux_rlimit(l, b) \
1570 bsd_to_linux_rlimit1(l, b, rlim_cur); \
1571 bsd_to_linux_rlimit1(l, b, rlim_max)
1572
1573 #define linux_to_bsd_rlimit1(b, l, f) \
1574 (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f
1575 #define linux_to_bsd_rlimit(b, l) \
1576 linux_to_bsd_rlimit1(b, l, rlim_cur); \
1577 linux_to_bsd_rlimit1(b, l, rlim_max)
1578
1579 static int
1580 linux_to_bsd_limit(lim)
1581 int lim;
1582 {
1583 switch (lim) {
1584 case LINUX_RLIMIT_CPU:
1585 return RLIMIT_CPU;
1586 case LINUX_RLIMIT_FSIZE:
1587 return RLIMIT_FSIZE;
1588 case LINUX_RLIMIT_DATA:
1589 return RLIMIT_DATA;
1590 case LINUX_RLIMIT_STACK:
1591 return RLIMIT_STACK;
1592 case LINUX_RLIMIT_CORE:
1593 return RLIMIT_CORE;
1594 case LINUX_RLIMIT_RSS:
1595 return RLIMIT_RSS;
1596 case LINUX_RLIMIT_NPROC:
1597 return RLIMIT_NPROC;
1598 case LINUX_RLIMIT_NOFILE:
1599 return RLIMIT_NOFILE;
1600 case LINUX_RLIMIT_MEMLOCK:
1601 return RLIMIT_MEMLOCK;
1602 case LINUX_RLIMIT_AS:
1603 case LINUX_RLIMIT_LOCKS:
1604 return -EOPNOTSUPP;
1605 default:
1606 return -EINVAL;
1607 }
1608 }
1609
1610
1611 int
1612 linux_sys_getrlimit(l, v, retval)
1613 struct lwp *l;
1614 void *v;
1615 register_t *retval;
1616 {
1617 struct linux_sys_getrlimit_args /* {
1618 syscallarg(int) which;
1619 syscallarg(struct orlimit *) rlp;
1620 } */ *uap = v;
1621 struct proc *p = l->l_proc;
1622 caddr_t sg = stackgap_init(p, 0);
1623 struct sys_getrlimit_args ap;
1624 struct rlimit rl;
1625 struct orlimit orl;
1626 int error;
1627
1628 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1629 if ((error = SCARG(&ap, which)) < 0)
1630 return -error;
1631 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1632 if ((error = sys_getrlimit(l, &ap, retval)) != 0)
1633 return error;
1634 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0)
1635 return error;
1636 bsd_to_linux_rlimit(&orl, &rl);
1637 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1638 }
1639
1640 int
1641 linux_sys_setrlimit(l, v, retval)
1642 struct lwp *l;
1643 void *v;
1644 register_t *retval;
1645 {
1646 struct linux_sys_setrlimit_args /* {
1647 syscallarg(int) which;
1648 syscallarg(struct orlimit *) rlp;
1649 } */ *uap = v;
1650 struct proc *p = l->l_proc;
1651 caddr_t sg = stackgap_init(p, 0);
1652 struct sys_setrlimit_args ap;
1653 struct rlimit rl;
1654 struct orlimit orl;
1655 int error;
1656
1657 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1658 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1659 if ((error = SCARG(&ap, which)) < 0)
1660 return -error;
1661 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1662 return error;
1663 linux_to_bsd_rlimit(&rl, &orl);
1664 /* XXX: alpha complains about this */
1665 if ((error = copyout(&rl, (void *)SCARG(&ap, rlp), sizeof(rl))) != 0)
1666 return error;
1667 return sys_setrlimit(l, &ap, retval);
1668 }
1669
1670 #ifndef __mips__
1671 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1672 int
1673 linux_sys_ugetrlimit(l, v, retval)
1674 struct lwp *l;
1675 void *v;
1676 register_t *retval;
1677 {
1678 return linux_sys_getrlimit(l, v, retval);
1679 }
1680 #endif
1681
1682 /*
1683 * This gets called for unsupported syscalls. The difference to sys_nosys()
1684 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1685 * This is the way Linux does it and glibc depends on this behaviour.
1686 */
1687 int
1688 linux_sys_nosys(l, v, retval)
1689 struct lwp *l;
1690 void *v;
1691 register_t *retval;
1692 {
1693 return (ENOSYS);
1694 }
1695