linux_misc.c revision 1.133 1 /* $NetBSD: linux_misc.c,v 1.133 2004/10/07 19:30:28 erh Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Linux compatibility module. Try to deal with various Linux system calls.
42 */
43
44 /*
45 * These functions have been moved to multiarch to allow
46 * selection of which machines include them to be
47 * determined by the individual files.linux_<arch> files.
48 *
49 * Function in multiarch:
50 * linux_sys_break : linux_break.c
51 * linux_sys_alarm : linux_misc_notalpha.c
52 * linux_sys_getresgid : linux_misc_notalpha.c
53 * linux_sys_nice : linux_misc_notalpha.c
54 * linux_sys_readdir : linux_misc_notalpha.c
55 * linux_sys_setresgid : linux_misc_notalpha.c
56 * linux_sys_time : linux_misc_notalpha.c
57 * linux_sys_utime : linux_misc_notalpha.c
58 * linux_sys_waitpid : linux_misc_notalpha.c
59 * linux_sys_old_mmap : linux_oldmmap.c
60 * linux_sys_oldolduname : linux_oldolduname.c
61 * linux_sys_oldselect : linux_oldselect.c
62 * linux_sys_olduname : linux_olduname.c
63 * linux_sys_pipe : linux_pipe.c
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.133 2004/10/07 19:30:28 erh Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/proc.h>
73 #include <sys/dirent.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/ioctl.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/mbuf.h>
81 #include <sys/mman.h>
82 #include <sys/mount.h>
83 #include <sys/reboot.h>
84 #include <sys/resource.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signal.h>
87 #include <sys/signalvar.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/times.h>
91 #include <sys/vnode.h>
92 #include <sys/uio.h>
93 #include <sys/wait.h>
94 #include <sys/utsname.h>
95 #include <sys/unistd.h>
96 #include <sys/swap.h> /* for SWAP_ON */
97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
98
99 #include <sys/ptrace.h>
100 #include <machine/ptrace.h>
101
102 #include <sys/sa.h>
103 #include <sys/syscallargs.h>
104
105 #include <compat/linux/common/linux_types.h>
106 #include <compat/linux/common/linux_signal.h>
107
108 #include <compat/linux/linux_syscallargs.h>
109
110 #include <compat/linux/common/linux_fcntl.h>
111 #include <compat/linux/common/linux_mmap.h>
112 #include <compat/linux/common/linux_dirent.h>
113 #include <compat/linux/common/linux_util.h>
114 #include <compat/linux/common/linux_misc.h>
115 #include <compat/linux/common/linux_ptrace.h>
116 #include <compat/linux/common/linux_reboot.h>
117 #include <compat/linux/common/linux_emuldata.h>
118
119 const int linux_ptrace_request_map[] = {
120 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
121 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
122 LINUX_PTRACE_PEEKDATA, PT_READ_D,
123 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
124 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
125 LINUX_PTRACE_CONT, PT_CONTINUE,
126 LINUX_PTRACE_KILL, PT_KILL,
127 LINUX_PTRACE_ATTACH, PT_ATTACH,
128 LINUX_PTRACE_DETACH, PT_DETACH,
129 #ifdef PT_STEP
130 LINUX_PTRACE_SINGLESTEP, PT_STEP,
131 #endif
132 -1
133 };
134
135 const struct linux_mnttypes linux_fstypes[] = {
136 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
137 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
138 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
139 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
140 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
141 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
142 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
143 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
144 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
146 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
148 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
150 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
152 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
153 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
155 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC }
158 };
159 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
160
161 #ifdef DEBUG_LINUX
162 #define DPRINTF(a) uprintf a
163 #else
164 #define DPRINTF(a)
165 #endif
166
167 /* Local linux_misc.c functions: */
168 static void bsd_to_linux_statfs __P((const struct statvfs *,
169 struct linux_statfs *));
170 static int linux_to_bsd_limit __P((int));
171 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *,
172 const struct linux_sys_mmap_args *));
173 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *,
174 register_t *, off_t));
175
176
177 /*
178 * The information on a terminated (or stopped) process needs
179 * to be converted in order for Linux binaries to get a valid signal
180 * number out of it.
181 */
182 void
183 bsd_to_linux_wstat(st)
184 int *st;
185 {
186
187 int sig;
188
189 if (WIFSIGNALED(*st)) {
190 sig = WTERMSIG(*st);
191 if (sig >= 0 && sig < NSIG)
192 *st= (*st& ~0177) | native_to_linux_signo[sig];
193 } else if (WIFSTOPPED(*st)) {
194 sig = WSTOPSIG(*st);
195 if (sig >= 0 && sig < NSIG)
196 *st = (*st & ~0xff00) |
197 (native_to_linux_signo[sig] << 8);
198 }
199 }
200
201 /*
202 * wait4(2). Passed on to the NetBSD call, surrounded by code to
203 * reserve some space for a NetBSD-style wait status, and converting
204 * it to what Linux wants.
205 */
206 int
207 linux_sys_wait4(l, v, retval)
208 struct lwp *l;
209 void *v;
210 register_t *retval;
211 {
212 struct linux_sys_wait4_args /* {
213 syscallarg(int) pid;
214 syscallarg(int *) status;
215 syscallarg(int) options;
216 syscallarg(struct rusage *) rusage;
217 } */ *uap = v;
218 struct proc *p = l->l_proc;
219 struct sys_wait4_args w4a;
220 int error, *status, tstat, options, linux_options;
221 caddr_t sg;
222
223 if (SCARG(uap, status) != NULL) {
224 sg = stackgap_init(p, 0);
225 status = (int *) stackgap_alloc(p, &sg, sizeof *status);
226 } else
227 status = NULL;
228
229 linux_options = SCARG(uap, options);
230 options = 0;
231 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
232 return (EINVAL);
233
234 if (linux_options & LINUX_WAIT4_WNOHANG)
235 options |= WNOHANG;
236 if (linux_options & LINUX_WAIT4_WUNTRACED)
237 options |= WUNTRACED;
238 if (linux_options & LINUX_WAIT4_WALL)
239 options |= WALLSIG;
240 if (linux_options & LINUX_WAIT4_WCLONE)
241 options |= WALTSIG;
242 #ifdef DIAGNOSTIC
243 if (linux_options & LINUX_WAIT4_WNOTHREAD)
244 printf("WARNING: %s: linux process %d.%d called "
245 "waitpid with __WNOTHREAD set!",
246 __FILE__, p->p_pid, l->l_lid);
247
248 #endif
249
250 SCARG(&w4a, pid) = SCARG(uap, pid);
251 SCARG(&w4a, status) = status;
252 SCARG(&w4a, options) = options;
253 SCARG(&w4a, rusage) = SCARG(uap, rusage);
254
255 if ((error = sys_wait4(l, &w4a, retval)))
256 return error;
257
258 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD);
259
260 if (status != NULL) {
261 if ((error = copyin(status, &tstat, sizeof tstat)))
262 return error;
263
264 bsd_to_linux_wstat(&tstat);
265 return copyout(&tstat, SCARG(uap, status), sizeof tstat);
266 }
267
268 return 0;
269 }
270
271 /*
272 * Linux brk(2). The check if the new address is >= the old one is
273 * done in the kernel in Linux. NetBSD does it in the library.
274 */
275 int
276 linux_sys_brk(l, v, retval)
277 struct lwp *l;
278 void *v;
279 register_t *retval;
280 {
281 struct linux_sys_brk_args /* {
282 syscallarg(char *) nsize;
283 } */ *uap = v;
284 struct proc *p = l->l_proc;
285 char *nbrk = SCARG(uap, nsize);
286 struct sys_obreak_args oba;
287 struct vmspace *vm = p->p_vmspace;
288 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
289
290 SCARG(&oba, nsize) = nbrk;
291
292 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
293 ed->s->p_break = (char*)nbrk;
294 else
295 nbrk = ed->s->p_break;
296
297 retval[0] = (register_t)nbrk;
298
299 return 0;
300 }
301
302 /*
303 * Convert NetBSD statvfs structure to Linux statfs structure.
304 * Linux doesn't have f_flag, and we can't set f_frsize due
305 * to glibc statvfs() bug (see below).
306 */
307 static void
308 bsd_to_linux_statfs(bsp, lsp)
309 const struct statvfs *bsp;
310 struct linux_statfs *lsp;
311 {
312 int i;
313
314 for (i = 0; i < linux_fstypes_cnt; i++) {
315 if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
316 lsp->l_ftype = linux_fstypes[i].linux;
317 break;
318 }
319 }
320
321 if (i == linux_fstypes_cnt) {
322 DPRINTF(("unhandled fstype in linux emulation: %s\n",
323 bsp->f_fstypename));
324 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
325 }
326
327 /*
328 * The sizes are expressed in number of blocks. The block
329 * size used for the size is f_frsize for POSIX-compliant
330 * statvfs. Linux statfs uses f_bsize as the block size
331 * (f_frsize used to not be available in Linux struct statfs).
332 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block
333 * counts for different f_frsize if f_frsize is provided by the kernel.
334 * POSIX conforming apps thus get wrong size if f_frsize
335 * is different to f_bsize. Thus, we just pretend we don't
336 * support f_frsize.
337 */
338
339 lsp->l_fbsize = bsp->f_frsize;
340 lsp->l_ffrsize = 0; /* compat */
341 lsp->l_fblocks = bsp->f_blocks;
342 lsp->l_fbfree = bsp->f_bfree;
343 lsp->l_fbavail = bsp->f_bavail;
344 lsp->l_ffiles = bsp->f_files;
345 lsp->l_fffree = bsp->f_ffree;
346 /* Linux sets the fsid to 0..., we don't */
347 lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
348 lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
349 lsp->l_fnamelen = bsp->f_namemax;
350 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
351 }
352
353 /*
354 * Implement the fs stat functions. Straightforward.
355 */
356 int
357 linux_sys_statfs(l, v, retval)
358 struct lwp *l;
359 void *v;
360 register_t *retval;
361 {
362 struct linux_sys_statfs_args /* {
363 syscallarg(const char *) path;
364 syscallarg(struct linux_statfs *) sp;
365 } */ *uap = v;
366 struct proc *p = l->l_proc;
367 struct statvfs btmp, *bsp;
368 struct linux_statfs ltmp;
369 struct sys_statvfs1_args bsa;
370 caddr_t sg;
371 int error;
372
373 sg = stackgap_init(p, 0);
374 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
375
376 CHECK_ALT_EXIST(p, &sg, SCARG(uap, path));
377
378 SCARG(&bsa, path) = SCARG(uap, path);
379 SCARG(&bsa, buf) = bsp;
380 SCARG(&bsa, flags) = ST_WAIT;
381
382 if ((error = sys_statvfs1(l, &bsa, retval)))
383 return error;
384
385 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
386 return error;
387
388 bsd_to_linux_statfs(&btmp, <mp);
389
390 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
391 }
392
393 int
394 linux_sys_fstatfs(l, v, retval)
395 struct lwp *l;
396 void *v;
397 register_t *retval;
398 {
399 struct linux_sys_fstatfs_args /* {
400 syscallarg(int) fd;
401 syscallarg(struct linux_statfs *) sp;
402 } */ *uap = v;
403 struct proc *p = l->l_proc;
404 struct statvfs btmp, *bsp;
405 struct linux_statfs ltmp;
406 struct sys_fstatvfs1_args bsa;
407 caddr_t sg;
408 int error;
409
410 sg = stackgap_init(p, 0);
411 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
412
413 SCARG(&bsa, fd) = SCARG(uap, fd);
414 SCARG(&bsa, buf) = bsp;
415 SCARG(&bsa, flags) = ST_WAIT;
416
417 if ((error = sys_fstatvfs1(l, &bsa, retval)))
418 return error;
419
420 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
421 return error;
422
423 bsd_to_linux_statfs(&btmp, <mp);
424
425 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
426 }
427
428 /*
429 * uname(). Just copy the info from the various strings stored in the
430 * kernel, and put it in the Linux utsname structure. That structure
431 * is almost the same as the NetBSD one, only it has fields 65 characters
432 * long, and an extra domainname field.
433 */
434 int
435 linux_sys_uname(l, v, retval)
436 struct lwp *l;
437 void *v;
438 register_t *retval;
439 {
440 struct linux_sys_uname_args /* {
441 syscallarg(struct linux_utsname *) up;
442 } */ *uap = v;
443 struct linux_utsname luts;
444
445 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
446 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
447 strncpy(luts.l_release, linux_release, sizeof(luts.l_release));
448 strncpy(luts.l_version, linux_version, sizeof(luts.l_version));
449 strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
450 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
451
452 return copyout(&luts, SCARG(uap, up), sizeof(luts));
453 }
454
455 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
456 /* Used indirectly on: arm, i386, m68k */
457
458 /*
459 * New type Linux mmap call.
460 * Only called directly on machines with >= 6 free regs.
461 */
462 int
463 linux_sys_mmap(l, v, retval)
464 struct lwp *l;
465 void *v;
466 register_t *retval;
467 {
468 struct linux_sys_mmap_args /* {
469 syscallarg(unsigned long) addr;
470 syscallarg(size_t) len;
471 syscallarg(int) prot;
472 syscallarg(int) flags;
473 syscallarg(int) fd;
474 syscallarg(linux_off_t) offset;
475 } */ *uap = v;
476
477 if (SCARG(uap, offset) & PAGE_MASK)
478 return EINVAL;
479
480 return linux_mmap(l, uap, retval, SCARG(uap, offset));
481 }
482
483 /*
484 * Guts of most architectures' mmap64() implementations. This shares
485 * its list of arguments with linux_sys_mmap().
486 *
487 * The difference in linux_sys_mmap2() is that "offset" is actually
488 * (offset / pagesize), not an absolute byte count. This translation
489 * to pagesize offsets is done inside glibc between the mmap64() call
490 * point, and the actual syscall.
491 */
492 int
493 linux_sys_mmap2(l, v, retval)
494 struct lwp *l;
495 void *v;
496 register_t *retval;
497 {
498 struct linux_sys_mmap2_args /* {
499 syscallarg(unsigned long) addr;
500 syscallarg(size_t) len;
501 syscallarg(int) prot;
502 syscallarg(int) flags;
503 syscallarg(int) fd;
504 syscallarg(linux_off_t) offset;
505 } */ *uap = v;
506
507 return linux_mmap(l, uap, retval,
508 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
509 }
510
511 /*
512 * Massage arguments and call system mmap(2).
513 */
514 static int
515 linux_mmap(l, uap, retval, offset)
516 struct lwp *l;
517 struct linux_sys_mmap_args *uap;
518 register_t *retval;
519 off_t offset;
520 {
521 struct sys_mmap_args cma;
522 int error;
523 size_t mmoff=0;
524
525 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
526 /*
527 * Request for stack-like memory segment. On linux, this
528 * works by mmap()ping (small) segment, which is automatically
529 * extended when page fault happens below the currently
530 * allocated area. We emulate this by allocating (typically
531 * bigger) segment sized at current stack size limit, and
532 * offsetting the requested and returned address accordingly.
533 * Since physical pages are only allocated on-demand, this
534 * is effectively identical.
535 */
536 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
537
538 if (SCARG(uap, len) < ssl) {
539 /* Compute the address offset */
540 mmoff = round_page(ssl) - SCARG(uap, len);
541
542 if (SCARG(uap, addr))
543 SCARG(uap, addr) -= mmoff;
544
545 SCARG(uap, len) = (size_t) ssl;
546 }
547 }
548
549 linux_to_bsd_mmap_args(&cma, uap);
550 SCARG(&cma, pos) = offset;
551
552 error = sys_mmap(l, &cma, retval);
553 if (error)
554 return (error);
555
556 /* Shift the returned address for stack-like segment if necessary */
557 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
558 retval[0] += mmoff;
559
560 return (0);
561 }
562
563 static void
564 linux_to_bsd_mmap_args(cma, uap)
565 struct sys_mmap_args *cma;
566 const struct linux_sys_mmap_args *uap;
567 {
568 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
569
570 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
571 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
572 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
573 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
574 /* XXX XAX ERH: Any other flags here? There are more defined... */
575
576 SCARG(cma, addr) = (void *)SCARG(uap, addr);
577 SCARG(cma, len) = SCARG(uap, len);
578 SCARG(cma, prot) = SCARG(uap, prot);
579 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
580 SCARG(cma, prot) |= VM_PROT_READ;
581 SCARG(cma, flags) = flags;
582 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
583 SCARG(cma, pad) = 0;
584 }
585
586 int
587 linux_sys_mremap(l, v, retval)
588 struct lwp *l;
589 void *v;
590 register_t *retval;
591 {
592 struct linux_sys_mremap_args /* {
593 syscallarg(void *) old_address;
594 syscallarg(size_t) old_size;
595 syscallarg(size_t) new_size;
596 syscallarg(u_long) flags;
597 } */ *uap = v;
598 struct sys_munmap_args mua;
599 size_t old_size, new_size;
600 int error;
601
602 old_size = round_page(SCARG(uap, old_size));
603 new_size = round_page(SCARG(uap, new_size));
604
605 /*
606 * Growing mapped region.
607 */
608 if (new_size > old_size) {
609 /*
610 * XXX Implement me. What we probably want to do is
611 * XXX dig out the guts of the old mapping, mmap that
612 * XXX object again with the new size, then munmap
613 * XXX the old mapping.
614 */
615 *retval = 0;
616 return (ENOMEM);
617 }
618
619 /*
620 * Shrinking mapped region.
621 */
622 if (new_size < old_size) {
623 SCARG(&mua, addr) = (caddr_t)SCARG(uap, old_address) +
624 new_size;
625 SCARG(&mua, len) = old_size - new_size;
626 error = sys_munmap(l, &mua, retval);
627 *retval = error ? 0 : (register_t)SCARG(uap, old_address);
628 return (error);
629 }
630
631 /*
632 * No change.
633 */
634 *retval = (register_t)SCARG(uap, old_address);
635 return (0);
636 }
637
638 int
639 linux_sys_msync(l, v, retval)
640 struct lwp *l;
641 void *v;
642 register_t *retval;
643 {
644 struct linux_sys_msync_args /* {
645 syscallarg(caddr_t) addr;
646 syscallarg(int) len;
647 syscallarg(int) fl;
648 } */ *uap = v;
649
650 struct sys___msync13_args bma;
651
652 /* flags are ignored */
653 SCARG(&bma, addr) = SCARG(uap, addr);
654 SCARG(&bma, len) = SCARG(uap, len);
655 SCARG(&bma, flags) = SCARG(uap, fl);
656
657 return sys___msync13(l, &bma, retval);
658 }
659
660 int
661 linux_sys_mprotect(l, v, retval)
662 struct lwp *l;
663 void *v;
664 register_t *retval;
665 {
666 struct linux_sys_mprotect_args /* {
667 syscallarg(const void *) start;
668 syscallarg(unsigned long) len;
669 syscallarg(int) prot;
670 } */ *uap = v;
671 unsigned long end, start = (unsigned long)SCARG(uap, start), len;
672 int prot = SCARG(uap, prot);
673 struct vm_map_entry *entry;
674 struct vm_map *map = &l->l_proc->p_vmspace->vm_map;
675
676 if (start & PAGE_MASK)
677 return EINVAL;
678
679 len = round_page(SCARG(uap, len));
680 end = start + len;
681
682 if (end < start)
683 return EINVAL;
684 else if (end == start)
685 return 0;
686
687 if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
688 return EINVAL;
689
690 vm_map_lock(map);
691 #ifdef notdef
692 VM_MAP_RANGE_CHECK(map, start, end);
693 #endif
694 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
695 vm_map_unlock(map);
696 return ENOMEM;
697 }
698 vm_map_unlock(map);
699 return uvm_map_protect(map, start, end, prot, FALSE);
700 }
701
702 /*
703 * This code is partly stolen from src/lib/libc/compat-43/times.c
704 */
705
706 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
707
708 int
709 linux_sys_times(l, v, retval)
710 struct lwp *l;
711 void *v;
712 register_t *retval;
713 {
714 struct linux_sys_times_args /* {
715 syscallarg(struct times *) tms;
716 } */ *uap = v;
717 struct proc *p = l->l_proc;
718 struct timeval t;
719 int error, s;
720
721 if (SCARG(uap, tms)) {
722 struct linux_tms ltms;
723 struct rusage ru;
724
725 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL);
726 ltms.ltms_utime = CONVTCK(ru.ru_utime);
727 ltms.ltms_stime = CONVTCK(ru.ru_stime);
728
729 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
730 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
731
732 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
733 return error;
734 }
735
736 s = splclock();
737 timersub(&time, &boottime, &t);
738 splx(s);
739
740 retval[0] = ((linux_clock_t)(CONVTCK(t)));
741 return 0;
742 }
743
744 #undef CONVTCK
745
746 /*
747 * Linux 'readdir' call. This code is mostly taken from the
748 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
749 * an attempt has been made to keep it a little cleaner (failing
750 * miserably, because of the cruft needed if count 1 is passed).
751 *
752 * The d_off field should contain the offset of the next valid entry,
753 * but in Linux it has the offset of the entry itself. We emulate
754 * that bug here.
755 *
756 * Read in BSD-style entries, convert them, and copy them out.
757 *
758 * Note that this doesn't handle union-mounted filesystems.
759 */
760 int
761 linux_sys_getdents(l, v, retval)
762 struct lwp *l;
763 void *v;
764 register_t *retval;
765 {
766 struct linux_sys_getdents_args /* {
767 syscallarg(int) fd;
768 syscallarg(struct linux_dirent *) dent;
769 syscallarg(unsigned int) count;
770 } */ *uap = v;
771 struct proc *p = l->l_proc;
772 struct dirent *bdp;
773 struct vnode *vp;
774 caddr_t inp, buf; /* BSD-format */
775 int len, reclen; /* BSD-format */
776 caddr_t outp; /* Linux-format */
777 int resid, linux_reclen = 0; /* Linux-format */
778 struct file *fp;
779 struct uio auio;
780 struct iovec aiov;
781 struct linux_dirent idb;
782 off_t off; /* true file offset */
783 int buflen, error, eofflag, nbytes, oldcall;
784 struct vattr va;
785 off_t *cookiebuf = NULL, *cookie;
786 int ncookies;
787
788 /* getvnode() will use the descriptor for us */
789 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
790 return (error);
791
792 if ((fp->f_flag & FREAD) == 0) {
793 error = EBADF;
794 goto out1;
795 }
796
797 vp = (struct vnode *)fp->f_data;
798 if (vp->v_type != VDIR) {
799 error = EINVAL;
800 goto out1;
801 }
802
803 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
804 goto out1;
805
806 nbytes = SCARG(uap, count);
807 if (nbytes == 1) { /* emulating old, broken behaviour */
808 nbytes = sizeof (idb);
809 buflen = max(va.va_blocksize, nbytes);
810 oldcall = 1;
811 } else {
812 buflen = min(MAXBSIZE, nbytes);
813 if (buflen < va.va_blocksize)
814 buflen = va.va_blocksize;
815 oldcall = 0;
816 }
817 buf = malloc(buflen, M_TEMP, M_WAITOK);
818
819 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
820 off = fp->f_offset;
821 again:
822 aiov.iov_base = buf;
823 aiov.iov_len = buflen;
824 auio.uio_iov = &aiov;
825 auio.uio_iovcnt = 1;
826 auio.uio_rw = UIO_READ;
827 auio.uio_segflg = UIO_SYSSPACE;
828 auio.uio_procp = NULL;
829 auio.uio_resid = buflen;
830 auio.uio_offset = off;
831 /*
832 * First we read into the malloc'ed buffer, then
833 * we massage it into user space, one record at a time.
834 */
835 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
836 &ncookies);
837 if (error)
838 goto out;
839
840 inp = buf;
841 outp = (caddr_t)SCARG(uap, dent);
842 resid = nbytes;
843 if ((len = buflen - auio.uio_resid) == 0)
844 goto eof;
845
846 for (cookie = cookiebuf; len > 0; len -= reclen) {
847 bdp = (struct dirent *)inp;
848 reclen = bdp->d_reclen;
849 if (reclen & 3)
850 panic("linux_readdir");
851 if (bdp->d_fileno == 0) {
852 inp += reclen; /* it is a hole; squish it out */
853 off = *cookie++;
854 continue;
855 }
856 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
857 if (reclen > len || resid < linux_reclen) {
858 /* entry too big for buffer, so just stop */
859 outp++;
860 break;
861 }
862 /*
863 * Massage in place to make a Linux-shaped dirent (otherwise
864 * we have to worry about touching user memory outside of
865 * the copyout() call).
866 */
867 idb.d_ino = bdp->d_fileno;
868 /*
869 * The old readdir() call misuses the offset and reclen fields.
870 */
871 if (oldcall) {
872 idb.d_off = (linux_off_t)linux_reclen;
873 idb.d_reclen = (u_short)bdp->d_namlen;
874 } else {
875 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
876 compat_offseterr(vp, "linux_getdents");
877 error = EINVAL;
878 goto out;
879 }
880 idb.d_off = (linux_off_t)off;
881 idb.d_reclen = (u_short)linux_reclen;
882 }
883 strcpy(idb.d_name, bdp->d_name);
884 if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
885 goto out;
886 /* advance past this real entry */
887 inp += reclen;
888 off = *cookie++; /* each entry points to itself */
889 /* advance output past Linux-shaped entry */
890 outp += linux_reclen;
891 resid -= linux_reclen;
892 if (oldcall)
893 break;
894 }
895
896 /* if we squished out the whole block, try again */
897 if (outp == (caddr_t)SCARG(uap, dent))
898 goto again;
899 fp->f_offset = off; /* update the vnode offset */
900
901 if (oldcall)
902 nbytes = resid + linux_reclen;
903
904 eof:
905 *retval = nbytes - resid;
906 out:
907 VOP_UNLOCK(vp, 0);
908 if (cookiebuf)
909 free(cookiebuf, M_TEMP);
910 free(buf, M_TEMP);
911 out1:
912 FILE_UNUSE(fp, p);
913 return error;
914 }
915
916 /*
917 * Even when just using registers to pass arguments to syscalls you can
918 * have 5 of them on the i386. So this newer version of select() does
919 * this.
920 */
921 int
922 linux_sys_select(l, v, retval)
923 struct lwp *l;
924 void *v;
925 register_t *retval;
926 {
927 struct linux_sys_select_args /* {
928 syscallarg(int) nfds;
929 syscallarg(fd_set *) readfds;
930 syscallarg(fd_set *) writefds;
931 syscallarg(fd_set *) exceptfds;
932 syscallarg(struct timeval *) timeout;
933 } */ *uap = v;
934
935 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
936 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
937 }
938
939 /*
940 * Common code for the old and new versions of select(). A couple of
941 * things are important:
942 * 1) return the amount of time left in the 'timeout' parameter
943 * 2) select never returns ERESTART on Linux, always return EINTR
944 */
945 int
946 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
947 struct lwp *l;
948 register_t *retval;
949 int nfds;
950 fd_set *readfds, *writefds, *exceptfds;
951 struct timeval *timeout;
952 {
953 struct sys_select_args bsa;
954 struct proc *p = l->l_proc;
955 struct timeval tv0, tv1, utv, *tvp;
956 caddr_t sg;
957 int error;
958
959 SCARG(&bsa, nd) = nfds;
960 SCARG(&bsa, in) = readfds;
961 SCARG(&bsa, ou) = writefds;
962 SCARG(&bsa, ex) = exceptfds;
963 SCARG(&bsa, tv) = timeout;
964
965 /*
966 * Store current time for computation of the amount of
967 * time left.
968 */
969 if (timeout) {
970 if ((error = copyin(timeout, &utv, sizeof(utv))))
971 return error;
972 if (itimerfix(&utv)) {
973 /*
974 * The timeval was invalid. Convert it to something
975 * valid that will act as it does under Linux.
976 */
977 sg = stackgap_init(p, 0);
978 tvp = stackgap_alloc(p, &sg, sizeof(utv));
979 utv.tv_sec += utv.tv_usec / 1000000;
980 utv.tv_usec %= 1000000;
981 if (utv.tv_usec < 0) {
982 utv.tv_sec -= 1;
983 utv.tv_usec += 1000000;
984 }
985 if (utv.tv_sec < 0)
986 timerclear(&utv);
987 if ((error = copyout(&utv, tvp, sizeof(utv))))
988 return error;
989 SCARG(&bsa, tv) = tvp;
990 }
991 microtime(&tv0);
992 }
993
994 error = sys_select(l, &bsa, retval);
995 if (error) {
996 /*
997 * See fs/select.c in the Linux kernel. Without this,
998 * Maelstrom doesn't work.
999 */
1000 if (error == ERESTART)
1001 error = EINTR;
1002 return error;
1003 }
1004
1005 if (timeout) {
1006 if (*retval) {
1007 /*
1008 * Compute how much time was left of the timeout,
1009 * by subtracting the current time and the time
1010 * before we started the call, and subtracting
1011 * that result from the user-supplied value.
1012 */
1013 microtime(&tv1);
1014 timersub(&tv1, &tv0, &tv1);
1015 timersub(&utv, &tv1, &utv);
1016 if (utv.tv_sec < 0)
1017 timerclear(&utv);
1018 } else
1019 timerclear(&utv);
1020 if ((error = copyout(&utv, timeout, sizeof(utv))))
1021 return error;
1022 }
1023
1024 return 0;
1025 }
1026
1027 /*
1028 * Get the process group of a certain process. Look it up
1029 * and return the value.
1030 */
1031 int
1032 linux_sys_getpgid(l, v, retval)
1033 struct lwp *l;
1034 void *v;
1035 register_t *retval;
1036 {
1037 struct linux_sys_getpgid_args /* {
1038 syscallarg(int) pid;
1039 } */ *uap = v;
1040 struct proc *p = l->l_proc;
1041 struct proc *targp;
1042
1043 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
1044 if ((targp = pfind(SCARG(uap, pid))) == 0)
1045 return ESRCH;
1046 }
1047 else
1048 targp = p;
1049
1050 retval[0] = targp->p_pgid;
1051 return 0;
1052 }
1053
1054 /*
1055 * Set the 'personality' (emulation mode) for the current process. Only
1056 * accept the Linux personality here (0). This call is needed because
1057 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1058 * ELF binaries run in Linux mode, not SVR4 mode.
1059 */
1060 int
1061 linux_sys_personality(l, v, retval)
1062 struct lwp *l;
1063 void *v;
1064 register_t *retval;
1065 {
1066 struct linux_sys_personality_args /* {
1067 syscallarg(int) per;
1068 } */ *uap = v;
1069
1070 if (SCARG(uap, per) != 0)
1071 return EINVAL;
1072 retval[0] = 0;
1073 return 0;
1074 }
1075
1076 #if defined(__i386__) || defined(__m68k__)
1077 /*
1078 * The calls are here because of type conversions.
1079 */
1080 int
1081 linux_sys_setreuid16(l, v, retval)
1082 struct lwp *l;
1083 void *v;
1084 register_t *retval;
1085 {
1086 struct linux_sys_setreuid16_args /* {
1087 syscallarg(int) ruid;
1088 syscallarg(int) euid;
1089 } */ *uap = v;
1090 struct sys_setreuid_args bsa;
1091
1092 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1093 (uid_t)-1 : SCARG(uap, ruid);
1094 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1095 (uid_t)-1 : SCARG(uap, euid);
1096
1097 return sys_setreuid(l, &bsa, retval);
1098 }
1099
1100 int
1101 linux_sys_setregid16(l, v, retval)
1102 struct lwp *l;
1103 void *v;
1104 register_t *retval;
1105 {
1106 struct linux_sys_setregid16_args /* {
1107 syscallarg(int) rgid;
1108 syscallarg(int) egid;
1109 } */ *uap = v;
1110 struct sys_setregid_args bsa;
1111
1112 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1113 (uid_t)-1 : SCARG(uap, rgid);
1114 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1115 (uid_t)-1 : SCARG(uap, egid);
1116
1117 return sys_setregid(l, &bsa, retval);
1118 }
1119
1120 int
1121 linux_sys_setresuid16(l, v, retval)
1122 struct lwp *l;
1123 void *v;
1124 register_t *retval;
1125 {
1126 struct linux_sys_setresuid16_args /* {
1127 syscallarg(uid_t) ruid;
1128 syscallarg(uid_t) euid;
1129 syscallarg(uid_t) suid;
1130 } */ *uap = v;
1131 struct linux_sys_setresuid16_args lsa;
1132
1133 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1134 (uid_t)-1 : SCARG(uap, ruid);
1135 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1136 (uid_t)-1 : SCARG(uap, euid);
1137 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
1138 (uid_t)-1 : SCARG(uap, suid);
1139
1140 return linux_sys_setresuid(l, &lsa, retval);
1141 }
1142
1143 int
1144 linux_sys_setresgid16(l, v, retval)
1145 struct lwp *l;
1146 void *v;
1147 register_t *retval;
1148 {
1149 struct linux_sys_setresgid16_args /* {
1150 syscallarg(gid_t) rgid;
1151 syscallarg(gid_t) egid;
1152 syscallarg(gid_t) sgid;
1153 } */ *uap = v;
1154 struct linux_sys_setresgid16_args lsa;
1155
1156 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1157 (gid_t)-1 : SCARG(uap, rgid);
1158 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1159 (gid_t)-1 : SCARG(uap, egid);
1160 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
1161 (gid_t)-1 : SCARG(uap, sgid);
1162
1163 return linux_sys_setresgid(l, &lsa, retval);
1164 }
1165
1166 int
1167 linux_sys_getgroups16(l, v, retval)
1168 struct lwp *l;
1169 void *v;
1170 register_t *retval;
1171 {
1172 struct linux_sys_getgroups16_args /* {
1173 syscallarg(int) gidsetsize;
1174 syscallarg(linux_gid_t *) gidset;
1175 } */ *uap = v;
1176 struct proc *p = l->l_proc;
1177 caddr_t sg;
1178 int n, error, i;
1179 struct sys_getgroups_args bsa;
1180 gid_t *bset, *kbset;
1181 linux_gid_t *lset;
1182 struct pcred *pc = p->p_cred;
1183
1184 n = SCARG(uap, gidsetsize);
1185 if (n < 0)
1186 return EINVAL;
1187 error = 0;
1188 bset = kbset = NULL;
1189 lset = NULL;
1190 if (n > 0) {
1191 n = min(pc->pc_ucred->cr_ngroups, n);
1192 sg = stackgap_init(p, 0);
1193 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1194 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1195 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1196 if (bset == NULL || kbset == NULL || lset == NULL)
1197 return ENOMEM;
1198 SCARG(&bsa, gidsetsize) = n;
1199 SCARG(&bsa, gidset) = bset;
1200 error = sys_getgroups(l, &bsa, retval);
1201 if (error != 0)
1202 goto out;
1203 error = copyin(bset, kbset, n * sizeof (gid_t));
1204 if (error != 0)
1205 goto out;
1206 for (i = 0; i < n; i++)
1207 lset[i] = (linux_gid_t)kbset[i];
1208 error = copyout(lset, SCARG(uap, gidset),
1209 n * sizeof (linux_gid_t));
1210 } else
1211 *retval = pc->pc_ucred->cr_ngroups;
1212 out:
1213 if (kbset != NULL)
1214 free(kbset, M_TEMP);
1215 if (lset != NULL)
1216 free(lset, M_TEMP);
1217 return error;
1218 }
1219
1220 int
1221 linux_sys_setgroups16(l, v, retval)
1222 struct lwp *l;
1223 void *v;
1224 register_t *retval;
1225 {
1226 struct linux_sys_setgroups16_args /* {
1227 syscallarg(int) gidsetsize;
1228 syscallarg(linux_gid_t *) gidset;
1229 } */ *uap = v;
1230 struct proc *p = l->l_proc;
1231 caddr_t sg;
1232 int n;
1233 int error, i;
1234 struct sys_setgroups_args bsa;
1235 gid_t *bset, *kbset;
1236 linux_gid_t *lset;
1237
1238 n = SCARG(uap, gidsetsize);
1239 if (n < 0 || n > NGROUPS)
1240 return EINVAL;
1241 sg = stackgap_init(p, 0);
1242 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1243 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1244 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1245 if (lset == NULL || bset == NULL)
1246 return ENOMEM;
1247 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t));
1248 if (error != 0)
1249 goto out;
1250 for (i = 0; i < n; i++)
1251 kbset[i] = (gid_t)lset[i];
1252 error = copyout(kbset, bset, n * sizeof (gid_t));
1253 if (error != 0)
1254 goto out;
1255 SCARG(&bsa, gidsetsize) = n;
1256 SCARG(&bsa, gidset) = bset;
1257 error = sys_setgroups(l, &bsa, retval);
1258
1259 out:
1260 if (lset != NULL)
1261 free(lset, M_TEMP);
1262 if (kbset != NULL)
1263 free(kbset, M_TEMP);
1264
1265 return error;
1266 }
1267
1268 #endif /* __i386__ || __m68k__ */
1269
1270 /*
1271 * We have nonexistent fsuid equal to uid.
1272 * If modification is requested, refuse.
1273 */
1274 int
1275 linux_sys_setfsuid(l, v, retval)
1276 struct lwp *l;
1277 void *v;
1278 register_t *retval;
1279 {
1280 struct linux_sys_setfsuid_args /* {
1281 syscallarg(uid_t) uid;
1282 } */ *uap = v;
1283 struct proc *p = l->l_proc;
1284 uid_t uid;
1285
1286 uid = SCARG(uap, uid);
1287 if (p->p_cred->p_ruid != uid)
1288 return sys_nosys(l, v, retval);
1289 else
1290 return (0);
1291 }
1292
1293 /* XXX XXX XXX */
1294 #ifndef alpha
1295 int
1296 linux_sys_getfsuid(l, v, retval)
1297 struct lwp *l;
1298 void *v;
1299 register_t *retval;
1300 {
1301 return sys_getuid(l, v, retval);
1302 }
1303 #endif
1304
1305 int
1306 linux_sys_setresuid(l, v, retval)
1307 struct lwp *l;
1308 void *v;
1309 register_t *retval;
1310 {
1311 struct linux_sys_setresuid_args /* {
1312 syscallarg(uid_t) ruid;
1313 syscallarg(uid_t) euid;
1314 syscallarg(uid_t) suid;
1315 } */ *uap = v;
1316
1317 /*
1318 * Note: These checks are a little different than the NetBSD
1319 * setreuid(2) call performs. This precisely follows the
1320 * behavior of the Linux kernel.
1321 */
1322
1323 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1324 SCARG(uap, suid),
1325 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1326 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1327 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1328 }
1329
1330 int
1331 linux_sys_getresuid(l, v, retval)
1332 struct lwp *l;
1333 void *v;
1334 register_t *retval;
1335 {
1336 struct linux_sys_getresuid_args /* {
1337 syscallarg(uid_t *) ruid;
1338 syscallarg(uid_t *) euid;
1339 syscallarg(uid_t *) suid;
1340 } */ *uap = v;
1341 struct proc *p = l->l_proc;
1342 struct pcred *pc = p->p_cred;
1343 int error;
1344
1345 /*
1346 * Linux copies these values out to userspace like so:
1347 *
1348 * 1. Copy out ruid.
1349 * 2. If that succeeds, copy out euid.
1350 * 3. If both of those succeed, copy out suid.
1351 */
1352 if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid),
1353 sizeof(uid_t))) != 0)
1354 return (error);
1355
1356 if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid),
1357 sizeof(uid_t))) != 0)
1358 return (error);
1359
1360 return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t)));
1361 }
1362
1363 int
1364 linux_sys_ptrace(l, v, retval)
1365 struct lwp *l;
1366 void *v;
1367 register_t *retval;
1368 {
1369 struct linux_sys_ptrace_args /* {
1370 i386, m68k, powerpc: T=int
1371 alpha: T=long
1372 syscallarg(T) request;
1373 syscallarg(T) pid;
1374 syscallarg(T) addr;
1375 syscallarg(T) data;
1376 } */ *uap = v;
1377 const int *ptr;
1378 int request;
1379 int error;
1380
1381 ptr = linux_ptrace_request_map;
1382 request = SCARG(uap, request);
1383 while (*ptr != -1)
1384 if (*ptr++ == request) {
1385 struct sys_ptrace_args pta;
1386
1387 SCARG(&pta, req) = *ptr;
1388 SCARG(&pta, pid) = SCARG(uap, pid);
1389 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr);
1390 SCARG(&pta, data) = SCARG(uap, data);
1391
1392 /*
1393 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1394 * to continue where the process left off previously.
1395 * The same thing is achieved by addr == (caddr_t) 1
1396 * on NetBSD, so rewrite 'addr' appropriately.
1397 */
1398 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1399 SCARG(&pta, addr) = (caddr_t) 1;
1400
1401 error = sys_ptrace(l, &pta, retval);
1402 if (error)
1403 return error;
1404 switch (request) {
1405 case LINUX_PTRACE_PEEKTEXT:
1406 case LINUX_PTRACE_PEEKDATA:
1407 error = copyout (retval,
1408 (caddr_t)SCARG(uap, data), sizeof *retval);
1409 *retval = SCARG(uap, data);
1410 break;
1411 default:
1412 break;
1413 }
1414 return error;
1415 }
1416 else
1417 ptr++;
1418
1419 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1420 }
1421
1422 int
1423 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
1424 {
1425 struct linux_sys_reboot_args /* {
1426 syscallarg(int) magic1;
1427 syscallarg(int) magic2;
1428 syscallarg(int) cmd;
1429 syscallarg(void *) arg;
1430 } */ *uap = v;
1431 struct sys_reboot_args /* {
1432 syscallarg(int) opt;
1433 syscallarg(char *) bootstr;
1434 } */ sra;
1435 struct proc *p = l->l_proc;
1436 int error;
1437
1438 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1439 return(error);
1440
1441 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1442 return(EINVAL);
1443 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1444 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1445 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1446 return(EINVAL);
1447
1448 switch (SCARG(uap, cmd)) {
1449 case LINUX_REBOOT_CMD_RESTART:
1450 SCARG(&sra, opt) = RB_AUTOBOOT;
1451 break;
1452 case LINUX_REBOOT_CMD_HALT:
1453 SCARG(&sra, opt) = RB_HALT;
1454 break;
1455 case LINUX_REBOOT_CMD_POWER_OFF:
1456 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1457 break;
1458 case LINUX_REBOOT_CMD_RESTART2:
1459 /* Reboot with an argument. */
1460 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1461 SCARG(&sra, bootstr) = SCARG(uap, arg);
1462 break;
1463 case LINUX_REBOOT_CMD_CAD_ON:
1464 return(EINVAL); /* We don't implement ctrl-alt-delete */
1465 case LINUX_REBOOT_CMD_CAD_OFF:
1466 return(0);
1467 default:
1468 return(EINVAL);
1469 }
1470
1471 return(sys_reboot(l, &sra, retval));
1472 }
1473
1474 /*
1475 * Copy of compat_12_sys_swapon().
1476 */
1477 int
1478 linux_sys_swapon(l, v, retval)
1479 struct lwp *l;
1480 void *v;
1481 register_t *retval;
1482 {
1483 struct sys_swapctl_args ua;
1484 struct linux_sys_swapon_args /* {
1485 syscallarg(const char *) name;
1486 } */ *uap = v;
1487
1488 SCARG(&ua, cmd) = SWAP_ON;
1489 SCARG(&ua, arg) = (void *)SCARG(uap, name);
1490 SCARG(&ua, misc) = 0; /* priority */
1491 return (sys_swapctl(l, &ua, retval));
1492 }
1493
1494 /*
1495 * Stop swapping to the file or block device specified by path.
1496 */
1497 int
1498 linux_sys_swapoff(l, v, retval)
1499 struct lwp *l;
1500 void *v;
1501 register_t *retval;
1502 {
1503 struct sys_swapctl_args ua;
1504 struct linux_sys_swapoff_args /* {
1505 syscallarg(const char *) path;
1506 } */ *uap = v;
1507
1508 SCARG(&ua, cmd) = SWAP_OFF;
1509 SCARG(&ua, arg) = (void *)SCARG(uap, path);
1510 return (sys_swapctl(l, &ua, retval));
1511 }
1512
1513 /*
1514 * Copy of compat_09_sys_setdomainname()
1515 */
1516 /* ARGSUSED */
1517 int
1518 linux_sys_setdomainname(l, v, retval)
1519 struct lwp *l;
1520 void *v;
1521 register_t *retval;
1522 {
1523 struct linux_sys_setdomainname_args /* {
1524 syscallarg(char *) domainname;
1525 syscallarg(int) len;
1526 } */ *uap = v;
1527 int name[2];
1528
1529 name[0] = CTL_KERN;
1530 name[1] = KERN_DOMAINNAME;
1531 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1532 SCARG(uap, len), l));
1533 }
1534
1535 /*
1536 * sysinfo()
1537 */
1538 /* ARGSUSED */
1539 int
1540 linux_sys_sysinfo(l, v, retval)
1541 struct lwp *l;
1542 void *v;
1543 register_t *retval;
1544 {
1545 struct linux_sys_sysinfo_args /* {
1546 syscallarg(struct linux_sysinfo *) arg;
1547 } */ *uap = v;
1548 struct linux_sysinfo si;
1549 struct loadavg *la;
1550
1551 si.uptime = time.tv_sec - boottime.tv_sec;
1552 la = &averunnable;
1553 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1554 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1555 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1556 si.totalram = ctob(physmem);
1557 si.freeram = uvmexp.free * uvmexp.pagesize;
1558 si.sharedram = 0; /* XXX */
1559 si.bufferram = uvmexp.filepages * uvmexp.pagesize;
1560 si.totalswap = uvmexp.swpages * uvmexp.pagesize;
1561 si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1562 si.procs = nprocs;
1563
1564 /* The following are only present in newer Linux kernels. */
1565 si.totalbig = 0;
1566 si.freebig = 0;
1567 si.mem_unit = 1;
1568
1569 return (copyout(&si, SCARG(uap, arg), sizeof si));
1570 }
1571
1572 #define bsd_to_linux_rlimit1(l, b, f) \
1573 (l)->f = ((b)->f == RLIM_INFINITY || \
1574 ((b)->f & 0xffffffff00000000ULL) != 0) ? \
1575 LINUX_RLIM_INFINITY : (int32_t)(b)->f
1576 #define bsd_to_linux_rlimit(l, b) \
1577 bsd_to_linux_rlimit1(l, b, rlim_cur); \
1578 bsd_to_linux_rlimit1(l, b, rlim_max)
1579
1580 #define linux_to_bsd_rlimit1(b, l, f) \
1581 (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f
1582 #define linux_to_bsd_rlimit(b, l) \
1583 linux_to_bsd_rlimit1(b, l, rlim_cur); \
1584 linux_to_bsd_rlimit1(b, l, rlim_max)
1585
1586 static int
1587 linux_to_bsd_limit(lim)
1588 int lim;
1589 {
1590 switch (lim) {
1591 case LINUX_RLIMIT_CPU:
1592 return RLIMIT_CPU;
1593 case LINUX_RLIMIT_FSIZE:
1594 return RLIMIT_FSIZE;
1595 case LINUX_RLIMIT_DATA:
1596 return RLIMIT_DATA;
1597 case LINUX_RLIMIT_STACK:
1598 return RLIMIT_STACK;
1599 case LINUX_RLIMIT_CORE:
1600 return RLIMIT_CORE;
1601 case LINUX_RLIMIT_RSS:
1602 return RLIMIT_RSS;
1603 case LINUX_RLIMIT_NPROC:
1604 return RLIMIT_NPROC;
1605 case LINUX_RLIMIT_NOFILE:
1606 return RLIMIT_NOFILE;
1607 case LINUX_RLIMIT_MEMLOCK:
1608 return RLIMIT_MEMLOCK;
1609 case LINUX_RLIMIT_AS:
1610 case LINUX_RLIMIT_LOCKS:
1611 return -EOPNOTSUPP;
1612 default:
1613 return -EINVAL;
1614 }
1615 }
1616
1617
1618 int
1619 linux_sys_getrlimit(l, v, retval)
1620 struct lwp *l;
1621 void *v;
1622 register_t *retval;
1623 {
1624 struct linux_sys_getrlimit_args /* {
1625 syscallarg(int) which;
1626 syscallarg(struct orlimit *) rlp;
1627 } */ *uap = v;
1628 struct proc *p = l->l_proc;
1629 caddr_t sg = stackgap_init(p, 0);
1630 struct sys_getrlimit_args ap;
1631 struct rlimit rl;
1632 struct orlimit orl;
1633 int error;
1634
1635 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1636 if ((error = SCARG(&ap, which)) < 0)
1637 return -error;
1638 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1639 if ((error = sys_getrlimit(l, &ap, retval)) != 0)
1640 return error;
1641 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0)
1642 return error;
1643 bsd_to_linux_rlimit(&orl, &rl);
1644 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1645 }
1646
1647 int
1648 linux_sys_setrlimit(l, v, retval)
1649 struct lwp *l;
1650 void *v;
1651 register_t *retval;
1652 {
1653 struct linux_sys_setrlimit_args /* {
1654 syscallarg(int) which;
1655 syscallarg(struct orlimit *) rlp;
1656 } */ *uap = v;
1657 struct proc *p = l->l_proc;
1658 caddr_t sg = stackgap_init(p, 0);
1659 struct sys_setrlimit_args ap;
1660 struct rlimit rl;
1661 struct orlimit orl;
1662 int error;
1663
1664 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1665 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1666 if ((error = SCARG(&ap, which)) < 0)
1667 return -error;
1668 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1669 return error;
1670 linux_to_bsd_rlimit(&rl, &orl);
1671 /* XXX: alpha complains about this */
1672 if ((error = copyout(&rl, (void *)SCARG(&ap, rlp), sizeof(rl))) != 0)
1673 return error;
1674 return sys_setrlimit(l, &ap, retval);
1675 }
1676
1677 #ifndef __mips__
1678 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1679 int
1680 linux_sys_ugetrlimit(l, v, retval)
1681 struct lwp *l;
1682 void *v;
1683 register_t *retval;
1684 {
1685 return linux_sys_getrlimit(l, v, retval);
1686 }
1687 #endif
1688
1689 /*
1690 * This gets called for unsupported syscalls. The difference to sys_nosys()
1691 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1692 * This is the way Linux does it and glibc depends on this behaviour.
1693 */
1694 int
1695 linux_sys_nosys(l, v, retval)
1696 struct lwp *l;
1697 void *v;
1698 register_t *retval;
1699 {
1700 return (ENOSYS);
1701 }
1702