linux_misc.c revision 1.138 1 /* $NetBSD: linux_misc.c,v 1.138 2005/05/29 22:08:16 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Linux compatibility module. Try to deal with various Linux system calls.
42 */
43
44 /*
45 * These functions have been moved to multiarch to allow
46 * selection of which machines include them to be
47 * determined by the individual files.linux_<arch> files.
48 *
49 * Function in multiarch:
50 * linux_sys_break : linux_break.c
51 * linux_sys_alarm : linux_misc_notalpha.c
52 * linux_sys_getresgid : linux_misc_notalpha.c
53 * linux_sys_nice : linux_misc_notalpha.c
54 * linux_sys_readdir : linux_misc_notalpha.c
55 * linux_sys_setresgid : linux_misc_notalpha.c
56 * linux_sys_time : linux_misc_notalpha.c
57 * linux_sys_utime : linux_misc_notalpha.c
58 * linux_sys_waitpid : linux_misc_notalpha.c
59 * linux_sys_old_mmap : linux_oldmmap.c
60 * linux_sys_oldolduname : linux_oldolduname.c
61 * linux_sys_oldselect : linux_oldselect.c
62 * linux_sys_olduname : linux_olduname.c
63 * linux_sys_pipe : linux_pipe.c
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.138 2005/05/29 22:08:16 christos Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/proc.h>
73 #include <sys/dirent.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/ioctl.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/mbuf.h>
81 #include <sys/mman.h>
82 #include <sys/mount.h>
83 #include <sys/reboot.h>
84 #include <sys/resource.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signal.h>
87 #include <sys/signalvar.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/times.h>
91 #include <sys/vnode.h>
92 #include <sys/uio.h>
93 #include <sys/wait.h>
94 #include <sys/utsname.h>
95 #include <sys/unistd.h>
96 #include <sys/swap.h> /* for SWAP_ON */
97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
98
99 #include <sys/ptrace.h>
100 #include <machine/ptrace.h>
101
102 #include <sys/sa.h>
103 #include <sys/syscallargs.h>
104
105 #include <compat/linux/common/linux_types.h>
106 #include <compat/linux/common/linux_signal.h>
107
108 #include <compat/linux/linux_syscallargs.h>
109
110 #include <compat/linux/common/linux_fcntl.h>
111 #include <compat/linux/common/linux_mmap.h>
112 #include <compat/linux/common/linux_dirent.h>
113 #include <compat/linux/common/linux_util.h>
114 #include <compat/linux/common/linux_misc.h>
115 #include <compat/linux/common/linux_ptrace.h>
116 #include <compat/linux/common/linux_reboot.h>
117 #include <compat/linux/common/linux_emuldata.h>
118
119 const int linux_ptrace_request_map[] = {
120 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
121 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
122 LINUX_PTRACE_PEEKDATA, PT_READ_D,
123 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
124 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
125 LINUX_PTRACE_CONT, PT_CONTINUE,
126 LINUX_PTRACE_KILL, PT_KILL,
127 LINUX_PTRACE_ATTACH, PT_ATTACH,
128 LINUX_PTRACE_DETACH, PT_DETACH,
129 #ifdef PT_STEP
130 LINUX_PTRACE_SINGLESTEP, PT_STEP,
131 #endif
132 -1
133 };
134
135 const struct linux_mnttypes linux_fstypes[] = {
136 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
137 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
138 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
139 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
140 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
141 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
142 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
143 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
144 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
146 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
148 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
150 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
152 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
153 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
155 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
158 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC }
159 };
160 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
161
162 #ifdef DEBUG_LINUX
163 #define DPRINTF(a) uprintf a
164 #else
165 #define DPRINTF(a)
166 #endif
167
168 /* Local linux_misc.c functions: */
169 #ifndef __amd64__
170 static void bsd_to_linux_statfs __P((const struct statvfs *,
171 struct linux_statfs *));
172 #endif
173 static int linux_to_bsd_limit __P((int));
174 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *,
175 const struct linux_sys_mmap_args *));
176 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *,
177 register_t *, off_t));
178
179
180 /*
181 * The information on a terminated (or stopped) process needs
182 * to be converted in order for Linux binaries to get a valid signal
183 * number out of it.
184 */
185 void
186 bsd_to_linux_wstat(st)
187 int *st;
188 {
189
190 int sig;
191
192 if (WIFSIGNALED(*st)) {
193 sig = WTERMSIG(*st);
194 if (sig >= 0 && sig < NSIG)
195 *st= (*st& ~0177) | native_to_linux_signo[sig];
196 } else if (WIFSTOPPED(*st)) {
197 sig = WSTOPSIG(*st);
198 if (sig >= 0 && sig < NSIG)
199 *st = (*st & ~0xff00) |
200 (native_to_linux_signo[sig] << 8);
201 }
202 }
203
204 /*
205 * wait4(2). Passed on to the NetBSD call, surrounded by code to
206 * reserve some space for a NetBSD-style wait status, and converting
207 * it to what Linux wants.
208 */
209 int
210 linux_sys_wait4(l, v, retval)
211 struct lwp *l;
212 void *v;
213 register_t *retval;
214 {
215 struct linux_sys_wait4_args /* {
216 syscallarg(int) pid;
217 syscallarg(int *) status;
218 syscallarg(int) options;
219 syscallarg(struct rusage *) rusage;
220 } */ *uap = v;
221 struct proc *p = l->l_proc;
222 struct sys_wait4_args w4a;
223 int error, *status, tstat, options, linux_options;
224 caddr_t sg;
225
226 if (SCARG(uap, status) != NULL) {
227 sg = stackgap_init(p, 0);
228 status = (int *) stackgap_alloc(p, &sg, sizeof *status);
229 } else
230 status = NULL;
231
232 linux_options = SCARG(uap, options);
233 options = 0;
234 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
235 return (EINVAL);
236
237 if (linux_options & LINUX_WAIT4_WNOHANG)
238 options |= WNOHANG;
239 if (linux_options & LINUX_WAIT4_WUNTRACED)
240 options |= WUNTRACED;
241 if (linux_options & LINUX_WAIT4_WALL)
242 options |= WALLSIG;
243 if (linux_options & LINUX_WAIT4_WCLONE)
244 options |= WALTSIG;
245 #ifdef DIAGNOSTIC
246 if (linux_options & LINUX_WAIT4_WNOTHREAD)
247 printf("WARNING: %s: linux process %d.%d called "
248 "waitpid with __WNOTHREAD set!",
249 __FILE__, p->p_pid, l->l_lid);
250
251 #endif
252
253 SCARG(&w4a, pid) = SCARG(uap, pid);
254 SCARG(&w4a, status) = status;
255 SCARG(&w4a, options) = options;
256 SCARG(&w4a, rusage) = SCARG(uap, rusage);
257
258 if ((error = sys_wait4(l, &w4a, retval)))
259 return error;
260
261 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD);
262
263 if (status != NULL) {
264 if ((error = copyin(status, &tstat, sizeof tstat)))
265 return error;
266
267 bsd_to_linux_wstat(&tstat);
268 return copyout(&tstat, SCARG(uap, status), sizeof tstat);
269 }
270
271 return 0;
272 }
273
274 /*
275 * Linux brk(2). The check if the new address is >= the old one is
276 * done in the kernel in Linux. NetBSD does it in the library.
277 */
278 int
279 linux_sys_brk(l, v, retval)
280 struct lwp *l;
281 void *v;
282 register_t *retval;
283 {
284 struct linux_sys_brk_args /* {
285 syscallarg(char *) nsize;
286 } */ *uap = v;
287 struct proc *p = l->l_proc;
288 char *nbrk = SCARG(uap, nsize);
289 struct sys_obreak_args oba;
290 struct vmspace *vm = p->p_vmspace;
291 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
292
293 SCARG(&oba, nsize) = nbrk;
294
295 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
296 ed->s->p_break = (char*)nbrk;
297 else
298 nbrk = ed->s->p_break;
299
300 retval[0] = (register_t)nbrk;
301
302 return 0;
303 }
304
305 #ifndef __amd64__
306 /*
307 * Convert NetBSD statvfs structure to Linux statfs structure.
308 * Linux doesn't have f_flag, and we can't set f_frsize due
309 * to glibc statvfs() bug (see below).
310 */
311 static void
312 bsd_to_linux_statfs(bsp, lsp)
313 const struct statvfs *bsp;
314 struct linux_statfs *lsp;
315 {
316 int i;
317
318 for (i = 0; i < linux_fstypes_cnt; i++) {
319 if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
320 lsp->l_ftype = linux_fstypes[i].linux;
321 break;
322 }
323 }
324
325 if (i == linux_fstypes_cnt) {
326 DPRINTF(("unhandled fstype in linux emulation: %s\n",
327 bsp->f_fstypename));
328 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
329 }
330
331 /*
332 * The sizes are expressed in number of blocks. The block
333 * size used for the size is f_frsize for POSIX-compliant
334 * statvfs. Linux statfs uses f_bsize as the block size
335 * (f_frsize used to not be available in Linux struct statfs).
336 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block
337 * counts for different f_frsize if f_frsize is provided by the kernel.
338 * POSIX conforming apps thus get wrong size if f_frsize
339 * is different to f_bsize. Thus, we just pretend we don't
340 * support f_frsize.
341 */
342
343 lsp->l_fbsize = bsp->f_frsize;
344 lsp->l_ffrsize = 0; /* compat */
345 lsp->l_fblocks = bsp->f_blocks;
346 lsp->l_fbfree = bsp->f_bfree;
347 lsp->l_fbavail = bsp->f_bavail;
348 lsp->l_ffiles = bsp->f_files;
349 lsp->l_fffree = bsp->f_ffree;
350 /* Linux sets the fsid to 0..., we don't */
351 lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
352 lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
353 lsp->l_fnamelen = bsp->f_namemax;
354 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
355 }
356
357 /*
358 * Implement the fs stat functions. Straightforward.
359 */
360 int
361 linux_sys_statfs(l, v, retval)
362 struct lwp *l;
363 void *v;
364 register_t *retval;
365 {
366 struct linux_sys_statfs_args /* {
367 syscallarg(const char *) path;
368 syscallarg(struct linux_statfs *) sp;
369 } */ *uap = v;
370 struct proc *p = l->l_proc;
371 struct statvfs btmp, *bsp;
372 struct linux_statfs ltmp;
373 struct sys_statvfs1_args bsa;
374 caddr_t sg;
375 int error;
376
377 sg = stackgap_init(p, 0);
378 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
379
380 CHECK_ALT_EXIST(p, &sg, SCARG(uap, path));
381
382 SCARG(&bsa, path) = SCARG(uap, path);
383 SCARG(&bsa, buf) = bsp;
384 SCARG(&bsa, flags) = ST_WAIT;
385
386 if ((error = sys_statvfs1(l, &bsa, retval)))
387 return error;
388
389 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
390 return error;
391
392 bsd_to_linux_statfs(&btmp, <mp);
393
394 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
395 }
396
397 int
398 linux_sys_fstatfs(l, v, retval)
399 struct lwp *l;
400 void *v;
401 register_t *retval;
402 {
403 struct linux_sys_fstatfs_args /* {
404 syscallarg(int) fd;
405 syscallarg(struct linux_statfs *) sp;
406 } */ *uap = v;
407 struct proc *p = l->l_proc;
408 struct statvfs btmp, *bsp;
409 struct linux_statfs ltmp;
410 struct sys_fstatvfs1_args bsa;
411 caddr_t sg;
412 int error;
413
414 sg = stackgap_init(p, 0);
415 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
416
417 SCARG(&bsa, fd) = SCARG(uap, fd);
418 SCARG(&bsa, buf) = bsp;
419 SCARG(&bsa, flags) = ST_WAIT;
420
421 if ((error = sys_fstatvfs1(l, &bsa, retval)))
422 return error;
423
424 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
425 return error;
426
427 bsd_to_linux_statfs(&btmp, <mp);
428
429 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
430 }
431 #endif /* __amd64__ */
432
433 /*
434 * uname(). Just copy the info from the various strings stored in the
435 * kernel, and put it in the Linux utsname structure. That structure
436 * is almost the same as the NetBSD one, only it has fields 65 characters
437 * long, and an extra domainname field.
438 */
439 int
440 linux_sys_uname(l, v, retval)
441 struct lwp *l;
442 void *v;
443 register_t *retval;
444 {
445 struct linux_sys_uname_args /* {
446 syscallarg(struct linux_utsname *) up;
447 } */ *uap = v;
448 struct linux_utsname luts;
449
450 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
451 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
452 strncpy(luts.l_release, linux_release, sizeof(luts.l_release));
453 strncpy(luts.l_version, linux_version, sizeof(luts.l_version));
454 strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
455 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
456
457 return copyout(&luts, SCARG(uap, up), sizeof(luts));
458 }
459
460 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
461 /* Used indirectly on: arm, i386, m68k */
462
463 /*
464 * New type Linux mmap call.
465 * Only called directly on machines with >= 6 free regs.
466 */
467 int
468 linux_sys_mmap(l, v, retval)
469 struct lwp *l;
470 void *v;
471 register_t *retval;
472 {
473 struct linux_sys_mmap_args /* {
474 syscallarg(unsigned long) addr;
475 syscallarg(size_t) len;
476 syscallarg(int) prot;
477 syscallarg(int) flags;
478 syscallarg(int) fd;
479 syscallarg(linux_off_t) offset;
480 } */ *uap = v;
481
482 if (SCARG(uap, offset) & PAGE_MASK)
483 return EINVAL;
484
485 return linux_mmap(l, uap, retval, SCARG(uap, offset));
486 }
487
488 /*
489 * Guts of most architectures' mmap64() implementations. This shares
490 * its list of arguments with linux_sys_mmap().
491 *
492 * The difference in linux_sys_mmap2() is that "offset" is actually
493 * (offset / pagesize), not an absolute byte count. This translation
494 * to pagesize offsets is done inside glibc between the mmap64() call
495 * point, and the actual syscall.
496 */
497 int
498 linux_sys_mmap2(l, v, retval)
499 struct lwp *l;
500 void *v;
501 register_t *retval;
502 {
503 struct linux_sys_mmap2_args /* {
504 syscallarg(unsigned long) addr;
505 syscallarg(size_t) len;
506 syscallarg(int) prot;
507 syscallarg(int) flags;
508 syscallarg(int) fd;
509 syscallarg(linux_off_t) offset;
510 } */ *uap = v;
511
512 return linux_mmap(l, uap, retval,
513 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
514 }
515
516 /*
517 * Massage arguments and call system mmap(2).
518 */
519 static int
520 linux_mmap(l, uap, retval, offset)
521 struct lwp *l;
522 struct linux_sys_mmap_args *uap;
523 register_t *retval;
524 off_t offset;
525 {
526 struct sys_mmap_args cma;
527 int error;
528 size_t mmoff=0;
529
530 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
531 /*
532 * Request for stack-like memory segment. On linux, this
533 * works by mmap()ping (small) segment, which is automatically
534 * extended when page fault happens below the currently
535 * allocated area. We emulate this by allocating (typically
536 * bigger) segment sized at current stack size limit, and
537 * offsetting the requested and returned address accordingly.
538 * Since physical pages are only allocated on-demand, this
539 * is effectively identical.
540 */
541 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
542
543 if (SCARG(uap, len) < ssl) {
544 /* Compute the address offset */
545 mmoff = round_page(ssl) - SCARG(uap, len);
546
547 if (SCARG(uap, addr))
548 SCARG(uap, addr) -= mmoff;
549
550 SCARG(uap, len) = (size_t) ssl;
551 }
552 }
553
554 linux_to_bsd_mmap_args(&cma, uap);
555 SCARG(&cma, pos) = offset;
556
557 error = sys_mmap(l, &cma, retval);
558 if (error)
559 return (error);
560
561 /* Shift the returned address for stack-like segment if necessary */
562 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
563 retval[0] += mmoff;
564
565 return (0);
566 }
567
568 static void
569 linux_to_bsd_mmap_args(cma, uap)
570 struct sys_mmap_args *cma;
571 const struct linux_sys_mmap_args *uap;
572 {
573 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
574
575 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
576 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
577 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
578 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
579 /* XXX XAX ERH: Any other flags here? There are more defined... */
580
581 SCARG(cma, addr) = (void *)SCARG(uap, addr);
582 SCARG(cma, len) = SCARG(uap, len);
583 SCARG(cma, prot) = SCARG(uap, prot);
584 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
585 SCARG(cma, prot) |= VM_PROT_READ;
586 SCARG(cma, flags) = flags;
587 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
588 SCARG(cma, pad) = 0;
589 }
590
591 int
592 linux_sys_mremap(l, v, retval)
593 struct lwp *l;
594 void *v;
595 register_t *retval;
596 {
597 struct linux_sys_mremap_args /* {
598 syscallarg(void *) old_address;
599 syscallarg(size_t) old_size;
600 syscallarg(size_t) new_size;
601 syscallarg(u_long) flags;
602 } */ *uap = v;
603 struct sys_munmap_args mua;
604 size_t old_size, new_size;
605 int error;
606
607 old_size = round_page(SCARG(uap, old_size));
608 new_size = round_page(SCARG(uap, new_size));
609
610 /*
611 * Growing mapped region.
612 */
613 if (new_size > old_size) {
614 /*
615 * XXX Implement me. What we probably want to do is
616 * XXX dig out the guts of the old mapping, mmap that
617 * XXX object again with the new size, then munmap
618 * XXX the old mapping.
619 */
620 *retval = 0;
621 return (ENOMEM);
622 }
623
624 /*
625 * Shrinking mapped region.
626 */
627 if (new_size < old_size) {
628 SCARG(&mua, addr) = (caddr_t)SCARG(uap, old_address) +
629 new_size;
630 SCARG(&mua, len) = old_size - new_size;
631 error = sys_munmap(l, &mua, retval);
632 *retval = error ? 0 : (register_t)SCARG(uap, old_address);
633 return (error);
634 }
635
636 /*
637 * No change.
638 */
639 *retval = (register_t)SCARG(uap, old_address);
640 return (0);
641 }
642
643 int
644 linux_sys_msync(l, v, retval)
645 struct lwp *l;
646 void *v;
647 register_t *retval;
648 {
649 struct linux_sys_msync_args /* {
650 syscallarg(caddr_t) addr;
651 syscallarg(int) len;
652 syscallarg(int) fl;
653 } */ *uap = v;
654
655 struct sys___msync13_args bma;
656
657 /* flags are ignored */
658 SCARG(&bma, addr) = SCARG(uap, addr);
659 SCARG(&bma, len) = SCARG(uap, len);
660 SCARG(&bma, flags) = SCARG(uap, fl);
661
662 return sys___msync13(l, &bma, retval);
663 }
664
665 int
666 linux_sys_mprotect(l, v, retval)
667 struct lwp *l;
668 void *v;
669 register_t *retval;
670 {
671 struct linux_sys_mprotect_args /* {
672 syscallarg(const void *) start;
673 syscallarg(unsigned long) len;
674 syscallarg(int) prot;
675 } */ *uap = v;
676 unsigned long end, start = (unsigned long)SCARG(uap, start), len;
677 int prot = SCARG(uap, prot);
678 struct vm_map_entry *entry;
679 struct vm_map *map = &l->l_proc->p_vmspace->vm_map;
680
681 if (start & PAGE_MASK)
682 return EINVAL;
683
684 len = round_page(SCARG(uap, len));
685 end = start + len;
686
687 if (end < start)
688 return EINVAL;
689 else if (end == start)
690 return 0;
691
692 if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
693 return EINVAL;
694
695 vm_map_lock(map);
696 #ifdef notdef
697 VM_MAP_RANGE_CHECK(map, start, end);
698 #endif
699 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
700 vm_map_unlock(map);
701 return ENOMEM;
702 }
703 vm_map_unlock(map);
704 return uvm_map_protect(map, start, end, prot, FALSE);
705 }
706
707 /*
708 * This code is partly stolen from src/lib/libc/compat-43/times.c
709 */
710
711 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
712
713 int
714 linux_sys_times(l, v, retval)
715 struct lwp *l;
716 void *v;
717 register_t *retval;
718 {
719 struct linux_sys_times_args /* {
720 syscallarg(struct times *) tms;
721 } */ *uap = v;
722 struct proc *p = l->l_proc;
723 struct timeval t;
724 int error, s;
725
726 if (SCARG(uap, tms)) {
727 struct linux_tms ltms;
728 struct rusage ru;
729
730 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL);
731 ltms.ltms_utime = CONVTCK(ru.ru_utime);
732 ltms.ltms_stime = CONVTCK(ru.ru_stime);
733
734 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
735 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
736
737 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
738 return error;
739 }
740
741 s = splclock();
742 timersub(&time, &boottime, &t);
743 splx(s);
744
745 retval[0] = ((linux_clock_t)(CONVTCK(t)));
746 return 0;
747 }
748
749 #undef CONVTCK
750
751 /*
752 * Linux 'readdir' call. This code is mostly taken from the
753 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
754 * an attempt has been made to keep it a little cleaner (failing
755 * miserably, because of the cruft needed if count 1 is passed).
756 *
757 * The d_off field should contain the offset of the next valid entry,
758 * but in Linux it has the offset of the entry itself. We emulate
759 * that bug here.
760 *
761 * Read in BSD-style entries, convert them, and copy them out.
762 *
763 * Note that this doesn't handle union-mounted filesystems.
764 */
765 int
766 linux_sys_getdents(l, v, retval)
767 struct lwp *l;
768 void *v;
769 register_t *retval;
770 {
771 struct linux_sys_getdents_args /* {
772 syscallarg(int) fd;
773 syscallarg(struct linux_dirent *) dent;
774 syscallarg(unsigned int) count;
775 } */ *uap = v;
776 struct proc *p = l->l_proc;
777 struct dirent *bdp;
778 struct vnode *vp;
779 caddr_t inp, tbuf; /* BSD-format */
780 int len, reclen; /* BSD-format */
781 caddr_t outp; /* Linux-format */
782 int resid, linux_reclen = 0; /* Linux-format */
783 struct file *fp;
784 struct uio auio;
785 struct iovec aiov;
786 struct linux_dirent idb;
787 off_t off; /* true file offset */
788 int buflen, error, eofflag, nbytes, oldcall;
789 struct vattr va;
790 off_t *cookiebuf = NULL, *cookie;
791 int ncookies;
792
793 /* getvnode() will use the descriptor for us */
794 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
795 return (error);
796
797 if ((fp->f_flag & FREAD) == 0) {
798 error = EBADF;
799 goto out1;
800 }
801
802 vp = (struct vnode *)fp->f_data;
803 if (vp->v_type != VDIR) {
804 error = EINVAL;
805 goto out1;
806 }
807
808 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
809 goto out1;
810
811 nbytes = SCARG(uap, count);
812 if (nbytes == 1) { /* emulating old, broken behaviour */
813 nbytes = sizeof (idb);
814 buflen = max(va.va_blocksize, nbytes);
815 oldcall = 1;
816 } else {
817 buflen = min(MAXBSIZE, nbytes);
818 if (buflen < va.va_blocksize)
819 buflen = va.va_blocksize;
820 oldcall = 0;
821 }
822 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
823
824 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
825 off = fp->f_offset;
826 again:
827 aiov.iov_base = tbuf;
828 aiov.iov_len = buflen;
829 auio.uio_iov = &aiov;
830 auio.uio_iovcnt = 1;
831 auio.uio_rw = UIO_READ;
832 auio.uio_segflg = UIO_SYSSPACE;
833 auio.uio_procp = NULL;
834 auio.uio_resid = buflen;
835 auio.uio_offset = off;
836 /*
837 * First we read into the malloc'ed buffer, then
838 * we massage it into user space, one record at a time.
839 */
840 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
841 &ncookies);
842 if (error)
843 goto out;
844
845 inp = tbuf;
846 outp = (caddr_t)SCARG(uap, dent);
847 resid = nbytes;
848 if ((len = buflen - auio.uio_resid) == 0)
849 goto eof;
850
851 for (cookie = cookiebuf; len > 0; len -= reclen) {
852 bdp = (struct dirent *)inp;
853 reclen = bdp->d_reclen;
854 if (reclen & 3)
855 panic("linux_readdir");
856 if (bdp->d_fileno == 0) {
857 inp += reclen; /* it is a hole; squish it out */
858 if (cookie)
859 off = *cookie++;
860 else
861 off += reclen;
862 continue;
863 }
864 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
865 if (reclen > len || resid < linux_reclen) {
866 /* entry too big for buffer, so just stop */
867 outp++;
868 break;
869 }
870 /*
871 * Massage in place to make a Linux-shaped dirent (otherwise
872 * we have to worry about touching user memory outside of
873 * the copyout() call).
874 */
875 idb.d_ino = bdp->d_fileno;
876 /*
877 * The old readdir() call misuses the offset and reclen fields.
878 */
879 if (oldcall) {
880 idb.d_off = (linux_off_t)linux_reclen;
881 idb.d_reclen = (u_short)bdp->d_namlen;
882 } else {
883 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
884 compat_offseterr(vp, "linux_getdents");
885 error = EINVAL;
886 goto out;
887 }
888 idb.d_off = (linux_off_t)off;
889 idb.d_reclen = (u_short)linux_reclen;
890 }
891 strcpy(idb.d_name, bdp->d_name);
892 if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
893 goto out;
894 /* advance past this real entry */
895 inp += reclen;
896 if (cookie)
897 off = *cookie++; /* each entry points to itself */
898 else
899 off += reclen;
900 /* advance output past Linux-shaped entry */
901 outp += linux_reclen;
902 resid -= linux_reclen;
903 if (oldcall)
904 break;
905 }
906
907 /* if we squished out the whole block, try again */
908 if (outp == (caddr_t)SCARG(uap, dent))
909 goto again;
910 fp->f_offset = off; /* update the vnode offset */
911
912 if (oldcall)
913 nbytes = resid + linux_reclen;
914
915 eof:
916 *retval = nbytes - resid;
917 out:
918 VOP_UNLOCK(vp, 0);
919 if (cookiebuf)
920 free(cookiebuf, M_TEMP);
921 free(tbuf, M_TEMP);
922 out1:
923 FILE_UNUSE(fp, p);
924 return error;
925 }
926
927 /*
928 * Even when just using registers to pass arguments to syscalls you can
929 * have 5 of them on the i386. So this newer version of select() does
930 * this.
931 */
932 int
933 linux_sys_select(l, v, retval)
934 struct lwp *l;
935 void *v;
936 register_t *retval;
937 {
938 struct linux_sys_select_args /* {
939 syscallarg(int) nfds;
940 syscallarg(fd_set *) readfds;
941 syscallarg(fd_set *) writefds;
942 syscallarg(fd_set *) exceptfds;
943 syscallarg(struct timeval *) timeout;
944 } */ *uap = v;
945
946 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
947 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
948 }
949
950 /*
951 * Common code for the old and new versions of select(). A couple of
952 * things are important:
953 * 1) return the amount of time left in the 'timeout' parameter
954 * 2) select never returns ERESTART on Linux, always return EINTR
955 */
956 int
957 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
958 struct lwp *l;
959 register_t *retval;
960 int nfds;
961 fd_set *readfds, *writefds, *exceptfds;
962 struct timeval *timeout;
963 {
964 struct sys_select_args bsa;
965 struct proc *p = l->l_proc;
966 struct timeval tv0, tv1, utv, *tvp;
967 caddr_t sg;
968 int error;
969
970 SCARG(&bsa, nd) = nfds;
971 SCARG(&bsa, in) = readfds;
972 SCARG(&bsa, ou) = writefds;
973 SCARG(&bsa, ex) = exceptfds;
974 SCARG(&bsa, tv) = timeout;
975
976 /*
977 * Store current time for computation of the amount of
978 * time left.
979 */
980 if (timeout) {
981 if ((error = copyin(timeout, &utv, sizeof(utv))))
982 return error;
983 if (itimerfix(&utv)) {
984 /*
985 * The timeval was invalid. Convert it to something
986 * valid that will act as it does under Linux.
987 */
988 sg = stackgap_init(p, 0);
989 tvp = stackgap_alloc(p, &sg, sizeof(utv));
990 utv.tv_sec += utv.tv_usec / 1000000;
991 utv.tv_usec %= 1000000;
992 if (utv.tv_usec < 0) {
993 utv.tv_sec -= 1;
994 utv.tv_usec += 1000000;
995 }
996 if (utv.tv_sec < 0)
997 timerclear(&utv);
998 if ((error = copyout(&utv, tvp, sizeof(utv))))
999 return error;
1000 SCARG(&bsa, tv) = tvp;
1001 }
1002 microtime(&tv0);
1003 }
1004
1005 error = sys_select(l, &bsa, retval);
1006 if (error) {
1007 /*
1008 * See fs/select.c in the Linux kernel. Without this,
1009 * Maelstrom doesn't work.
1010 */
1011 if (error == ERESTART)
1012 error = EINTR;
1013 return error;
1014 }
1015
1016 if (timeout) {
1017 if (*retval) {
1018 /*
1019 * Compute how much time was left of the timeout,
1020 * by subtracting the current time and the time
1021 * before we started the call, and subtracting
1022 * that result from the user-supplied value.
1023 */
1024 microtime(&tv1);
1025 timersub(&tv1, &tv0, &tv1);
1026 timersub(&utv, &tv1, &utv);
1027 if (utv.tv_sec < 0)
1028 timerclear(&utv);
1029 } else
1030 timerclear(&utv);
1031 if ((error = copyout(&utv, timeout, sizeof(utv))))
1032 return error;
1033 }
1034
1035 return 0;
1036 }
1037
1038 /*
1039 * Get the process group of a certain process. Look it up
1040 * and return the value.
1041 */
1042 int
1043 linux_sys_getpgid(l, v, retval)
1044 struct lwp *l;
1045 void *v;
1046 register_t *retval;
1047 {
1048 struct linux_sys_getpgid_args /* {
1049 syscallarg(int) pid;
1050 } */ *uap = v;
1051 struct proc *p = l->l_proc;
1052 struct proc *targp;
1053
1054 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
1055 if ((targp = pfind(SCARG(uap, pid))) == 0)
1056 return ESRCH;
1057 }
1058 else
1059 targp = p;
1060
1061 retval[0] = targp->p_pgid;
1062 return 0;
1063 }
1064
1065 /*
1066 * Set the 'personality' (emulation mode) for the current process. Only
1067 * accept the Linux personality here (0). This call is needed because
1068 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1069 * ELF binaries run in Linux mode, not SVR4 mode.
1070 */
1071 int
1072 linux_sys_personality(l, v, retval)
1073 struct lwp *l;
1074 void *v;
1075 register_t *retval;
1076 {
1077 struct linux_sys_personality_args /* {
1078 syscallarg(int) per;
1079 } */ *uap = v;
1080
1081 if (SCARG(uap, per) != 0)
1082 return EINVAL;
1083 retval[0] = 0;
1084 return 0;
1085 }
1086
1087 #if defined(__i386__) || defined(__m68k__)
1088 /*
1089 * The calls are here because of type conversions.
1090 */
1091 int
1092 linux_sys_setreuid16(l, v, retval)
1093 struct lwp *l;
1094 void *v;
1095 register_t *retval;
1096 {
1097 struct linux_sys_setreuid16_args /* {
1098 syscallarg(int) ruid;
1099 syscallarg(int) euid;
1100 } */ *uap = v;
1101 struct sys_setreuid_args bsa;
1102
1103 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1104 (uid_t)-1 : SCARG(uap, ruid);
1105 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1106 (uid_t)-1 : SCARG(uap, euid);
1107
1108 return sys_setreuid(l, &bsa, retval);
1109 }
1110
1111 int
1112 linux_sys_setregid16(l, v, retval)
1113 struct lwp *l;
1114 void *v;
1115 register_t *retval;
1116 {
1117 struct linux_sys_setregid16_args /* {
1118 syscallarg(int) rgid;
1119 syscallarg(int) egid;
1120 } */ *uap = v;
1121 struct sys_setregid_args bsa;
1122
1123 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1124 (uid_t)-1 : SCARG(uap, rgid);
1125 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1126 (uid_t)-1 : SCARG(uap, egid);
1127
1128 return sys_setregid(l, &bsa, retval);
1129 }
1130
1131 int
1132 linux_sys_setresuid16(l, v, retval)
1133 struct lwp *l;
1134 void *v;
1135 register_t *retval;
1136 {
1137 struct linux_sys_setresuid16_args /* {
1138 syscallarg(uid_t) ruid;
1139 syscallarg(uid_t) euid;
1140 syscallarg(uid_t) suid;
1141 } */ *uap = v;
1142 struct linux_sys_setresuid16_args lsa;
1143
1144 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1145 (uid_t)-1 : SCARG(uap, ruid);
1146 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1147 (uid_t)-1 : SCARG(uap, euid);
1148 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
1149 (uid_t)-1 : SCARG(uap, suid);
1150
1151 return linux_sys_setresuid(l, &lsa, retval);
1152 }
1153
1154 int
1155 linux_sys_setresgid16(l, v, retval)
1156 struct lwp *l;
1157 void *v;
1158 register_t *retval;
1159 {
1160 struct linux_sys_setresgid16_args /* {
1161 syscallarg(gid_t) rgid;
1162 syscallarg(gid_t) egid;
1163 syscallarg(gid_t) sgid;
1164 } */ *uap = v;
1165 struct linux_sys_setresgid16_args lsa;
1166
1167 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1168 (gid_t)-1 : SCARG(uap, rgid);
1169 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1170 (gid_t)-1 : SCARG(uap, egid);
1171 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
1172 (gid_t)-1 : SCARG(uap, sgid);
1173
1174 return linux_sys_setresgid(l, &lsa, retval);
1175 }
1176
1177 int
1178 linux_sys_getgroups16(l, v, retval)
1179 struct lwp *l;
1180 void *v;
1181 register_t *retval;
1182 {
1183 struct linux_sys_getgroups16_args /* {
1184 syscallarg(int) gidsetsize;
1185 syscallarg(linux_gid_t *) gidset;
1186 } */ *uap = v;
1187 struct proc *p = l->l_proc;
1188 caddr_t sg;
1189 int n, error, i;
1190 struct sys_getgroups_args bsa;
1191 gid_t *bset, *kbset;
1192 linux_gid_t *lset;
1193 struct pcred *pc = p->p_cred;
1194
1195 n = SCARG(uap, gidsetsize);
1196 if (n < 0)
1197 return EINVAL;
1198 error = 0;
1199 bset = kbset = NULL;
1200 lset = NULL;
1201 if (n > 0) {
1202 n = min(pc->pc_ucred->cr_ngroups, n);
1203 sg = stackgap_init(p, 0);
1204 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1205 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1206 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1207 if (bset == NULL || kbset == NULL || lset == NULL)
1208 return ENOMEM;
1209 SCARG(&bsa, gidsetsize) = n;
1210 SCARG(&bsa, gidset) = bset;
1211 error = sys_getgroups(l, &bsa, retval);
1212 if (error != 0)
1213 goto out;
1214 error = copyin(bset, kbset, n * sizeof (gid_t));
1215 if (error != 0)
1216 goto out;
1217 for (i = 0; i < n; i++)
1218 lset[i] = (linux_gid_t)kbset[i];
1219 error = copyout(lset, SCARG(uap, gidset),
1220 n * sizeof (linux_gid_t));
1221 } else
1222 *retval = pc->pc_ucred->cr_ngroups;
1223 out:
1224 if (kbset != NULL)
1225 free(kbset, M_TEMP);
1226 if (lset != NULL)
1227 free(lset, M_TEMP);
1228 return error;
1229 }
1230
1231 int
1232 linux_sys_setgroups16(l, v, retval)
1233 struct lwp *l;
1234 void *v;
1235 register_t *retval;
1236 {
1237 struct linux_sys_setgroups16_args /* {
1238 syscallarg(int) gidsetsize;
1239 syscallarg(linux_gid_t *) gidset;
1240 } */ *uap = v;
1241 struct proc *p = l->l_proc;
1242 caddr_t sg;
1243 int n;
1244 int error, i;
1245 struct sys_setgroups_args bsa;
1246 gid_t *bset, *kbset;
1247 linux_gid_t *lset;
1248
1249 n = SCARG(uap, gidsetsize);
1250 if (n < 0 || n > NGROUPS)
1251 return EINVAL;
1252 sg = stackgap_init(p, 0);
1253 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1254 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1255 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1256 if (lset == NULL || bset == NULL)
1257 return ENOMEM;
1258 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t));
1259 if (error != 0)
1260 goto out;
1261 for (i = 0; i < n; i++)
1262 kbset[i] = (gid_t)lset[i];
1263 error = copyout(kbset, bset, n * sizeof (gid_t));
1264 if (error != 0)
1265 goto out;
1266 SCARG(&bsa, gidsetsize) = n;
1267 SCARG(&bsa, gidset) = bset;
1268 error = sys_setgroups(l, &bsa, retval);
1269
1270 out:
1271 if (lset != NULL)
1272 free(lset, M_TEMP);
1273 if (kbset != NULL)
1274 free(kbset, M_TEMP);
1275
1276 return error;
1277 }
1278
1279 #endif /* __i386__ || __m68k__ || __amd64__ */
1280
1281 /*
1282 * We have nonexistent fsuid equal to uid.
1283 * If modification is requested, refuse.
1284 */
1285 int
1286 linux_sys_setfsuid(l, v, retval)
1287 struct lwp *l;
1288 void *v;
1289 register_t *retval;
1290 {
1291 struct linux_sys_setfsuid_args /* {
1292 syscallarg(uid_t) uid;
1293 } */ *uap = v;
1294 struct proc *p = l->l_proc;
1295 uid_t uid;
1296
1297 uid = SCARG(uap, uid);
1298 if (p->p_cred->p_ruid != uid)
1299 return sys_nosys(l, v, retval);
1300 else
1301 return (0);
1302 }
1303
1304 /* XXX XXX XXX */
1305 #ifndef alpha
1306 int
1307 linux_sys_getfsuid(l, v, retval)
1308 struct lwp *l;
1309 void *v;
1310 register_t *retval;
1311 {
1312 return sys_getuid(l, v, retval);
1313 }
1314 #endif
1315
1316 int
1317 linux_sys_setresuid(l, v, retval)
1318 struct lwp *l;
1319 void *v;
1320 register_t *retval;
1321 {
1322 struct linux_sys_setresuid_args /* {
1323 syscallarg(uid_t) ruid;
1324 syscallarg(uid_t) euid;
1325 syscallarg(uid_t) suid;
1326 } */ *uap = v;
1327
1328 /*
1329 * Note: These checks are a little different than the NetBSD
1330 * setreuid(2) call performs. This precisely follows the
1331 * behavior of the Linux kernel.
1332 */
1333
1334 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1335 SCARG(uap, suid),
1336 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1337 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1338 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1339 }
1340
1341 int
1342 linux_sys_getresuid(l, v, retval)
1343 struct lwp *l;
1344 void *v;
1345 register_t *retval;
1346 {
1347 struct linux_sys_getresuid_args /* {
1348 syscallarg(uid_t *) ruid;
1349 syscallarg(uid_t *) euid;
1350 syscallarg(uid_t *) suid;
1351 } */ *uap = v;
1352 struct proc *p = l->l_proc;
1353 struct pcred *pc = p->p_cred;
1354 int error;
1355
1356 /*
1357 * Linux copies these values out to userspace like so:
1358 *
1359 * 1. Copy out ruid.
1360 * 2. If that succeeds, copy out euid.
1361 * 3. If both of those succeed, copy out suid.
1362 */
1363 if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid),
1364 sizeof(uid_t))) != 0)
1365 return (error);
1366
1367 if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid),
1368 sizeof(uid_t))) != 0)
1369 return (error);
1370
1371 return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t)));
1372 }
1373
1374 int
1375 linux_sys_ptrace(l, v, retval)
1376 struct lwp *l;
1377 void *v;
1378 register_t *retval;
1379 {
1380 struct linux_sys_ptrace_args /* {
1381 i386, m68k, powerpc: T=int
1382 alpha, amd64: T=long
1383 syscallarg(T) request;
1384 syscallarg(T) pid;
1385 syscallarg(T) addr;
1386 syscallarg(T) data;
1387 } */ *uap = v;
1388 const int *ptr;
1389 int request;
1390 int error;
1391
1392 ptr = linux_ptrace_request_map;
1393 request = SCARG(uap, request);
1394 while (*ptr != -1)
1395 if (*ptr++ == request) {
1396 struct sys_ptrace_args pta;
1397
1398 SCARG(&pta, req) = *ptr;
1399 SCARG(&pta, pid) = SCARG(uap, pid);
1400 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr);
1401 SCARG(&pta, data) = SCARG(uap, data);
1402
1403 /*
1404 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1405 * to continue where the process left off previously.
1406 * The same thing is achieved by addr == (caddr_t) 1
1407 * on NetBSD, so rewrite 'addr' appropriately.
1408 */
1409 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1410 SCARG(&pta, addr) = (caddr_t) 1;
1411
1412 error = sys_ptrace(l, &pta, retval);
1413 if (error)
1414 return error;
1415 switch (request) {
1416 case LINUX_PTRACE_PEEKTEXT:
1417 case LINUX_PTRACE_PEEKDATA:
1418 error = copyout (retval,
1419 (caddr_t)SCARG(uap, data),
1420 sizeof *retval);
1421 *retval = SCARG(uap, data);
1422 break;
1423 default:
1424 break;
1425 }
1426 return error;
1427 }
1428 else
1429 ptr++;
1430
1431 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1432 }
1433
1434 int
1435 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
1436 {
1437 struct linux_sys_reboot_args /* {
1438 syscallarg(int) magic1;
1439 syscallarg(int) magic2;
1440 syscallarg(int) cmd;
1441 syscallarg(void *) arg;
1442 } */ *uap = v;
1443 struct sys_reboot_args /* {
1444 syscallarg(int) opt;
1445 syscallarg(char *) bootstr;
1446 } */ sra;
1447 struct proc *p = l->l_proc;
1448 int error;
1449
1450 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1451 return(error);
1452
1453 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1454 return(EINVAL);
1455 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1456 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1457 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1458 return(EINVAL);
1459
1460 switch (SCARG(uap, cmd)) {
1461 case LINUX_REBOOT_CMD_RESTART:
1462 SCARG(&sra, opt) = RB_AUTOBOOT;
1463 break;
1464 case LINUX_REBOOT_CMD_HALT:
1465 SCARG(&sra, opt) = RB_HALT;
1466 break;
1467 case LINUX_REBOOT_CMD_POWER_OFF:
1468 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1469 break;
1470 case LINUX_REBOOT_CMD_RESTART2:
1471 /* Reboot with an argument. */
1472 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1473 SCARG(&sra, bootstr) = SCARG(uap, arg);
1474 break;
1475 case LINUX_REBOOT_CMD_CAD_ON:
1476 return(EINVAL); /* We don't implement ctrl-alt-delete */
1477 case LINUX_REBOOT_CMD_CAD_OFF:
1478 return(0);
1479 default:
1480 return(EINVAL);
1481 }
1482
1483 return(sys_reboot(l, &sra, retval));
1484 }
1485
1486 /*
1487 * Copy of compat_12_sys_swapon().
1488 */
1489 int
1490 linux_sys_swapon(l, v, retval)
1491 struct lwp *l;
1492 void *v;
1493 register_t *retval;
1494 {
1495 struct sys_swapctl_args ua;
1496 struct linux_sys_swapon_args /* {
1497 syscallarg(const char *) name;
1498 } */ *uap = v;
1499
1500 SCARG(&ua, cmd) = SWAP_ON;
1501 SCARG(&ua, arg) = (void *)SCARG(uap, name);
1502 SCARG(&ua, misc) = 0; /* priority */
1503 return (sys_swapctl(l, &ua, retval));
1504 }
1505
1506 /*
1507 * Stop swapping to the file or block device specified by path.
1508 */
1509 int
1510 linux_sys_swapoff(l, v, retval)
1511 struct lwp *l;
1512 void *v;
1513 register_t *retval;
1514 {
1515 struct sys_swapctl_args ua;
1516 struct linux_sys_swapoff_args /* {
1517 syscallarg(const char *) path;
1518 } */ *uap = v;
1519
1520 SCARG(&ua, cmd) = SWAP_OFF;
1521 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1522 return (sys_swapctl(l, &ua, retval));
1523 }
1524
1525 /*
1526 * Copy of compat_09_sys_setdomainname()
1527 */
1528 /* ARGSUSED */
1529 int
1530 linux_sys_setdomainname(l, v, retval)
1531 struct lwp *l;
1532 void *v;
1533 register_t *retval;
1534 {
1535 struct linux_sys_setdomainname_args /* {
1536 syscallarg(char *) domainname;
1537 syscallarg(int) len;
1538 } */ *uap = v;
1539 int name[2];
1540
1541 name[0] = CTL_KERN;
1542 name[1] = KERN_DOMAINNAME;
1543 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1544 SCARG(uap, len), l));
1545 }
1546
1547 /*
1548 * sysinfo()
1549 */
1550 /* ARGSUSED */
1551 int
1552 linux_sys_sysinfo(l, v, retval)
1553 struct lwp *l;
1554 void *v;
1555 register_t *retval;
1556 {
1557 struct linux_sys_sysinfo_args /* {
1558 syscallarg(struct linux_sysinfo *) arg;
1559 } */ *uap = v;
1560 struct linux_sysinfo si;
1561 struct loadavg *la;
1562
1563 si.uptime = time.tv_sec - boottime.tv_sec;
1564 la = &averunnable;
1565 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1566 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1567 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1568 si.totalram = ctob(physmem);
1569 si.freeram = uvmexp.free * uvmexp.pagesize;
1570 si.sharedram = 0; /* XXX */
1571 si.bufferram = uvmexp.filepages * uvmexp.pagesize;
1572 si.totalswap = uvmexp.swpages * uvmexp.pagesize;
1573 si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1574 si.procs = nprocs;
1575
1576 /* The following are only present in newer Linux kernels. */
1577 si.totalbig = 0;
1578 si.freebig = 0;
1579 si.mem_unit = 1;
1580
1581 return (copyout(&si, SCARG(uap, arg), sizeof si));
1582 }
1583
1584 #define bsd_to_linux_rlimit1(l, b, f) \
1585 (l)->f = ((b)->f == RLIM_INFINITY || \
1586 ((b)->f & 0xffffffff00000000ULL) != 0) ? \
1587 LINUX_RLIM_INFINITY : (int32_t)(b)->f
1588 #define bsd_to_linux_rlimit(l, b) \
1589 bsd_to_linux_rlimit1(l, b, rlim_cur); \
1590 bsd_to_linux_rlimit1(l, b, rlim_max)
1591
1592 #define linux_to_bsd_rlimit1(b, l, f) \
1593 (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f
1594 #define linux_to_bsd_rlimit(b, l) \
1595 linux_to_bsd_rlimit1(b, l, rlim_cur); \
1596 linux_to_bsd_rlimit1(b, l, rlim_max)
1597
1598 static int
1599 linux_to_bsd_limit(lim)
1600 int lim;
1601 {
1602 switch (lim) {
1603 case LINUX_RLIMIT_CPU:
1604 return RLIMIT_CPU;
1605 case LINUX_RLIMIT_FSIZE:
1606 return RLIMIT_FSIZE;
1607 case LINUX_RLIMIT_DATA:
1608 return RLIMIT_DATA;
1609 case LINUX_RLIMIT_STACK:
1610 return RLIMIT_STACK;
1611 case LINUX_RLIMIT_CORE:
1612 return RLIMIT_CORE;
1613 case LINUX_RLIMIT_RSS:
1614 return RLIMIT_RSS;
1615 case LINUX_RLIMIT_NPROC:
1616 return RLIMIT_NPROC;
1617 case LINUX_RLIMIT_NOFILE:
1618 return RLIMIT_NOFILE;
1619 case LINUX_RLIMIT_MEMLOCK:
1620 return RLIMIT_MEMLOCK;
1621 case LINUX_RLIMIT_AS:
1622 case LINUX_RLIMIT_LOCKS:
1623 return -EOPNOTSUPP;
1624 default:
1625 return -EINVAL;
1626 }
1627 }
1628
1629
1630 int
1631 linux_sys_getrlimit(l, v, retval)
1632 struct lwp *l;
1633 void *v;
1634 register_t *retval;
1635 {
1636 struct linux_sys_getrlimit_args /* {
1637 syscallarg(int) which;
1638 syscallarg(struct orlimit *) rlp;
1639 } */ *uap = v;
1640 struct proc *p = l->l_proc;
1641 caddr_t sg = stackgap_init(p, 0);
1642 struct sys_getrlimit_args ap;
1643 struct rlimit rl;
1644 struct orlimit orl;
1645 int error;
1646
1647 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1648 if ((error = SCARG(&ap, which)) < 0)
1649 return -error;
1650 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1651 if ((error = sys_getrlimit(l, &ap, retval)) != 0)
1652 return error;
1653 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0)
1654 return error;
1655 bsd_to_linux_rlimit(&orl, &rl);
1656 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1657 }
1658
1659 int
1660 linux_sys_setrlimit(l, v, retval)
1661 struct lwp *l;
1662 void *v;
1663 register_t *retval;
1664 {
1665 struct linux_sys_setrlimit_args /* {
1666 syscallarg(int) which;
1667 syscallarg(struct orlimit *) rlp;
1668 } */ *uap = v;
1669 struct proc *p = l->l_proc;
1670 caddr_t sg = stackgap_init(p, 0);
1671 struct sys_getrlimit_args ap;
1672 struct rlimit rl;
1673 struct orlimit orl;
1674 int error;
1675
1676 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1677 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1678 if ((error = SCARG(&ap, which)) < 0)
1679 return -error;
1680 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1681 return error;
1682 linux_to_bsd_rlimit(&rl, &orl);
1683 if ((error = copyout(&rl, SCARG(&ap, rlp), sizeof(rl))) != 0)
1684 return error;
1685 return sys_setrlimit(l, &ap, retval);
1686 }
1687
1688 #if !defined(__mips__) && !defined(__amd64__)
1689 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1690 int
1691 linux_sys_ugetrlimit(l, v, retval)
1692 struct lwp *l;
1693 void *v;
1694 register_t *retval;
1695 {
1696 return linux_sys_getrlimit(l, v, retval);
1697 }
1698 #endif
1699
1700 /*
1701 * This gets called for unsupported syscalls. The difference to sys_nosys()
1702 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1703 * This is the way Linux does it and glibc depends on this behaviour.
1704 */
1705 int
1706 linux_sys_nosys(l, v, retval)
1707 struct lwp *l;
1708 void *v;
1709 register_t *retval;
1710 {
1711 return (ENOSYS);
1712 }
1713