linux_misc.c revision 1.140.2.1 1 /* $NetBSD: linux_misc.c,v 1.140.2.1 2005/11/02 11:57:56 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Linux compatibility module. Try to deal with various Linux system calls.
42 */
43
44 /*
45 * These functions have been moved to multiarch to allow
46 * selection of which machines include them to be
47 * determined by the individual files.linux_<arch> files.
48 *
49 * Function in multiarch:
50 * linux_sys_break : linux_break.c
51 * linux_sys_alarm : linux_misc_notalpha.c
52 * linux_sys_getresgid : linux_misc_notalpha.c
53 * linux_sys_nice : linux_misc_notalpha.c
54 * linux_sys_readdir : linux_misc_notalpha.c
55 * linux_sys_setresgid : linux_misc_notalpha.c
56 * linux_sys_time : linux_misc_notalpha.c
57 * linux_sys_utime : linux_misc_notalpha.c
58 * linux_sys_waitpid : linux_misc_notalpha.c
59 * linux_sys_old_mmap : linux_oldmmap.c
60 * linux_sys_oldolduname : linux_oldolduname.c
61 * linux_sys_oldselect : linux_oldselect.c
62 * linux_sys_olduname : linux_olduname.c
63 * linux_sys_pipe : linux_pipe.c
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.140.2.1 2005/11/02 11:57:56 yamt Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/proc.h>
73 #include <sys/dirent.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/ioctl.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/mbuf.h>
81 #include <sys/mman.h>
82 #include <sys/mount.h>
83 #include <sys/reboot.h>
84 #include <sys/resource.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signal.h>
87 #include <sys/signalvar.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/times.h>
91 #include <sys/vnode.h>
92 #include <sys/uio.h>
93 #include <sys/wait.h>
94 #include <sys/utsname.h>
95 #include <sys/unistd.h>
96 #include <sys/swap.h> /* for SWAP_ON */
97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
98
99 #include <sys/ptrace.h>
100 #include <machine/ptrace.h>
101
102 #include <sys/sa.h>
103 #include <sys/syscallargs.h>
104
105 #include <compat/linux/common/linux_types.h>
106 #include <compat/linux/common/linux_signal.h>
107
108 #include <compat/linux/linux_syscallargs.h>
109
110 #include <compat/linux/common/linux_fcntl.h>
111 #include <compat/linux/common/linux_mmap.h>
112 #include <compat/linux/common/linux_dirent.h>
113 #include <compat/linux/common/linux_util.h>
114 #include <compat/linux/common/linux_misc.h>
115 #include <compat/linux/common/linux_ptrace.h>
116 #include <compat/linux/common/linux_reboot.h>
117 #include <compat/linux/common/linux_emuldata.h>
118
119 const int linux_ptrace_request_map[] = {
120 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
121 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
122 LINUX_PTRACE_PEEKDATA, PT_READ_D,
123 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
124 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
125 LINUX_PTRACE_CONT, PT_CONTINUE,
126 LINUX_PTRACE_KILL, PT_KILL,
127 LINUX_PTRACE_ATTACH, PT_ATTACH,
128 LINUX_PTRACE_DETACH, PT_DETACH,
129 #ifdef PT_STEP
130 LINUX_PTRACE_SINGLESTEP, PT_STEP,
131 #endif
132 -1
133 };
134
135 const struct linux_mnttypes linux_fstypes[] = {
136 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
137 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
138 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
139 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
140 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
141 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
142 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
143 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
144 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
146 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
148 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
150 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
152 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
153 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
155 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
158 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
159 { MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC }
160 };
161 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
162
163 #ifdef DEBUG_LINUX
164 #define DPRINTF(a) uprintf a
165 #else
166 #define DPRINTF(a)
167 #endif
168
169 /* Local linux_misc.c functions: */
170 #ifndef __amd64__
171 static void bsd_to_linux_statfs __P((const struct statvfs *,
172 struct linux_statfs *));
173 #endif
174 static int linux_to_bsd_limit __P((int));
175 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *,
176 const struct linux_sys_mmap_args *));
177 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *,
178 register_t *, off_t));
179
180
181 /*
182 * The information on a terminated (or stopped) process needs
183 * to be converted in order for Linux binaries to get a valid signal
184 * number out of it.
185 */
186 void
187 bsd_to_linux_wstat(st)
188 int *st;
189 {
190
191 int sig;
192
193 if (WIFSIGNALED(*st)) {
194 sig = WTERMSIG(*st);
195 if (sig >= 0 && sig < NSIG)
196 *st= (*st& ~0177) | native_to_linux_signo[sig];
197 } else if (WIFSTOPPED(*st)) {
198 sig = WSTOPSIG(*st);
199 if (sig >= 0 && sig < NSIG)
200 *st = (*st & ~0xff00) |
201 (native_to_linux_signo[sig] << 8);
202 }
203 }
204
205 /*
206 * wait4(2). Passed on to the NetBSD call, surrounded by code to
207 * reserve some space for a NetBSD-style wait status, and converting
208 * it to what Linux wants.
209 */
210 int
211 linux_sys_wait4(l, v, retval)
212 struct lwp *l;
213 void *v;
214 register_t *retval;
215 {
216 struct linux_sys_wait4_args /* {
217 syscallarg(int) pid;
218 syscallarg(int *) status;
219 syscallarg(int) options;
220 syscallarg(struct rusage *) rusage;
221 } */ *uap = v;
222 struct proc *p = l->l_proc;
223 struct sys_wait4_args w4a;
224 int error, *status, tstat, options, linux_options;
225 caddr_t sg;
226
227 if (SCARG(uap, status) != NULL) {
228 sg = stackgap_init(p, 0);
229 status = (int *) stackgap_alloc(p, &sg, sizeof *status);
230 } else
231 status = NULL;
232
233 linux_options = SCARG(uap, options);
234 options = 0;
235 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
236 return (EINVAL);
237
238 if (linux_options & LINUX_WAIT4_WNOHANG)
239 options |= WNOHANG;
240 if (linux_options & LINUX_WAIT4_WUNTRACED)
241 options |= WUNTRACED;
242 if (linux_options & LINUX_WAIT4_WALL)
243 options |= WALLSIG;
244 if (linux_options & LINUX_WAIT4_WCLONE)
245 options |= WALTSIG;
246 #ifdef DIAGNOSTIC
247 if (linux_options & LINUX_WAIT4_WNOTHREAD)
248 printf("WARNING: %s: linux process %d.%d called "
249 "waitpid with __WNOTHREAD set!",
250 __FILE__, p->p_pid, l->l_lid);
251
252 #endif
253
254 SCARG(&w4a, pid) = SCARG(uap, pid);
255 SCARG(&w4a, status) = status;
256 SCARG(&w4a, options) = options;
257 SCARG(&w4a, rusage) = SCARG(uap, rusage);
258
259 if ((error = sys_wait4(l, &w4a, retval)))
260 return error;
261
262 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD);
263
264 if (status != NULL) {
265 if ((error = copyin(status, &tstat, sizeof tstat)))
266 return error;
267
268 bsd_to_linux_wstat(&tstat);
269 return copyout(&tstat, SCARG(uap, status), sizeof tstat);
270 }
271
272 return 0;
273 }
274
275 /*
276 * Linux brk(2). The check if the new address is >= the old one is
277 * done in the kernel in Linux. NetBSD does it in the library.
278 */
279 int
280 linux_sys_brk(l, v, retval)
281 struct lwp *l;
282 void *v;
283 register_t *retval;
284 {
285 struct linux_sys_brk_args /* {
286 syscallarg(char *) nsize;
287 } */ *uap = v;
288 struct proc *p = l->l_proc;
289 char *nbrk = SCARG(uap, nsize);
290 struct sys_obreak_args oba;
291 struct vmspace *vm = p->p_vmspace;
292 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
293
294 SCARG(&oba, nsize) = nbrk;
295
296 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
297 ed->s->p_break = (char*)nbrk;
298 else
299 nbrk = ed->s->p_break;
300
301 retval[0] = (register_t)nbrk;
302
303 return 0;
304 }
305
306 #ifndef __amd64__
307 /*
308 * Convert NetBSD statvfs structure to Linux statfs structure.
309 * Linux doesn't have f_flag, and we can't set f_frsize due
310 * to glibc statvfs() bug (see below).
311 */
312 static void
313 bsd_to_linux_statfs(bsp, lsp)
314 const struct statvfs *bsp;
315 struct linux_statfs *lsp;
316 {
317 int i;
318
319 for (i = 0; i < linux_fstypes_cnt; i++) {
320 if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
321 lsp->l_ftype = linux_fstypes[i].linux;
322 break;
323 }
324 }
325
326 if (i == linux_fstypes_cnt) {
327 DPRINTF(("unhandled fstype in linux emulation: %s\n",
328 bsp->f_fstypename));
329 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
330 }
331
332 /*
333 * The sizes are expressed in number of blocks. The block
334 * size used for the size is f_frsize for POSIX-compliant
335 * statvfs. Linux statfs uses f_bsize as the block size
336 * (f_frsize used to not be available in Linux struct statfs).
337 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block
338 * counts for different f_frsize if f_frsize is provided by the kernel.
339 * POSIX conforming apps thus get wrong size if f_frsize
340 * is different to f_bsize. Thus, we just pretend we don't
341 * support f_frsize.
342 */
343
344 lsp->l_fbsize = bsp->f_frsize;
345 lsp->l_ffrsize = 0; /* compat */
346 lsp->l_fblocks = bsp->f_blocks;
347 lsp->l_fbfree = bsp->f_bfree;
348 lsp->l_fbavail = bsp->f_bavail;
349 lsp->l_ffiles = bsp->f_files;
350 lsp->l_fffree = bsp->f_ffree;
351 /* Linux sets the fsid to 0..., we don't */
352 lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
353 lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
354 lsp->l_fnamelen = bsp->f_namemax;
355 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
356 }
357
358 /*
359 * Implement the fs stat functions. Straightforward.
360 */
361 int
362 linux_sys_statfs(l, v, retval)
363 struct lwp *l;
364 void *v;
365 register_t *retval;
366 {
367 struct linux_sys_statfs_args /* {
368 syscallarg(const char *) path;
369 syscallarg(struct linux_statfs *) sp;
370 } */ *uap = v;
371 struct proc *p = l->l_proc;
372 struct statvfs btmp, *bsp;
373 struct linux_statfs ltmp;
374 struct sys_statvfs1_args bsa;
375 caddr_t sg;
376 int error;
377
378 sg = stackgap_init(p, 0);
379 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
380
381 CHECK_ALT_EXIST(p, &sg, SCARG(uap, path));
382
383 SCARG(&bsa, path) = SCARG(uap, path);
384 SCARG(&bsa, buf) = bsp;
385 SCARG(&bsa, flags) = ST_WAIT;
386
387 if ((error = sys_statvfs1(l, &bsa, retval)))
388 return error;
389
390 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
391 return error;
392
393 bsd_to_linux_statfs(&btmp, <mp);
394
395 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
396 }
397
398 int
399 linux_sys_fstatfs(l, v, retval)
400 struct lwp *l;
401 void *v;
402 register_t *retval;
403 {
404 struct linux_sys_fstatfs_args /* {
405 syscallarg(int) fd;
406 syscallarg(struct linux_statfs *) sp;
407 } */ *uap = v;
408 struct proc *p = l->l_proc;
409 struct statvfs btmp, *bsp;
410 struct linux_statfs ltmp;
411 struct sys_fstatvfs1_args bsa;
412 caddr_t sg;
413 int error;
414
415 sg = stackgap_init(p, 0);
416 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
417
418 SCARG(&bsa, fd) = SCARG(uap, fd);
419 SCARG(&bsa, buf) = bsp;
420 SCARG(&bsa, flags) = ST_WAIT;
421
422 if ((error = sys_fstatvfs1(l, &bsa, retval)))
423 return error;
424
425 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
426 return error;
427
428 bsd_to_linux_statfs(&btmp, <mp);
429
430 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
431 }
432 #endif /* __amd64__ */
433
434 /*
435 * uname(). Just copy the info from the various strings stored in the
436 * kernel, and put it in the Linux utsname structure. That structure
437 * is almost the same as the NetBSD one, only it has fields 65 characters
438 * long, and an extra domainname field.
439 */
440 int
441 linux_sys_uname(l, v, retval)
442 struct lwp *l;
443 void *v;
444 register_t *retval;
445 {
446 struct linux_sys_uname_args /* {
447 syscallarg(struct linux_utsname *) up;
448 } */ *uap = v;
449 struct linux_utsname luts;
450
451 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
452 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
453 strncpy(luts.l_release, linux_release, sizeof(luts.l_release));
454 strncpy(luts.l_version, linux_version, sizeof(luts.l_version));
455 strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
456 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
457
458 return copyout(&luts, SCARG(uap, up), sizeof(luts));
459 }
460
461 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
462 /* Used indirectly on: arm, i386, m68k */
463
464 /*
465 * New type Linux mmap call.
466 * Only called directly on machines with >= 6 free regs.
467 */
468 int
469 linux_sys_mmap(l, v, retval)
470 struct lwp *l;
471 void *v;
472 register_t *retval;
473 {
474 struct linux_sys_mmap_args /* {
475 syscallarg(unsigned long) addr;
476 syscallarg(size_t) len;
477 syscallarg(int) prot;
478 syscallarg(int) flags;
479 syscallarg(int) fd;
480 syscallarg(linux_off_t) offset;
481 } */ *uap = v;
482
483 if (SCARG(uap, offset) & PAGE_MASK)
484 return EINVAL;
485
486 return linux_mmap(l, uap, retval, SCARG(uap, offset));
487 }
488
489 /*
490 * Guts of most architectures' mmap64() implementations. This shares
491 * its list of arguments with linux_sys_mmap().
492 *
493 * The difference in linux_sys_mmap2() is that "offset" is actually
494 * (offset / pagesize), not an absolute byte count. This translation
495 * to pagesize offsets is done inside glibc between the mmap64() call
496 * point, and the actual syscall.
497 */
498 int
499 linux_sys_mmap2(l, v, retval)
500 struct lwp *l;
501 void *v;
502 register_t *retval;
503 {
504 struct linux_sys_mmap2_args /* {
505 syscallarg(unsigned long) addr;
506 syscallarg(size_t) len;
507 syscallarg(int) prot;
508 syscallarg(int) flags;
509 syscallarg(int) fd;
510 syscallarg(linux_off_t) offset;
511 } */ *uap = v;
512
513 return linux_mmap(l, uap, retval,
514 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
515 }
516
517 /*
518 * Massage arguments and call system mmap(2).
519 */
520 static int
521 linux_mmap(l, uap, retval, offset)
522 struct lwp *l;
523 struct linux_sys_mmap_args *uap;
524 register_t *retval;
525 off_t offset;
526 {
527 struct sys_mmap_args cma;
528 int error;
529 size_t mmoff=0;
530
531 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
532 /*
533 * Request for stack-like memory segment. On linux, this
534 * works by mmap()ping (small) segment, which is automatically
535 * extended when page fault happens below the currently
536 * allocated area. We emulate this by allocating (typically
537 * bigger) segment sized at current stack size limit, and
538 * offsetting the requested and returned address accordingly.
539 * Since physical pages are only allocated on-demand, this
540 * is effectively identical.
541 */
542 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
543
544 if (SCARG(uap, len) < ssl) {
545 /* Compute the address offset */
546 mmoff = round_page(ssl) - SCARG(uap, len);
547
548 if (SCARG(uap, addr))
549 SCARG(uap, addr) -= mmoff;
550
551 SCARG(uap, len) = (size_t) ssl;
552 }
553 }
554
555 linux_to_bsd_mmap_args(&cma, uap);
556 SCARG(&cma, pos) = offset;
557
558 error = sys_mmap(l, &cma, retval);
559 if (error)
560 return (error);
561
562 /* Shift the returned address for stack-like segment if necessary */
563 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
564 retval[0] += mmoff;
565
566 return (0);
567 }
568
569 static void
570 linux_to_bsd_mmap_args(cma, uap)
571 struct sys_mmap_args *cma;
572 const struct linux_sys_mmap_args *uap;
573 {
574 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
575
576 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
577 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
578 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
579 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
580 /* XXX XAX ERH: Any other flags here? There are more defined... */
581
582 SCARG(cma, addr) = (void *)SCARG(uap, addr);
583 SCARG(cma, len) = SCARG(uap, len);
584 SCARG(cma, prot) = SCARG(uap, prot);
585 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
586 SCARG(cma, prot) |= VM_PROT_READ;
587 SCARG(cma, flags) = flags;
588 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
589 SCARG(cma, pad) = 0;
590 }
591
592 int
593 linux_sys_mremap(l, v, retval)
594 struct lwp *l;
595 void *v;
596 register_t *retval;
597 {
598 struct linux_sys_mremap_args /* {
599 syscallarg(void *) old_address;
600 syscallarg(size_t) old_size;
601 syscallarg(size_t) new_size;
602 syscallarg(u_long) flags;
603 } */ *uap = v;
604 struct sys_munmap_args mua;
605 size_t old_size, new_size;
606 int error;
607
608 old_size = round_page(SCARG(uap, old_size));
609 new_size = round_page(SCARG(uap, new_size));
610
611 /*
612 * Growing mapped region.
613 */
614 if (new_size > old_size) {
615 /*
616 * XXX Implement me. What we probably want to do is
617 * XXX dig out the guts of the old mapping, mmap that
618 * XXX object again with the new size, then munmap
619 * XXX the old mapping.
620 */
621 *retval = 0;
622 return (ENOMEM);
623 }
624
625 /*
626 * Shrinking mapped region.
627 */
628 if (new_size < old_size) {
629 SCARG(&mua, addr) = (caddr_t)SCARG(uap, old_address) +
630 new_size;
631 SCARG(&mua, len) = old_size - new_size;
632 error = sys_munmap(l, &mua, retval);
633 *retval = error ? 0 : (register_t)SCARG(uap, old_address);
634 return (error);
635 }
636
637 /*
638 * No change.
639 */
640 *retval = (register_t)SCARG(uap, old_address);
641 return (0);
642 }
643
644 int
645 linux_sys_msync(l, v, retval)
646 struct lwp *l;
647 void *v;
648 register_t *retval;
649 {
650 struct linux_sys_msync_args /* {
651 syscallarg(caddr_t) addr;
652 syscallarg(int) len;
653 syscallarg(int) fl;
654 } */ *uap = v;
655
656 struct sys___msync13_args bma;
657
658 /* flags are ignored */
659 SCARG(&bma, addr) = SCARG(uap, addr);
660 SCARG(&bma, len) = SCARG(uap, len);
661 SCARG(&bma, flags) = SCARG(uap, fl);
662
663 return sys___msync13(l, &bma, retval);
664 }
665
666 int
667 linux_sys_mprotect(l, v, retval)
668 struct lwp *l;
669 void *v;
670 register_t *retval;
671 {
672 struct linux_sys_mprotect_args /* {
673 syscallarg(const void *) start;
674 syscallarg(unsigned long) len;
675 syscallarg(int) prot;
676 } */ *uap = v;
677 struct vm_map_entry *entry;
678 struct vm_map *map;
679 struct proc *p;
680 vaddr_t end, start, len, stacklim;
681 int prot, grows;
682
683 start = (vaddr_t)SCARG(uap, start);
684 len = round_page(SCARG(uap, len));
685 prot = SCARG(uap, prot);
686 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
687 prot &= ~grows;
688 end = start + len;
689
690 if (start & PAGE_MASK)
691 return EINVAL;
692 if (end < start)
693 return EINVAL;
694 if (end == start)
695 return 0;
696
697 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
698 return EINVAL;
699 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
700 return EINVAL;
701
702 p = l->l_proc;
703 map = &p->p_vmspace->vm_map;
704 vm_map_lock(map);
705 #ifdef notdef
706 VM_MAP_RANGE_CHECK(map, start, end);
707 #endif
708 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
709 vm_map_unlock(map);
710 return ENOMEM;
711 }
712
713 /*
714 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
715 */
716
717 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
718 if (grows & LINUX_PROT_GROWSDOWN) {
719 if (USRSTACK - stacklim <= start && start < USRSTACK) {
720 start = USRSTACK - stacklim;
721 } else {
722 start = entry->start;
723 }
724 } else if (grows & LINUX_PROT_GROWSUP) {
725 if (USRSTACK <= end && end < USRSTACK + stacklim) {
726 end = USRSTACK + stacklim;
727 } else {
728 end = entry->end;
729 }
730 }
731 vm_map_unlock(map);
732 return uvm_map_protect(map, start, end, prot, FALSE);
733 }
734
735 /*
736 * This code is partly stolen from src/lib/libc/compat-43/times.c
737 */
738
739 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
740
741 int
742 linux_sys_times(l, v, retval)
743 struct lwp *l;
744 void *v;
745 register_t *retval;
746 {
747 struct linux_sys_times_args /* {
748 syscallarg(struct times *) tms;
749 } */ *uap = v;
750 struct proc *p = l->l_proc;
751 struct timeval t;
752 int error, s;
753
754 if (SCARG(uap, tms)) {
755 struct linux_tms ltms;
756 struct rusage ru;
757
758 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL);
759 ltms.ltms_utime = CONVTCK(ru.ru_utime);
760 ltms.ltms_stime = CONVTCK(ru.ru_stime);
761
762 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
763 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
764
765 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
766 return error;
767 }
768
769 s = splclock();
770 timersub(&time, &boottime, &t);
771 splx(s);
772
773 retval[0] = ((linux_clock_t)(CONVTCK(t)));
774 return 0;
775 }
776
777 #undef CONVTCK
778
779 /*
780 * Linux 'readdir' call. This code is mostly taken from the
781 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
782 * an attempt has been made to keep it a little cleaner (failing
783 * miserably, because of the cruft needed if count 1 is passed).
784 *
785 * The d_off field should contain the offset of the next valid entry,
786 * but in Linux it has the offset of the entry itself. We emulate
787 * that bug here.
788 *
789 * Read in BSD-style entries, convert them, and copy them out.
790 *
791 * Note that this doesn't handle union-mounted filesystems.
792 */
793 int
794 linux_sys_getdents(l, v, retval)
795 struct lwp *l;
796 void *v;
797 register_t *retval;
798 {
799 struct linux_sys_getdents_args /* {
800 syscallarg(int) fd;
801 syscallarg(struct linux_dirent *) dent;
802 syscallarg(unsigned int) count;
803 } */ *uap = v;
804 struct proc *p = l->l_proc;
805 struct dirent *bdp;
806 struct vnode *vp;
807 caddr_t inp, tbuf; /* BSD-format */
808 int len, reclen; /* BSD-format */
809 caddr_t outp; /* Linux-format */
810 int resid, linux_reclen = 0; /* Linux-format */
811 struct file *fp;
812 struct uio auio;
813 struct iovec aiov;
814 struct linux_dirent idb;
815 off_t off; /* true file offset */
816 int buflen, error, eofflag, nbytes, oldcall;
817 struct vattr va;
818 off_t *cookiebuf = NULL, *cookie;
819 int ncookies;
820
821 /* getvnode() will use the descriptor for us */
822 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
823 return (error);
824
825 if ((fp->f_flag & FREAD) == 0) {
826 error = EBADF;
827 goto out1;
828 }
829
830 vp = (struct vnode *)fp->f_data;
831 if (vp->v_type != VDIR) {
832 error = EINVAL;
833 goto out1;
834 }
835
836 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
837 goto out1;
838
839 nbytes = SCARG(uap, count);
840 if (nbytes == 1) { /* emulating old, broken behaviour */
841 nbytes = sizeof (idb);
842 buflen = max(va.va_blocksize, nbytes);
843 oldcall = 1;
844 } else {
845 buflen = min(MAXBSIZE, nbytes);
846 if (buflen < va.va_blocksize)
847 buflen = va.va_blocksize;
848 oldcall = 0;
849 }
850 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
851
852 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
853 off = fp->f_offset;
854 again:
855 aiov.iov_base = tbuf;
856 aiov.iov_len = buflen;
857 auio.uio_iov = &aiov;
858 auio.uio_iovcnt = 1;
859 auio.uio_rw = UIO_READ;
860 auio.uio_segflg = UIO_SYSSPACE;
861 auio.uio_procp = NULL;
862 auio.uio_resid = buflen;
863 auio.uio_offset = off;
864 /*
865 * First we read into the malloc'ed buffer, then
866 * we massage it into user space, one record at a time.
867 */
868 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
869 &ncookies);
870 if (error)
871 goto out;
872
873 inp = tbuf;
874 outp = (caddr_t)SCARG(uap, dent);
875 resid = nbytes;
876 if ((len = buflen - auio.uio_resid) == 0)
877 goto eof;
878
879 for (cookie = cookiebuf; len > 0; len -= reclen) {
880 bdp = (struct dirent *)inp;
881 reclen = bdp->d_reclen;
882 if (reclen & 3)
883 panic("linux_readdir");
884 if (bdp->d_fileno == 0) {
885 inp += reclen; /* it is a hole; squish it out */
886 if (cookie)
887 off = *cookie++;
888 else
889 off += reclen;
890 continue;
891 }
892 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
893 if (reclen > len || resid < linux_reclen) {
894 /* entry too big for buffer, so just stop */
895 outp++;
896 break;
897 }
898 /*
899 * Massage in place to make a Linux-shaped dirent (otherwise
900 * we have to worry about touching user memory outside of
901 * the copyout() call).
902 */
903 idb.d_ino = bdp->d_fileno;
904 /*
905 * The old readdir() call misuses the offset and reclen fields.
906 */
907 if (oldcall) {
908 idb.d_off = (linux_off_t)linux_reclen;
909 idb.d_reclen = (u_short)bdp->d_namlen;
910 } else {
911 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
912 compat_offseterr(vp, "linux_getdents");
913 error = EINVAL;
914 goto out;
915 }
916 idb.d_off = (linux_off_t)off;
917 idb.d_reclen = (u_short)linux_reclen;
918 }
919 strcpy(idb.d_name, bdp->d_name);
920 if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
921 goto out;
922 /* advance past this real entry */
923 inp += reclen;
924 if (cookie)
925 off = *cookie++; /* each entry points to itself */
926 else
927 off += reclen;
928 /* advance output past Linux-shaped entry */
929 outp += linux_reclen;
930 resid -= linux_reclen;
931 if (oldcall)
932 break;
933 }
934
935 /* if we squished out the whole block, try again */
936 if (outp == (caddr_t)SCARG(uap, dent))
937 goto again;
938 fp->f_offset = off; /* update the vnode offset */
939
940 if (oldcall)
941 nbytes = resid + linux_reclen;
942
943 eof:
944 *retval = nbytes - resid;
945 out:
946 VOP_UNLOCK(vp, 0);
947 if (cookiebuf)
948 free(cookiebuf, M_TEMP);
949 free(tbuf, M_TEMP);
950 out1:
951 FILE_UNUSE(fp, p);
952 return error;
953 }
954
955 /*
956 * Even when just using registers to pass arguments to syscalls you can
957 * have 5 of them on the i386. So this newer version of select() does
958 * this.
959 */
960 int
961 linux_sys_select(l, v, retval)
962 struct lwp *l;
963 void *v;
964 register_t *retval;
965 {
966 struct linux_sys_select_args /* {
967 syscallarg(int) nfds;
968 syscallarg(fd_set *) readfds;
969 syscallarg(fd_set *) writefds;
970 syscallarg(fd_set *) exceptfds;
971 syscallarg(struct timeval *) timeout;
972 } */ *uap = v;
973
974 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
975 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
976 }
977
978 /*
979 * Common code for the old and new versions of select(). A couple of
980 * things are important:
981 * 1) return the amount of time left in the 'timeout' parameter
982 * 2) select never returns ERESTART on Linux, always return EINTR
983 */
984 int
985 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
986 struct lwp *l;
987 register_t *retval;
988 int nfds;
989 fd_set *readfds, *writefds, *exceptfds;
990 struct timeval *timeout;
991 {
992 struct sys_select_args bsa;
993 struct proc *p = l->l_proc;
994 struct timeval tv0, tv1, utv, *tvp;
995 caddr_t sg;
996 int error;
997
998 SCARG(&bsa, nd) = nfds;
999 SCARG(&bsa, in) = readfds;
1000 SCARG(&bsa, ou) = writefds;
1001 SCARG(&bsa, ex) = exceptfds;
1002 SCARG(&bsa, tv) = timeout;
1003
1004 /*
1005 * Store current time for computation of the amount of
1006 * time left.
1007 */
1008 if (timeout) {
1009 if ((error = copyin(timeout, &utv, sizeof(utv))))
1010 return error;
1011 if (itimerfix(&utv)) {
1012 /*
1013 * The timeval was invalid. Convert it to something
1014 * valid that will act as it does under Linux.
1015 */
1016 sg = stackgap_init(p, 0);
1017 tvp = stackgap_alloc(p, &sg, sizeof(utv));
1018 utv.tv_sec += utv.tv_usec / 1000000;
1019 utv.tv_usec %= 1000000;
1020 if (utv.tv_usec < 0) {
1021 utv.tv_sec -= 1;
1022 utv.tv_usec += 1000000;
1023 }
1024 if (utv.tv_sec < 0)
1025 timerclear(&utv);
1026 if ((error = copyout(&utv, tvp, sizeof(utv))))
1027 return error;
1028 SCARG(&bsa, tv) = tvp;
1029 }
1030 microtime(&tv0);
1031 }
1032
1033 error = sys_select(l, &bsa, retval);
1034 if (error) {
1035 /*
1036 * See fs/select.c in the Linux kernel. Without this,
1037 * Maelstrom doesn't work.
1038 */
1039 if (error == ERESTART)
1040 error = EINTR;
1041 return error;
1042 }
1043
1044 if (timeout) {
1045 if (*retval) {
1046 /*
1047 * Compute how much time was left of the timeout,
1048 * by subtracting the current time and the time
1049 * before we started the call, and subtracting
1050 * that result from the user-supplied value.
1051 */
1052 microtime(&tv1);
1053 timersub(&tv1, &tv0, &tv1);
1054 timersub(&utv, &tv1, &utv);
1055 if (utv.tv_sec < 0)
1056 timerclear(&utv);
1057 } else
1058 timerclear(&utv);
1059 if ((error = copyout(&utv, timeout, sizeof(utv))))
1060 return error;
1061 }
1062
1063 return 0;
1064 }
1065
1066 /*
1067 * Get the process group of a certain process. Look it up
1068 * and return the value.
1069 */
1070 int
1071 linux_sys_getpgid(l, v, retval)
1072 struct lwp *l;
1073 void *v;
1074 register_t *retval;
1075 {
1076 struct linux_sys_getpgid_args /* {
1077 syscallarg(int) pid;
1078 } */ *uap = v;
1079 struct proc *p = l->l_proc;
1080 struct proc *targp;
1081
1082 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
1083 if ((targp = pfind(SCARG(uap, pid))) == 0)
1084 return ESRCH;
1085 }
1086 else
1087 targp = p;
1088
1089 retval[0] = targp->p_pgid;
1090 return 0;
1091 }
1092
1093 /*
1094 * Set the 'personality' (emulation mode) for the current process. Only
1095 * accept the Linux personality here (0). This call is needed because
1096 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1097 * ELF binaries run in Linux mode, not SVR4 mode.
1098 */
1099 int
1100 linux_sys_personality(l, v, retval)
1101 struct lwp *l;
1102 void *v;
1103 register_t *retval;
1104 {
1105 struct linux_sys_personality_args /* {
1106 syscallarg(int) per;
1107 } */ *uap = v;
1108
1109 if (SCARG(uap, per) != 0)
1110 return EINVAL;
1111 retval[0] = 0;
1112 return 0;
1113 }
1114
1115 #if defined(__i386__) || defined(__m68k__)
1116 /*
1117 * The calls are here because of type conversions.
1118 */
1119 int
1120 linux_sys_setreuid16(l, v, retval)
1121 struct lwp *l;
1122 void *v;
1123 register_t *retval;
1124 {
1125 struct linux_sys_setreuid16_args /* {
1126 syscallarg(int) ruid;
1127 syscallarg(int) euid;
1128 } */ *uap = v;
1129 struct sys_setreuid_args bsa;
1130
1131 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1132 (uid_t)-1 : SCARG(uap, ruid);
1133 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1134 (uid_t)-1 : SCARG(uap, euid);
1135
1136 return sys_setreuid(l, &bsa, retval);
1137 }
1138
1139 int
1140 linux_sys_setregid16(l, v, retval)
1141 struct lwp *l;
1142 void *v;
1143 register_t *retval;
1144 {
1145 struct linux_sys_setregid16_args /* {
1146 syscallarg(int) rgid;
1147 syscallarg(int) egid;
1148 } */ *uap = v;
1149 struct sys_setregid_args bsa;
1150
1151 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1152 (uid_t)-1 : SCARG(uap, rgid);
1153 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1154 (uid_t)-1 : SCARG(uap, egid);
1155
1156 return sys_setregid(l, &bsa, retval);
1157 }
1158
1159 int
1160 linux_sys_setresuid16(l, v, retval)
1161 struct lwp *l;
1162 void *v;
1163 register_t *retval;
1164 {
1165 struct linux_sys_setresuid16_args /* {
1166 syscallarg(uid_t) ruid;
1167 syscallarg(uid_t) euid;
1168 syscallarg(uid_t) suid;
1169 } */ *uap = v;
1170 struct linux_sys_setresuid16_args lsa;
1171
1172 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1173 (uid_t)-1 : SCARG(uap, ruid);
1174 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1175 (uid_t)-1 : SCARG(uap, euid);
1176 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
1177 (uid_t)-1 : SCARG(uap, suid);
1178
1179 return linux_sys_setresuid(l, &lsa, retval);
1180 }
1181
1182 int
1183 linux_sys_setresgid16(l, v, retval)
1184 struct lwp *l;
1185 void *v;
1186 register_t *retval;
1187 {
1188 struct linux_sys_setresgid16_args /* {
1189 syscallarg(gid_t) rgid;
1190 syscallarg(gid_t) egid;
1191 syscallarg(gid_t) sgid;
1192 } */ *uap = v;
1193 struct linux_sys_setresgid16_args lsa;
1194
1195 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1196 (gid_t)-1 : SCARG(uap, rgid);
1197 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1198 (gid_t)-1 : SCARG(uap, egid);
1199 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
1200 (gid_t)-1 : SCARG(uap, sgid);
1201
1202 return linux_sys_setresgid(l, &lsa, retval);
1203 }
1204
1205 int
1206 linux_sys_getgroups16(l, v, retval)
1207 struct lwp *l;
1208 void *v;
1209 register_t *retval;
1210 {
1211 struct linux_sys_getgroups16_args /* {
1212 syscallarg(int) gidsetsize;
1213 syscallarg(linux_gid_t *) gidset;
1214 } */ *uap = v;
1215 struct proc *p = l->l_proc;
1216 caddr_t sg;
1217 int n, error, i;
1218 struct sys_getgroups_args bsa;
1219 gid_t *bset, *kbset;
1220 linux_gid_t *lset;
1221 struct pcred *pc = p->p_cred;
1222
1223 n = SCARG(uap, gidsetsize);
1224 if (n < 0)
1225 return EINVAL;
1226 error = 0;
1227 bset = kbset = NULL;
1228 lset = NULL;
1229 if (n > 0) {
1230 n = min(pc->pc_ucred->cr_ngroups, n);
1231 sg = stackgap_init(p, 0);
1232 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1233 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1234 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1235 if (bset == NULL || kbset == NULL || lset == NULL)
1236 return ENOMEM;
1237 SCARG(&bsa, gidsetsize) = n;
1238 SCARG(&bsa, gidset) = bset;
1239 error = sys_getgroups(l, &bsa, retval);
1240 if (error != 0)
1241 goto out;
1242 error = copyin(bset, kbset, n * sizeof (gid_t));
1243 if (error != 0)
1244 goto out;
1245 for (i = 0; i < n; i++)
1246 lset[i] = (linux_gid_t)kbset[i];
1247 error = copyout(lset, SCARG(uap, gidset),
1248 n * sizeof (linux_gid_t));
1249 } else
1250 *retval = pc->pc_ucred->cr_ngroups;
1251 out:
1252 if (kbset != NULL)
1253 free(kbset, M_TEMP);
1254 if (lset != NULL)
1255 free(lset, M_TEMP);
1256 return error;
1257 }
1258
1259 int
1260 linux_sys_setgroups16(l, v, retval)
1261 struct lwp *l;
1262 void *v;
1263 register_t *retval;
1264 {
1265 struct linux_sys_setgroups16_args /* {
1266 syscallarg(int) gidsetsize;
1267 syscallarg(linux_gid_t *) gidset;
1268 } */ *uap = v;
1269 struct proc *p = l->l_proc;
1270 caddr_t sg;
1271 int n;
1272 int error, i;
1273 struct sys_setgroups_args bsa;
1274 gid_t *bset, *kbset;
1275 linux_gid_t *lset;
1276
1277 n = SCARG(uap, gidsetsize);
1278 if (n < 0 || n > NGROUPS)
1279 return EINVAL;
1280 sg = stackgap_init(p, 0);
1281 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1282 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1283 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1284 if (lset == NULL || bset == NULL)
1285 return ENOMEM;
1286 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t));
1287 if (error != 0)
1288 goto out;
1289 for (i = 0; i < n; i++)
1290 kbset[i] = (gid_t)lset[i];
1291 error = copyout(kbset, bset, n * sizeof (gid_t));
1292 if (error != 0)
1293 goto out;
1294 SCARG(&bsa, gidsetsize) = n;
1295 SCARG(&bsa, gidset) = bset;
1296 error = sys_setgroups(l, &bsa, retval);
1297
1298 out:
1299 if (lset != NULL)
1300 free(lset, M_TEMP);
1301 if (kbset != NULL)
1302 free(kbset, M_TEMP);
1303
1304 return error;
1305 }
1306
1307 #endif /* __i386__ || __m68k__ || __amd64__ */
1308
1309 /*
1310 * We have nonexistent fsuid equal to uid.
1311 * If modification is requested, refuse.
1312 */
1313 int
1314 linux_sys_setfsuid(l, v, retval)
1315 struct lwp *l;
1316 void *v;
1317 register_t *retval;
1318 {
1319 struct linux_sys_setfsuid_args /* {
1320 syscallarg(uid_t) uid;
1321 } */ *uap = v;
1322 struct proc *p = l->l_proc;
1323 uid_t uid;
1324
1325 uid = SCARG(uap, uid);
1326 if (p->p_cred->p_ruid != uid)
1327 return sys_nosys(l, v, retval);
1328 else
1329 return (0);
1330 }
1331
1332 /* XXX XXX XXX */
1333 #ifndef alpha
1334 int
1335 linux_sys_getfsuid(l, v, retval)
1336 struct lwp *l;
1337 void *v;
1338 register_t *retval;
1339 {
1340 return sys_getuid(l, v, retval);
1341 }
1342 #endif
1343
1344 int
1345 linux_sys_setresuid(l, v, retval)
1346 struct lwp *l;
1347 void *v;
1348 register_t *retval;
1349 {
1350 struct linux_sys_setresuid_args /* {
1351 syscallarg(uid_t) ruid;
1352 syscallarg(uid_t) euid;
1353 syscallarg(uid_t) suid;
1354 } */ *uap = v;
1355
1356 /*
1357 * Note: These checks are a little different than the NetBSD
1358 * setreuid(2) call performs. This precisely follows the
1359 * behavior of the Linux kernel.
1360 */
1361
1362 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1363 SCARG(uap, suid),
1364 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1365 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1366 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1367 }
1368
1369 int
1370 linux_sys_getresuid(l, v, retval)
1371 struct lwp *l;
1372 void *v;
1373 register_t *retval;
1374 {
1375 struct linux_sys_getresuid_args /* {
1376 syscallarg(uid_t *) ruid;
1377 syscallarg(uid_t *) euid;
1378 syscallarg(uid_t *) suid;
1379 } */ *uap = v;
1380 struct proc *p = l->l_proc;
1381 struct pcred *pc = p->p_cred;
1382 int error;
1383
1384 /*
1385 * Linux copies these values out to userspace like so:
1386 *
1387 * 1. Copy out ruid.
1388 * 2. If that succeeds, copy out euid.
1389 * 3. If both of those succeed, copy out suid.
1390 */
1391 if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid),
1392 sizeof(uid_t))) != 0)
1393 return (error);
1394
1395 if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid),
1396 sizeof(uid_t))) != 0)
1397 return (error);
1398
1399 return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t)));
1400 }
1401
1402 int
1403 linux_sys_ptrace(l, v, retval)
1404 struct lwp *l;
1405 void *v;
1406 register_t *retval;
1407 {
1408 struct linux_sys_ptrace_args /* {
1409 i386, m68k, powerpc: T=int
1410 alpha, amd64: T=long
1411 syscallarg(T) request;
1412 syscallarg(T) pid;
1413 syscallarg(T) addr;
1414 syscallarg(T) data;
1415 } */ *uap = v;
1416 const int *ptr;
1417 int request;
1418 int error;
1419
1420 ptr = linux_ptrace_request_map;
1421 request = SCARG(uap, request);
1422 while (*ptr != -1)
1423 if (*ptr++ == request) {
1424 struct sys_ptrace_args pta;
1425
1426 SCARG(&pta, req) = *ptr;
1427 SCARG(&pta, pid) = SCARG(uap, pid);
1428 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr);
1429 SCARG(&pta, data) = SCARG(uap, data);
1430
1431 /*
1432 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1433 * to continue where the process left off previously.
1434 * The same thing is achieved by addr == (caddr_t) 1
1435 * on NetBSD, so rewrite 'addr' appropriately.
1436 */
1437 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1438 SCARG(&pta, addr) = (caddr_t) 1;
1439
1440 error = sys_ptrace(l, &pta, retval);
1441 if (error)
1442 return error;
1443 switch (request) {
1444 case LINUX_PTRACE_PEEKTEXT:
1445 case LINUX_PTRACE_PEEKDATA:
1446 error = copyout (retval,
1447 (caddr_t)SCARG(uap, data),
1448 sizeof *retval);
1449 *retval = SCARG(uap, data);
1450 break;
1451 default:
1452 break;
1453 }
1454 return error;
1455 }
1456 else
1457 ptr++;
1458
1459 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1460 }
1461
1462 int
1463 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
1464 {
1465 struct linux_sys_reboot_args /* {
1466 syscallarg(int) magic1;
1467 syscallarg(int) magic2;
1468 syscallarg(int) cmd;
1469 syscallarg(void *) arg;
1470 } */ *uap = v;
1471 struct sys_reboot_args /* {
1472 syscallarg(int) opt;
1473 syscallarg(char *) bootstr;
1474 } */ sra;
1475 struct proc *p = l->l_proc;
1476 int error;
1477
1478 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1479 return(error);
1480
1481 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1482 return(EINVAL);
1483 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1484 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1485 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1486 return(EINVAL);
1487
1488 switch (SCARG(uap, cmd)) {
1489 case LINUX_REBOOT_CMD_RESTART:
1490 SCARG(&sra, opt) = RB_AUTOBOOT;
1491 break;
1492 case LINUX_REBOOT_CMD_HALT:
1493 SCARG(&sra, opt) = RB_HALT;
1494 break;
1495 case LINUX_REBOOT_CMD_POWER_OFF:
1496 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1497 break;
1498 case LINUX_REBOOT_CMD_RESTART2:
1499 /* Reboot with an argument. */
1500 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1501 SCARG(&sra, bootstr) = SCARG(uap, arg);
1502 break;
1503 case LINUX_REBOOT_CMD_CAD_ON:
1504 return(EINVAL); /* We don't implement ctrl-alt-delete */
1505 case LINUX_REBOOT_CMD_CAD_OFF:
1506 return(0);
1507 default:
1508 return(EINVAL);
1509 }
1510
1511 return(sys_reboot(l, &sra, retval));
1512 }
1513
1514 /*
1515 * Copy of compat_12_sys_swapon().
1516 */
1517 int
1518 linux_sys_swapon(l, v, retval)
1519 struct lwp *l;
1520 void *v;
1521 register_t *retval;
1522 {
1523 struct sys_swapctl_args ua;
1524 struct linux_sys_swapon_args /* {
1525 syscallarg(const char *) name;
1526 } */ *uap = v;
1527
1528 SCARG(&ua, cmd) = SWAP_ON;
1529 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1530 SCARG(&ua, misc) = 0; /* priority */
1531 return (sys_swapctl(l, &ua, retval));
1532 }
1533
1534 /*
1535 * Stop swapping to the file or block device specified by path.
1536 */
1537 int
1538 linux_sys_swapoff(l, v, retval)
1539 struct lwp *l;
1540 void *v;
1541 register_t *retval;
1542 {
1543 struct sys_swapctl_args ua;
1544 struct linux_sys_swapoff_args /* {
1545 syscallarg(const char *) path;
1546 } */ *uap = v;
1547
1548 SCARG(&ua, cmd) = SWAP_OFF;
1549 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1550 return (sys_swapctl(l, &ua, retval));
1551 }
1552
1553 /*
1554 * Copy of compat_09_sys_setdomainname()
1555 */
1556 /* ARGSUSED */
1557 int
1558 linux_sys_setdomainname(l, v, retval)
1559 struct lwp *l;
1560 void *v;
1561 register_t *retval;
1562 {
1563 struct linux_sys_setdomainname_args /* {
1564 syscallarg(char *) domainname;
1565 syscallarg(int) len;
1566 } */ *uap = v;
1567 int name[2];
1568
1569 name[0] = CTL_KERN;
1570 name[1] = KERN_DOMAINNAME;
1571 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1572 SCARG(uap, len), l));
1573 }
1574
1575 /*
1576 * sysinfo()
1577 */
1578 /* ARGSUSED */
1579 int
1580 linux_sys_sysinfo(l, v, retval)
1581 struct lwp *l;
1582 void *v;
1583 register_t *retval;
1584 {
1585 struct linux_sys_sysinfo_args /* {
1586 syscallarg(struct linux_sysinfo *) arg;
1587 } */ *uap = v;
1588 struct linux_sysinfo si;
1589 struct loadavg *la;
1590
1591 si.uptime = time.tv_sec - boottime.tv_sec;
1592 la = &averunnable;
1593 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1594 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1595 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1596 si.totalram = ctob(physmem);
1597 si.freeram = uvmexp.free * uvmexp.pagesize;
1598 si.sharedram = 0; /* XXX */
1599 si.bufferram = uvmexp.filepages * uvmexp.pagesize;
1600 si.totalswap = uvmexp.swpages * uvmexp.pagesize;
1601 si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1602 si.procs = nprocs;
1603
1604 /* The following are only present in newer Linux kernels. */
1605 si.totalbig = 0;
1606 si.freebig = 0;
1607 si.mem_unit = 1;
1608
1609 return (copyout(&si, SCARG(uap, arg), sizeof si));
1610 }
1611
1612 #define bsd_to_linux_rlimit1(l, b, f) \
1613 (l)->f = ((b)->f == RLIM_INFINITY || \
1614 ((b)->f & 0xffffffff00000000ULL) != 0) ? \
1615 LINUX_RLIM_INFINITY : (int32_t)(b)->f
1616 #define bsd_to_linux_rlimit(l, b) \
1617 bsd_to_linux_rlimit1(l, b, rlim_cur); \
1618 bsd_to_linux_rlimit1(l, b, rlim_max)
1619
1620 #define linux_to_bsd_rlimit1(b, l, f) \
1621 (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f
1622 #define linux_to_bsd_rlimit(b, l) \
1623 linux_to_bsd_rlimit1(b, l, rlim_cur); \
1624 linux_to_bsd_rlimit1(b, l, rlim_max)
1625
1626 static int
1627 linux_to_bsd_limit(lim)
1628 int lim;
1629 {
1630 switch (lim) {
1631 case LINUX_RLIMIT_CPU:
1632 return RLIMIT_CPU;
1633 case LINUX_RLIMIT_FSIZE:
1634 return RLIMIT_FSIZE;
1635 case LINUX_RLIMIT_DATA:
1636 return RLIMIT_DATA;
1637 case LINUX_RLIMIT_STACK:
1638 return RLIMIT_STACK;
1639 case LINUX_RLIMIT_CORE:
1640 return RLIMIT_CORE;
1641 case LINUX_RLIMIT_RSS:
1642 return RLIMIT_RSS;
1643 case LINUX_RLIMIT_NPROC:
1644 return RLIMIT_NPROC;
1645 case LINUX_RLIMIT_NOFILE:
1646 return RLIMIT_NOFILE;
1647 case LINUX_RLIMIT_MEMLOCK:
1648 return RLIMIT_MEMLOCK;
1649 case LINUX_RLIMIT_AS:
1650 case LINUX_RLIMIT_LOCKS:
1651 return -EOPNOTSUPP;
1652 default:
1653 return -EINVAL;
1654 }
1655 }
1656
1657
1658 int
1659 linux_sys_getrlimit(l, v, retval)
1660 struct lwp *l;
1661 void *v;
1662 register_t *retval;
1663 {
1664 struct linux_sys_getrlimit_args /* {
1665 syscallarg(int) which;
1666 syscallarg(struct orlimit *) rlp;
1667 } */ *uap = v;
1668 struct proc *p = l->l_proc;
1669 caddr_t sg = stackgap_init(p, 0);
1670 struct sys_getrlimit_args ap;
1671 struct rlimit rl;
1672 struct orlimit orl;
1673 int error;
1674
1675 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1676 if ((error = SCARG(&ap, which)) < 0)
1677 return -error;
1678 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1679 if ((error = sys_getrlimit(l, &ap, retval)) != 0)
1680 return error;
1681 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0)
1682 return error;
1683 bsd_to_linux_rlimit(&orl, &rl);
1684 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1685 }
1686
1687 int
1688 linux_sys_setrlimit(l, v, retval)
1689 struct lwp *l;
1690 void *v;
1691 register_t *retval;
1692 {
1693 struct linux_sys_setrlimit_args /* {
1694 syscallarg(int) which;
1695 syscallarg(struct orlimit *) rlp;
1696 } */ *uap = v;
1697 struct proc *p = l->l_proc;
1698 caddr_t sg = stackgap_init(p, 0);
1699 struct sys_getrlimit_args ap;
1700 struct rlimit rl;
1701 struct orlimit orl;
1702 int error;
1703
1704 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1705 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1706 if ((error = SCARG(&ap, which)) < 0)
1707 return -error;
1708 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1709 return error;
1710 linux_to_bsd_rlimit(&rl, &orl);
1711 if ((error = copyout(&rl, SCARG(&ap, rlp), sizeof(rl))) != 0)
1712 return error;
1713 return sys_setrlimit(l, &ap, retval);
1714 }
1715
1716 #if !defined(__mips__) && !defined(__amd64__)
1717 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1718 int
1719 linux_sys_ugetrlimit(l, v, retval)
1720 struct lwp *l;
1721 void *v;
1722 register_t *retval;
1723 {
1724 return linux_sys_getrlimit(l, v, retval);
1725 }
1726 #endif
1727
1728 /*
1729 * This gets called for unsupported syscalls. The difference to sys_nosys()
1730 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1731 * This is the way Linux does it and glibc depends on this behaviour.
1732 */
1733 int
1734 linux_sys_nosys(l, v, retval)
1735 struct lwp *l;
1736 void *v;
1737 register_t *retval;
1738 {
1739 return (ENOSYS);
1740 }
1741