linux_misc.c revision 1.147.2.1 1 /* $NetBSD: linux_misc.c,v 1.147.2.1 2005/12/31 12:37:20 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Linux compatibility module. Try to deal with various Linux system calls.
42 */
43
44 /*
45 * These functions have been moved to multiarch to allow
46 * selection of which machines include them to be
47 * determined by the individual files.linux_<arch> files.
48 *
49 * Function in multiarch:
50 * linux_sys_break : linux_break.c
51 * linux_sys_alarm : linux_misc_notalpha.c
52 * linux_sys_getresgid : linux_misc_notalpha.c
53 * linux_sys_nice : linux_misc_notalpha.c
54 * linux_sys_readdir : linux_misc_notalpha.c
55 * linux_sys_setresgid : linux_misc_notalpha.c
56 * linux_sys_time : linux_misc_notalpha.c
57 * linux_sys_utime : linux_misc_notalpha.c
58 * linux_sys_waitpid : linux_misc_notalpha.c
59 * linux_sys_old_mmap : linux_oldmmap.c
60 * linux_sys_oldolduname : linux_oldolduname.c
61 * linux_sys_oldselect : linux_oldselect.c
62 * linux_sys_olduname : linux_olduname.c
63 * linux_sys_pipe : linux_pipe.c
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.147.2.1 2005/12/31 12:37:20 yamt Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/proc.h>
73 #include <sys/dirent.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/ioctl.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/mbuf.h>
81 #include <sys/mman.h>
82 #include <sys/mount.h>
83 #include <sys/reboot.h>
84 #include <sys/resource.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signal.h>
87 #include <sys/signalvar.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/times.h>
91 #include <sys/vnode.h>
92 #include <sys/uio.h>
93 #include <sys/wait.h>
94 #include <sys/utsname.h>
95 #include <sys/unistd.h>
96 #include <sys/swap.h> /* for SWAP_ON */
97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
98
99 #include <sys/ptrace.h>
100 #include <machine/ptrace.h>
101
102 #include <sys/sa.h>
103 #include <sys/syscallargs.h>
104
105 #include <compat/linux/common/linux_machdep.h>
106 #include <compat/linux/common/linux_types.h>
107 #include <compat/linux/common/linux_signal.h>
108
109 #include <compat/linux/linux_syscallargs.h>
110
111 #include <compat/linux/common/linux_fcntl.h>
112 #include <compat/linux/common/linux_mmap.h>
113 #include <compat/linux/common/linux_dirent.h>
114 #include <compat/linux/common/linux_util.h>
115 #include <compat/linux/common/linux_misc.h>
116 #include <compat/linux/common/linux_ptrace.h>
117 #include <compat/linux/common/linux_reboot.h>
118 #include <compat/linux/common/linux_emuldata.h>
119
120 const int linux_ptrace_request_map[] = {
121 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
122 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
123 LINUX_PTRACE_PEEKDATA, PT_READ_D,
124 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
125 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
126 LINUX_PTRACE_CONT, PT_CONTINUE,
127 LINUX_PTRACE_KILL, PT_KILL,
128 LINUX_PTRACE_ATTACH, PT_ATTACH,
129 LINUX_PTRACE_DETACH, PT_DETACH,
130 #ifdef PT_STEP
131 LINUX_PTRACE_SINGLESTEP, PT_STEP,
132 #endif
133 -1
134 };
135
136 const struct linux_mnttypes linux_fstypes[] = {
137 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
138 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
139 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
140 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
141 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
142 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
143 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
144 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
146 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
148 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
149 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
150 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
151 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
153 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
154 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
155 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
156 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
158 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
159 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
160 { MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC }
161 };
162 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
163
164 #ifdef DEBUG_LINUX
165 #define DPRINTF(a) uprintf a
166 #else
167 #define DPRINTF(a)
168 #endif
169
170 /* Local linux_misc.c functions: */
171 #ifndef __amd64__
172 static void bsd_to_linux_statfs __P((const struct statvfs *,
173 struct linux_statfs *));
174 #endif
175 static int linux_to_bsd_limit __P((int));
176 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *,
177 const struct linux_sys_mmap_args *));
178 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *,
179 register_t *, off_t));
180
181
182 /*
183 * The information on a terminated (or stopped) process needs
184 * to be converted in order for Linux binaries to get a valid signal
185 * number out of it.
186 */
187 void
188 bsd_to_linux_wstat(st)
189 int *st;
190 {
191
192 int sig;
193
194 if (WIFSIGNALED(*st)) {
195 sig = WTERMSIG(*st);
196 if (sig >= 0 && sig < NSIG)
197 *st= (*st& ~0177) | native_to_linux_signo[sig];
198 } else if (WIFSTOPPED(*st)) {
199 sig = WSTOPSIG(*st);
200 if (sig >= 0 && sig < NSIG)
201 *st = (*st & ~0xff00) |
202 (native_to_linux_signo[sig] << 8);
203 }
204 }
205
206 /*
207 * wait4(2). Passed on to the NetBSD call, surrounded by code to
208 * reserve some space for a NetBSD-style wait status, and converting
209 * it to what Linux wants.
210 */
211 int
212 linux_sys_wait4(l, v, retval)
213 struct lwp *l;
214 void *v;
215 register_t *retval;
216 {
217 struct linux_sys_wait4_args /* {
218 syscallarg(int) pid;
219 syscallarg(int *) status;
220 syscallarg(int) options;
221 syscallarg(struct rusage *) rusage;
222 } */ *uap = v;
223 struct proc *p = l->l_proc;
224 struct sys_wait4_args w4a;
225 int error, *status, tstat, options, linux_options;
226 caddr_t sg;
227
228 if (SCARG(uap, status) != NULL) {
229 sg = stackgap_init(p, 0);
230 status = (int *) stackgap_alloc(p, &sg, sizeof *status);
231 } else
232 status = NULL;
233
234 linux_options = SCARG(uap, options);
235 options = 0;
236 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
237 return (EINVAL);
238
239 if (linux_options & LINUX_WAIT4_WNOHANG)
240 options |= WNOHANG;
241 if (linux_options & LINUX_WAIT4_WUNTRACED)
242 options |= WUNTRACED;
243 if (linux_options & LINUX_WAIT4_WALL)
244 options |= WALLSIG;
245 if (linux_options & LINUX_WAIT4_WCLONE)
246 options |= WALTSIG;
247 #ifdef DIAGNOSTIC
248 if (linux_options & LINUX_WAIT4_WNOTHREAD)
249 printf("WARNING: %s: linux process %d.%d called "
250 "waitpid with __WNOTHREAD set!",
251 __FILE__, p->p_pid, l->l_lid);
252
253 #endif
254
255 SCARG(&w4a, pid) = SCARG(uap, pid);
256 SCARG(&w4a, status) = status;
257 SCARG(&w4a, options) = options;
258 SCARG(&w4a, rusage) = SCARG(uap, rusage);
259
260 if ((error = sys_wait4(l, &w4a, retval)))
261 return error;
262
263 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD);
264
265 if (status != NULL) {
266 if ((error = copyin(status, &tstat, sizeof tstat)))
267 return error;
268
269 bsd_to_linux_wstat(&tstat);
270 return copyout(&tstat, SCARG(uap, status), sizeof tstat);
271 }
272
273 return 0;
274 }
275
276 /*
277 * Linux brk(2). The check if the new address is >= the old one is
278 * done in the kernel in Linux. NetBSD does it in the library.
279 */
280 int
281 linux_sys_brk(l, v, retval)
282 struct lwp *l;
283 void *v;
284 register_t *retval;
285 {
286 struct linux_sys_brk_args /* {
287 syscallarg(char *) nsize;
288 } */ *uap = v;
289 struct proc *p = l->l_proc;
290 char *nbrk = SCARG(uap, nsize);
291 struct sys_obreak_args oba;
292 struct vmspace *vm = p->p_vmspace;
293 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
294
295 SCARG(&oba, nsize) = nbrk;
296
297 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
298 ed->s->p_break = (char*)nbrk;
299 else
300 nbrk = ed->s->p_break;
301
302 retval[0] = (register_t)nbrk;
303
304 return 0;
305 }
306
307 #ifndef __amd64__
308 /*
309 * Convert NetBSD statvfs structure to Linux statfs structure.
310 * Linux doesn't have f_flag, and we can't set f_frsize due
311 * to glibc statvfs() bug (see below).
312 */
313 static void
314 bsd_to_linux_statfs(bsp, lsp)
315 const struct statvfs *bsp;
316 struct linux_statfs *lsp;
317 {
318 int i;
319
320 for (i = 0; i < linux_fstypes_cnt; i++) {
321 if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
322 lsp->l_ftype = linux_fstypes[i].linux;
323 break;
324 }
325 }
326
327 if (i == linux_fstypes_cnt) {
328 DPRINTF(("unhandled fstype in linux emulation: %s\n",
329 bsp->f_fstypename));
330 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
331 }
332
333 /*
334 * The sizes are expressed in number of blocks. The block
335 * size used for the size is f_frsize for POSIX-compliant
336 * statvfs. Linux statfs uses f_bsize as the block size
337 * (f_frsize used to not be available in Linux struct statfs).
338 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block
339 * counts for different f_frsize if f_frsize is provided by the kernel.
340 * POSIX conforming apps thus get wrong size if f_frsize
341 * is different to f_bsize. Thus, we just pretend we don't
342 * support f_frsize.
343 */
344
345 lsp->l_fbsize = bsp->f_frsize;
346 lsp->l_ffrsize = 0; /* compat */
347 lsp->l_fblocks = bsp->f_blocks;
348 lsp->l_fbfree = bsp->f_bfree;
349 lsp->l_fbavail = bsp->f_bavail;
350 lsp->l_ffiles = bsp->f_files;
351 lsp->l_fffree = bsp->f_ffree;
352 /* Linux sets the fsid to 0..., we don't */
353 lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
354 lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
355 lsp->l_fnamelen = bsp->f_namemax;
356 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
357 }
358
359 /*
360 * Implement the fs stat functions. Straightforward.
361 */
362 int
363 linux_sys_statfs(l, v, retval)
364 struct lwp *l;
365 void *v;
366 register_t *retval;
367 {
368 struct linux_sys_statfs_args /* {
369 syscallarg(const char *) path;
370 syscallarg(struct linux_statfs *) sp;
371 } */ *uap = v;
372 struct proc *p = l->l_proc;
373 struct statvfs btmp, *bsp;
374 struct linux_statfs ltmp;
375 struct sys_statvfs1_args bsa;
376 caddr_t sg;
377 int error;
378
379 sg = stackgap_init(p, 0);
380 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
381
382 CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
383
384 SCARG(&bsa, path) = SCARG(uap, path);
385 SCARG(&bsa, buf) = bsp;
386 SCARG(&bsa, flags) = ST_WAIT;
387
388 if ((error = sys_statvfs1(l, &bsa, retval)))
389 return error;
390
391 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
392 return error;
393
394 bsd_to_linux_statfs(&btmp, <mp);
395
396 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
397 }
398
399 int
400 linux_sys_fstatfs(l, v, retval)
401 struct lwp *l;
402 void *v;
403 register_t *retval;
404 {
405 struct linux_sys_fstatfs_args /* {
406 syscallarg(int) fd;
407 syscallarg(struct linux_statfs *) sp;
408 } */ *uap = v;
409 struct proc *p = l->l_proc;
410 struct statvfs btmp, *bsp;
411 struct linux_statfs ltmp;
412 struct sys_fstatvfs1_args bsa;
413 caddr_t sg;
414 int error;
415
416 sg = stackgap_init(p, 0);
417 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
418
419 SCARG(&bsa, fd) = SCARG(uap, fd);
420 SCARG(&bsa, buf) = bsp;
421 SCARG(&bsa, flags) = ST_WAIT;
422
423 if ((error = sys_fstatvfs1(l, &bsa, retval)))
424 return error;
425
426 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
427 return error;
428
429 bsd_to_linux_statfs(&btmp, <mp);
430
431 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
432 }
433 #endif /* __amd64__ */
434
435 /*
436 * uname(). Just copy the info from the various strings stored in the
437 * kernel, and put it in the Linux utsname structure. That structure
438 * is almost the same as the NetBSD one, only it has fields 65 characters
439 * long, and an extra domainname field.
440 */
441 int
442 linux_sys_uname(l, v, retval)
443 struct lwp *l;
444 void *v;
445 register_t *retval;
446 {
447 struct linux_sys_uname_args /* {
448 syscallarg(struct linux_utsname *) up;
449 } */ *uap = v;
450 struct linux_utsname luts;
451
452 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
453 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
454 strncpy(luts.l_release, linux_release, sizeof(luts.l_release));
455 strncpy(luts.l_version, linux_version, sizeof(luts.l_version));
456 #ifdef LINUX_UNAME_ARCH
457 strncpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
458 #else
459 strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
460 #endif
461 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
462
463 return copyout(&luts, SCARG(uap, up), sizeof(luts));
464 }
465
466 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
467 /* Used indirectly on: arm, i386, m68k */
468
469 /*
470 * New type Linux mmap call.
471 * Only called directly on machines with >= 6 free regs.
472 */
473 int
474 linux_sys_mmap(l, v, retval)
475 struct lwp *l;
476 void *v;
477 register_t *retval;
478 {
479 struct linux_sys_mmap_args /* {
480 syscallarg(unsigned long) addr;
481 syscallarg(size_t) len;
482 syscallarg(int) prot;
483 syscallarg(int) flags;
484 syscallarg(int) fd;
485 syscallarg(linux_off_t) offset;
486 } */ *uap = v;
487
488 if (SCARG(uap, offset) & PAGE_MASK)
489 return EINVAL;
490
491 return linux_mmap(l, uap, retval, SCARG(uap, offset));
492 }
493
494 /*
495 * Guts of most architectures' mmap64() implementations. This shares
496 * its list of arguments with linux_sys_mmap().
497 *
498 * The difference in linux_sys_mmap2() is that "offset" is actually
499 * (offset / pagesize), not an absolute byte count. This translation
500 * to pagesize offsets is done inside glibc between the mmap64() call
501 * point, and the actual syscall.
502 */
503 int
504 linux_sys_mmap2(l, v, retval)
505 struct lwp *l;
506 void *v;
507 register_t *retval;
508 {
509 struct linux_sys_mmap2_args /* {
510 syscallarg(unsigned long) addr;
511 syscallarg(size_t) len;
512 syscallarg(int) prot;
513 syscallarg(int) flags;
514 syscallarg(int) fd;
515 syscallarg(linux_off_t) offset;
516 } */ *uap = v;
517
518 return linux_mmap(l, uap, retval,
519 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
520 }
521
522 /*
523 * Massage arguments and call system mmap(2).
524 */
525 static int
526 linux_mmap(l, uap, retval, offset)
527 struct lwp *l;
528 struct linux_sys_mmap_args *uap;
529 register_t *retval;
530 off_t offset;
531 {
532 struct sys_mmap_args cma;
533 int error;
534 size_t mmoff=0;
535
536 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
537 /*
538 * Request for stack-like memory segment. On linux, this
539 * works by mmap()ping (small) segment, which is automatically
540 * extended when page fault happens below the currently
541 * allocated area. We emulate this by allocating (typically
542 * bigger) segment sized at current stack size limit, and
543 * offsetting the requested and returned address accordingly.
544 * Since physical pages are only allocated on-demand, this
545 * is effectively identical.
546 */
547 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
548
549 if (SCARG(uap, len) < ssl) {
550 /* Compute the address offset */
551 mmoff = round_page(ssl) - SCARG(uap, len);
552
553 if (SCARG(uap, addr))
554 SCARG(uap, addr) -= mmoff;
555
556 SCARG(uap, len) = (size_t) ssl;
557 }
558 }
559
560 linux_to_bsd_mmap_args(&cma, uap);
561 SCARG(&cma, pos) = offset;
562
563 error = sys_mmap(l, &cma, retval);
564 if (error)
565 return (error);
566
567 /* Shift the returned address for stack-like segment if necessary */
568 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
569 retval[0] += mmoff;
570
571 return (0);
572 }
573
574 static void
575 linux_to_bsd_mmap_args(cma, uap)
576 struct sys_mmap_args *cma;
577 const struct linux_sys_mmap_args *uap;
578 {
579 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
580
581 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
582 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
583 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
584 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
585 /* XXX XAX ERH: Any other flags here? There are more defined... */
586
587 SCARG(cma, addr) = (void *)SCARG(uap, addr);
588 SCARG(cma, len) = SCARG(uap, len);
589 SCARG(cma, prot) = SCARG(uap, prot);
590 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
591 SCARG(cma, prot) |= VM_PROT_READ;
592 SCARG(cma, flags) = flags;
593 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
594 SCARG(cma, pad) = 0;
595 }
596
597 int
598 linux_sys_mremap(l, v, retval)
599 struct lwp *l;
600 void *v;
601 register_t *retval;
602 {
603 struct linux_sys_mremap_args /* {
604 syscallarg(void *) old_address;
605 syscallarg(size_t) old_size;
606 syscallarg(size_t) new_size;
607 syscallarg(u_long) flags;
608 } */ *uap = v;
609 struct sys_munmap_args mua;
610 size_t old_size, new_size;
611 int error;
612
613 old_size = round_page(SCARG(uap, old_size));
614 new_size = round_page(SCARG(uap, new_size));
615
616 /*
617 * Growing mapped region.
618 */
619 if (new_size > old_size) {
620 /*
621 * XXX Implement me. What we probably want to do is
622 * XXX dig out the guts of the old mapping, mmap that
623 * XXX object again with the new size, then munmap
624 * XXX the old mapping.
625 */
626 *retval = 0;
627 return (ENOMEM);
628 }
629
630 /*
631 * Shrinking mapped region.
632 */
633 if (new_size < old_size) {
634 SCARG(&mua, addr) = (caddr_t)SCARG(uap, old_address) +
635 new_size;
636 SCARG(&mua, len) = old_size - new_size;
637 error = sys_munmap(l, &mua, retval);
638 *retval = error ? 0 : (register_t)SCARG(uap, old_address);
639 return (error);
640 }
641
642 /*
643 * No change.
644 */
645 *retval = (register_t)SCARG(uap, old_address);
646 return (0);
647 }
648
649 int
650 linux_sys_msync(l, v, retval)
651 struct lwp *l;
652 void *v;
653 register_t *retval;
654 {
655 struct linux_sys_msync_args /* {
656 syscallarg(caddr_t) addr;
657 syscallarg(int) len;
658 syscallarg(int) fl;
659 } */ *uap = v;
660
661 struct sys___msync13_args bma;
662
663 /* flags are ignored */
664 SCARG(&bma, addr) = SCARG(uap, addr);
665 SCARG(&bma, len) = SCARG(uap, len);
666 SCARG(&bma, flags) = SCARG(uap, fl);
667
668 return sys___msync13(l, &bma, retval);
669 }
670
671 int
672 linux_sys_mprotect(l, v, retval)
673 struct lwp *l;
674 void *v;
675 register_t *retval;
676 {
677 struct linux_sys_mprotect_args /* {
678 syscallarg(const void *) start;
679 syscallarg(unsigned long) len;
680 syscallarg(int) prot;
681 } */ *uap = v;
682 struct vm_map_entry *entry;
683 struct vm_map *map;
684 struct proc *p;
685 vaddr_t end, start, len, stacklim;
686 int prot, grows;
687
688 start = (vaddr_t)SCARG(uap, start);
689 len = round_page(SCARG(uap, len));
690 prot = SCARG(uap, prot);
691 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
692 prot &= ~grows;
693 end = start + len;
694
695 if (start & PAGE_MASK)
696 return EINVAL;
697 if (end < start)
698 return EINVAL;
699 if (end == start)
700 return 0;
701
702 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
703 return EINVAL;
704 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
705 return EINVAL;
706
707 p = l->l_proc;
708 map = &p->p_vmspace->vm_map;
709 vm_map_lock(map);
710 #ifdef notdef
711 VM_MAP_RANGE_CHECK(map, start, end);
712 #endif
713 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
714 vm_map_unlock(map);
715 return ENOMEM;
716 }
717
718 /*
719 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
720 */
721
722 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
723 if (grows & LINUX_PROT_GROWSDOWN) {
724 if (USRSTACK - stacklim <= start && start < USRSTACK) {
725 start = USRSTACK - stacklim;
726 } else {
727 start = entry->start;
728 }
729 } else if (grows & LINUX_PROT_GROWSUP) {
730 if (USRSTACK <= end && end < USRSTACK + stacklim) {
731 end = USRSTACK + stacklim;
732 } else {
733 end = entry->end;
734 }
735 }
736 vm_map_unlock(map);
737 return uvm_map_protect(map, start, end, prot, FALSE);
738 }
739
740 /*
741 * This code is partly stolen from src/lib/libc/compat-43/times.c
742 */
743
744 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
745
746 int
747 linux_sys_times(l, v, retval)
748 struct lwp *l;
749 void *v;
750 register_t *retval;
751 {
752 struct linux_sys_times_args /* {
753 syscallarg(struct times *) tms;
754 } */ *uap = v;
755 struct proc *p = l->l_proc;
756 struct timeval t;
757 int error, s;
758
759 if (SCARG(uap, tms)) {
760 struct linux_tms ltms;
761 struct rusage ru;
762
763 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL);
764 ltms.ltms_utime = CONVTCK(ru.ru_utime);
765 ltms.ltms_stime = CONVTCK(ru.ru_stime);
766
767 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
768 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
769
770 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
771 return error;
772 }
773
774 s = splclock();
775 timersub(&time, &boottime, &t);
776 splx(s);
777
778 retval[0] = ((linux_clock_t)(CONVTCK(t)));
779 return 0;
780 }
781
782 #undef CONVTCK
783
784 /*
785 * Linux 'readdir' call. This code is mostly taken from the
786 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
787 * an attempt has been made to keep it a little cleaner (failing
788 * miserably, because of the cruft needed if count 1 is passed).
789 *
790 * The d_off field should contain the offset of the next valid entry,
791 * but in Linux it has the offset of the entry itself. We emulate
792 * that bug here.
793 *
794 * Read in BSD-style entries, convert them, and copy them out.
795 *
796 * Note that this doesn't handle union-mounted filesystems.
797 */
798 int
799 linux_sys_getdents(l, v, retval)
800 struct lwp *l;
801 void *v;
802 register_t *retval;
803 {
804 struct linux_sys_getdents_args /* {
805 syscallarg(int) fd;
806 syscallarg(struct linux_dirent *) dent;
807 syscallarg(unsigned int) count;
808 } */ *uap = v;
809 struct proc *p = l->l_proc;
810 struct dirent *bdp;
811 struct vnode *vp;
812 caddr_t inp, tbuf; /* BSD-format */
813 int len, reclen; /* BSD-format */
814 caddr_t outp; /* Linux-format */
815 int resid, linux_reclen = 0; /* Linux-format */
816 struct file *fp;
817 struct uio auio;
818 struct iovec aiov;
819 struct linux_dirent idb;
820 off_t off; /* true file offset */
821 int buflen, error, eofflag, nbytes, oldcall;
822 struct vattr va;
823 off_t *cookiebuf = NULL, *cookie;
824 int ncookies;
825
826 /* getvnode() will use the descriptor for us */
827 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
828 return (error);
829
830 if ((fp->f_flag & FREAD) == 0) {
831 error = EBADF;
832 goto out1;
833 }
834
835 vp = (struct vnode *)fp->f_data;
836 if (vp->v_type != VDIR) {
837 error = EINVAL;
838 goto out1;
839 }
840
841 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)))
842 goto out1;
843
844 nbytes = SCARG(uap, count);
845 if (nbytes == 1) { /* emulating old, broken behaviour */
846 nbytes = sizeof (idb);
847 buflen = max(va.va_blocksize, nbytes);
848 oldcall = 1;
849 } else {
850 buflen = min(MAXBSIZE, nbytes);
851 if (buflen < va.va_blocksize)
852 buflen = va.va_blocksize;
853 oldcall = 0;
854 }
855 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
856
857 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
858 off = fp->f_offset;
859 again:
860 aiov.iov_base = tbuf;
861 aiov.iov_len = buflen;
862 auio.uio_iov = &aiov;
863 auio.uio_iovcnt = 1;
864 auio.uio_rw = UIO_READ;
865 auio.uio_resid = buflen;
866 auio.uio_offset = off;
867 UIO_SETUP_SYSSPACE(&auio);
868 /*
869 * First we read into the malloc'ed buffer, then
870 * we massage it into user space, one record at a time.
871 */
872 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
873 &ncookies);
874 if (error)
875 goto out;
876
877 inp = tbuf;
878 outp = (caddr_t)SCARG(uap, dent);
879 resid = nbytes;
880 if ((len = buflen - auio.uio_resid) == 0)
881 goto eof;
882
883 for (cookie = cookiebuf; len > 0; len -= reclen) {
884 bdp = (struct dirent *)inp;
885 reclen = bdp->d_reclen;
886 if (reclen & 3)
887 panic("linux_readdir");
888 if (bdp->d_fileno == 0) {
889 inp += reclen; /* it is a hole; squish it out */
890 if (cookie)
891 off = *cookie++;
892 else
893 off += reclen;
894 continue;
895 }
896 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
897 if (reclen > len || resid < linux_reclen) {
898 /* entry too big for buffer, so just stop */
899 outp++;
900 break;
901 }
902 /*
903 * Massage in place to make a Linux-shaped dirent (otherwise
904 * we have to worry about touching user memory outside of
905 * the copyout() call).
906 */
907 idb.d_ino = bdp->d_fileno;
908 /*
909 * The old readdir() call misuses the offset and reclen fields.
910 */
911 if (oldcall) {
912 idb.d_off = (linux_off_t)linux_reclen;
913 idb.d_reclen = (u_short)bdp->d_namlen;
914 } else {
915 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
916 compat_offseterr(vp, "linux_getdents");
917 error = EINVAL;
918 goto out;
919 }
920 idb.d_off = (linux_off_t)off;
921 idb.d_reclen = (u_short)linux_reclen;
922 }
923 strcpy(idb.d_name, bdp->d_name);
924 if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
925 goto out;
926 /* advance past this real entry */
927 inp += reclen;
928 if (cookie)
929 off = *cookie++; /* each entry points to itself */
930 else
931 off += reclen;
932 /* advance output past Linux-shaped entry */
933 outp += linux_reclen;
934 resid -= linux_reclen;
935 if (oldcall)
936 break;
937 }
938
939 /* if we squished out the whole block, try again */
940 if (outp == (caddr_t)SCARG(uap, dent))
941 goto again;
942 fp->f_offset = off; /* update the vnode offset */
943
944 if (oldcall)
945 nbytes = resid + linux_reclen;
946
947 eof:
948 *retval = nbytes - resid;
949 out:
950 VOP_UNLOCK(vp, 0);
951 if (cookiebuf)
952 free(cookiebuf, M_TEMP);
953 free(tbuf, M_TEMP);
954 out1:
955 FILE_UNUSE(fp, l);
956 return error;
957 }
958
959 /*
960 * Even when just using registers to pass arguments to syscalls you can
961 * have 5 of them on the i386. So this newer version of select() does
962 * this.
963 */
964 int
965 linux_sys_select(l, v, retval)
966 struct lwp *l;
967 void *v;
968 register_t *retval;
969 {
970 struct linux_sys_select_args /* {
971 syscallarg(int) nfds;
972 syscallarg(fd_set *) readfds;
973 syscallarg(fd_set *) writefds;
974 syscallarg(fd_set *) exceptfds;
975 syscallarg(struct timeval *) timeout;
976 } */ *uap = v;
977
978 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
979 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
980 }
981
982 /*
983 * Common code for the old and new versions of select(). A couple of
984 * things are important:
985 * 1) return the amount of time left in the 'timeout' parameter
986 * 2) select never returns ERESTART on Linux, always return EINTR
987 */
988 int
989 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
990 struct lwp *l;
991 register_t *retval;
992 int nfds;
993 fd_set *readfds, *writefds, *exceptfds;
994 struct timeval *timeout;
995 {
996 struct sys_select_args bsa;
997 struct proc *p = l->l_proc;
998 struct timeval tv0, tv1, utv, *tvp;
999 caddr_t sg;
1000 int error;
1001
1002 SCARG(&bsa, nd) = nfds;
1003 SCARG(&bsa, in) = readfds;
1004 SCARG(&bsa, ou) = writefds;
1005 SCARG(&bsa, ex) = exceptfds;
1006 SCARG(&bsa, tv) = timeout;
1007
1008 /*
1009 * Store current time for computation of the amount of
1010 * time left.
1011 */
1012 if (timeout) {
1013 if ((error = copyin(timeout, &utv, sizeof(utv))))
1014 return error;
1015 if (itimerfix(&utv)) {
1016 /*
1017 * The timeval was invalid. Convert it to something
1018 * valid that will act as it does under Linux.
1019 */
1020 sg = stackgap_init(p, 0);
1021 tvp = stackgap_alloc(p, &sg, sizeof(utv));
1022 utv.tv_sec += utv.tv_usec / 1000000;
1023 utv.tv_usec %= 1000000;
1024 if (utv.tv_usec < 0) {
1025 utv.tv_sec -= 1;
1026 utv.tv_usec += 1000000;
1027 }
1028 if (utv.tv_sec < 0)
1029 timerclear(&utv);
1030 if ((error = copyout(&utv, tvp, sizeof(utv))))
1031 return error;
1032 SCARG(&bsa, tv) = tvp;
1033 }
1034 microtime(&tv0);
1035 }
1036
1037 error = sys_select(l, &bsa, retval);
1038 if (error) {
1039 /*
1040 * See fs/select.c in the Linux kernel. Without this,
1041 * Maelstrom doesn't work.
1042 */
1043 if (error == ERESTART)
1044 error = EINTR;
1045 return error;
1046 }
1047
1048 if (timeout) {
1049 if (*retval) {
1050 /*
1051 * Compute how much time was left of the timeout,
1052 * by subtracting the current time and the time
1053 * before we started the call, and subtracting
1054 * that result from the user-supplied value.
1055 */
1056 microtime(&tv1);
1057 timersub(&tv1, &tv0, &tv1);
1058 timersub(&utv, &tv1, &utv);
1059 if (utv.tv_sec < 0)
1060 timerclear(&utv);
1061 } else
1062 timerclear(&utv);
1063 if ((error = copyout(&utv, timeout, sizeof(utv))))
1064 return error;
1065 }
1066
1067 return 0;
1068 }
1069
1070 /*
1071 * Get the process group of a certain process. Look it up
1072 * and return the value.
1073 */
1074 int
1075 linux_sys_getpgid(l, v, retval)
1076 struct lwp *l;
1077 void *v;
1078 register_t *retval;
1079 {
1080 struct linux_sys_getpgid_args /* {
1081 syscallarg(int) pid;
1082 } */ *uap = v;
1083 struct proc *p = l->l_proc;
1084 struct proc *targp;
1085
1086 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
1087 if ((targp = pfind(SCARG(uap, pid))) == 0)
1088 return ESRCH;
1089 }
1090 else
1091 targp = p;
1092
1093 retval[0] = targp->p_pgid;
1094 return 0;
1095 }
1096
1097 /*
1098 * Set the 'personality' (emulation mode) for the current process. Only
1099 * accept the Linux personality here (0). This call is needed because
1100 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1101 * ELF binaries run in Linux mode, not SVR4 mode.
1102 */
1103 int
1104 linux_sys_personality(l, v, retval)
1105 struct lwp *l;
1106 void *v;
1107 register_t *retval;
1108 {
1109 struct linux_sys_personality_args /* {
1110 syscallarg(int) per;
1111 } */ *uap = v;
1112
1113 if (SCARG(uap, per) != 0)
1114 return EINVAL;
1115 retval[0] = 0;
1116 return 0;
1117 }
1118
1119 #if defined(__i386__) || defined(__m68k__)
1120 /*
1121 * The calls are here because of type conversions.
1122 */
1123 int
1124 linux_sys_setreuid16(l, v, retval)
1125 struct lwp *l;
1126 void *v;
1127 register_t *retval;
1128 {
1129 struct linux_sys_setreuid16_args /* {
1130 syscallarg(int) ruid;
1131 syscallarg(int) euid;
1132 } */ *uap = v;
1133 struct sys_setreuid_args bsa;
1134
1135 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1136 (uid_t)-1 : SCARG(uap, ruid);
1137 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1138 (uid_t)-1 : SCARG(uap, euid);
1139
1140 return sys_setreuid(l, &bsa, retval);
1141 }
1142
1143 int
1144 linux_sys_setregid16(l, v, retval)
1145 struct lwp *l;
1146 void *v;
1147 register_t *retval;
1148 {
1149 struct linux_sys_setregid16_args /* {
1150 syscallarg(int) rgid;
1151 syscallarg(int) egid;
1152 } */ *uap = v;
1153 struct sys_setregid_args bsa;
1154
1155 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1156 (uid_t)-1 : SCARG(uap, rgid);
1157 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1158 (uid_t)-1 : SCARG(uap, egid);
1159
1160 return sys_setregid(l, &bsa, retval);
1161 }
1162
1163 int
1164 linux_sys_setresuid16(l, v, retval)
1165 struct lwp *l;
1166 void *v;
1167 register_t *retval;
1168 {
1169 struct linux_sys_setresuid16_args /* {
1170 syscallarg(uid_t) ruid;
1171 syscallarg(uid_t) euid;
1172 syscallarg(uid_t) suid;
1173 } */ *uap = v;
1174 struct linux_sys_setresuid16_args lsa;
1175
1176 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1177 (uid_t)-1 : SCARG(uap, ruid);
1178 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1179 (uid_t)-1 : SCARG(uap, euid);
1180 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
1181 (uid_t)-1 : SCARG(uap, suid);
1182
1183 return linux_sys_setresuid(l, &lsa, retval);
1184 }
1185
1186 int
1187 linux_sys_setresgid16(l, v, retval)
1188 struct lwp *l;
1189 void *v;
1190 register_t *retval;
1191 {
1192 struct linux_sys_setresgid16_args /* {
1193 syscallarg(gid_t) rgid;
1194 syscallarg(gid_t) egid;
1195 syscallarg(gid_t) sgid;
1196 } */ *uap = v;
1197 struct linux_sys_setresgid16_args lsa;
1198
1199 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1200 (gid_t)-1 : SCARG(uap, rgid);
1201 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1202 (gid_t)-1 : SCARG(uap, egid);
1203 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
1204 (gid_t)-1 : SCARG(uap, sgid);
1205
1206 return linux_sys_setresgid(l, &lsa, retval);
1207 }
1208
1209 int
1210 linux_sys_getgroups16(l, v, retval)
1211 struct lwp *l;
1212 void *v;
1213 register_t *retval;
1214 {
1215 struct linux_sys_getgroups16_args /* {
1216 syscallarg(int) gidsetsize;
1217 syscallarg(linux_gid_t *) gidset;
1218 } */ *uap = v;
1219 struct proc *p = l->l_proc;
1220 caddr_t sg;
1221 int n, error, i;
1222 struct sys_getgroups_args bsa;
1223 gid_t *bset, *kbset;
1224 linux_gid_t *lset;
1225 struct pcred *pc = p->p_cred;
1226
1227 n = SCARG(uap, gidsetsize);
1228 if (n < 0)
1229 return EINVAL;
1230 error = 0;
1231 bset = kbset = NULL;
1232 lset = NULL;
1233 if (n > 0) {
1234 n = min(pc->pc_ucred->cr_ngroups, n);
1235 sg = stackgap_init(p, 0);
1236 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1237 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1238 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1239 if (bset == NULL || kbset == NULL || lset == NULL)
1240 return ENOMEM;
1241 SCARG(&bsa, gidsetsize) = n;
1242 SCARG(&bsa, gidset) = bset;
1243 error = sys_getgroups(l, &bsa, retval);
1244 if (error != 0)
1245 goto out;
1246 error = copyin(bset, kbset, n * sizeof (gid_t));
1247 if (error != 0)
1248 goto out;
1249 for (i = 0; i < n; i++)
1250 lset[i] = (linux_gid_t)kbset[i];
1251 error = copyout(lset, SCARG(uap, gidset),
1252 n * sizeof (linux_gid_t));
1253 } else
1254 *retval = pc->pc_ucred->cr_ngroups;
1255 out:
1256 if (kbset != NULL)
1257 free(kbset, M_TEMP);
1258 if (lset != NULL)
1259 free(lset, M_TEMP);
1260 return error;
1261 }
1262
1263 int
1264 linux_sys_setgroups16(l, v, retval)
1265 struct lwp *l;
1266 void *v;
1267 register_t *retval;
1268 {
1269 struct linux_sys_setgroups16_args /* {
1270 syscallarg(int) gidsetsize;
1271 syscallarg(linux_gid_t *) gidset;
1272 } */ *uap = v;
1273 struct proc *p = l->l_proc;
1274 caddr_t sg;
1275 int n;
1276 int error, i;
1277 struct sys_setgroups_args bsa;
1278 gid_t *bset, *kbset;
1279 linux_gid_t *lset;
1280
1281 n = SCARG(uap, gidsetsize);
1282 if (n < 0 || n > NGROUPS)
1283 return EINVAL;
1284 sg = stackgap_init(p, 0);
1285 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1286 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1287 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1288 if (lset == NULL || bset == NULL)
1289 return ENOMEM;
1290 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t));
1291 if (error != 0)
1292 goto out;
1293 for (i = 0; i < n; i++)
1294 kbset[i] = (gid_t)lset[i];
1295 error = copyout(kbset, bset, n * sizeof (gid_t));
1296 if (error != 0)
1297 goto out;
1298 SCARG(&bsa, gidsetsize) = n;
1299 SCARG(&bsa, gidset) = bset;
1300 error = sys_setgroups(l, &bsa, retval);
1301
1302 out:
1303 if (lset != NULL)
1304 free(lset, M_TEMP);
1305 if (kbset != NULL)
1306 free(kbset, M_TEMP);
1307
1308 return error;
1309 }
1310
1311 #endif /* __i386__ || __m68k__ || __amd64__ */
1312
1313 /*
1314 * We have nonexistent fsuid equal to uid.
1315 * If modification is requested, refuse.
1316 */
1317 int
1318 linux_sys_setfsuid(l, v, retval)
1319 struct lwp *l;
1320 void *v;
1321 register_t *retval;
1322 {
1323 struct linux_sys_setfsuid_args /* {
1324 syscallarg(uid_t) uid;
1325 } */ *uap = v;
1326 struct proc *p = l->l_proc;
1327 uid_t uid;
1328
1329 uid = SCARG(uap, uid);
1330 if (p->p_cred->p_ruid != uid)
1331 return sys_nosys(l, v, retval);
1332 else
1333 return (0);
1334 }
1335
1336 /* XXX XXX XXX */
1337 #ifndef alpha
1338 int
1339 linux_sys_getfsuid(l, v, retval)
1340 struct lwp *l;
1341 void *v;
1342 register_t *retval;
1343 {
1344 return sys_getuid(l, v, retval);
1345 }
1346 #endif
1347
1348 int
1349 linux_sys_setresuid(l, v, retval)
1350 struct lwp *l;
1351 void *v;
1352 register_t *retval;
1353 {
1354 struct linux_sys_setresuid_args /* {
1355 syscallarg(uid_t) ruid;
1356 syscallarg(uid_t) euid;
1357 syscallarg(uid_t) suid;
1358 } */ *uap = v;
1359
1360 /*
1361 * Note: These checks are a little different than the NetBSD
1362 * setreuid(2) call performs. This precisely follows the
1363 * behavior of the Linux kernel.
1364 */
1365
1366 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1367 SCARG(uap, suid),
1368 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1369 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1370 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1371 }
1372
1373 int
1374 linux_sys_getresuid(l, v, retval)
1375 struct lwp *l;
1376 void *v;
1377 register_t *retval;
1378 {
1379 struct linux_sys_getresuid_args /* {
1380 syscallarg(uid_t *) ruid;
1381 syscallarg(uid_t *) euid;
1382 syscallarg(uid_t *) suid;
1383 } */ *uap = v;
1384 struct proc *p = l->l_proc;
1385 struct pcred *pc = p->p_cred;
1386 int error;
1387
1388 /*
1389 * Linux copies these values out to userspace like so:
1390 *
1391 * 1. Copy out ruid.
1392 * 2. If that succeeds, copy out euid.
1393 * 3. If both of those succeed, copy out suid.
1394 */
1395 if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid),
1396 sizeof(uid_t))) != 0)
1397 return (error);
1398
1399 if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid),
1400 sizeof(uid_t))) != 0)
1401 return (error);
1402
1403 return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t)));
1404 }
1405
1406 int
1407 linux_sys_ptrace(l, v, retval)
1408 struct lwp *l;
1409 void *v;
1410 register_t *retval;
1411 {
1412 struct linux_sys_ptrace_args /* {
1413 i386, m68k, powerpc: T=int
1414 alpha, amd64: T=long
1415 syscallarg(T) request;
1416 syscallarg(T) pid;
1417 syscallarg(T) addr;
1418 syscallarg(T) data;
1419 } */ *uap = v;
1420 const int *ptr;
1421 int request;
1422 int error;
1423
1424 ptr = linux_ptrace_request_map;
1425 request = SCARG(uap, request);
1426 while (*ptr != -1)
1427 if (*ptr++ == request) {
1428 struct sys_ptrace_args pta;
1429
1430 SCARG(&pta, req) = *ptr;
1431 SCARG(&pta, pid) = SCARG(uap, pid);
1432 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr);
1433 SCARG(&pta, data) = SCARG(uap, data);
1434
1435 /*
1436 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1437 * to continue where the process left off previously.
1438 * The same thing is achieved by addr == (caddr_t) 1
1439 * on NetBSD, so rewrite 'addr' appropriately.
1440 */
1441 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1442 SCARG(&pta, addr) = (caddr_t) 1;
1443
1444 error = sys_ptrace(l, &pta, retval);
1445 if (error)
1446 return error;
1447 switch (request) {
1448 case LINUX_PTRACE_PEEKTEXT:
1449 case LINUX_PTRACE_PEEKDATA:
1450 error = copyout (retval,
1451 (caddr_t)SCARG(uap, data),
1452 sizeof *retval);
1453 *retval = SCARG(uap, data);
1454 break;
1455 default:
1456 break;
1457 }
1458 return error;
1459 }
1460 else
1461 ptr++;
1462
1463 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1464 }
1465
1466 int
1467 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
1468 {
1469 struct linux_sys_reboot_args /* {
1470 syscallarg(int) magic1;
1471 syscallarg(int) magic2;
1472 syscallarg(int) cmd;
1473 syscallarg(void *) arg;
1474 } */ *uap = v;
1475 struct sys_reboot_args /* {
1476 syscallarg(int) opt;
1477 syscallarg(char *) bootstr;
1478 } */ sra;
1479 struct proc *p = l->l_proc;
1480 int error;
1481
1482 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1483 return(error);
1484
1485 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1486 return(EINVAL);
1487 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1488 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1489 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1490 return(EINVAL);
1491
1492 switch (SCARG(uap, cmd)) {
1493 case LINUX_REBOOT_CMD_RESTART:
1494 SCARG(&sra, opt) = RB_AUTOBOOT;
1495 break;
1496 case LINUX_REBOOT_CMD_HALT:
1497 SCARG(&sra, opt) = RB_HALT;
1498 break;
1499 case LINUX_REBOOT_CMD_POWER_OFF:
1500 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1501 break;
1502 case LINUX_REBOOT_CMD_RESTART2:
1503 /* Reboot with an argument. */
1504 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1505 SCARG(&sra, bootstr) = SCARG(uap, arg);
1506 break;
1507 case LINUX_REBOOT_CMD_CAD_ON:
1508 return(EINVAL); /* We don't implement ctrl-alt-delete */
1509 case LINUX_REBOOT_CMD_CAD_OFF:
1510 return(0);
1511 default:
1512 return(EINVAL);
1513 }
1514
1515 return(sys_reboot(l, &sra, retval));
1516 }
1517
1518 /*
1519 * Copy of compat_12_sys_swapon().
1520 */
1521 int
1522 linux_sys_swapon(l, v, retval)
1523 struct lwp *l;
1524 void *v;
1525 register_t *retval;
1526 {
1527 struct sys_swapctl_args ua;
1528 struct linux_sys_swapon_args /* {
1529 syscallarg(const char *) name;
1530 } */ *uap = v;
1531
1532 SCARG(&ua, cmd) = SWAP_ON;
1533 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1534 SCARG(&ua, misc) = 0; /* priority */
1535 return (sys_swapctl(l, &ua, retval));
1536 }
1537
1538 /*
1539 * Stop swapping to the file or block device specified by path.
1540 */
1541 int
1542 linux_sys_swapoff(l, v, retval)
1543 struct lwp *l;
1544 void *v;
1545 register_t *retval;
1546 {
1547 struct sys_swapctl_args ua;
1548 struct linux_sys_swapoff_args /* {
1549 syscallarg(const char *) path;
1550 } */ *uap = v;
1551
1552 SCARG(&ua, cmd) = SWAP_OFF;
1553 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1554 return (sys_swapctl(l, &ua, retval));
1555 }
1556
1557 /*
1558 * Copy of compat_09_sys_setdomainname()
1559 */
1560 /* ARGSUSED */
1561 int
1562 linux_sys_setdomainname(l, v, retval)
1563 struct lwp *l;
1564 void *v;
1565 register_t *retval;
1566 {
1567 struct linux_sys_setdomainname_args /* {
1568 syscallarg(char *) domainname;
1569 syscallarg(int) len;
1570 } */ *uap = v;
1571 int name[2];
1572
1573 name[0] = CTL_KERN;
1574 name[1] = KERN_DOMAINNAME;
1575 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1576 SCARG(uap, len), l));
1577 }
1578
1579 /*
1580 * sysinfo()
1581 */
1582 /* ARGSUSED */
1583 int
1584 linux_sys_sysinfo(l, v, retval)
1585 struct lwp *l;
1586 void *v;
1587 register_t *retval;
1588 {
1589 struct linux_sys_sysinfo_args /* {
1590 syscallarg(struct linux_sysinfo *) arg;
1591 } */ *uap = v;
1592 struct linux_sysinfo si;
1593 struct loadavg *la;
1594
1595 si.uptime = time.tv_sec - boottime.tv_sec;
1596 la = &averunnable;
1597 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1598 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1599 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1600 si.totalram = ctob(physmem);
1601 si.freeram = uvmexp.free * uvmexp.pagesize;
1602 si.sharedram = 0; /* XXX */
1603 si.bufferram = uvmexp.filepages * uvmexp.pagesize;
1604 si.totalswap = uvmexp.swpages * uvmexp.pagesize;
1605 si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1606 si.procs = nprocs;
1607
1608 /* The following are only present in newer Linux kernels. */
1609 si.totalbig = 0;
1610 si.freebig = 0;
1611 si.mem_unit = 1;
1612
1613 return (copyout(&si, SCARG(uap, arg), sizeof si));
1614 }
1615
1616 #ifdef LINUX_LARGEFILE64
1617 #define bsd_to_linux_rlimit1(l, b, f) \
1618 (l)->f = ((b)->f == RLIM_INFINITY || \
1619 ((b)->f & 0x8000000000000000UL) != 0) ? \
1620 LINUX_RLIM_INFINITY : (b)->f
1621 #else
1622 #define bsd_to_linux_rlimit1(l, b, f) \
1623 (l)->f = ((b)->f == RLIM_INFINITY || \
1624 ((b)->f & 0xffffffff00000000ULL) != 0) ? \
1625 LINUX_RLIM_INFINITY : (int32_t)(b)->f
1626 #endif
1627 #define bsd_to_linux_rlimit(l, b) \
1628 bsd_to_linux_rlimit1(l, b, rlim_cur); \
1629 bsd_to_linux_rlimit1(l, b, rlim_max)
1630
1631 #define linux_to_bsd_rlimit1(b, l, f) \
1632 (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f
1633 #define linux_to_bsd_rlimit(b, l) \
1634 linux_to_bsd_rlimit1(b, l, rlim_cur); \
1635 linux_to_bsd_rlimit1(b, l, rlim_max)
1636
1637 static int
1638 linux_to_bsd_limit(lim)
1639 int lim;
1640 {
1641 switch (lim) {
1642 case LINUX_RLIMIT_CPU:
1643 return RLIMIT_CPU;
1644 case LINUX_RLIMIT_FSIZE:
1645 return RLIMIT_FSIZE;
1646 case LINUX_RLIMIT_DATA:
1647 return RLIMIT_DATA;
1648 case LINUX_RLIMIT_STACK:
1649 return RLIMIT_STACK;
1650 case LINUX_RLIMIT_CORE:
1651 return RLIMIT_CORE;
1652 case LINUX_RLIMIT_RSS:
1653 return RLIMIT_RSS;
1654 case LINUX_RLIMIT_NPROC:
1655 return RLIMIT_NPROC;
1656 case LINUX_RLIMIT_NOFILE:
1657 return RLIMIT_NOFILE;
1658 case LINUX_RLIMIT_MEMLOCK:
1659 return RLIMIT_MEMLOCK;
1660 case LINUX_RLIMIT_AS:
1661 case LINUX_RLIMIT_LOCKS:
1662 return -EOPNOTSUPP;
1663 default:
1664 return -EINVAL;
1665 }
1666 }
1667
1668
1669 int
1670 linux_sys_getrlimit(l, v, retval)
1671 struct lwp *l;
1672 void *v;
1673 register_t *retval;
1674 {
1675 struct linux_sys_getrlimit_args /* {
1676 syscallarg(int) which;
1677 #ifdef LINUX_LARGEFILE64
1678 syscallarg(struct rlimit *) rlp;
1679 #else
1680 syscallarg(struct orlimit *) rlp;
1681 #endif
1682 } */ *uap = v;
1683 struct proc *p = l->l_proc;
1684 caddr_t sg = stackgap_init(p, 0);
1685 struct sys_getrlimit_args ap;
1686 struct rlimit rl;
1687 #ifdef LINUX_LARGEFILE64
1688 struct rlimit orl;
1689 #else
1690 struct orlimit orl;
1691 #endif
1692 int error;
1693
1694 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1695 if ((error = SCARG(&ap, which)) < 0)
1696 return -error;
1697 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1698 if ((error = sys_getrlimit(l, &ap, retval)) != 0)
1699 return error;
1700 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0)
1701 return error;
1702 bsd_to_linux_rlimit(&orl, &rl);
1703
1704 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1705 }
1706
1707 int
1708 linux_sys_setrlimit(l, v, retval)
1709 struct lwp *l;
1710 void *v;
1711 register_t *retval;
1712 {
1713 struct linux_sys_setrlimit_args /* {
1714 syscallarg(int) which;
1715 #ifdef LINUX_LARGEFILE64
1716 syscallarg(struct rlimit *) rlp;
1717 #else
1718 syscallarg(struct orlimit *) rlp;
1719 #endif
1720 } */ *uap = v;
1721 struct proc *p = l->l_proc;
1722 caddr_t sg = stackgap_init(p, 0);
1723 struct sys_getrlimit_args ap;
1724 struct rlimit rl;
1725 #ifdef LINUX_LARGEFILE64
1726 struct rlimit orl;
1727 #else
1728 struct orlimit orl;
1729 #endif
1730 int error;
1731
1732 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1733 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1734 if ((error = SCARG(&ap, which)) < 0)
1735 return -error;
1736 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1737 return error;
1738 linux_to_bsd_rlimit(&rl, &orl);
1739 if ((error = copyout(&rl, SCARG(&ap, rlp), sizeof(rl))) != 0)
1740 return error;
1741 return sys_setrlimit(l, &ap, retval);
1742 }
1743
1744 #if !defined(__mips__) && !defined(__amd64__)
1745 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1746 int
1747 linux_sys_ugetrlimit(l, v, retval)
1748 struct lwp *l;
1749 void *v;
1750 register_t *retval;
1751 {
1752 return linux_sys_getrlimit(l, v, retval);
1753 }
1754 #endif
1755
1756 /*
1757 * This gets called for unsupported syscalls. The difference to sys_nosys()
1758 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1759 * This is the way Linux does it and glibc depends on this behaviour.
1760 */
1761 int
1762 linux_sys_nosys(l, v, retval)
1763 struct lwp *l;
1764 void *v;
1765 register_t *retval;
1766 {
1767 return (ENOSYS);
1768 }
1769