linux_misc.c revision 1.148 1 /* $NetBSD: linux_misc.c,v 1.148 2006/01/21 13:34:15 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Linux compatibility module. Try to deal with various Linux system calls.
42 */
43
44 /*
45 * These functions have been moved to multiarch to allow
46 * selection of which machines include them to be
47 * determined by the individual files.linux_<arch> files.
48 *
49 * Function in multiarch:
50 * linux_sys_break : linux_break.c
51 * linux_sys_alarm : linux_misc_notalpha.c
52 * linux_sys_getresgid : linux_misc_notalpha.c
53 * linux_sys_nice : linux_misc_notalpha.c
54 * linux_sys_readdir : linux_misc_notalpha.c
55 * linux_sys_setresgid : linux_misc_notalpha.c
56 * linux_sys_time : linux_misc_notalpha.c
57 * linux_sys_utime : linux_misc_notalpha.c
58 * linux_sys_waitpid : linux_misc_notalpha.c
59 * linux_sys_old_mmap : linux_oldmmap.c
60 * linux_sys_oldolduname : linux_oldolduname.c
61 * linux_sys_oldselect : linux_oldselect.c
62 * linux_sys_olduname : linux_olduname.c
63 * linux_sys_pipe : linux_pipe.c
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.148 2006/01/21 13:34:15 yamt Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/proc.h>
73 #include <sys/dirent.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/ioctl.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/mbuf.h>
81 #include <sys/mman.h>
82 #include <sys/mount.h>
83 #include <sys/reboot.h>
84 #include <sys/resource.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signal.h>
87 #include <sys/signalvar.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/times.h>
91 #include <sys/vnode.h>
92 #include <sys/uio.h>
93 #include <sys/wait.h>
94 #include <sys/utsname.h>
95 #include <sys/unistd.h>
96 #include <sys/swap.h> /* for SWAP_ON */
97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
98
99 #include <sys/ptrace.h>
100 #include <machine/ptrace.h>
101
102 #include <sys/sa.h>
103 #include <sys/syscallargs.h>
104
105 #include <compat/linux/common/linux_machdep.h>
106 #include <compat/linux/common/linux_types.h>
107 #include <compat/linux/common/linux_signal.h>
108
109 #include <compat/linux/linux_syscallargs.h>
110
111 #include <compat/linux/common/linux_fcntl.h>
112 #include <compat/linux/common/linux_mmap.h>
113 #include <compat/linux/common/linux_dirent.h>
114 #include <compat/linux/common/linux_util.h>
115 #include <compat/linux/common/linux_misc.h>
116 #include <compat/linux/common/linux_ptrace.h>
117 #include <compat/linux/common/linux_reboot.h>
118 #include <compat/linux/common/linux_emuldata.h>
119
120 const int linux_ptrace_request_map[] = {
121 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
122 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
123 LINUX_PTRACE_PEEKDATA, PT_READ_D,
124 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
125 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
126 LINUX_PTRACE_CONT, PT_CONTINUE,
127 LINUX_PTRACE_KILL, PT_KILL,
128 LINUX_PTRACE_ATTACH, PT_ATTACH,
129 LINUX_PTRACE_DETACH, PT_DETACH,
130 #ifdef PT_STEP
131 LINUX_PTRACE_SINGLESTEP, PT_STEP,
132 #endif
133 -1
134 };
135
136 const struct linux_mnttypes linux_fstypes[] = {
137 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
138 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
139 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
140 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
141 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
142 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
143 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
144 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
146 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
148 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
149 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
150 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
151 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
153 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
154 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
155 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
156 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
158 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
159 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
160 { MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC }
161 };
162 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
163
164 #ifdef DEBUG_LINUX
165 #define DPRINTF(a) uprintf a
166 #else
167 #define DPRINTF(a)
168 #endif
169
170 /* Local linux_misc.c functions: */
171 #ifndef __amd64__
172 static void bsd_to_linux_statfs __P((const struct statvfs *,
173 struct linux_statfs *));
174 #endif
175 static int linux_to_bsd_limit __P((int));
176 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *,
177 const struct linux_sys_mmap_args *));
178 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *,
179 register_t *, off_t));
180
181
182 /*
183 * The information on a terminated (or stopped) process needs
184 * to be converted in order for Linux binaries to get a valid signal
185 * number out of it.
186 */
187 void
188 bsd_to_linux_wstat(st)
189 int *st;
190 {
191
192 int sig;
193
194 if (WIFSIGNALED(*st)) {
195 sig = WTERMSIG(*st);
196 if (sig >= 0 && sig < NSIG)
197 *st= (*st& ~0177) | native_to_linux_signo[sig];
198 } else if (WIFSTOPPED(*st)) {
199 sig = WSTOPSIG(*st);
200 if (sig >= 0 && sig < NSIG)
201 *st = (*st & ~0xff00) |
202 (native_to_linux_signo[sig] << 8);
203 }
204 }
205
206 /*
207 * wait4(2). Passed on to the NetBSD call, surrounded by code to
208 * reserve some space for a NetBSD-style wait status, and converting
209 * it to what Linux wants.
210 */
211 int
212 linux_sys_wait4(l, v, retval)
213 struct lwp *l;
214 void *v;
215 register_t *retval;
216 {
217 struct linux_sys_wait4_args /* {
218 syscallarg(int) pid;
219 syscallarg(int *) status;
220 syscallarg(int) options;
221 syscallarg(struct rusage *) rusage;
222 } */ *uap = v;
223 struct proc *p = l->l_proc;
224 struct sys_wait4_args w4a;
225 int error, *status, tstat, options, linux_options;
226 caddr_t sg;
227
228 if (SCARG(uap, status) != NULL) {
229 sg = stackgap_init(p, 0);
230 status = (int *) stackgap_alloc(p, &sg, sizeof *status);
231 } else
232 status = NULL;
233
234 linux_options = SCARG(uap, options);
235 options = 0;
236 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
237 return (EINVAL);
238
239 if (linux_options & LINUX_WAIT4_WNOHANG)
240 options |= WNOHANG;
241 if (linux_options & LINUX_WAIT4_WUNTRACED)
242 options |= WUNTRACED;
243 if (linux_options & LINUX_WAIT4_WALL)
244 options |= WALLSIG;
245 if (linux_options & LINUX_WAIT4_WCLONE)
246 options |= WALTSIG;
247 #ifdef DIAGNOSTIC
248 if (linux_options & LINUX_WAIT4_WNOTHREAD)
249 printf("WARNING: %s: linux process %d.%d called "
250 "waitpid with __WNOTHREAD set!",
251 __FILE__, p->p_pid, l->l_lid);
252
253 #endif
254
255 SCARG(&w4a, pid) = SCARG(uap, pid);
256 SCARG(&w4a, status) = status;
257 SCARG(&w4a, options) = options;
258 SCARG(&w4a, rusage) = SCARG(uap, rusage);
259
260 if ((error = sys_wait4(l, &w4a, retval)))
261 return error;
262
263 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD);
264
265 if (status != NULL) {
266 if ((error = copyin(status, &tstat, sizeof tstat)))
267 return error;
268
269 bsd_to_linux_wstat(&tstat);
270 return copyout(&tstat, SCARG(uap, status), sizeof tstat);
271 }
272
273 return 0;
274 }
275
276 /*
277 * Linux brk(2). The check if the new address is >= the old one is
278 * done in the kernel in Linux. NetBSD does it in the library.
279 */
280 int
281 linux_sys_brk(l, v, retval)
282 struct lwp *l;
283 void *v;
284 register_t *retval;
285 {
286 struct linux_sys_brk_args /* {
287 syscallarg(char *) nsize;
288 } */ *uap = v;
289 struct proc *p = l->l_proc;
290 char *nbrk = SCARG(uap, nsize);
291 struct sys_obreak_args oba;
292 struct vmspace *vm = p->p_vmspace;
293 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
294
295 SCARG(&oba, nsize) = nbrk;
296
297 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
298 ed->s->p_break = (char*)nbrk;
299 else
300 nbrk = ed->s->p_break;
301
302 retval[0] = (register_t)nbrk;
303
304 return 0;
305 }
306
307 #ifndef __amd64__
308 /*
309 * Convert NetBSD statvfs structure to Linux statfs structure.
310 * Linux doesn't have f_flag, and we can't set f_frsize due
311 * to glibc statvfs() bug (see below).
312 */
313 static void
314 bsd_to_linux_statfs(bsp, lsp)
315 const struct statvfs *bsp;
316 struct linux_statfs *lsp;
317 {
318 int i;
319
320 for (i = 0; i < linux_fstypes_cnt; i++) {
321 if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
322 lsp->l_ftype = linux_fstypes[i].linux;
323 break;
324 }
325 }
326
327 if (i == linux_fstypes_cnt) {
328 DPRINTF(("unhandled fstype in linux emulation: %s\n",
329 bsp->f_fstypename));
330 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
331 }
332
333 /*
334 * The sizes are expressed in number of blocks. The block
335 * size used for the size is f_frsize for POSIX-compliant
336 * statvfs. Linux statfs uses f_bsize as the block size
337 * (f_frsize used to not be available in Linux struct statfs).
338 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block
339 * counts for different f_frsize if f_frsize is provided by the kernel.
340 * POSIX conforming apps thus get wrong size if f_frsize
341 * is different to f_bsize. Thus, we just pretend we don't
342 * support f_frsize.
343 */
344
345 lsp->l_fbsize = bsp->f_frsize;
346 lsp->l_ffrsize = 0; /* compat */
347 lsp->l_fblocks = bsp->f_blocks;
348 lsp->l_fbfree = bsp->f_bfree;
349 lsp->l_fbavail = bsp->f_bavail;
350 lsp->l_ffiles = bsp->f_files;
351 lsp->l_fffree = bsp->f_ffree;
352 /* Linux sets the fsid to 0..., we don't */
353 lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
354 lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
355 lsp->l_fnamelen = bsp->f_namemax;
356 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
357 }
358
359 /*
360 * Implement the fs stat functions. Straightforward.
361 */
362 int
363 linux_sys_statfs(l, v, retval)
364 struct lwp *l;
365 void *v;
366 register_t *retval;
367 {
368 struct linux_sys_statfs_args /* {
369 syscallarg(const char *) path;
370 syscallarg(struct linux_statfs *) sp;
371 } */ *uap = v;
372 struct proc *p = l->l_proc;
373 struct statvfs btmp, *bsp;
374 struct linux_statfs ltmp;
375 struct sys_statvfs1_args bsa;
376 caddr_t sg;
377 int error;
378
379 sg = stackgap_init(p, 0);
380 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
381
382 CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
383
384 SCARG(&bsa, path) = SCARG(uap, path);
385 SCARG(&bsa, buf) = bsp;
386 SCARG(&bsa, flags) = ST_WAIT;
387
388 if ((error = sys_statvfs1(l, &bsa, retval)))
389 return error;
390
391 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
392 return error;
393
394 bsd_to_linux_statfs(&btmp, <mp);
395
396 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
397 }
398
399 int
400 linux_sys_fstatfs(l, v, retval)
401 struct lwp *l;
402 void *v;
403 register_t *retval;
404 {
405 struct linux_sys_fstatfs_args /* {
406 syscallarg(int) fd;
407 syscallarg(struct linux_statfs *) sp;
408 } */ *uap = v;
409 struct proc *p = l->l_proc;
410 struct statvfs btmp, *bsp;
411 struct linux_statfs ltmp;
412 struct sys_fstatvfs1_args bsa;
413 caddr_t sg;
414 int error;
415
416 sg = stackgap_init(p, 0);
417 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
418
419 SCARG(&bsa, fd) = SCARG(uap, fd);
420 SCARG(&bsa, buf) = bsp;
421 SCARG(&bsa, flags) = ST_WAIT;
422
423 if ((error = sys_fstatvfs1(l, &bsa, retval)))
424 return error;
425
426 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
427 return error;
428
429 bsd_to_linux_statfs(&btmp, <mp);
430
431 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
432 }
433 #endif /* __amd64__ */
434
435 /*
436 * uname(). Just copy the info from the various strings stored in the
437 * kernel, and put it in the Linux utsname structure. That structure
438 * is almost the same as the NetBSD one, only it has fields 65 characters
439 * long, and an extra domainname field.
440 */
441 int
442 linux_sys_uname(l, v, retval)
443 struct lwp *l;
444 void *v;
445 register_t *retval;
446 {
447 struct linux_sys_uname_args /* {
448 syscallarg(struct linux_utsname *) up;
449 } */ *uap = v;
450 struct linux_utsname luts;
451
452 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
453 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
454 strncpy(luts.l_release, linux_release, sizeof(luts.l_release));
455 strncpy(luts.l_version, linux_version, sizeof(luts.l_version));
456 #ifdef LINUX_UNAME_ARCH
457 strncpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
458 #else
459 strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
460 #endif
461 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
462
463 return copyout(&luts, SCARG(uap, up), sizeof(luts));
464 }
465
466 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
467 /* Used indirectly on: arm, i386, m68k */
468
469 /*
470 * New type Linux mmap call.
471 * Only called directly on machines with >= 6 free regs.
472 */
473 int
474 linux_sys_mmap(l, v, retval)
475 struct lwp *l;
476 void *v;
477 register_t *retval;
478 {
479 struct linux_sys_mmap_args /* {
480 syscallarg(unsigned long) addr;
481 syscallarg(size_t) len;
482 syscallarg(int) prot;
483 syscallarg(int) flags;
484 syscallarg(int) fd;
485 syscallarg(linux_off_t) offset;
486 } */ *uap = v;
487
488 if (SCARG(uap, offset) & PAGE_MASK)
489 return EINVAL;
490
491 return linux_mmap(l, uap, retval, SCARG(uap, offset));
492 }
493
494 /*
495 * Guts of most architectures' mmap64() implementations. This shares
496 * its list of arguments with linux_sys_mmap().
497 *
498 * The difference in linux_sys_mmap2() is that "offset" is actually
499 * (offset / pagesize), not an absolute byte count. This translation
500 * to pagesize offsets is done inside glibc between the mmap64() call
501 * point, and the actual syscall.
502 */
503 int
504 linux_sys_mmap2(l, v, retval)
505 struct lwp *l;
506 void *v;
507 register_t *retval;
508 {
509 struct linux_sys_mmap2_args /* {
510 syscallarg(unsigned long) addr;
511 syscallarg(size_t) len;
512 syscallarg(int) prot;
513 syscallarg(int) flags;
514 syscallarg(int) fd;
515 syscallarg(linux_off_t) offset;
516 } */ *uap = v;
517
518 return linux_mmap(l, uap, retval,
519 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
520 }
521
522 /*
523 * Massage arguments and call system mmap(2).
524 */
525 static int
526 linux_mmap(l, uap, retval, offset)
527 struct lwp *l;
528 struct linux_sys_mmap_args *uap;
529 register_t *retval;
530 off_t offset;
531 {
532 struct sys_mmap_args cma;
533 int error;
534 size_t mmoff=0;
535
536 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
537 /*
538 * Request for stack-like memory segment. On linux, this
539 * works by mmap()ping (small) segment, which is automatically
540 * extended when page fault happens below the currently
541 * allocated area. We emulate this by allocating (typically
542 * bigger) segment sized at current stack size limit, and
543 * offsetting the requested and returned address accordingly.
544 * Since physical pages are only allocated on-demand, this
545 * is effectively identical.
546 */
547 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
548
549 if (SCARG(uap, len) < ssl) {
550 /* Compute the address offset */
551 mmoff = round_page(ssl) - SCARG(uap, len);
552
553 if (SCARG(uap, addr))
554 SCARG(uap, addr) -= mmoff;
555
556 SCARG(uap, len) = (size_t) ssl;
557 }
558 }
559
560 linux_to_bsd_mmap_args(&cma, uap);
561 SCARG(&cma, pos) = offset;
562
563 error = sys_mmap(l, &cma, retval);
564 if (error)
565 return (error);
566
567 /* Shift the returned address for stack-like segment if necessary */
568 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
569 retval[0] += mmoff;
570
571 return (0);
572 }
573
574 static void
575 linux_to_bsd_mmap_args(cma, uap)
576 struct sys_mmap_args *cma;
577 const struct linux_sys_mmap_args *uap;
578 {
579 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
580
581 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
582 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
583 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
584 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
585 /* XXX XAX ERH: Any other flags here? There are more defined... */
586
587 SCARG(cma, addr) = (void *)SCARG(uap, addr);
588 SCARG(cma, len) = SCARG(uap, len);
589 SCARG(cma, prot) = SCARG(uap, prot);
590 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
591 SCARG(cma, prot) |= VM_PROT_READ;
592 SCARG(cma, flags) = flags;
593 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
594 SCARG(cma, pad) = 0;
595 }
596
597 #define LINUX_MREMAP_MAYMOVE 1
598 #define LINUX_MREMAP_FIXED 2
599
600 int
601 linux_sys_mremap(l, v, retval)
602 struct lwp *l;
603 void *v;
604 register_t *retval;
605 {
606 struct linux_sys_mremap_args /* {
607 syscallarg(void *) old_address;
608 syscallarg(size_t) old_size;
609 syscallarg(size_t) new_size;
610 syscallarg(u_long) flags;
611 } */ *uap = v;
612
613 struct proc *p;
614 struct vm_map *map;
615 vaddr_t oldva;
616 vaddr_t newva;
617 size_t oldsize;
618 size_t newsize;
619 int flags;
620 int uvmflags;
621 int error;
622
623 flags = SCARG(uap, flags);
624 oldva = (vaddr_t)SCARG(uap, old_address);
625 oldsize = round_page(SCARG(uap, old_size));
626 newsize = round_page(SCARG(uap, new_size));
627 if ((flags & LINUX_MREMAP_FIXED) != 0) {
628 #if 0 /* notyet */
629 newva = SCARG(uap, new_address);
630 uvmflags = UVM_MREMAP_FIXED;
631 #else /* notyet */
632 error = EOPNOTSUPP;
633 goto done;
634 #endif /* notyet */
635 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
636 uvmflags = 0;
637 } else {
638 newva = oldva;
639 uvmflags = UVM_MREMAP_FIXED;
640 }
641 p = l->l_proc;
642 map = &p->p_vmspace->vm_map;
643 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
644 uvmflags);
645
646 done:
647 *retval = (error != 0) ? 0 : (register_t)newva;
648 return error;
649 }
650
651 int
652 linux_sys_msync(l, v, retval)
653 struct lwp *l;
654 void *v;
655 register_t *retval;
656 {
657 struct linux_sys_msync_args /* {
658 syscallarg(caddr_t) addr;
659 syscallarg(int) len;
660 syscallarg(int) fl;
661 } */ *uap = v;
662
663 struct sys___msync13_args bma;
664
665 /* flags are ignored */
666 SCARG(&bma, addr) = SCARG(uap, addr);
667 SCARG(&bma, len) = SCARG(uap, len);
668 SCARG(&bma, flags) = SCARG(uap, fl);
669
670 return sys___msync13(l, &bma, retval);
671 }
672
673 int
674 linux_sys_mprotect(l, v, retval)
675 struct lwp *l;
676 void *v;
677 register_t *retval;
678 {
679 struct linux_sys_mprotect_args /* {
680 syscallarg(const void *) start;
681 syscallarg(unsigned long) len;
682 syscallarg(int) prot;
683 } */ *uap = v;
684 struct vm_map_entry *entry;
685 struct vm_map *map;
686 struct proc *p;
687 vaddr_t end, start, len, stacklim;
688 int prot, grows;
689
690 start = (vaddr_t)SCARG(uap, start);
691 len = round_page(SCARG(uap, len));
692 prot = SCARG(uap, prot);
693 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
694 prot &= ~grows;
695 end = start + len;
696
697 if (start & PAGE_MASK)
698 return EINVAL;
699 if (end < start)
700 return EINVAL;
701 if (end == start)
702 return 0;
703
704 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
705 return EINVAL;
706 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
707 return EINVAL;
708
709 p = l->l_proc;
710 map = &p->p_vmspace->vm_map;
711 vm_map_lock(map);
712 #ifdef notdef
713 VM_MAP_RANGE_CHECK(map, start, end);
714 #endif
715 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
716 vm_map_unlock(map);
717 return ENOMEM;
718 }
719
720 /*
721 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
722 */
723
724 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
725 if (grows & LINUX_PROT_GROWSDOWN) {
726 if (USRSTACK - stacklim <= start && start < USRSTACK) {
727 start = USRSTACK - stacklim;
728 } else {
729 start = entry->start;
730 }
731 } else if (grows & LINUX_PROT_GROWSUP) {
732 if (USRSTACK <= end && end < USRSTACK + stacklim) {
733 end = USRSTACK + stacklim;
734 } else {
735 end = entry->end;
736 }
737 }
738 vm_map_unlock(map);
739 return uvm_map_protect(map, start, end, prot, FALSE);
740 }
741
742 /*
743 * This code is partly stolen from src/lib/libc/compat-43/times.c
744 */
745
746 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
747
748 int
749 linux_sys_times(l, v, retval)
750 struct lwp *l;
751 void *v;
752 register_t *retval;
753 {
754 struct linux_sys_times_args /* {
755 syscallarg(struct times *) tms;
756 } */ *uap = v;
757 struct proc *p = l->l_proc;
758 struct timeval t;
759 int error, s;
760
761 if (SCARG(uap, tms)) {
762 struct linux_tms ltms;
763 struct rusage ru;
764
765 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL);
766 ltms.ltms_utime = CONVTCK(ru.ru_utime);
767 ltms.ltms_stime = CONVTCK(ru.ru_stime);
768
769 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
770 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
771
772 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
773 return error;
774 }
775
776 s = splclock();
777 timersub(&time, &boottime, &t);
778 splx(s);
779
780 retval[0] = ((linux_clock_t)(CONVTCK(t)));
781 return 0;
782 }
783
784 #undef CONVTCK
785
786 /*
787 * Linux 'readdir' call. This code is mostly taken from the
788 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
789 * an attempt has been made to keep it a little cleaner (failing
790 * miserably, because of the cruft needed if count 1 is passed).
791 *
792 * The d_off field should contain the offset of the next valid entry,
793 * but in Linux it has the offset of the entry itself. We emulate
794 * that bug here.
795 *
796 * Read in BSD-style entries, convert them, and copy them out.
797 *
798 * Note that this doesn't handle union-mounted filesystems.
799 */
800 int
801 linux_sys_getdents(l, v, retval)
802 struct lwp *l;
803 void *v;
804 register_t *retval;
805 {
806 struct linux_sys_getdents_args /* {
807 syscallarg(int) fd;
808 syscallarg(struct linux_dirent *) dent;
809 syscallarg(unsigned int) count;
810 } */ *uap = v;
811 struct proc *p = l->l_proc;
812 struct dirent *bdp;
813 struct vnode *vp;
814 caddr_t inp, tbuf; /* BSD-format */
815 int len, reclen; /* BSD-format */
816 caddr_t outp; /* Linux-format */
817 int resid, linux_reclen = 0; /* Linux-format */
818 struct file *fp;
819 struct uio auio;
820 struct iovec aiov;
821 struct linux_dirent idb;
822 off_t off; /* true file offset */
823 int buflen, error, eofflag, nbytes, oldcall;
824 struct vattr va;
825 off_t *cookiebuf = NULL, *cookie;
826 int ncookies;
827
828 /* getvnode() will use the descriptor for us */
829 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
830 return (error);
831
832 if ((fp->f_flag & FREAD) == 0) {
833 error = EBADF;
834 goto out1;
835 }
836
837 vp = (struct vnode *)fp->f_data;
838 if (vp->v_type != VDIR) {
839 error = EINVAL;
840 goto out1;
841 }
842
843 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)))
844 goto out1;
845
846 nbytes = SCARG(uap, count);
847 if (nbytes == 1) { /* emulating old, broken behaviour */
848 nbytes = sizeof (idb);
849 buflen = max(va.va_blocksize, nbytes);
850 oldcall = 1;
851 } else {
852 buflen = min(MAXBSIZE, nbytes);
853 if (buflen < va.va_blocksize)
854 buflen = va.va_blocksize;
855 oldcall = 0;
856 }
857 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
858
859 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
860 off = fp->f_offset;
861 again:
862 aiov.iov_base = tbuf;
863 aiov.iov_len = buflen;
864 auio.uio_iov = &aiov;
865 auio.uio_iovcnt = 1;
866 auio.uio_rw = UIO_READ;
867 auio.uio_segflg = UIO_SYSSPACE;
868 auio.uio_lwp = NULL;
869 auio.uio_resid = buflen;
870 auio.uio_offset = off;
871 /*
872 * First we read into the malloc'ed buffer, then
873 * we massage it into user space, one record at a time.
874 */
875 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
876 &ncookies);
877 if (error)
878 goto out;
879
880 inp = tbuf;
881 outp = (caddr_t)SCARG(uap, dent);
882 resid = nbytes;
883 if ((len = buflen - auio.uio_resid) == 0)
884 goto eof;
885
886 for (cookie = cookiebuf; len > 0; len -= reclen) {
887 bdp = (struct dirent *)inp;
888 reclen = bdp->d_reclen;
889 if (reclen & 3)
890 panic("linux_readdir");
891 if (bdp->d_fileno == 0) {
892 inp += reclen; /* it is a hole; squish it out */
893 if (cookie)
894 off = *cookie++;
895 else
896 off += reclen;
897 continue;
898 }
899 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
900 if (reclen > len || resid < linux_reclen) {
901 /* entry too big for buffer, so just stop */
902 outp++;
903 break;
904 }
905 /*
906 * Massage in place to make a Linux-shaped dirent (otherwise
907 * we have to worry about touching user memory outside of
908 * the copyout() call).
909 */
910 idb.d_ino = bdp->d_fileno;
911 /*
912 * The old readdir() call misuses the offset and reclen fields.
913 */
914 if (oldcall) {
915 idb.d_off = (linux_off_t)linux_reclen;
916 idb.d_reclen = (u_short)bdp->d_namlen;
917 } else {
918 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
919 compat_offseterr(vp, "linux_getdents");
920 error = EINVAL;
921 goto out;
922 }
923 idb.d_off = (linux_off_t)off;
924 idb.d_reclen = (u_short)linux_reclen;
925 }
926 strcpy(idb.d_name, bdp->d_name);
927 if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
928 goto out;
929 /* advance past this real entry */
930 inp += reclen;
931 if (cookie)
932 off = *cookie++; /* each entry points to itself */
933 else
934 off += reclen;
935 /* advance output past Linux-shaped entry */
936 outp += linux_reclen;
937 resid -= linux_reclen;
938 if (oldcall)
939 break;
940 }
941
942 /* if we squished out the whole block, try again */
943 if (outp == (caddr_t)SCARG(uap, dent))
944 goto again;
945 fp->f_offset = off; /* update the vnode offset */
946
947 if (oldcall)
948 nbytes = resid + linux_reclen;
949
950 eof:
951 *retval = nbytes - resid;
952 out:
953 VOP_UNLOCK(vp, 0);
954 if (cookiebuf)
955 free(cookiebuf, M_TEMP);
956 free(tbuf, M_TEMP);
957 out1:
958 FILE_UNUSE(fp, l);
959 return error;
960 }
961
962 /*
963 * Even when just using registers to pass arguments to syscalls you can
964 * have 5 of them on the i386. So this newer version of select() does
965 * this.
966 */
967 int
968 linux_sys_select(l, v, retval)
969 struct lwp *l;
970 void *v;
971 register_t *retval;
972 {
973 struct linux_sys_select_args /* {
974 syscallarg(int) nfds;
975 syscallarg(fd_set *) readfds;
976 syscallarg(fd_set *) writefds;
977 syscallarg(fd_set *) exceptfds;
978 syscallarg(struct timeval *) timeout;
979 } */ *uap = v;
980
981 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
982 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
983 }
984
985 /*
986 * Common code for the old and new versions of select(). A couple of
987 * things are important:
988 * 1) return the amount of time left in the 'timeout' parameter
989 * 2) select never returns ERESTART on Linux, always return EINTR
990 */
991 int
992 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
993 struct lwp *l;
994 register_t *retval;
995 int nfds;
996 fd_set *readfds, *writefds, *exceptfds;
997 struct timeval *timeout;
998 {
999 struct sys_select_args bsa;
1000 struct proc *p = l->l_proc;
1001 struct timeval tv0, tv1, utv, *tvp;
1002 caddr_t sg;
1003 int error;
1004
1005 SCARG(&bsa, nd) = nfds;
1006 SCARG(&bsa, in) = readfds;
1007 SCARG(&bsa, ou) = writefds;
1008 SCARG(&bsa, ex) = exceptfds;
1009 SCARG(&bsa, tv) = timeout;
1010
1011 /*
1012 * Store current time for computation of the amount of
1013 * time left.
1014 */
1015 if (timeout) {
1016 if ((error = copyin(timeout, &utv, sizeof(utv))))
1017 return error;
1018 if (itimerfix(&utv)) {
1019 /*
1020 * The timeval was invalid. Convert it to something
1021 * valid that will act as it does under Linux.
1022 */
1023 sg = stackgap_init(p, 0);
1024 tvp = stackgap_alloc(p, &sg, sizeof(utv));
1025 utv.tv_sec += utv.tv_usec / 1000000;
1026 utv.tv_usec %= 1000000;
1027 if (utv.tv_usec < 0) {
1028 utv.tv_sec -= 1;
1029 utv.tv_usec += 1000000;
1030 }
1031 if (utv.tv_sec < 0)
1032 timerclear(&utv);
1033 if ((error = copyout(&utv, tvp, sizeof(utv))))
1034 return error;
1035 SCARG(&bsa, tv) = tvp;
1036 }
1037 microtime(&tv0);
1038 }
1039
1040 error = sys_select(l, &bsa, retval);
1041 if (error) {
1042 /*
1043 * See fs/select.c in the Linux kernel. Without this,
1044 * Maelstrom doesn't work.
1045 */
1046 if (error == ERESTART)
1047 error = EINTR;
1048 return error;
1049 }
1050
1051 if (timeout) {
1052 if (*retval) {
1053 /*
1054 * Compute how much time was left of the timeout,
1055 * by subtracting the current time and the time
1056 * before we started the call, and subtracting
1057 * that result from the user-supplied value.
1058 */
1059 microtime(&tv1);
1060 timersub(&tv1, &tv0, &tv1);
1061 timersub(&utv, &tv1, &utv);
1062 if (utv.tv_sec < 0)
1063 timerclear(&utv);
1064 } else
1065 timerclear(&utv);
1066 if ((error = copyout(&utv, timeout, sizeof(utv))))
1067 return error;
1068 }
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * Get the process group of a certain process. Look it up
1075 * and return the value.
1076 */
1077 int
1078 linux_sys_getpgid(l, v, retval)
1079 struct lwp *l;
1080 void *v;
1081 register_t *retval;
1082 {
1083 struct linux_sys_getpgid_args /* {
1084 syscallarg(int) pid;
1085 } */ *uap = v;
1086 struct proc *p = l->l_proc;
1087 struct proc *targp;
1088
1089 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
1090 if ((targp = pfind(SCARG(uap, pid))) == 0)
1091 return ESRCH;
1092 }
1093 else
1094 targp = p;
1095
1096 retval[0] = targp->p_pgid;
1097 return 0;
1098 }
1099
1100 /*
1101 * Set the 'personality' (emulation mode) for the current process. Only
1102 * accept the Linux personality here (0). This call is needed because
1103 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1104 * ELF binaries run in Linux mode, not SVR4 mode.
1105 */
1106 int
1107 linux_sys_personality(l, v, retval)
1108 struct lwp *l;
1109 void *v;
1110 register_t *retval;
1111 {
1112 struct linux_sys_personality_args /* {
1113 syscallarg(int) per;
1114 } */ *uap = v;
1115
1116 if (SCARG(uap, per) != 0)
1117 return EINVAL;
1118 retval[0] = 0;
1119 return 0;
1120 }
1121
1122 #if defined(__i386__) || defined(__m68k__)
1123 /*
1124 * The calls are here because of type conversions.
1125 */
1126 int
1127 linux_sys_setreuid16(l, v, retval)
1128 struct lwp *l;
1129 void *v;
1130 register_t *retval;
1131 {
1132 struct linux_sys_setreuid16_args /* {
1133 syscallarg(int) ruid;
1134 syscallarg(int) euid;
1135 } */ *uap = v;
1136 struct sys_setreuid_args bsa;
1137
1138 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1139 (uid_t)-1 : SCARG(uap, ruid);
1140 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1141 (uid_t)-1 : SCARG(uap, euid);
1142
1143 return sys_setreuid(l, &bsa, retval);
1144 }
1145
1146 int
1147 linux_sys_setregid16(l, v, retval)
1148 struct lwp *l;
1149 void *v;
1150 register_t *retval;
1151 {
1152 struct linux_sys_setregid16_args /* {
1153 syscallarg(int) rgid;
1154 syscallarg(int) egid;
1155 } */ *uap = v;
1156 struct sys_setregid_args bsa;
1157
1158 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1159 (uid_t)-1 : SCARG(uap, rgid);
1160 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1161 (uid_t)-1 : SCARG(uap, egid);
1162
1163 return sys_setregid(l, &bsa, retval);
1164 }
1165
1166 int
1167 linux_sys_setresuid16(l, v, retval)
1168 struct lwp *l;
1169 void *v;
1170 register_t *retval;
1171 {
1172 struct linux_sys_setresuid16_args /* {
1173 syscallarg(uid_t) ruid;
1174 syscallarg(uid_t) euid;
1175 syscallarg(uid_t) suid;
1176 } */ *uap = v;
1177 struct linux_sys_setresuid16_args lsa;
1178
1179 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1180 (uid_t)-1 : SCARG(uap, ruid);
1181 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1182 (uid_t)-1 : SCARG(uap, euid);
1183 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
1184 (uid_t)-1 : SCARG(uap, suid);
1185
1186 return linux_sys_setresuid(l, &lsa, retval);
1187 }
1188
1189 int
1190 linux_sys_setresgid16(l, v, retval)
1191 struct lwp *l;
1192 void *v;
1193 register_t *retval;
1194 {
1195 struct linux_sys_setresgid16_args /* {
1196 syscallarg(gid_t) rgid;
1197 syscallarg(gid_t) egid;
1198 syscallarg(gid_t) sgid;
1199 } */ *uap = v;
1200 struct linux_sys_setresgid16_args lsa;
1201
1202 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1203 (gid_t)-1 : SCARG(uap, rgid);
1204 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1205 (gid_t)-1 : SCARG(uap, egid);
1206 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
1207 (gid_t)-1 : SCARG(uap, sgid);
1208
1209 return linux_sys_setresgid(l, &lsa, retval);
1210 }
1211
1212 int
1213 linux_sys_getgroups16(l, v, retval)
1214 struct lwp *l;
1215 void *v;
1216 register_t *retval;
1217 {
1218 struct linux_sys_getgroups16_args /* {
1219 syscallarg(int) gidsetsize;
1220 syscallarg(linux_gid_t *) gidset;
1221 } */ *uap = v;
1222 struct proc *p = l->l_proc;
1223 caddr_t sg;
1224 int n, error, i;
1225 struct sys_getgroups_args bsa;
1226 gid_t *bset, *kbset;
1227 linux_gid_t *lset;
1228 struct pcred *pc = p->p_cred;
1229
1230 n = SCARG(uap, gidsetsize);
1231 if (n < 0)
1232 return EINVAL;
1233 error = 0;
1234 bset = kbset = NULL;
1235 lset = NULL;
1236 if (n > 0) {
1237 n = min(pc->pc_ucred->cr_ngroups, n);
1238 sg = stackgap_init(p, 0);
1239 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1240 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1241 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1242 if (bset == NULL || kbset == NULL || lset == NULL)
1243 return ENOMEM;
1244 SCARG(&bsa, gidsetsize) = n;
1245 SCARG(&bsa, gidset) = bset;
1246 error = sys_getgroups(l, &bsa, retval);
1247 if (error != 0)
1248 goto out;
1249 error = copyin(bset, kbset, n * sizeof (gid_t));
1250 if (error != 0)
1251 goto out;
1252 for (i = 0; i < n; i++)
1253 lset[i] = (linux_gid_t)kbset[i];
1254 error = copyout(lset, SCARG(uap, gidset),
1255 n * sizeof (linux_gid_t));
1256 } else
1257 *retval = pc->pc_ucred->cr_ngroups;
1258 out:
1259 if (kbset != NULL)
1260 free(kbset, M_TEMP);
1261 if (lset != NULL)
1262 free(lset, M_TEMP);
1263 return error;
1264 }
1265
1266 int
1267 linux_sys_setgroups16(l, v, retval)
1268 struct lwp *l;
1269 void *v;
1270 register_t *retval;
1271 {
1272 struct linux_sys_setgroups16_args /* {
1273 syscallarg(int) gidsetsize;
1274 syscallarg(linux_gid_t *) gidset;
1275 } */ *uap = v;
1276 struct proc *p = l->l_proc;
1277 caddr_t sg;
1278 int n;
1279 int error, i;
1280 struct sys_setgroups_args bsa;
1281 gid_t *bset, *kbset;
1282 linux_gid_t *lset;
1283
1284 n = SCARG(uap, gidsetsize);
1285 if (n < 0 || n > NGROUPS)
1286 return EINVAL;
1287 sg = stackgap_init(p, 0);
1288 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1289 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1290 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1291 if (lset == NULL || bset == NULL)
1292 return ENOMEM;
1293 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t));
1294 if (error != 0)
1295 goto out;
1296 for (i = 0; i < n; i++)
1297 kbset[i] = (gid_t)lset[i];
1298 error = copyout(kbset, bset, n * sizeof (gid_t));
1299 if (error != 0)
1300 goto out;
1301 SCARG(&bsa, gidsetsize) = n;
1302 SCARG(&bsa, gidset) = bset;
1303 error = sys_setgroups(l, &bsa, retval);
1304
1305 out:
1306 if (lset != NULL)
1307 free(lset, M_TEMP);
1308 if (kbset != NULL)
1309 free(kbset, M_TEMP);
1310
1311 return error;
1312 }
1313
1314 #endif /* __i386__ || __m68k__ || __amd64__ */
1315
1316 /*
1317 * We have nonexistent fsuid equal to uid.
1318 * If modification is requested, refuse.
1319 */
1320 int
1321 linux_sys_setfsuid(l, v, retval)
1322 struct lwp *l;
1323 void *v;
1324 register_t *retval;
1325 {
1326 struct linux_sys_setfsuid_args /* {
1327 syscallarg(uid_t) uid;
1328 } */ *uap = v;
1329 struct proc *p = l->l_proc;
1330 uid_t uid;
1331
1332 uid = SCARG(uap, uid);
1333 if (p->p_cred->p_ruid != uid)
1334 return sys_nosys(l, v, retval);
1335 else
1336 return (0);
1337 }
1338
1339 /* XXX XXX XXX */
1340 #ifndef alpha
1341 int
1342 linux_sys_getfsuid(l, v, retval)
1343 struct lwp *l;
1344 void *v;
1345 register_t *retval;
1346 {
1347 return sys_getuid(l, v, retval);
1348 }
1349 #endif
1350
1351 int
1352 linux_sys_setresuid(l, v, retval)
1353 struct lwp *l;
1354 void *v;
1355 register_t *retval;
1356 {
1357 struct linux_sys_setresuid_args /* {
1358 syscallarg(uid_t) ruid;
1359 syscallarg(uid_t) euid;
1360 syscallarg(uid_t) suid;
1361 } */ *uap = v;
1362
1363 /*
1364 * Note: These checks are a little different than the NetBSD
1365 * setreuid(2) call performs. This precisely follows the
1366 * behavior of the Linux kernel.
1367 */
1368
1369 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1370 SCARG(uap, suid),
1371 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1372 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1373 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1374 }
1375
1376 int
1377 linux_sys_getresuid(l, v, retval)
1378 struct lwp *l;
1379 void *v;
1380 register_t *retval;
1381 {
1382 struct linux_sys_getresuid_args /* {
1383 syscallarg(uid_t *) ruid;
1384 syscallarg(uid_t *) euid;
1385 syscallarg(uid_t *) suid;
1386 } */ *uap = v;
1387 struct proc *p = l->l_proc;
1388 struct pcred *pc = p->p_cred;
1389 int error;
1390
1391 /*
1392 * Linux copies these values out to userspace like so:
1393 *
1394 * 1. Copy out ruid.
1395 * 2. If that succeeds, copy out euid.
1396 * 3. If both of those succeed, copy out suid.
1397 */
1398 if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid),
1399 sizeof(uid_t))) != 0)
1400 return (error);
1401
1402 if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid),
1403 sizeof(uid_t))) != 0)
1404 return (error);
1405
1406 return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t)));
1407 }
1408
1409 int
1410 linux_sys_ptrace(l, v, retval)
1411 struct lwp *l;
1412 void *v;
1413 register_t *retval;
1414 {
1415 struct linux_sys_ptrace_args /* {
1416 i386, m68k, powerpc: T=int
1417 alpha, amd64: T=long
1418 syscallarg(T) request;
1419 syscallarg(T) pid;
1420 syscallarg(T) addr;
1421 syscallarg(T) data;
1422 } */ *uap = v;
1423 const int *ptr;
1424 int request;
1425 int error;
1426
1427 ptr = linux_ptrace_request_map;
1428 request = SCARG(uap, request);
1429 while (*ptr != -1)
1430 if (*ptr++ == request) {
1431 struct sys_ptrace_args pta;
1432
1433 SCARG(&pta, req) = *ptr;
1434 SCARG(&pta, pid) = SCARG(uap, pid);
1435 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr);
1436 SCARG(&pta, data) = SCARG(uap, data);
1437
1438 /*
1439 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1440 * to continue where the process left off previously.
1441 * The same thing is achieved by addr == (caddr_t) 1
1442 * on NetBSD, so rewrite 'addr' appropriately.
1443 */
1444 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1445 SCARG(&pta, addr) = (caddr_t) 1;
1446
1447 error = sys_ptrace(l, &pta, retval);
1448 if (error)
1449 return error;
1450 switch (request) {
1451 case LINUX_PTRACE_PEEKTEXT:
1452 case LINUX_PTRACE_PEEKDATA:
1453 error = copyout (retval,
1454 (caddr_t)SCARG(uap, data),
1455 sizeof *retval);
1456 *retval = SCARG(uap, data);
1457 break;
1458 default:
1459 break;
1460 }
1461 return error;
1462 }
1463 else
1464 ptr++;
1465
1466 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1467 }
1468
1469 int
1470 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
1471 {
1472 struct linux_sys_reboot_args /* {
1473 syscallarg(int) magic1;
1474 syscallarg(int) magic2;
1475 syscallarg(int) cmd;
1476 syscallarg(void *) arg;
1477 } */ *uap = v;
1478 struct sys_reboot_args /* {
1479 syscallarg(int) opt;
1480 syscallarg(char *) bootstr;
1481 } */ sra;
1482 struct proc *p = l->l_proc;
1483 int error;
1484
1485 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1486 return(error);
1487
1488 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1489 return(EINVAL);
1490 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1491 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1492 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1493 return(EINVAL);
1494
1495 switch (SCARG(uap, cmd)) {
1496 case LINUX_REBOOT_CMD_RESTART:
1497 SCARG(&sra, opt) = RB_AUTOBOOT;
1498 break;
1499 case LINUX_REBOOT_CMD_HALT:
1500 SCARG(&sra, opt) = RB_HALT;
1501 break;
1502 case LINUX_REBOOT_CMD_POWER_OFF:
1503 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1504 break;
1505 case LINUX_REBOOT_CMD_RESTART2:
1506 /* Reboot with an argument. */
1507 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1508 SCARG(&sra, bootstr) = SCARG(uap, arg);
1509 break;
1510 case LINUX_REBOOT_CMD_CAD_ON:
1511 return(EINVAL); /* We don't implement ctrl-alt-delete */
1512 case LINUX_REBOOT_CMD_CAD_OFF:
1513 return(0);
1514 default:
1515 return(EINVAL);
1516 }
1517
1518 return(sys_reboot(l, &sra, retval));
1519 }
1520
1521 /*
1522 * Copy of compat_12_sys_swapon().
1523 */
1524 int
1525 linux_sys_swapon(l, v, retval)
1526 struct lwp *l;
1527 void *v;
1528 register_t *retval;
1529 {
1530 struct sys_swapctl_args ua;
1531 struct linux_sys_swapon_args /* {
1532 syscallarg(const char *) name;
1533 } */ *uap = v;
1534
1535 SCARG(&ua, cmd) = SWAP_ON;
1536 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1537 SCARG(&ua, misc) = 0; /* priority */
1538 return (sys_swapctl(l, &ua, retval));
1539 }
1540
1541 /*
1542 * Stop swapping to the file or block device specified by path.
1543 */
1544 int
1545 linux_sys_swapoff(l, v, retval)
1546 struct lwp *l;
1547 void *v;
1548 register_t *retval;
1549 {
1550 struct sys_swapctl_args ua;
1551 struct linux_sys_swapoff_args /* {
1552 syscallarg(const char *) path;
1553 } */ *uap = v;
1554
1555 SCARG(&ua, cmd) = SWAP_OFF;
1556 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1557 return (sys_swapctl(l, &ua, retval));
1558 }
1559
1560 /*
1561 * Copy of compat_09_sys_setdomainname()
1562 */
1563 /* ARGSUSED */
1564 int
1565 linux_sys_setdomainname(l, v, retval)
1566 struct lwp *l;
1567 void *v;
1568 register_t *retval;
1569 {
1570 struct linux_sys_setdomainname_args /* {
1571 syscallarg(char *) domainname;
1572 syscallarg(int) len;
1573 } */ *uap = v;
1574 int name[2];
1575
1576 name[0] = CTL_KERN;
1577 name[1] = KERN_DOMAINNAME;
1578 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1579 SCARG(uap, len), l));
1580 }
1581
1582 /*
1583 * sysinfo()
1584 */
1585 /* ARGSUSED */
1586 int
1587 linux_sys_sysinfo(l, v, retval)
1588 struct lwp *l;
1589 void *v;
1590 register_t *retval;
1591 {
1592 struct linux_sys_sysinfo_args /* {
1593 syscallarg(struct linux_sysinfo *) arg;
1594 } */ *uap = v;
1595 struct linux_sysinfo si;
1596 struct loadavg *la;
1597
1598 si.uptime = time.tv_sec - boottime.tv_sec;
1599 la = &averunnable;
1600 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1601 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1602 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1603 si.totalram = ctob(physmem);
1604 si.freeram = uvmexp.free * uvmexp.pagesize;
1605 si.sharedram = 0; /* XXX */
1606 si.bufferram = uvmexp.filepages * uvmexp.pagesize;
1607 si.totalswap = uvmexp.swpages * uvmexp.pagesize;
1608 si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1609 si.procs = nprocs;
1610
1611 /* The following are only present in newer Linux kernels. */
1612 si.totalbig = 0;
1613 si.freebig = 0;
1614 si.mem_unit = 1;
1615
1616 return (copyout(&si, SCARG(uap, arg), sizeof si));
1617 }
1618
1619 #ifdef LINUX_LARGEFILE64
1620 #define bsd_to_linux_rlimit1(l, b, f) \
1621 (l)->f = ((b)->f == RLIM_INFINITY || \
1622 ((b)->f & 0x8000000000000000UL) != 0) ? \
1623 LINUX_RLIM_INFINITY : (b)->f
1624 #else
1625 #define bsd_to_linux_rlimit1(l, b, f) \
1626 (l)->f = ((b)->f == RLIM_INFINITY || \
1627 ((b)->f & 0xffffffff00000000ULL) != 0) ? \
1628 LINUX_RLIM_INFINITY : (int32_t)(b)->f
1629 #endif
1630 #define bsd_to_linux_rlimit(l, b) \
1631 bsd_to_linux_rlimit1(l, b, rlim_cur); \
1632 bsd_to_linux_rlimit1(l, b, rlim_max)
1633
1634 #define linux_to_bsd_rlimit1(b, l, f) \
1635 (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f
1636 #define linux_to_bsd_rlimit(b, l) \
1637 linux_to_bsd_rlimit1(b, l, rlim_cur); \
1638 linux_to_bsd_rlimit1(b, l, rlim_max)
1639
1640 static int
1641 linux_to_bsd_limit(lim)
1642 int lim;
1643 {
1644 switch (lim) {
1645 case LINUX_RLIMIT_CPU:
1646 return RLIMIT_CPU;
1647 case LINUX_RLIMIT_FSIZE:
1648 return RLIMIT_FSIZE;
1649 case LINUX_RLIMIT_DATA:
1650 return RLIMIT_DATA;
1651 case LINUX_RLIMIT_STACK:
1652 return RLIMIT_STACK;
1653 case LINUX_RLIMIT_CORE:
1654 return RLIMIT_CORE;
1655 case LINUX_RLIMIT_RSS:
1656 return RLIMIT_RSS;
1657 case LINUX_RLIMIT_NPROC:
1658 return RLIMIT_NPROC;
1659 case LINUX_RLIMIT_NOFILE:
1660 return RLIMIT_NOFILE;
1661 case LINUX_RLIMIT_MEMLOCK:
1662 return RLIMIT_MEMLOCK;
1663 case LINUX_RLIMIT_AS:
1664 case LINUX_RLIMIT_LOCKS:
1665 return -EOPNOTSUPP;
1666 default:
1667 return -EINVAL;
1668 }
1669 }
1670
1671
1672 int
1673 linux_sys_getrlimit(l, v, retval)
1674 struct lwp *l;
1675 void *v;
1676 register_t *retval;
1677 {
1678 struct linux_sys_getrlimit_args /* {
1679 syscallarg(int) which;
1680 #ifdef LINUX_LARGEFILE64
1681 syscallarg(struct rlimit *) rlp;
1682 #else
1683 syscallarg(struct orlimit *) rlp;
1684 #endif
1685 } */ *uap = v;
1686 struct proc *p = l->l_proc;
1687 caddr_t sg = stackgap_init(p, 0);
1688 struct sys_getrlimit_args ap;
1689 struct rlimit rl;
1690 #ifdef LINUX_LARGEFILE64
1691 struct rlimit orl;
1692 #else
1693 struct orlimit orl;
1694 #endif
1695 int error;
1696
1697 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1698 if ((error = SCARG(&ap, which)) < 0)
1699 return -error;
1700 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1701 if ((error = sys_getrlimit(l, &ap, retval)) != 0)
1702 return error;
1703 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0)
1704 return error;
1705 bsd_to_linux_rlimit(&orl, &rl);
1706
1707 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1708 }
1709
1710 int
1711 linux_sys_setrlimit(l, v, retval)
1712 struct lwp *l;
1713 void *v;
1714 register_t *retval;
1715 {
1716 struct linux_sys_setrlimit_args /* {
1717 syscallarg(int) which;
1718 #ifdef LINUX_LARGEFILE64
1719 syscallarg(struct rlimit *) rlp;
1720 #else
1721 syscallarg(struct orlimit *) rlp;
1722 #endif
1723 } */ *uap = v;
1724 struct proc *p = l->l_proc;
1725 caddr_t sg = stackgap_init(p, 0);
1726 struct sys_getrlimit_args ap;
1727 struct rlimit rl;
1728 #ifdef LINUX_LARGEFILE64
1729 struct rlimit orl;
1730 #else
1731 struct orlimit orl;
1732 #endif
1733 int error;
1734
1735 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1736 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1737 if ((error = SCARG(&ap, which)) < 0)
1738 return -error;
1739 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1740 return error;
1741 linux_to_bsd_rlimit(&rl, &orl);
1742 if ((error = copyout(&rl, SCARG(&ap, rlp), sizeof(rl))) != 0)
1743 return error;
1744 return sys_setrlimit(l, &ap, retval);
1745 }
1746
1747 #if !defined(__mips__) && !defined(__amd64__)
1748 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1749 int
1750 linux_sys_ugetrlimit(l, v, retval)
1751 struct lwp *l;
1752 void *v;
1753 register_t *retval;
1754 {
1755 return linux_sys_getrlimit(l, v, retval);
1756 }
1757 #endif
1758
1759 /*
1760 * This gets called for unsupported syscalls. The difference to sys_nosys()
1761 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1762 * This is the way Linux does it and glibc depends on this behaviour.
1763 */
1764 int
1765 linux_sys_nosys(l, v, retval)
1766 struct lwp *l;
1767 void *v;
1768 register_t *retval;
1769 {
1770 return (ENOSYS);
1771 }
1772