linux_misc.c revision 1.149 1 /* $NetBSD: linux_misc.c,v 1.149 2006/01/31 14:02:55 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Linux compatibility module. Try to deal with various Linux system calls.
42 */
43
44 /*
45 * These functions have been moved to multiarch to allow
46 * selection of which machines include them to be
47 * determined by the individual files.linux_<arch> files.
48 *
49 * Function in multiarch:
50 * linux_sys_break : linux_break.c
51 * linux_sys_alarm : linux_misc_notalpha.c
52 * linux_sys_getresgid : linux_misc_notalpha.c
53 * linux_sys_nice : linux_misc_notalpha.c
54 * linux_sys_readdir : linux_misc_notalpha.c
55 * linux_sys_setresgid : linux_misc_notalpha.c
56 * linux_sys_time : linux_misc_notalpha.c
57 * linux_sys_utime : linux_misc_notalpha.c
58 * linux_sys_waitpid : linux_misc_notalpha.c
59 * linux_sys_old_mmap : linux_oldmmap.c
60 * linux_sys_oldolduname : linux_oldolduname.c
61 * linux_sys_oldselect : linux_oldselect.c
62 * linux_sys_olduname : linux_olduname.c
63 * linux_sys_pipe : linux_pipe.c
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.149 2006/01/31 14:02:55 yamt Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/proc.h>
73 #include <sys/dirent.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/ioctl.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/mbuf.h>
81 #include <sys/mman.h>
82 #include <sys/mount.h>
83 #include <sys/reboot.h>
84 #include <sys/resource.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signal.h>
87 #include <sys/signalvar.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/times.h>
91 #include <sys/vnode.h>
92 #include <sys/uio.h>
93 #include <sys/wait.h>
94 #include <sys/utsname.h>
95 #include <sys/unistd.h>
96 #include <sys/swap.h> /* for SWAP_ON */
97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
98
99 #include <sys/ptrace.h>
100 #include <machine/ptrace.h>
101
102 #include <sys/sa.h>
103 #include <sys/syscallargs.h>
104
105 #include <compat/linux/common/linux_machdep.h>
106 #include <compat/linux/common/linux_types.h>
107 #include <compat/linux/common/linux_signal.h>
108
109 #include <compat/linux/linux_syscallargs.h>
110
111 #include <compat/linux/common/linux_fcntl.h>
112 #include <compat/linux/common/linux_mmap.h>
113 #include <compat/linux/common/linux_dirent.h>
114 #include <compat/linux/common/linux_util.h>
115 #include <compat/linux/common/linux_misc.h>
116 #include <compat/linux/common/linux_ptrace.h>
117 #include <compat/linux/common/linux_reboot.h>
118 #include <compat/linux/common/linux_emuldata.h>
119
120 const int linux_ptrace_request_map[] = {
121 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
122 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
123 LINUX_PTRACE_PEEKDATA, PT_READ_D,
124 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
125 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
126 LINUX_PTRACE_CONT, PT_CONTINUE,
127 LINUX_PTRACE_KILL, PT_KILL,
128 LINUX_PTRACE_ATTACH, PT_ATTACH,
129 LINUX_PTRACE_DETACH, PT_DETACH,
130 #ifdef PT_STEP
131 LINUX_PTRACE_SINGLESTEP, PT_STEP,
132 #endif
133 -1
134 };
135
136 const struct linux_mnttypes linux_fstypes[] = {
137 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
138 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
139 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
140 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
141 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
142 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
143 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
144 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
146 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
148 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
149 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
150 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
151 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
153 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
154 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
155 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
156 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
158 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
159 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
160 { MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC }
161 };
162 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
163
164 #ifdef DEBUG_LINUX
165 #define DPRINTF(a) uprintf a
166 #else
167 #define DPRINTF(a)
168 #endif
169
170 /* Local linux_misc.c functions: */
171 #ifndef __amd64__
172 static void bsd_to_linux_statfs __P((const struct statvfs *,
173 struct linux_statfs *));
174 #endif
175 static int linux_to_bsd_limit __P((int));
176 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *,
177 const struct linux_sys_mmap_args *));
178 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *,
179 register_t *, off_t));
180
181
182 /*
183 * The information on a terminated (or stopped) process needs
184 * to be converted in order for Linux binaries to get a valid signal
185 * number out of it.
186 */
187 void
188 bsd_to_linux_wstat(st)
189 int *st;
190 {
191
192 int sig;
193
194 if (WIFSIGNALED(*st)) {
195 sig = WTERMSIG(*st);
196 if (sig >= 0 && sig < NSIG)
197 *st= (*st& ~0177) | native_to_linux_signo[sig];
198 } else if (WIFSTOPPED(*st)) {
199 sig = WSTOPSIG(*st);
200 if (sig >= 0 && sig < NSIG)
201 *st = (*st & ~0xff00) |
202 (native_to_linux_signo[sig] << 8);
203 }
204 }
205
206 /*
207 * wait4(2). Passed on to the NetBSD call, surrounded by code to
208 * reserve some space for a NetBSD-style wait status, and converting
209 * it to what Linux wants.
210 */
211 int
212 linux_sys_wait4(l, v, retval)
213 struct lwp *l;
214 void *v;
215 register_t *retval;
216 {
217 struct linux_sys_wait4_args /* {
218 syscallarg(int) pid;
219 syscallarg(int *) status;
220 syscallarg(int) options;
221 syscallarg(struct rusage *) rusage;
222 } */ *uap = v;
223 struct proc *p = l->l_proc;
224 struct sys_wait4_args w4a;
225 int error, *status, tstat, options, linux_options;
226 caddr_t sg;
227
228 if (SCARG(uap, status) != NULL) {
229 sg = stackgap_init(p, 0);
230 status = (int *) stackgap_alloc(p, &sg, sizeof *status);
231 } else
232 status = NULL;
233
234 linux_options = SCARG(uap, options);
235 options = 0;
236 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
237 return (EINVAL);
238
239 if (linux_options & LINUX_WAIT4_WNOHANG)
240 options |= WNOHANG;
241 if (linux_options & LINUX_WAIT4_WUNTRACED)
242 options |= WUNTRACED;
243 if (linux_options & LINUX_WAIT4_WALL)
244 options |= WALLSIG;
245 if (linux_options & LINUX_WAIT4_WCLONE)
246 options |= WALTSIG;
247 #ifdef DIAGNOSTIC
248 if (linux_options & LINUX_WAIT4_WNOTHREAD)
249 printf("WARNING: %s: linux process %d.%d called "
250 "waitpid with __WNOTHREAD set!",
251 __FILE__, p->p_pid, l->l_lid);
252
253 #endif
254
255 SCARG(&w4a, pid) = SCARG(uap, pid);
256 SCARG(&w4a, status) = status;
257 SCARG(&w4a, options) = options;
258 SCARG(&w4a, rusage) = SCARG(uap, rusage);
259
260 if ((error = sys_wait4(l, &w4a, retval)))
261 return error;
262
263 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD);
264
265 if (status != NULL) {
266 if ((error = copyin(status, &tstat, sizeof tstat)))
267 return error;
268
269 bsd_to_linux_wstat(&tstat);
270 return copyout(&tstat, SCARG(uap, status), sizeof tstat);
271 }
272
273 return 0;
274 }
275
276 /*
277 * Linux brk(2). The check if the new address is >= the old one is
278 * done in the kernel in Linux. NetBSD does it in the library.
279 */
280 int
281 linux_sys_brk(l, v, retval)
282 struct lwp *l;
283 void *v;
284 register_t *retval;
285 {
286 struct linux_sys_brk_args /* {
287 syscallarg(char *) nsize;
288 } */ *uap = v;
289 struct proc *p = l->l_proc;
290 char *nbrk = SCARG(uap, nsize);
291 struct sys_obreak_args oba;
292 struct vmspace *vm = p->p_vmspace;
293 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
294
295 SCARG(&oba, nsize) = nbrk;
296
297 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
298 ed->s->p_break = (char*)nbrk;
299 else
300 nbrk = ed->s->p_break;
301
302 retval[0] = (register_t)nbrk;
303
304 return 0;
305 }
306
307 #ifndef __amd64__
308 /*
309 * Convert NetBSD statvfs structure to Linux statfs structure.
310 * Linux doesn't have f_flag, and we can't set f_frsize due
311 * to glibc statvfs() bug (see below).
312 */
313 static void
314 bsd_to_linux_statfs(bsp, lsp)
315 const struct statvfs *bsp;
316 struct linux_statfs *lsp;
317 {
318 int i;
319
320 for (i = 0; i < linux_fstypes_cnt; i++) {
321 if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
322 lsp->l_ftype = linux_fstypes[i].linux;
323 break;
324 }
325 }
326
327 if (i == linux_fstypes_cnt) {
328 DPRINTF(("unhandled fstype in linux emulation: %s\n",
329 bsp->f_fstypename));
330 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
331 }
332
333 /*
334 * The sizes are expressed in number of blocks. The block
335 * size used for the size is f_frsize for POSIX-compliant
336 * statvfs. Linux statfs uses f_bsize as the block size
337 * (f_frsize used to not be available in Linux struct statfs).
338 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block
339 * counts for different f_frsize if f_frsize is provided by the kernel.
340 * POSIX conforming apps thus get wrong size if f_frsize
341 * is different to f_bsize. Thus, we just pretend we don't
342 * support f_frsize.
343 */
344
345 lsp->l_fbsize = bsp->f_frsize;
346 lsp->l_ffrsize = 0; /* compat */
347 lsp->l_fblocks = bsp->f_blocks;
348 lsp->l_fbfree = bsp->f_bfree;
349 lsp->l_fbavail = bsp->f_bavail;
350 lsp->l_ffiles = bsp->f_files;
351 lsp->l_fffree = bsp->f_ffree;
352 /* Linux sets the fsid to 0..., we don't */
353 lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
354 lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
355 lsp->l_fnamelen = bsp->f_namemax;
356 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
357 }
358
359 /*
360 * Implement the fs stat functions. Straightforward.
361 */
362 int
363 linux_sys_statfs(l, v, retval)
364 struct lwp *l;
365 void *v;
366 register_t *retval;
367 {
368 struct linux_sys_statfs_args /* {
369 syscallarg(const char *) path;
370 syscallarg(struct linux_statfs *) sp;
371 } */ *uap = v;
372 struct proc *p = l->l_proc;
373 struct statvfs btmp, *bsp;
374 struct linux_statfs ltmp;
375 struct sys_statvfs1_args bsa;
376 caddr_t sg;
377 int error;
378
379 sg = stackgap_init(p, 0);
380 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
381
382 CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
383
384 SCARG(&bsa, path) = SCARG(uap, path);
385 SCARG(&bsa, buf) = bsp;
386 SCARG(&bsa, flags) = ST_WAIT;
387
388 if ((error = sys_statvfs1(l, &bsa, retval)))
389 return error;
390
391 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
392 return error;
393
394 bsd_to_linux_statfs(&btmp, <mp);
395
396 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
397 }
398
399 int
400 linux_sys_fstatfs(l, v, retval)
401 struct lwp *l;
402 void *v;
403 register_t *retval;
404 {
405 struct linux_sys_fstatfs_args /* {
406 syscallarg(int) fd;
407 syscallarg(struct linux_statfs *) sp;
408 } */ *uap = v;
409 struct proc *p = l->l_proc;
410 struct statvfs btmp, *bsp;
411 struct linux_statfs ltmp;
412 struct sys_fstatvfs1_args bsa;
413 caddr_t sg;
414 int error;
415
416 sg = stackgap_init(p, 0);
417 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
418
419 SCARG(&bsa, fd) = SCARG(uap, fd);
420 SCARG(&bsa, buf) = bsp;
421 SCARG(&bsa, flags) = ST_WAIT;
422
423 if ((error = sys_fstatvfs1(l, &bsa, retval)))
424 return error;
425
426 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
427 return error;
428
429 bsd_to_linux_statfs(&btmp, <mp);
430
431 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
432 }
433 #endif /* __amd64__ */
434
435 /*
436 * uname(). Just copy the info from the various strings stored in the
437 * kernel, and put it in the Linux utsname structure. That structure
438 * is almost the same as the NetBSD one, only it has fields 65 characters
439 * long, and an extra domainname field.
440 */
441 int
442 linux_sys_uname(l, v, retval)
443 struct lwp *l;
444 void *v;
445 register_t *retval;
446 {
447 struct linux_sys_uname_args /* {
448 syscallarg(struct linux_utsname *) up;
449 } */ *uap = v;
450 struct linux_utsname luts;
451
452 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
453 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
454 strncpy(luts.l_release, linux_release, sizeof(luts.l_release));
455 strncpy(luts.l_version, linux_version, sizeof(luts.l_version));
456 #ifdef LINUX_UNAME_ARCH
457 strncpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
458 #else
459 strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
460 #endif
461 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
462
463 return copyout(&luts, SCARG(uap, up), sizeof(luts));
464 }
465
466 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
467 /* Used indirectly on: arm, i386, m68k */
468
469 /*
470 * New type Linux mmap call.
471 * Only called directly on machines with >= 6 free regs.
472 */
473 int
474 linux_sys_mmap(l, v, retval)
475 struct lwp *l;
476 void *v;
477 register_t *retval;
478 {
479 struct linux_sys_mmap_args /* {
480 syscallarg(unsigned long) addr;
481 syscallarg(size_t) len;
482 syscallarg(int) prot;
483 syscallarg(int) flags;
484 syscallarg(int) fd;
485 syscallarg(linux_off_t) offset;
486 } */ *uap = v;
487
488 if (SCARG(uap, offset) & PAGE_MASK)
489 return EINVAL;
490
491 return linux_mmap(l, uap, retval, SCARG(uap, offset));
492 }
493
494 /*
495 * Guts of most architectures' mmap64() implementations. This shares
496 * its list of arguments with linux_sys_mmap().
497 *
498 * The difference in linux_sys_mmap2() is that "offset" is actually
499 * (offset / pagesize), not an absolute byte count. This translation
500 * to pagesize offsets is done inside glibc between the mmap64() call
501 * point, and the actual syscall.
502 */
503 int
504 linux_sys_mmap2(l, v, retval)
505 struct lwp *l;
506 void *v;
507 register_t *retval;
508 {
509 struct linux_sys_mmap2_args /* {
510 syscallarg(unsigned long) addr;
511 syscallarg(size_t) len;
512 syscallarg(int) prot;
513 syscallarg(int) flags;
514 syscallarg(int) fd;
515 syscallarg(linux_off_t) offset;
516 } */ *uap = v;
517
518 return linux_mmap(l, uap, retval,
519 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
520 }
521
522 /*
523 * Massage arguments and call system mmap(2).
524 */
525 static int
526 linux_mmap(l, uap, retval, offset)
527 struct lwp *l;
528 struct linux_sys_mmap_args *uap;
529 register_t *retval;
530 off_t offset;
531 {
532 struct sys_mmap_args cma;
533 int error;
534 size_t mmoff=0;
535
536 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
537 /*
538 * Request for stack-like memory segment. On linux, this
539 * works by mmap()ping (small) segment, which is automatically
540 * extended when page fault happens below the currently
541 * allocated area. We emulate this by allocating (typically
542 * bigger) segment sized at current stack size limit, and
543 * offsetting the requested and returned address accordingly.
544 * Since physical pages are only allocated on-demand, this
545 * is effectively identical.
546 */
547 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
548
549 if (SCARG(uap, len) < ssl) {
550 /* Compute the address offset */
551 mmoff = round_page(ssl) - SCARG(uap, len);
552
553 if (SCARG(uap, addr))
554 SCARG(uap, addr) -= mmoff;
555
556 SCARG(uap, len) = (size_t) ssl;
557 }
558 }
559
560 linux_to_bsd_mmap_args(&cma, uap);
561 SCARG(&cma, pos) = offset;
562
563 error = sys_mmap(l, &cma, retval);
564 if (error)
565 return (error);
566
567 /* Shift the returned address for stack-like segment if necessary */
568 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
569 retval[0] += mmoff;
570
571 return (0);
572 }
573
574 static void
575 linux_to_bsd_mmap_args(cma, uap)
576 struct sys_mmap_args *cma;
577 const struct linux_sys_mmap_args *uap;
578 {
579 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
580
581 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
582 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
583 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
584 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
585 /* XXX XAX ERH: Any other flags here? There are more defined... */
586
587 SCARG(cma, addr) = (void *)SCARG(uap, addr);
588 SCARG(cma, len) = SCARG(uap, len);
589 SCARG(cma, prot) = SCARG(uap, prot);
590 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
591 SCARG(cma, prot) |= VM_PROT_READ;
592 SCARG(cma, flags) = flags;
593 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
594 SCARG(cma, pad) = 0;
595 }
596
597 #define LINUX_MREMAP_MAYMOVE 1
598 #define LINUX_MREMAP_FIXED 2
599
600 int
601 linux_sys_mremap(l, v, retval)
602 struct lwp *l;
603 void *v;
604 register_t *retval;
605 {
606 struct linux_sys_mremap_args /* {
607 syscallarg(void *) old_address;
608 syscallarg(size_t) old_size;
609 syscallarg(size_t) new_size;
610 syscallarg(u_long) flags;
611 } */ *uap = v;
612
613 struct proc *p;
614 struct vm_map *map;
615 vaddr_t oldva;
616 vaddr_t newva;
617 size_t oldsize;
618 size_t newsize;
619 int flags;
620 int uvmflags;
621 int error;
622
623 flags = SCARG(uap, flags);
624 oldva = (vaddr_t)SCARG(uap, old_address);
625 oldsize = round_page(SCARG(uap, old_size));
626 newsize = round_page(SCARG(uap, new_size));
627 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
628 error = EINVAL;
629 goto done;
630 }
631 if ((flags & LINUX_MREMAP_FIXED) != 0) {
632 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
633 error = EINVAL;
634 goto done;
635 }
636 #if 0 /* notyet */
637 newva = SCARG(uap, new_address);
638 uvmflags = UVM_MREMAP_FIXED;
639 #else /* notyet */
640 error = EOPNOTSUPP;
641 goto done;
642 #endif /* notyet */
643 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
644 uvmflags = 0;
645 } else {
646 newva = oldva;
647 uvmflags = UVM_MREMAP_FIXED;
648 }
649 p = l->l_proc;
650 map = &p->p_vmspace->vm_map;
651 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
652 uvmflags);
653
654 done:
655 *retval = (error != 0) ? 0 : (register_t)newva;
656 return error;
657 }
658
659 int
660 linux_sys_msync(l, v, retval)
661 struct lwp *l;
662 void *v;
663 register_t *retval;
664 {
665 struct linux_sys_msync_args /* {
666 syscallarg(caddr_t) addr;
667 syscallarg(int) len;
668 syscallarg(int) fl;
669 } */ *uap = v;
670
671 struct sys___msync13_args bma;
672
673 /* flags are ignored */
674 SCARG(&bma, addr) = SCARG(uap, addr);
675 SCARG(&bma, len) = SCARG(uap, len);
676 SCARG(&bma, flags) = SCARG(uap, fl);
677
678 return sys___msync13(l, &bma, retval);
679 }
680
681 int
682 linux_sys_mprotect(l, v, retval)
683 struct lwp *l;
684 void *v;
685 register_t *retval;
686 {
687 struct linux_sys_mprotect_args /* {
688 syscallarg(const void *) start;
689 syscallarg(unsigned long) len;
690 syscallarg(int) prot;
691 } */ *uap = v;
692 struct vm_map_entry *entry;
693 struct vm_map *map;
694 struct proc *p;
695 vaddr_t end, start, len, stacklim;
696 int prot, grows;
697
698 start = (vaddr_t)SCARG(uap, start);
699 len = round_page(SCARG(uap, len));
700 prot = SCARG(uap, prot);
701 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
702 prot &= ~grows;
703 end = start + len;
704
705 if (start & PAGE_MASK)
706 return EINVAL;
707 if (end < start)
708 return EINVAL;
709 if (end == start)
710 return 0;
711
712 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
713 return EINVAL;
714 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
715 return EINVAL;
716
717 p = l->l_proc;
718 map = &p->p_vmspace->vm_map;
719 vm_map_lock(map);
720 #ifdef notdef
721 VM_MAP_RANGE_CHECK(map, start, end);
722 #endif
723 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
724 vm_map_unlock(map);
725 return ENOMEM;
726 }
727
728 /*
729 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
730 */
731
732 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
733 if (grows & LINUX_PROT_GROWSDOWN) {
734 if (USRSTACK - stacklim <= start && start < USRSTACK) {
735 start = USRSTACK - stacklim;
736 } else {
737 start = entry->start;
738 }
739 } else if (grows & LINUX_PROT_GROWSUP) {
740 if (USRSTACK <= end && end < USRSTACK + stacklim) {
741 end = USRSTACK + stacklim;
742 } else {
743 end = entry->end;
744 }
745 }
746 vm_map_unlock(map);
747 return uvm_map_protect(map, start, end, prot, FALSE);
748 }
749
750 /*
751 * This code is partly stolen from src/lib/libc/compat-43/times.c
752 */
753
754 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
755
756 int
757 linux_sys_times(l, v, retval)
758 struct lwp *l;
759 void *v;
760 register_t *retval;
761 {
762 struct linux_sys_times_args /* {
763 syscallarg(struct times *) tms;
764 } */ *uap = v;
765 struct proc *p = l->l_proc;
766 struct timeval t;
767 int error, s;
768
769 if (SCARG(uap, tms)) {
770 struct linux_tms ltms;
771 struct rusage ru;
772
773 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL);
774 ltms.ltms_utime = CONVTCK(ru.ru_utime);
775 ltms.ltms_stime = CONVTCK(ru.ru_stime);
776
777 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
778 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
779
780 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
781 return error;
782 }
783
784 s = splclock();
785 timersub(&time, &boottime, &t);
786 splx(s);
787
788 retval[0] = ((linux_clock_t)(CONVTCK(t)));
789 return 0;
790 }
791
792 #undef CONVTCK
793
794 /*
795 * Linux 'readdir' call. This code is mostly taken from the
796 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
797 * an attempt has been made to keep it a little cleaner (failing
798 * miserably, because of the cruft needed if count 1 is passed).
799 *
800 * The d_off field should contain the offset of the next valid entry,
801 * but in Linux it has the offset of the entry itself. We emulate
802 * that bug here.
803 *
804 * Read in BSD-style entries, convert them, and copy them out.
805 *
806 * Note that this doesn't handle union-mounted filesystems.
807 */
808 int
809 linux_sys_getdents(l, v, retval)
810 struct lwp *l;
811 void *v;
812 register_t *retval;
813 {
814 struct linux_sys_getdents_args /* {
815 syscallarg(int) fd;
816 syscallarg(struct linux_dirent *) dent;
817 syscallarg(unsigned int) count;
818 } */ *uap = v;
819 struct proc *p = l->l_proc;
820 struct dirent *bdp;
821 struct vnode *vp;
822 caddr_t inp, tbuf; /* BSD-format */
823 int len, reclen; /* BSD-format */
824 caddr_t outp; /* Linux-format */
825 int resid, linux_reclen = 0; /* Linux-format */
826 struct file *fp;
827 struct uio auio;
828 struct iovec aiov;
829 struct linux_dirent idb;
830 off_t off; /* true file offset */
831 int buflen, error, eofflag, nbytes, oldcall;
832 struct vattr va;
833 off_t *cookiebuf = NULL, *cookie;
834 int ncookies;
835
836 /* getvnode() will use the descriptor for us */
837 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
838 return (error);
839
840 if ((fp->f_flag & FREAD) == 0) {
841 error = EBADF;
842 goto out1;
843 }
844
845 vp = (struct vnode *)fp->f_data;
846 if (vp->v_type != VDIR) {
847 error = EINVAL;
848 goto out1;
849 }
850
851 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)))
852 goto out1;
853
854 nbytes = SCARG(uap, count);
855 if (nbytes == 1) { /* emulating old, broken behaviour */
856 nbytes = sizeof (idb);
857 buflen = max(va.va_blocksize, nbytes);
858 oldcall = 1;
859 } else {
860 buflen = min(MAXBSIZE, nbytes);
861 if (buflen < va.va_blocksize)
862 buflen = va.va_blocksize;
863 oldcall = 0;
864 }
865 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
866
867 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
868 off = fp->f_offset;
869 again:
870 aiov.iov_base = tbuf;
871 aiov.iov_len = buflen;
872 auio.uio_iov = &aiov;
873 auio.uio_iovcnt = 1;
874 auio.uio_rw = UIO_READ;
875 auio.uio_segflg = UIO_SYSSPACE;
876 auio.uio_lwp = NULL;
877 auio.uio_resid = buflen;
878 auio.uio_offset = off;
879 /*
880 * First we read into the malloc'ed buffer, then
881 * we massage it into user space, one record at a time.
882 */
883 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
884 &ncookies);
885 if (error)
886 goto out;
887
888 inp = tbuf;
889 outp = (caddr_t)SCARG(uap, dent);
890 resid = nbytes;
891 if ((len = buflen - auio.uio_resid) == 0)
892 goto eof;
893
894 for (cookie = cookiebuf; len > 0; len -= reclen) {
895 bdp = (struct dirent *)inp;
896 reclen = bdp->d_reclen;
897 if (reclen & 3)
898 panic("linux_readdir");
899 if (bdp->d_fileno == 0) {
900 inp += reclen; /* it is a hole; squish it out */
901 if (cookie)
902 off = *cookie++;
903 else
904 off += reclen;
905 continue;
906 }
907 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
908 if (reclen > len || resid < linux_reclen) {
909 /* entry too big for buffer, so just stop */
910 outp++;
911 break;
912 }
913 /*
914 * Massage in place to make a Linux-shaped dirent (otherwise
915 * we have to worry about touching user memory outside of
916 * the copyout() call).
917 */
918 idb.d_ino = bdp->d_fileno;
919 /*
920 * The old readdir() call misuses the offset and reclen fields.
921 */
922 if (oldcall) {
923 idb.d_off = (linux_off_t)linux_reclen;
924 idb.d_reclen = (u_short)bdp->d_namlen;
925 } else {
926 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
927 compat_offseterr(vp, "linux_getdents");
928 error = EINVAL;
929 goto out;
930 }
931 idb.d_off = (linux_off_t)off;
932 idb.d_reclen = (u_short)linux_reclen;
933 }
934 strcpy(idb.d_name, bdp->d_name);
935 if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
936 goto out;
937 /* advance past this real entry */
938 inp += reclen;
939 if (cookie)
940 off = *cookie++; /* each entry points to itself */
941 else
942 off += reclen;
943 /* advance output past Linux-shaped entry */
944 outp += linux_reclen;
945 resid -= linux_reclen;
946 if (oldcall)
947 break;
948 }
949
950 /* if we squished out the whole block, try again */
951 if (outp == (caddr_t)SCARG(uap, dent))
952 goto again;
953 fp->f_offset = off; /* update the vnode offset */
954
955 if (oldcall)
956 nbytes = resid + linux_reclen;
957
958 eof:
959 *retval = nbytes - resid;
960 out:
961 VOP_UNLOCK(vp, 0);
962 if (cookiebuf)
963 free(cookiebuf, M_TEMP);
964 free(tbuf, M_TEMP);
965 out1:
966 FILE_UNUSE(fp, l);
967 return error;
968 }
969
970 /*
971 * Even when just using registers to pass arguments to syscalls you can
972 * have 5 of them on the i386. So this newer version of select() does
973 * this.
974 */
975 int
976 linux_sys_select(l, v, retval)
977 struct lwp *l;
978 void *v;
979 register_t *retval;
980 {
981 struct linux_sys_select_args /* {
982 syscallarg(int) nfds;
983 syscallarg(fd_set *) readfds;
984 syscallarg(fd_set *) writefds;
985 syscallarg(fd_set *) exceptfds;
986 syscallarg(struct timeval *) timeout;
987 } */ *uap = v;
988
989 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
990 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
991 }
992
993 /*
994 * Common code for the old and new versions of select(). A couple of
995 * things are important:
996 * 1) return the amount of time left in the 'timeout' parameter
997 * 2) select never returns ERESTART on Linux, always return EINTR
998 */
999 int
1000 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
1001 struct lwp *l;
1002 register_t *retval;
1003 int nfds;
1004 fd_set *readfds, *writefds, *exceptfds;
1005 struct timeval *timeout;
1006 {
1007 struct sys_select_args bsa;
1008 struct proc *p = l->l_proc;
1009 struct timeval tv0, tv1, utv, *tvp;
1010 caddr_t sg;
1011 int error;
1012
1013 SCARG(&bsa, nd) = nfds;
1014 SCARG(&bsa, in) = readfds;
1015 SCARG(&bsa, ou) = writefds;
1016 SCARG(&bsa, ex) = exceptfds;
1017 SCARG(&bsa, tv) = timeout;
1018
1019 /*
1020 * Store current time for computation of the amount of
1021 * time left.
1022 */
1023 if (timeout) {
1024 if ((error = copyin(timeout, &utv, sizeof(utv))))
1025 return error;
1026 if (itimerfix(&utv)) {
1027 /*
1028 * The timeval was invalid. Convert it to something
1029 * valid that will act as it does under Linux.
1030 */
1031 sg = stackgap_init(p, 0);
1032 tvp = stackgap_alloc(p, &sg, sizeof(utv));
1033 utv.tv_sec += utv.tv_usec / 1000000;
1034 utv.tv_usec %= 1000000;
1035 if (utv.tv_usec < 0) {
1036 utv.tv_sec -= 1;
1037 utv.tv_usec += 1000000;
1038 }
1039 if (utv.tv_sec < 0)
1040 timerclear(&utv);
1041 if ((error = copyout(&utv, tvp, sizeof(utv))))
1042 return error;
1043 SCARG(&bsa, tv) = tvp;
1044 }
1045 microtime(&tv0);
1046 }
1047
1048 error = sys_select(l, &bsa, retval);
1049 if (error) {
1050 /*
1051 * See fs/select.c in the Linux kernel. Without this,
1052 * Maelstrom doesn't work.
1053 */
1054 if (error == ERESTART)
1055 error = EINTR;
1056 return error;
1057 }
1058
1059 if (timeout) {
1060 if (*retval) {
1061 /*
1062 * Compute how much time was left of the timeout,
1063 * by subtracting the current time and the time
1064 * before we started the call, and subtracting
1065 * that result from the user-supplied value.
1066 */
1067 microtime(&tv1);
1068 timersub(&tv1, &tv0, &tv1);
1069 timersub(&utv, &tv1, &utv);
1070 if (utv.tv_sec < 0)
1071 timerclear(&utv);
1072 } else
1073 timerclear(&utv);
1074 if ((error = copyout(&utv, timeout, sizeof(utv))))
1075 return error;
1076 }
1077
1078 return 0;
1079 }
1080
1081 /*
1082 * Get the process group of a certain process. Look it up
1083 * and return the value.
1084 */
1085 int
1086 linux_sys_getpgid(l, v, retval)
1087 struct lwp *l;
1088 void *v;
1089 register_t *retval;
1090 {
1091 struct linux_sys_getpgid_args /* {
1092 syscallarg(int) pid;
1093 } */ *uap = v;
1094 struct proc *p = l->l_proc;
1095 struct proc *targp;
1096
1097 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
1098 if ((targp = pfind(SCARG(uap, pid))) == 0)
1099 return ESRCH;
1100 }
1101 else
1102 targp = p;
1103
1104 retval[0] = targp->p_pgid;
1105 return 0;
1106 }
1107
1108 /*
1109 * Set the 'personality' (emulation mode) for the current process. Only
1110 * accept the Linux personality here (0). This call is needed because
1111 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1112 * ELF binaries run in Linux mode, not SVR4 mode.
1113 */
1114 int
1115 linux_sys_personality(l, v, retval)
1116 struct lwp *l;
1117 void *v;
1118 register_t *retval;
1119 {
1120 struct linux_sys_personality_args /* {
1121 syscallarg(int) per;
1122 } */ *uap = v;
1123
1124 if (SCARG(uap, per) != 0)
1125 return EINVAL;
1126 retval[0] = 0;
1127 return 0;
1128 }
1129
1130 #if defined(__i386__) || defined(__m68k__)
1131 /*
1132 * The calls are here because of type conversions.
1133 */
1134 int
1135 linux_sys_setreuid16(l, v, retval)
1136 struct lwp *l;
1137 void *v;
1138 register_t *retval;
1139 {
1140 struct linux_sys_setreuid16_args /* {
1141 syscallarg(int) ruid;
1142 syscallarg(int) euid;
1143 } */ *uap = v;
1144 struct sys_setreuid_args bsa;
1145
1146 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1147 (uid_t)-1 : SCARG(uap, ruid);
1148 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1149 (uid_t)-1 : SCARG(uap, euid);
1150
1151 return sys_setreuid(l, &bsa, retval);
1152 }
1153
1154 int
1155 linux_sys_setregid16(l, v, retval)
1156 struct lwp *l;
1157 void *v;
1158 register_t *retval;
1159 {
1160 struct linux_sys_setregid16_args /* {
1161 syscallarg(int) rgid;
1162 syscallarg(int) egid;
1163 } */ *uap = v;
1164 struct sys_setregid_args bsa;
1165
1166 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1167 (uid_t)-1 : SCARG(uap, rgid);
1168 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1169 (uid_t)-1 : SCARG(uap, egid);
1170
1171 return sys_setregid(l, &bsa, retval);
1172 }
1173
1174 int
1175 linux_sys_setresuid16(l, v, retval)
1176 struct lwp *l;
1177 void *v;
1178 register_t *retval;
1179 {
1180 struct linux_sys_setresuid16_args /* {
1181 syscallarg(uid_t) ruid;
1182 syscallarg(uid_t) euid;
1183 syscallarg(uid_t) suid;
1184 } */ *uap = v;
1185 struct linux_sys_setresuid16_args lsa;
1186
1187 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1188 (uid_t)-1 : SCARG(uap, ruid);
1189 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1190 (uid_t)-1 : SCARG(uap, euid);
1191 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
1192 (uid_t)-1 : SCARG(uap, suid);
1193
1194 return linux_sys_setresuid(l, &lsa, retval);
1195 }
1196
1197 int
1198 linux_sys_setresgid16(l, v, retval)
1199 struct lwp *l;
1200 void *v;
1201 register_t *retval;
1202 {
1203 struct linux_sys_setresgid16_args /* {
1204 syscallarg(gid_t) rgid;
1205 syscallarg(gid_t) egid;
1206 syscallarg(gid_t) sgid;
1207 } */ *uap = v;
1208 struct linux_sys_setresgid16_args lsa;
1209
1210 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1211 (gid_t)-1 : SCARG(uap, rgid);
1212 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1213 (gid_t)-1 : SCARG(uap, egid);
1214 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
1215 (gid_t)-1 : SCARG(uap, sgid);
1216
1217 return linux_sys_setresgid(l, &lsa, retval);
1218 }
1219
1220 int
1221 linux_sys_getgroups16(l, v, retval)
1222 struct lwp *l;
1223 void *v;
1224 register_t *retval;
1225 {
1226 struct linux_sys_getgroups16_args /* {
1227 syscallarg(int) gidsetsize;
1228 syscallarg(linux_gid_t *) gidset;
1229 } */ *uap = v;
1230 struct proc *p = l->l_proc;
1231 caddr_t sg;
1232 int n, error, i;
1233 struct sys_getgroups_args bsa;
1234 gid_t *bset, *kbset;
1235 linux_gid_t *lset;
1236 struct pcred *pc = p->p_cred;
1237
1238 n = SCARG(uap, gidsetsize);
1239 if (n < 0)
1240 return EINVAL;
1241 error = 0;
1242 bset = kbset = NULL;
1243 lset = NULL;
1244 if (n > 0) {
1245 n = min(pc->pc_ucred->cr_ngroups, n);
1246 sg = stackgap_init(p, 0);
1247 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1248 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1249 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1250 if (bset == NULL || kbset == NULL || lset == NULL)
1251 return ENOMEM;
1252 SCARG(&bsa, gidsetsize) = n;
1253 SCARG(&bsa, gidset) = bset;
1254 error = sys_getgroups(l, &bsa, retval);
1255 if (error != 0)
1256 goto out;
1257 error = copyin(bset, kbset, n * sizeof (gid_t));
1258 if (error != 0)
1259 goto out;
1260 for (i = 0; i < n; i++)
1261 lset[i] = (linux_gid_t)kbset[i];
1262 error = copyout(lset, SCARG(uap, gidset),
1263 n * sizeof (linux_gid_t));
1264 } else
1265 *retval = pc->pc_ucred->cr_ngroups;
1266 out:
1267 if (kbset != NULL)
1268 free(kbset, M_TEMP);
1269 if (lset != NULL)
1270 free(lset, M_TEMP);
1271 return error;
1272 }
1273
1274 int
1275 linux_sys_setgroups16(l, v, retval)
1276 struct lwp *l;
1277 void *v;
1278 register_t *retval;
1279 {
1280 struct linux_sys_setgroups16_args /* {
1281 syscallarg(int) gidsetsize;
1282 syscallarg(linux_gid_t *) gidset;
1283 } */ *uap = v;
1284 struct proc *p = l->l_proc;
1285 caddr_t sg;
1286 int n;
1287 int error, i;
1288 struct sys_setgroups_args bsa;
1289 gid_t *bset, *kbset;
1290 linux_gid_t *lset;
1291
1292 n = SCARG(uap, gidsetsize);
1293 if (n < 0 || n > NGROUPS)
1294 return EINVAL;
1295 sg = stackgap_init(p, 0);
1296 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
1297 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
1298 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
1299 if (lset == NULL || bset == NULL)
1300 return ENOMEM;
1301 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t));
1302 if (error != 0)
1303 goto out;
1304 for (i = 0; i < n; i++)
1305 kbset[i] = (gid_t)lset[i];
1306 error = copyout(kbset, bset, n * sizeof (gid_t));
1307 if (error != 0)
1308 goto out;
1309 SCARG(&bsa, gidsetsize) = n;
1310 SCARG(&bsa, gidset) = bset;
1311 error = sys_setgroups(l, &bsa, retval);
1312
1313 out:
1314 if (lset != NULL)
1315 free(lset, M_TEMP);
1316 if (kbset != NULL)
1317 free(kbset, M_TEMP);
1318
1319 return error;
1320 }
1321
1322 #endif /* __i386__ || __m68k__ || __amd64__ */
1323
1324 /*
1325 * We have nonexistent fsuid equal to uid.
1326 * If modification is requested, refuse.
1327 */
1328 int
1329 linux_sys_setfsuid(l, v, retval)
1330 struct lwp *l;
1331 void *v;
1332 register_t *retval;
1333 {
1334 struct linux_sys_setfsuid_args /* {
1335 syscallarg(uid_t) uid;
1336 } */ *uap = v;
1337 struct proc *p = l->l_proc;
1338 uid_t uid;
1339
1340 uid = SCARG(uap, uid);
1341 if (p->p_cred->p_ruid != uid)
1342 return sys_nosys(l, v, retval);
1343 else
1344 return (0);
1345 }
1346
1347 /* XXX XXX XXX */
1348 #ifndef alpha
1349 int
1350 linux_sys_getfsuid(l, v, retval)
1351 struct lwp *l;
1352 void *v;
1353 register_t *retval;
1354 {
1355 return sys_getuid(l, v, retval);
1356 }
1357 #endif
1358
1359 int
1360 linux_sys_setresuid(l, v, retval)
1361 struct lwp *l;
1362 void *v;
1363 register_t *retval;
1364 {
1365 struct linux_sys_setresuid_args /* {
1366 syscallarg(uid_t) ruid;
1367 syscallarg(uid_t) euid;
1368 syscallarg(uid_t) suid;
1369 } */ *uap = v;
1370
1371 /*
1372 * Note: These checks are a little different than the NetBSD
1373 * setreuid(2) call performs. This precisely follows the
1374 * behavior of the Linux kernel.
1375 */
1376
1377 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1378 SCARG(uap, suid),
1379 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1380 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1381 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1382 }
1383
1384 int
1385 linux_sys_getresuid(l, v, retval)
1386 struct lwp *l;
1387 void *v;
1388 register_t *retval;
1389 {
1390 struct linux_sys_getresuid_args /* {
1391 syscallarg(uid_t *) ruid;
1392 syscallarg(uid_t *) euid;
1393 syscallarg(uid_t *) suid;
1394 } */ *uap = v;
1395 struct proc *p = l->l_proc;
1396 struct pcred *pc = p->p_cred;
1397 int error;
1398
1399 /*
1400 * Linux copies these values out to userspace like so:
1401 *
1402 * 1. Copy out ruid.
1403 * 2. If that succeeds, copy out euid.
1404 * 3. If both of those succeed, copy out suid.
1405 */
1406 if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid),
1407 sizeof(uid_t))) != 0)
1408 return (error);
1409
1410 if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid),
1411 sizeof(uid_t))) != 0)
1412 return (error);
1413
1414 return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t)));
1415 }
1416
1417 int
1418 linux_sys_ptrace(l, v, retval)
1419 struct lwp *l;
1420 void *v;
1421 register_t *retval;
1422 {
1423 struct linux_sys_ptrace_args /* {
1424 i386, m68k, powerpc: T=int
1425 alpha, amd64: T=long
1426 syscallarg(T) request;
1427 syscallarg(T) pid;
1428 syscallarg(T) addr;
1429 syscallarg(T) data;
1430 } */ *uap = v;
1431 const int *ptr;
1432 int request;
1433 int error;
1434
1435 ptr = linux_ptrace_request_map;
1436 request = SCARG(uap, request);
1437 while (*ptr != -1)
1438 if (*ptr++ == request) {
1439 struct sys_ptrace_args pta;
1440
1441 SCARG(&pta, req) = *ptr;
1442 SCARG(&pta, pid) = SCARG(uap, pid);
1443 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr);
1444 SCARG(&pta, data) = SCARG(uap, data);
1445
1446 /*
1447 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1448 * to continue where the process left off previously.
1449 * The same thing is achieved by addr == (caddr_t) 1
1450 * on NetBSD, so rewrite 'addr' appropriately.
1451 */
1452 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1453 SCARG(&pta, addr) = (caddr_t) 1;
1454
1455 error = sys_ptrace(l, &pta, retval);
1456 if (error)
1457 return error;
1458 switch (request) {
1459 case LINUX_PTRACE_PEEKTEXT:
1460 case LINUX_PTRACE_PEEKDATA:
1461 error = copyout (retval,
1462 (caddr_t)SCARG(uap, data),
1463 sizeof *retval);
1464 *retval = SCARG(uap, data);
1465 break;
1466 default:
1467 break;
1468 }
1469 return error;
1470 }
1471 else
1472 ptr++;
1473
1474 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1475 }
1476
1477 int
1478 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
1479 {
1480 struct linux_sys_reboot_args /* {
1481 syscallarg(int) magic1;
1482 syscallarg(int) magic2;
1483 syscallarg(int) cmd;
1484 syscallarg(void *) arg;
1485 } */ *uap = v;
1486 struct sys_reboot_args /* {
1487 syscallarg(int) opt;
1488 syscallarg(char *) bootstr;
1489 } */ sra;
1490 struct proc *p = l->l_proc;
1491 int error;
1492
1493 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1494 return(error);
1495
1496 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1497 return(EINVAL);
1498 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1499 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1500 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1501 return(EINVAL);
1502
1503 switch (SCARG(uap, cmd)) {
1504 case LINUX_REBOOT_CMD_RESTART:
1505 SCARG(&sra, opt) = RB_AUTOBOOT;
1506 break;
1507 case LINUX_REBOOT_CMD_HALT:
1508 SCARG(&sra, opt) = RB_HALT;
1509 break;
1510 case LINUX_REBOOT_CMD_POWER_OFF:
1511 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1512 break;
1513 case LINUX_REBOOT_CMD_RESTART2:
1514 /* Reboot with an argument. */
1515 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1516 SCARG(&sra, bootstr) = SCARG(uap, arg);
1517 break;
1518 case LINUX_REBOOT_CMD_CAD_ON:
1519 return(EINVAL); /* We don't implement ctrl-alt-delete */
1520 case LINUX_REBOOT_CMD_CAD_OFF:
1521 return(0);
1522 default:
1523 return(EINVAL);
1524 }
1525
1526 return(sys_reboot(l, &sra, retval));
1527 }
1528
1529 /*
1530 * Copy of compat_12_sys_swapon().
1531 */
1532 int
1533 linux_sys_swapon(l, v, retval)
1534 struct lwp *l;
1535 void *v;
1536 register_t *retval;
1537 {
1538 struct sys_swapctl_args ua;
1539 struct linux_sys_swapon_args /* {
1540 syscallarg(const char *) name;
1541 } */ *uap = v;
1542
1543 SCARG(&ua, cmd) = SWAP_ON;
1544 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1545 SCARG(&ua, misc) = 0; /* priority */
1546 return (sys_swapctl(l, &ua, retval));
1547 }
1548
1549 /*
1550 * Stop swapping to the file or block device specified by path.
1551 */
1552 int
1553 linux_sys_swapoff(l, v, retval)
1554 struct lwp *l;
1555 void *v;
1556 register_t *retval;
1557 {
1558 struct sys_swapctl_args ua;
1559 struct linux_sys_swapoff_args /* {
1560 syscallarg(const char *) path;
1561 } */ *uap = v;
1562
1563 SCARG(&ua, cmd) = SWAP_OFF;
1564 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1565 return (sys_swapctl(l, &ua, retval));
1566 }
1567
1568 /*
1569 * Copy of compat_09_sys_setdomainname()
1570 */
1571 /* ARGSUSED */
1572 int
1573 linux_sys_setdomainname(l, v, retval)
1574 struct lwp *l;
1575 void *v;
1576 register_t *retval;
1577 {
1578 struct linux_sys_setdomainname_args /* {
1579 syscallarg(char *) domainname;
1580 syscallarg(int) len;
1581 } */ *uap = v;
1582 int name[2];
1583
1584 name[0] = CTL_KERN;
1585 name[1] = KERN_DOMAINNAME;
1586 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1587 SCARG(uap, len), l));
1588 }
1589
1590 /*
1591 * sysinfo()
1592 */
1593 /* ARGSUSED */
1594 int
1595 linux_sys_sysinfo(l, v, retval)
1596 struct lwp *l;
1597 void *v;
1598 register_t *retval;
1599 {
1600 struct linux_sys_sysinfo_args /* {
1601 syscallarg(struct linux_sysinfo *) arg;
1602 } */ *uap = v;
1603 struct linux_sysinfo si;
1604 struct loadavg *la;
1605
1606 si.uptime = time.tv_sec - boottime.tv_sec;
1607 la = &averunnable;
1608 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1609 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1610 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1611 si.totalram = ctob(physmem);
1612 si.freeram = uvmexp.free * uvmexp.pagesize;
1613 si.sharedram = 0; /* XXX */
1614 si.bufferram = uvmexp.filepages * uvmexp.pagesize;
1615 si.totalswap = uvmexp.swpages * uvmexp.pagesize;
1616 si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1617 si.procs = nprocs;
1618
1619 /* The following are only present in newer Linux kernels. */
1620 si.totalbig = 0;
1621 si.freebig = 0;
1622 si.mem_unit = 1;
1623
1624 return (copyout(&si, SCARG(uap, arg), sizeof si));
1625 }
1626
1627 #ifdef LINUX_LARGEFILE64
1628 #define bsd_to_linux_rlimit1(l, b, f) \
1629 (l)->f = ((b)->f == RLIM_INFINITY || \
1630 ((b)->f & 0x8000000000000000UL) != 0) ? \
1631 LINUX_RLIM_INFINITY : (b)->f
1632 #else
1633 #define bsd_to_linux_rlimit1(l, b, f) \
1634 (l)->f = ((b)->f == RLIM_INFINITY || \
1635 ((b)->f & 0xffffffff00000000ULL) != 0) ? \
1636 LINUX_RLIM_INFINITY : (int32_t)(b)->f
1637 #endif
1638 #define bsd_to_linux_rlimit(l, b) \
1639 bsd_to_linux_rlimit1(l, b, rlim_cur); \
1640 bsd_to_linux_rlimit1(l, b, rlim_max)
1641
1642 #define linux_to_bsd_rlimit1(b, l, f) \
1643 (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f
1644 #define linux_to_bsd_rlimit(b, l) \
1645 linux_to_bsd_rlimit1(b, l, rlim_cur); \
1646 linux_to_bsd_rlimit1(b, l, rlim_max)
1647
1648 static int
1649 linux_to_bsd_limit(lim)
1650 int lim;
1651 {
1652 switch (lim) {
1653 case LINUX_RLIMIT_CPU:
1654 return RLIMIT_CPU;
1655 case LINUX_RLIMIT_FSIZE:
1656 return RLIMIT_FSIZE;
1657 case LINUX_RLIMIT_DATA:
1658 return RLIMIT_DATA;
1659 case LINUX_RLIMIT_STACK:
1660 return RLIMIT_STACK;
1661 case LINUX_RLIMIT_CORE:
1662 return RLIMIT_CORE;
1663 case LINUX_RLIMIT_RSS:
1664 return RLIMIT_RSS;
1665 case LINUX_RLIMIT_NPROC:
1666 return RLIMIT_NPROC;
1667 case LINUX_RLIMIT_NOFILE:
1668 return RLIMIT_NOFILE;
1669 case LINUX_RLIMIT_MEMLOCK:
1670 return RLIMIT_MEMLOCK;
1671 case LINUX_RLIMIT_AS:
1672 case LINUX_RLIMIT_LOCKS:
1673 return -EOPNOTSUPP;
1674 default:
1675 return -EINVAL;
1676 }
1677 }
1678
1679
1680 int
1681 linux_sys_getrlimit(l, v, retval)
1682 struct lwp *l;
1683 void *v;
1684 register_t *retval;
1685 {
1686 struct linux_sys_getrlimit_args /* {
1687 syscallarg(int) which;
1688 #ifdef LINUX_LARGEFILE64
1689 syscallarg(struct rlimit *) rlp;
1690 #else
1691 syscallarg(struct orlimit *) rlp;
1692 #endif
1693 } */ *uap = v;
1694 struct proc *p = l->l_proc;
1695 caddr_t sg = stackgap_init(p, 0);
1696 struct sys_getrlimit_args ap;
1697 struct rlimit rl;
1698 #ifdef LINUX_LARGEFILE64
1699 struct rlimit orl;
1700 #else
1701 struct orlimit orl;
1702 #endif
1703 int error;
1704
1705 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1706 if ((error = SCARG(&ap, which)) < 0)
1707 return -error;
1708 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1709 if ((error = sys_getrlimit(l, &ap, retval)) != 0)
1710 return error;
1711 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0)
1712 return error;
1713 bsd_to_linux_rlimit(&orl, &rl);
1714
1715 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1716 }
1717
1718 int
1719 linux_sys_setrlimit(l, v, retval)
1720 struct lwp *l;
1721 void *v;
1722 register_t *retval;
1723 {
1724 struct linux_sys_setrlimit_args /* {
1725 syscallarg(int) which;
1726 #ifdef LINUX_LARGEFILE64
1727 syscallarg(struct rlimit *) rlp;
1728 #else
1729 syscallarg(struct orlimit *) rlp;
1730 #endif
1731 } */ *uap = v;
1732 struct proc *p = l->l_proc;
1733 caddr_t sg = stackgap_init(p, 0);
1734 struct sys_getrlimit_args ap;
1735 struct rlimit rl;
1736 #ifdef LINUX_LARGEFILE64
1737 struct rlimit orl;
1738 #else
1739 struct orlimit orl;
1740 #endif
1741 int error;
1742
1743 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
1744 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
1745 if ((error = SCARG(&ap, which)) < 0)
1746 return -error;
1747 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1748 return error;
1749 linux_to_bsd_rlimit(&rl, &orl);
1750 if ((error = copyout(&rl, SCARG(&ap, rlp), sizeof(rl))) != 0)
1751 return error;
1752 return sys_setrlimit(l, &ap, retval);
1753 }
1754
1755 #if !defined(__mips__) && !defined(__amd64__)
1756 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1757 int
1758 linux_sys_ugetrlimit(l, v, retval)
1759 struct lwp *l;
1760 void *v;
1761 register_t *retval;
1762 {
1763 return linux_sys_getrlimit(l, v, retval);
1764 }
1765 #endif
1766
1767 /*
1768 * This gets called for unsupported syscalls. The difference to sys_nosys()
1769 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1770 * This is the way Linux does it and glibc depends on this behaviour.
1771 */
1772 int
1773 linux_sys_nosys(l, v, retval)
1774 struct lwp *l;
1775 void *v;
1776 register_t *retval;
1777 {
1778 return (ENOSYS);
1779 }
1780