Home | History | Annotate | Line # | Download | only in common
linux_misc.c revision 1.161.2.3
      1 /*	$NetBSD: linux_misc.c,v 1.161.2.3 2006/12/29 20:27:43 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
      9  * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Linux compatibility module. Try to deal with various Linux system calls.
     42  */
     43 
     44 /*
     45  * These functions have been moved to multiarch to allow
     46  * selection of which machines include them to be
     47  * determined by the individual files.linux_<arch> files.
     48  *
     49  * Function in multiarch:
     50  *	linux_sys_break			: linux_break.c
     51  *	linux_sys_alarm			: linux_misc_notalpha.c
     52  *	linux_sys_getresgid		: linux_misc_notalpha.c
     53  *	linux_sys_nice			: linux_misc_notalpha.c
     54  *	linux_sys_readdir		: linux_misc_notalpha.c
     55  *	linux_sys_setresgid		: linux_misc_notalpha.c
     56  *	linux_sys_time			: linux_misc_notalpha.c
     57  *	linux_sys_utime			: linux_misc_notalpha.c
     58  *	linux_sys_waitpid		: linux_misc_notalpha.c
     59  *	linux_sys_old_mmap		: linux_oldmmap.c
     60  *	linux_sys_oldolduname		: linux_oldolduname.c
     61  *	linux_sys_oldselect		: linux_oldselect.c
     62  *	linux_sys_olduname		: linux_olduname.c
     63  *	linux_sys_pipe			: linux_pipe.c
     64  */
     65 
     66 #include <sys/cdefs.h>
     67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.161.2.3 2006/12/29 20:27:43 ad Exp $");
     68 
     69 #if defined(_KERNEL_OPT)
     70 #include "opt_ptrace.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/namei.h>
     76 #include <sys/proc.h>
     77 #include <sys/dirent.h>
     78 #include <sys/file.h>
     79 #include <sys/stat.h>
     80 #include <sys/filedesc.h>
     81 #include <sys/ioctl.h>
     82 #include <sys/kernel.h>
     83 #include <sys/malloc.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/mman.h>
     86 #include <sys/mount.h>
     87 #include <sys/reboot.h>
     88 #include <sys/resource.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/signal.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/socket.h>
     93 #include <sys/time.h>
     94 #include <sys/times.h>
     95 #include <sys/vnode.h>
     96 #include <sys/uio.h>
     97 #include <sys/wait.h>
     98 #include <sys/utsname.h>
     99 #include <sys/unistd.h>
    100 #include <sys/swap.h>		/* for SWAP_ON */
    101 #include <sys/sysctl.h>		/* for KERN_DOMAINNAME */
    102 #include <sys/kauth.h>
    103 
    104 #include <sys/ptrace.h>
    105 #include <machine/ptrace.h>
    106 
    107 #include <sys/sa.h>
    108 #include <sys/syscall.h>
    109 #include <sys/syscallargs.h>
    110 
    111 #include <compat/linux/common/linux_machdep.h>
    112 #include <compat/linux/common/linux_types.h>
    113 #include <compat/linux/common/linux_signal.h>
    114 
    115 #include <compat/linux/linux_syscallargs.h>
    116 
    117 #include <compat/linux/common/linux_fcntl.h>
    118 #include <compat/linux/common/linux_mmap.h>
    119 #include <compat/linux/common/linux_dirent.h>
    120 #include <compat/linux/common/linux_util.h>
    121 #include <compat/linux/common/linux_misc.h>
    122 #ifndef COMPAT_LINUX32
    123 #include <compat/linux/common/linux_limit.h>
    124 #endif
    125 #include <compat/linux/common/linux_ptrace.h>
    126 #include <compat/linux/common/linux_reboot.h>
    127 #include <compat/linux/common/linux_emuldata.h>
    128 
    129 #ifndef COMPAT_LINUX32
    130 const int linux_ptrace_request_map[] = {
    131 	LINUX_PTRACE_TRACEME,	PT_TRACE_ME,
    132 	LINUX_PTRACE_PEEKTEXT,	PT_READ_I,
    133 	LINUX_PTRACE_PEEKDATA,	PT_READ_D,
    134 	LINUX_PTRACE_POKETEXT,	PT_WRITE_I,
    135 	LINUX_PTRACE_POKEDATA,	PT_WRITE_D,
    136 	LINUX_PTRACE_CONT,	PT_CONTINUE,
    137 	LINUX_PTRACE_KILL,	PT_KILL,
    138 	LINUX_PTRACE_ATTACH,	PT_ATTACH,
    139 	LINUX_PTRACE_DETACH,	PT_DETACH,
    140 # ifdef PT_STEP
    141 	LINUX_PTRACE_SINGLESTEP,	PT_STEP,
    142 # endif
    143 	-1
    144 };
    145 
    146 const struct linux_mnttypes linux_fstypes[] = {
    147 	{ MOUNT_FFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    148 	{ MOUNT_NFS,		LINUX_NFS_SUPER_MAGIC 		},
    149 	{ MOUNT_MFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    150 	{ MOUNT_MSDOS,		LINUX_MSDOS_SUPER_MAGIC		},
    151 	{ MOUNT_LFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    152 	{ MOUNT_FDESC,		LINUX_DEFAULT_SUPER_MAGIC	},
    153 	{ MOUNT_PORTAL,		LINUX_DEFAULT_SUPER_MAGIC	},
    154 	{ MOUNT_NULL,		LINUX_DEFAULT_SUPER_MAGIC	},
    155 	{ MOUNT_OVERLAY,	LINUX_DEFAULT_SUPER_MAGIC	},
    156 	{ MOUNT_UMAP,		LINUX_DEFAULT_SUPER_MAGIC	},
    157 	{ MOUNT_KERNFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    158 	{ MOUNT_PROCFS,		LINUX_PROC_SUPER_MAGIC		},
    159 	{ MOUNT_AFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    160 	{ MOUNT_CD9660,		LINUX_ISOFS_SUPER_MAGIC		},
    161 	{ MOUNT_UNION,		LINUX_DEFAULT_SUPER_MAGIC	},
    162 	{ MOUNT_ADOSFS,		LINUX_ADFS_SUPER_MAGIC		},
    163 	{ MOUNT_EXT2FS,		LINUX_EXT2_SUPER_MAGIC		},
    164 	{ MOUNT_CFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    165 	{ MOUNT_CODA,		LINUX_CODA_SUPER_MAGIC		},
    166 	{ MOUNT_FILECORE,	LINUX_DEFAULT_SUPER_MAGIC	},
    167 	{ MOUNT_NTFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    168 	{ MOUNT_SMBFS,		LINUX_SMB_SUPER_MAGIC		},
    169 	{ MOUNT_PTYFS,		LINUX_DEVPTS_SUPER_MAGIC	},
    170 	{ MOUNT_TMPFS,		LINUX_DEFAULT_SUPER_MAGIC	}
    171 };
    172 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
    173 
    174 # ifdef DEBUG_LINUX
    175 #define DPRINTF(a)	uprintf a
    176 # else
    177 #define DPRINTF(a)
    178 # endif
    179 
    180 /* Local linux_misc.c functions: */
    181 # ifndef __amd64__
    182 static void bsd_to_linux_statfs __P((const struct statvfs *,
    183     struct linux_statfs *));
    184 # endif
    185 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *,
    186     const struct linux_sys_mmap_args *));
    187 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *,
    188     register_t *, off_t));
    189 
    190 
    191 /*
    192  * The information on a terminated (or stopped) process needs
    193  * to be converted in order for Linux binaries to get a valid signal
    194  * number out of it.
    195  */
    196 void
    197 bsd_to_linux_wstat(st)
    198 	int *st;
    199 {
    200 
    201 	int sig;
    202 
    203 	if (WIFSIGNALED(*st)) {
    204 		sig = WTERMSIG(*st);
    205 		if (sig >= 0 && sig < NSIG)
    206 			*st= (*st& ~0177) | native_to_linux_signo[sig];
    207 	} else if (WIFSTOPPED(*st)) {
    208 		sig = WSTOPSIG(*st);
    209 		if (sig >= 0 && sig < NSIG)
    210 			*st = (*st & ~0xff00) |
    211 			    (native_to_linux_signo[sig] << 8);
    212 	}
    213 }
    214 
    215 /*
    216  * wait4(2).  Passed on to the NetBSD call, surrounded by code to
    217  * reserve some space for a NetBSD-style wait status, and converting
    218  * it to what Linux wants.
    219  */
    220 int
    221 linux_sys_wait4(l, v, retval)
    222 	struct lwp *l;
    223 	void *v;
    224 	register_t *retval;
    225 {
    226 	struct linux_sys_wait4_args /* {
    227 		syscallarg(int) pid;
    228 		syscallarg(int *) status;
    229 		syscallarg(int) options;
    230 		syscallarg(struct rusage *) rusage;
    231 	} */ *uap = v;
    232 	struct proc *p = l->l_proc;
    233 	struct sys_wait4_args w4a;
    234 	int error, *status, tstat, options, linux_options;
    235 	caddr_t sg;
    236 
    237 	if (SCARG(uap, status) != NULL) {
    238 		sg = stackgap_init(p, 0);
    239 		status = (int *) stackgap_alloc(p, &sg, sizeof *status);
    240 	} else
    241 		status = NULL;
    242 
    243 	linux_options = SCARG(uap, options);
    244 	options = 0;
    245 	if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
    246 		return (EINVAL);
    247 
    248 	if (linux_options & LINUX_WAIT4_WNOHANG)
    249 		options |= WNOHANG;
    250 	if (linux_options & LINUX_WAIT4_WUNTRACED)
    251 		options |= WUNTRACED;
    252 	if (linux_options & LINUX_WAIT4_WALL)
    253 		options |= WALLSIG;
    254 	if (linux_options & LINUX_WAIT4_WCLONE)
    255 		options |= WALTSIG;
    256 # ifdef DIAGNOSTIC
    257 	if (linux_options & LINUX_WAIT4_WNOTHREAD)
    258 		printf("WARNING: %s: linux process %d.%d called "
    259 		       "waitpid with __WNOTHREAD set!",
    260 		       __FILE__, p->p_pid, l->l_lid);
    261 
    262 # endif
    263 
    264 	SCARG(&w4a, pid) = SCARG(uap, pid);
    265 	SCARG(&w4a, status) = status;
    266 	SCARG(&w4a, options) = options;
    267 	SCARG(&w4a, rusage) = SCARG(uap, rusage);
    268 
    269 	if ((error = sys_wait4(l, &w4a, retval)))
    270 		return error;
    271 
    272 	sigdelset(&p->p_sigpend.sp_set, SIGCHLD);	/* XXXAD ksiginfo leak */
    273 
    274 	if (status != NULL) {
    275 		if ((error = copyin(status, &tstat, sizeof tstat)))
    276 			return error;
    277 
    278 		bsd_to_linux_wstat(&tstat);
    279 		return copyout(&tstat, SCARG(uap, status), sizeof tstat);
    280 	}
    281 
    282 	return 0;
    283 }
    284 
    285 /*
    286  * Linux brk(2). The check if the new address is >= the old one is
    287  * done in the kernel in Linux. NetBSD does it in the library.
    288  */
    289 int
    290 linux_sys_brk(l, v, retval)
    291 	struct lwp *l;
    292 	void *v;
    293 	register_t *retval;
    294 {
    295 	struct linux_sys_brk_args /* {
    296 		syscallarg(char *) nsize;
    297 	} */ *uap = v;
    298 	struct proc *p = l->l_proc;
    299 	char *nbrk = SCARG(uap, nsize);
    300 	struct sys_obreak_args oba;
    301 	struct vmspace *vm = p->p_vmspace;
    302 	struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
    303 
    304 	SCARG(&oba, nsize) = nbrk;
    305 
    306 	if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
    307 		ed->s->p_break = (char*)nbrk;
    308 	else
    309 		nbrk = ed->s->p_break;
    310 
    311 	retval[0] = (register_t)nbrk;
    312 
    313 	return 0;
    314 }
    315 
    316 # ifndef __amd64__
    317 /*
    318  * Convert NetBSD statvfs structure to Linux statfs structure.
    319  * Linux doesn't have f_flag, and we can't set f_frsize due
    320  * to glibc statvfs() bug (see below).
    321  */
    322 static void
    323 bsd_to_linux_statfs(bsp, lsp)
    324 	const struct statvfs *bsp;
    325 	struct linux_statfs *lsp;
    326 {
    327 	int i;
    328 
    329 	for (i = 0; i < linux_fstypes_cnt; i++) {
    330 		if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
    331 			lsp->l_ftype = linux_fstypes[i].linux;
    332 			break;
    333 		}
    334 	}
    335 
    336 	if (i == linux_fstypes_cnt) {
    337 		DPRINTF(("unhandled fstype in linux emulation: %s\n",
    338 		    bsp->f_fstypename));
    339 		lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
    340 	}
    341 
    342 	/*
    343 	 * The sizes are expressed in number of blocks. The block
    344 	 * size used for the size is f_frsize for POSIX-compliant
    345 	 * statvfs. Linux statfs uses f_bsize as the block size
    346 	 * (f_frsize used to not be available in Linux struct statfs).
    347 	 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block
    348 	 * counts for different f_frsize if f_frsize is provided by the kernel.
    349 	 * POSIX conforming apps thus get wrong size if f_frsize
    350 	 * is different to f_bsize. Thus, we just pretend we don't
    351 	 * support f_frsize.
    352 	 */
    353 
    354 	lsp->l_fbsize = bsp->f_frsize;
    355 	lsp->l_ffrsize = 0;			/* compat */
    356 	lsp->l_fblocks = bsp->f_blocks;
    357 	lsp->l_fbfree = bsp->f_bfree;
    358 	lsp->l_fbavail = bsp->f_bavail;
    359 	lsp->l_ffiles = bsp->f_files;
    360 	lsp->l_fffree = bsp->f_ffree;
    361 	/* Linux sets the fsid to 0..., we don't */
    362 	lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
    363 	lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
    364 	lsp->l_fnamelen = bsp->f_namemax;
    365 	(void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
    366 }
    367 
    368 /*
    369  * Implement the fs stat functions. Straightforward.
    370  */
    371 int
    372 linux_sys_statfs(l, v, retval)
    373 	struct lwp *l;
    374 	void *v;
    375 	register_t *retval;
    376 {
    377 	struct linux_sys_statfs_args /* {
    378 		syscallarg(const char *) path;
    379 		syscallarg(struct linux_statfs *) sp;
    380 	} */ *uap = v;
    381 	struct proc *p = l->l_proc;
    382 	struct statvfs *btmp, *bsp;
    383 	struct linux_statfs ltmp;
    384 	struct sys_statvfs1_args bsa;
    385 	caddr_t sg;
    386 	int error;
    387 
    388 	sg = stackgap_init(p, 0);
    389 	bsp = stackgap_alloc(p, &sg, sizeof (struct statvfs));
    390 
    391 	CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
    392 
    393 	SCARG(&bsa, path) = SCARG(uap, path);
    394 	SCARG(&bsa, buf) = bsp;
    395 	SCARG(&bsa, flags) = ST_WAIT;
    396 
    397 	if ((error = sys_statvfs1(l, &bsa, retval)))
    398 		return error;
    399 
    400 	btmp = STATVFSBUF_GET();
    401 	error = copyin(bsp, btmp, sizeof(*btmp));
    402 	if (error) {
    403 		goto out;
    404 	}
    405 	bsd_to_linux_statfs(btmp, &ltmp);
    406 	error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
    407 out:
    408 	STATVFSBUF_PUT(btmp);
    409 	return error;
    410 }
    411 
    412 int
    413 linux_sys_fstatfs(l, v, retval)
    414 	struct lwp *l;
    415 	void *v;
    416 	register_t *retval;
    417 {
    418 	struct linux_sys_fstatfs_args /* {
    419 		syscallarg(int) fd;
    420 		syscallarg(struct linux_statfs *) sp;
    421 	} */ *uap = v;
    422 	struct proc *p = l->l_proc;
    423 	struct statvfs *btmp, *bsp;
    424 	struct linux_statfs ltmp;
    425 	struct sys_fstatvfs1_args bsa;
    426 	caddr_t sg;
    427 	int error;
    428 
    429 	sg = stackgap_init(p, 0);
    430 	bsp = stackgap_alloc(p, &sg, sizeof (struct statvfs));
    431 
    432 	SCARG(&bsa, fd) = SCARG(uap, fd);
    433 	SCARG(&bsa, buf) = bsp;
    434 	SCARG(&bsa, flags) = ST_WAIT;
    435 
    436 	if ((error = sys_fstatvfs1(l, &bsa, retval)))
    437 		return error;
    438 
    439 	btmp = STATVFSBUF_GET();
    440 	error = copyin(bsp, btmp, sizeof(*btmp));
    441 	if (error) {
    442 		goto out;
    443 	}
    444 	bsd_to_linux_statfs(btmp, &ltmp);
    445 	error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
    446 out:
    447 	STATVFSBUF_PUT(btmp);
    448 	return error;
    449 }
    450 # endif /* !__amd64__ */
    451 
    452 /*
    453  * uname(). Just copy the info from the various strings stored in the
    454  * kernel, and put it in the Linux utsname structure. That structure
    455  * is almost the same as the NetBSD one, only it has fields 65 characters
    456  * long, and an extra domainname field.
    457  */
    458 int
    459 linux_sys_uname(struct lwp *l, void *v, register_t *retval)
    460 {
    461 	struct linux_sys_uname_args /* {
    462 		syscallarg(struct linux_utsname *) up;
    463 	} */ *uap = v;
    464 	struct linux_utsname luts;
    465 
    466 	strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
    467 	strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
    468 	strncpy(luts.l_release, linux_release, sizeof(luts.l_release));
    469 	strncpy(luts.l_version, linux_version, sizeof(luts.l_version));
    470 # ifdef LINUX_UNAME_ARCH
    471 	strncpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
    472 # else
    473 	strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
    474 # endif
    475 	strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
    476 
    477 	return copyout(&luts, SCARG(uap, up), sizeof(luts));
    478 }
    479 
    480 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
    481 /* Used indirectly on: arm, i386, m68k */
    482 
    483 /*
    484  * New type Linux mmap call.
    485  * Only called directly on machines with >= 6 free regs.
    486  */
    487 int
    488 linux_sys_mmap(l, v, retval)
    489 	struct lwp *l;
    490 	void *v;
    491 	register_t *retval;
    492 {
    493 	struct linux_sys_mmap_args /* {
    494 		syscallarg(unsigned long) addr;
    495 		syscallarg(size_t) len;
    496 		syscallarg(int) prot;
    497 		syscallarg(int) flags;
    498 		syscallarg(int) fd;
    499 		syscallarg(linux_off_t) offset;
    500 	} */ *uap = v;
    501 
    502 	if (SCARG(uap, offset) & PAGE_MASK)
    503 		return EINVAL;
    504 
    505 	return linux_mmap(l, uap, retval, SCARG(uap, offset));
    506 }
    507 
    508 /*
    509  * Guts of most architectures' mmap64() implementations.  This shares
    510  * its list of arguments with linux_sys_mmap().
    511  *
    512  * The difference in linux_sys_mmap2() is that "offset" is actually
    513  * (offset / pagesize), not an absolute byte count.  This translation
    514  * to pagesize offsets is done inside glibc between the mmap64() call
    515  * point, and the actual syscall.
    516  */
    517 int
    518 linux_sys_mmap2(l, v, retval)
    519 	struct lwp *l;
    520 	void *v;
    521 	register_t *retval;
    522 {
    523 	struct linux_sys_mmap2_args /* {
    524 		syscallarg(unsigned long) addr;
    525 		syscallarg(size_t) len;
    526 		syscallarg(int) prot;
    527 		syscallarg(int) flags;
    528 		syscallarg(int) fd;
    529 		syscallarg(linux_off_t) offset;
    530 	} */ *uap = v;
    531 
    532 	return linux_mmap(l, uap, retval,
    533 	    ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
    534 }
    535 
    536 /*
    537  * Massage arguments and call system mmap(2).
    538  */
    539 static int
    540 linux_mmap(l, uap, retval, offset)
    541 	struct lwp *l;
    542 	struct linux_sys_mmap_args *uap;
    543 	register_t *retval;
    544 	off_t offset;
    545 {
    546 	struct sys_mmap_args cma;
    547 	int error;
    548 	size_t mmoff=0;
    549 
    550 	if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
    551 		/*
    552 		 * Request for stack-like memory segment. On linux, this
    553 		 * works by mmap()ping (small) segment, which is automatically
    554 		 * extended when page fault happens below the currently
    555 		 * allocated area. We emulate this by allocating (typically
    556 		 * bigger) segment sized at current stack size limit, and
    557 		 * offsetting the requested and returned address accordingly.
    558 		 * Since physical pages are only allocated on-demand, this
    559 		 * is effectively identical.
    560 		 */
    561 		rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
    562 
    563 		if (SCARG(uap, len) < ssl) {
    564 			/* Compute the address offset */
    565 			mmoff = round_page(ssl) - SCARG(uap, len);
    566 
    567 			if (SCARG(uap, addr))
    568 				SCARG(uap, addr) -= mmoff;
    569 
    570 			SCARG(uap, len) = (size_t) ssl;
    571 		}
    572 	}
    573 
    574 	linux_to_bsd_mmap_args(&cma, uap);
    575 	SCARG(&cma, pos) = offset;
    576 
    577 	error = sys_mmap(l, &cma, retval);
    578 	if (error)
    579 		return (error);
    580 
    581 	/* Shift the returned address for stack-like segment if necessary */
    582 	if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
    583 		retval[0] += mmoff;
    584 
    585 	return (0);
    586 }
    587 
    588 static void
    589 linux_to_bsd_mmap_args(cma, uap)
    590 	struct sys_mmap_args *cma;
    591 	const struct linux_sys_mmap_args *uap;
    592 {
    593 	int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
    594 
    595 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
    596 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
    597 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
    598 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
    599 	/* XXX XAX ERH: Any other flags here?  There are more defined... */
    600 
    601 	SCARG(cma, addr) = (void *)SCARG(uap, addr);
    602 	SCARG(cma, len) = SCARG(uap, len);
    603 	SCARG(cma, prot) = SCARG(uap, prot);
    604 	if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
    605 		SCARG(cma, prot) |= VM_PROT_READ;
    606 	SCARG(cma, flags) = flags;
    607 	SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
    608 	SCARG(cma, pad) = 0;
    609 }
    610 
    611 #define	LINUX_MREMAP_MAYMOVE	1
    612 #define	LINUX_MREMAP_FIXED	2
    613 
    614 int
    615 linux_sys_mremap(l, v, retval)
    616 	struct lwp *l;
    617 	void *v;
    618 	register_t *retval;
    619 {
    620 	struct linux_sys_mremap_args /* {
    621 		syscallarg(void *) old_address;
    622 		syscallarg(size_t) old_size;
    623 		syscallarg(size_t) new_size;
    624 		syscallarg(u_long) flags;
    625 	} */ *uap = v;
    626 
    627 	struct proc *p;
    628 	struct vm_map *map;
    629 	vaddr_t oldva;
    630 	vaddr_t newva;
    631 	size_t oldsize;
    632 	size_t newsize;
    633 	int flags;
    634 	int uvmflags;
    635 	int error;
    636 
    637 	flags = SCARG(uap, flags);
    638 	oldva = (vaddr_t)SCARG(uap, old_address);
    639 	oldsize = round_page(SCARG(uap, old_size));
    640 	newsize = round_page(SCARG(uap, new_size));
    641 	if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
    642 		error = EINVAL;
    643 		goto done;
    644 	}
    645 	if ((flags & LINUX_MREMAP_FIXED) != 0) {
    646 		if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
    647 			error = EINVAL;
    648 			goto done;
    649 		}
    650 #if 0 /* notyet */
    651 		newva = SCARG(uap, new_address);
    652 		uvmflags = UVM_MREMAP_FIXED;
    653 #else /* notyet */
    654 		error = EOPNOTSUPP;
    655 		goto done;
    656 #endif /* notyet */
    657 	} else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
    658 		uvmflags = 0;
    659 	} else {
    660 		newva = oldva;
    661 		uvmflags = UVM_MREMAP_FIXED;
    662 	}
    663 	p = l->l_proc;
    664 	map = &p->p_vmspace->vm_map;
    665 	error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
    666 	    uvmflags);
    667 
    668 done:
    669 	*retval = (error != 0) ? 0 : (register_t)newva;
    670 	return error;
    671 }
    672 
    673 int
    674 linux_sys_msync(l, v, retval)
    675 	struct lwp *l;
    676 	void *v;
    677 	register_t *retval;
    678 {
    679 	struct linux_sys_msync_args /* {
    680 		syscallarg(caddr_t) addr;
    681 		syscallarg(int) len;
    682 		syscallarg(int) fl;
    683 	} */ *uap = v;
    684 
    685 	struct sys___msync13_args bma;
    686 
    687 	/* flags are ignored */
    688 	SCARG(&bma, addr) = SCARG(uap, addr);
    689 	SCARG(&bma, len) = SCARG(uap, len);
    690 	SCARG(&bma, flags) = SCARG(uap, fl);
    691 
    692 	return sys___msync13(l, &bma, retval);
    693 }
    694 
    695 int
    696 linux_sys_mprotect(struct lwp *l, void *v, register_t *retval)
    697 {
    698 	struct linux_sys_mprotect_args /* {
    699 		syscallarg(const void *) start;
    700 		syscallarg(unsigned long) len;
    701 		syscallarg(int) prot;
    702 	} */ *uap = v;
    703 	struct vm_map_entry *entry;
    704 	struct vm_map *map;
    705 	struct proc *p;
    706 	vaddr_t end, start, len, stacklim;
    707 	int prot, grows;
    708 
    709 	start = (vaddr_t)SCARG(uap, start);
    710 	len = round_page(SCARG(uap, len));
    711 	prot = SCARG(uap, prot);
    712 	grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
    713 	prot &= ~grows;
    714 	end = start + len;
    715 
    716 	if (start & PAGE_MASK)
    717 		return EINVAL;
    718 	if (end < start)
    719 		return EINVAL;
    720 	if (end == start)
    721 		return 0;
    722 
    723 	if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
    724 		return EINVAL;
    725 	if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
    726 		return EINVAL;
    727 
    728 	p = l->l_proc;
    729 	map = &p->p_vmspace->vm_map;
    730 	vm_map_lock(map);
    731 # ifdef notdef
    732 	VM_MAP_RANGE_CHECK(map, start, end);
    733 # endif
    734 	if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
    735 		vm_map_unlock(map);
    736 		return ENOMEM;
    737 	}
    738 
    739 	/*
    740 	 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
    741 	 */
    742 
    743 	stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
    744 	if (grows & LINUX_PROT_GROWSDOWN) {
    745 		if (USRSTACK - stacklim <= start && start < USRSTACK) {
    746 			start = USRSTACK - stacklim;
    747 		} else {
    748 			start = entry->start;
    749 		}
    750 	} else if (grows & LINUX_PROT_GROWSUP) {
    751 		if (USRSTACK <= end && end < USRSTACK + stacklim) {
    752 			end = USRSTACK + stacklim;
    753 		} else {
    754 			end = entry->end;
    755 		}
    756 	}
    757 	vm_map_unlock(map);
    758 	return uvm_map_protect(map, start, end, prot, FALSE);
    759 }
    760 
    761 /*
    762  * This code is partly stolen from src/lib/libc/compat-43/times.c
    763  */
    764 
    765 #define	CONVTCK(r)	(r.tv_sec * hz + r.tv_usec / (1000000 / hz))
    766 
    767 int
    768 linux_sys_times(l, v, retval)
    769 	struct lwp *l;
    770 	void *v;
    771 	register_t *retval;
    772 {
    773 	struct linux_sys_times_args /* {
    774 		syscallarg(struct times *) tms;
    775 	} */ *uap = v;
    776 	struct proc *p = l->l_proc;
    777 	struct timeval t;
    778 	int error;
    779 
    780 	if (SCARG(uap, tms)) {
    781 		struct linux_tms ltms;
    782 		struct rusage ru;
    783 
    784 		mutex_enter(&p->p_smutex);
    785 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    786 		ltms.ltms_utime = CONVTCK(ru.ru_utime);
    787 		ltms.ltms_stime = CONVTCK(ru.ru_stime);
    788 		ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
    789 		ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
    790 		mutex_exit(&p->p_smutex);
    791 
    792 		if ((error = copyout(&ltms, SCARG(uap, tms), sizeof ltms)))
    793 			return error;
    794 	}
    795 
    796 	getmicrouptime(&t);
    797 
    798 	retval[0] = ((linux_clock_t)(CONVTCK(t)));
    799 	return 0;
    800 }
    801 
    802 #undef CONVTCK
    803 
    804 /*
    805  * Linux 'readdir' call. This code is mostly taken from the
    806  * SunOS getdents call (see compat/sunos/sunos_misc.c), though
    807  * an attempt has been made to keep it a little cleaner (failing
    808  * miserably, because of the cruft needed if count 1 is passed).
    809  *
    810  * The d_off field should contain the offset of the next valid entry,
    811  * but in Linux it has the offset of the entry itself. We emulate
    812  * that bug here.
    813  *
    814  * Read in BSD-style entries, convert them, and copy them out.
    815  *
    816  * Note that this doesn't handle union-mounted filesystems.
    817  */
    818 int
    819 linux_sys_getdents(l, v, retval)
    820 	struct lwp *l;
    821 	void *v;
    822 	register_t *retval;
    823 {
    824 	struct linux_sys_getdents_args /* {
    825 		syscallarg(int) fd;
    826 		syscallarg(struct linux_dirent *) dent;
    827 		syscallarg(unsigned int) count;
    828 	} */ *uap = v;
    829 	struct dirent *bdp;
    830 	struct vnode *vp;
    831 	caddr_t	inp, tbuf;		/* BSD-format */
    832 	int len, reclen;		/* BSD-format */
    833 	caddr_t outp;			/* Linux-format */
    834 	int resid, linux_reclen = 0;	/* Linux-format */
    835 	struct file *fp;
    836 	struct uio auio;
    837 	struct iovec aiov;
    838 	struct linux_dirent idb;
    839 	off_t off;		/* true file offset */
    840 	int buflen, error, eofflag, nbytes, oldcall;
    841 	struct vattr va;
    842 	off_t *cookiebuf = NULL, *cookie;
    843 	int ncookies;
    844 
    845 	/* getvnode() will use the descriptor for us */
    846 	if ((error = getvnode(l->l_proc->p_fd, SCARG(uap, fd), &fp)) != 0)
    847 		return (error);
    848 
    849 	if ((fp->f_flag & FREAD) == 0) {
    850 		error = EBADF;
    851 		goto out1;
    852 	}
    853 
    854 	vp = (struct vnode *)fp->f_data;
    855 	if (vp->v_type != VDIR) {
    856 		error = EINVAL;
    857 		goto out1;
    858 	}
    859 
    860 	if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
    861 		goto out1;
    862 
    863 	nbytes = SCARG(uap, count);
    864 	if (nbytes == 1) {	/* emulating old, broken behaviour */
    865 		nbytes = sizeof (idb);
    866 		buflen = max(va.va_blocksize, nbytes);
    867 		oldcall = 1;
    868 	} else {
    869 		buflen = min(MAXBSIZE, nbytes);
    870 		if (buflen < va.va_blocksize)
    871 			buflen = va.va_blocksize;
    872 		oldcall = 0;
    873 	}
    874 	tbuf = malloc(buflen, M_TEMP, M_WAITOK);
    875 
    876 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    877 	off = fp->f_offset;
    878 again:
    879 	aiov.iov_base = tbuf;
    880 	aiov.iov_len = buflen;
    881 	auio.uio_iov = &aiov;
    882 	auio.uio_iovcnt = 1;
    883 	auio.uio_rw = UIO_READ;
    884 	auio.uio_resid = buflen;
    885 	auio.uio_offset = off;
    886 	UIO_SETUP_SYSSPACE(&auio);
    887 	/*
    888          * First we read into the malloc'ed buffer, then
    889          * we massage it into user space, one record at a time.
    890          */
    891 	error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
    892 	    &ncookies);
    893 	if (error)
    894 		goto out;
    895 
    896 	inp = tbuf;
    897 	outp = (caddr_t)SCARG(uap, dent);
    898 	resid = nbytes;
    899 	if ((len = buflen - auio.uio_resid) == 0)
    900 		goto eof;
    901 
    902 	for (cookie = cookiebuf; len > 0; len -= reclen) {
    903 		bdp = (struct dirent *)inp;
    904 		reclen = bdp->d_reclen;
    905 		if (reclen & 3)
    906 			panic("linux_readdir");
    907 		if (bdp->d_fileno == 0) {
    908 			inp += reclen;	/* it is a hole; squish it out */
    909 			if (cookie)
    910 				off = *cookie++;
    911 			else
    912 				off += reclen;
    913 			continue;
    914 		}
    915 		linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
    916 		if (reclen > len || resid < linux_reclen) {
    917 			/* entry too big for buffer, so just stop */
    918 			outp++;
    919 			break;
    920 		}
    921 		/*
    922 		 * Massage in place to make a Linux-shaped dirent (otherwise
    923 		 * we have to worry about touching user memory outside of
    924 		 * the copyout() call).
    925 		 */
    926 		idb.d_ino = bdp->d_fileno;
    927 		/*
    928 		 * The old readdir() call misuses the offset and reclen fields.
    929 		 */
    930 		if (oldcall) {
    931 			idb.d_off = (linux_off_t)linux_reclen;
    932 			idb.d_reclen = (u_short)bdp->d_namlen;
    933 		} else {
    934 			if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
    935 				compat_offseterr(vp, "linux_getdents");
    936 				error = EINVAL;
    937 				goto out;
    938 			}
    939 			idb.d_off = (linux_off_t)off;
    940 			idb.d_reclen = (u_short)linux_reclen;
    941 		}
    942 		strcpy(idb.d_name, bdp->d_name);
    943 		if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
    944 			goto out;
    945 		/* advance past this real entry */
    946 		inp += reclen;
    947 		if (cookie)
    948 			off = *cookie++; /* each entry points to itself */
    949 		else
    950 			off += reclen;
    951 		/* advance output past Linux-shaped entry */
    952 		outp += linux_reclen;
    953 		resid -= linux_reclen;
    954 		if (oldcall)
    955 			break;
    956 	}
    957 
    958 	/* if we squished out the whole block, try again */
    959 	if (outp == (caddr_t)SCARG(uap, dent))
    960 		goto again;
    961 	fp->f_offset = off;	/* update the vnode offset */
    962 
    963 	if (oldcall)
    964 		nbytes = resid + linux_reclen;
    965 
    966 eof:
    967 	*retval = nbytes - resid;
    968 out:
    969 	VOP_UNLOCK(vp, 0);
    970 	if (cookiebuf)
    971 		free(cookiebuf, M_TEMP);
    972 	free(tbuf, M_TEMP);
    973 out1:
    974 	FILE_UNUSE(fp, l);
    975 	return error;
    976 }
    977 
    978 /*
    979  * Even when just using registers to pass arguments to syscalls you can
    980  * have 5 of them on the i386. So this newer version of select() does
    981  * this.
    982  */
    983 int
    984 linux_sys_select(l, v, retval)
    985 	struct lwp *l;
    986 	void *v;
    987 	register_t *retval;
    988 {
    989 	struct linux_sys_select_args /* {
    990 		syscallarg(int) nfds;
    991 		syscallarg(fd_set *) readfds;
    992 		syscallarg(fd_set *) writefds;
    993 		syscallarg(fd_set *) exceptfds;
    994 		syscallarg(struct timeval *) timeout;
    995 	} */ *uap = v;
    996 
    997 	return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
    998 	    SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
    999 }
   1000 
   1001 /*
   1002  * Common code for the old and new versions of select(). A couple of
   1003  * things are important:
   1004  * 1) return the amount of time left in the 'timeout' parameter
   1005  * 2) select never returns ERESTART on Linux, always return EINTR
   1006  */
   1007 int
   1008 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
   1009 	struct lwp *l;
   1010 	register_t *retval;
   1011 	int nfds;
   1012 	fd_set *readfds, *writefds, *exceptfds;
   1013 	struct timeval *timeout;
   1014 {
   1015 	struct sys_select_args bsa;
   1016 	struct proc *p = l->l_proc;
   1017 	struct timeval tv0, tv1, utv, *tvp;
   1018 	caddr_t sg;
   1019 	int error;
   1020 
   1021 	SCARG(&bsa, nd) = nfds;
   1022 	SCARG(&bsa, in) = readfds;
   1023 	SCARG(&bsa, ou) = writefds;
   1024 	SCARG(&bsa, ex) = exceptfds;
   1025 	SCARG(&bsa, tv) = timeout;
   1026 
   1027 	/*
   1028 	 * Store current time for computation of the amount of
   1029 	 * time left.
   1030 	 */
   1031 	if (timeout) {
   1032 		if ((error = copyin(timeout, &utv, sizeof(utv))))
   1033 			return error;
   1034 		if (itimerfix(&utv)) {
   1035 			/*
   1036 			 * The timeval was invalid.  Convert it to something
   1037 			 * valid that will act as it does under Linux.
   1038 			 */
   1039 			sg = stackgap_init(p, 0);
   1040 			tvp = stackgap_alloc(p, &sg, sizeof(utv));
   1041 			utv.tv_sec += utv.tv_usec / 1000000;
   1042 			utv.tv_usec %= 1000000;
   1043 			if (utv.tv_usec < 0) {
   1044 				utv.tv_sec -= 1;
   1045 				utv.tv_usec += 1000000;
   1046 			}
   1047 			if (utv.tv_sec < 0)
   1048 				timerclear(&utv);
   1049 			if ((error = copyout(&utv, tvp, sizeof(utv))))
   1050 				return error;
   1051 			SCARG(&bsa, tv) = tvp;
   1052 		}
   1053 		microtime(&tv0);
   1054 	}
   1055 
   1056 	error = sys_select(l, &bsa, retval);
   1057 	if (error) {
   1058 		/*
   1059 		 * See fs/select.c in the Linux kernel.  Without this,
   1060 		 * Maelstrom doesn't work.
   1061 		 */
   1062 		if (error == ERESTART)
   1063 			error = EINTR;
   1064 		return error;
   1065 	}
   1066 
   1067 	if (timeout) {
   1068 		if (*retval) {
   1069 			/*
   1070 			 * Compute how much time was left of the timeout,
   1071 			 * by subtracting the current time and the time
   1072 			 * before we started the call, and subtracting
   1073 			 * that result from the user-supplied value.
   1074 			 */
   1075 			microtime(&tv1);
   1076 			timersub(&tv1, &tv0, &tv1);
   1077 			timersub(&utv, &tv1, &utv);
   1078 			if (utv.tv_sec < 0)
   1079 				timerclear(&utv);
   1080 		} else
   1081 			timerclear(&utv);
   1082 		if ((error = copyout(&utv, timeout, sizeof(utv))))
   1083 			return error;
   1084 	}
   1085 
   1086 	return 0;
   1087 }
   1088 
   1089 /*
   1090  * Get the process group of a certain process. Look it up
   1091  * and return the value.
   1092  */
   1093 int
   1094 linux_sys_getpgid(l, v, retval)
   1095 	struct lwp *l;
   1096 	void *v;
   1097 	register_t *retval;
   1098 {
   1099 	struct linux_sys_getpgid_args /* {
   1100 		syscallarg(int) pid;
   1101 	} */ *uap = v;
   1102 	struct proc *p = l->l_proc;
   1103 	struct proc *targp;
   1104 
   1105 	if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
   1106 		if ((targp = pfind(SCARG(uap, pid))) == 0)
   1107 			return ESRCH;
   1108 	}
   1109 	else
   1110 		targp = p;
   1111 
   1112 	retval[0] = targp->p_pgid;
   1113 	return 0;
   1114 }
   1115 
   1116 /*
   1117  * Set the 'personality' (emulation mode) for the current process. Only
   1118  * accept the Linux personality here (0). This call is needed because
   1119  * the Linux ELF crt0 issues it in an ugly kludge to make sure that
   1120  * ELF binaries run in Linux mode, not SVR4 mode.
   1121  */
   1122 int
   1123 linux_sys_personality(struct lwp *l, void *v, register_t *retval)
   1124 {
   1125 	struct linux_sys_personality_args /* {
   1126 		syscallarg(int) per;
   1127 	} */ *uap = v;
   1128 
   1129 	if (SCARG(uap, per) != 0)
   1130 		return EINVAL;
   1131 	retval[0] = 0;
   1132 	return 0;
   1133 }
   1134 #endif /* !COMPAT_LINUX32 */
   1135 
   1136 #if defined(__i386__) || defined(__m68k__) || defined(COMPAT_LINUX32)
   1137 /*
   1138  * The calls are here because of type conversions.
   1139  */
   1140 int
   1141 linux_sys_setreuid16(l, v, retval)
   1142 	struct lwp *l;
   1143 	void *v;
   1144 	register_t *retval;
   1145 {
   1146 	struct linux_sys_setreuid16_args /* {
   1147 		syscallarg(int) ruid;
   1148 		syscallarg(int) euid;
   1149 	} */ *uap = v;
   1150 	struct sys_setreuid_args bsa;
   1151 
   1152 	SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
   1153 		(uid_t)-1 : SCARG(uap, ruid);
   1154 	SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
   1155 		(uid_t)-1 : SCARG(uap, euid);
   1156 
   1157 	return sys_setreuid(l, &bsa, retval);
   1158 }
   1159 
   1160 int
   1161 linux_sys_setregid16(l, v, retval)
   1162 	struct lwp *l;
   1163 	void *v;
   1164 	register_t *retval;
   1165 {
   1166 	struct linux_sys_setregid16_args /* {
   1167 		syscallarg(int) rgid;
   1168 		syscallarg(int) egid;
   1169 	} */ *uap = v;
   1170 	struct sys_setregid_args bsa;
   1171 
   1172 	SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
   1173 		(uid_t)-1 : SCARG(uap, rgid);
   1174 	SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
   1175 		(uid_t)-1 : SCARG(uap, egid);
   1176 
   1177 	return sys_setregid(l, &bsa, retval);
   1178 }
   1179 
   1180 int
   1181 linux_sys_setresuid16(l, v, retval)
   1182 	struct lwp *l;
   1183 	void *v;
   1184 	register_t *retval;
   1185 {
   1186 	struct linux_sys_setresuid16_args /* {
   1187 		syscallarg(uid_t) ruid;
   1188 		syscallarg(uid_t) euid;
   1189 		syscallarg(uid_t) suid;
   1190 	} */ *uap = v;
   1191 	struct linux_sys_setresuid16_args lsa;
   1192 
   1193 	SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
   1194 		(uid_t)-1 : SCARG(uap, ruid);
   1195 	SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
   1196 		(uid_t)-1 : SCARG(uap, euid);
   1197 	SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
   1198 		(uid_t)-1 : SCARG(uap, suid);
   1199 
   1200 	return linux_sys_setresuid(l, &lsa, retval);
   1201 }
   1202 
   1203 int
   1204 linux_sys_setresgid16(l, v, retval)
   1205 	struct lwp *l;
   1206 	void *v;
   1207 	register_t *retval;
   1208 {
   1209 	struct linux_sys_setresgid16_args /* {
   1210 		syscallarg(gid_t) rgid;
   1211 		syscallarg(gid_t) egid;
   1212 		syscallarg(gid_t) sgid;
   1213 	} */ *uap = v;
   1214 	struct linux_sys_setresgid16_args lsa;
   1215 
   1216 	SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
   1217 		(gid_t)-1 : SCARG(uap, rgid);
   1218 	SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
   1219 		(gid_t)-1 : SCARG(uap, egid);
   1220 	SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
   1221 		(gid_t)-1 : SCARG(uap, sgid);
   1222 
   1223 	return linux_sys_setresgid(l, &lsa, retval);
   1224 }
   1225 
   1226 int
   1227 linux_sys_getgroups16(l, v, retval)
   1228 	struct lwp *l;
   1229 	void *v;
   1230 	register_t *retval;
   1231 {
   1232 	struct linux_sys_getgroups16_args /* {
   1233 		syscallarg(int) gidsetsize;
   1234 		syscallarg(linux_gid_t *) gidset;
   1235 	} */ *uap = v;
   1236 	struct proc *p = l->l_proc;
   1237 	caddr_t sg;
   1238 	int n, error, i;
   1239 	struct sys_getgroups_args bsa;
   1240 	gid_t *bset, *kbset;
   1241 	linux_gid_t *lset;
   1242 	kauth_cred_t pc = l->l_cred;
   1243 
   1244 	n = SCARG(uap, gidsetsize);
   1245 	if (n < 0)
   1246 		return EINVAL;
   1247 	error = 0;
   1248 	bset = kbset = NULL;
   1249 	lset = NULL;
   1250 	if (n > 0) {
   1251 		n = min(kauth_cred_ngroups(pc), n);
   1252 		sg = stackgap_init(p, 0);
   1253 		bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
   1254 		kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
   1255 		lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
   1256 		if (bset == NULL || kbset == NULL || lset == NULL)
   1257 		{
   1258 			error = ENOMEM;
   1259 			goto out;
   1260 		}
   1261 		SCARG(&bsa, gidsetsize) = n;
   1262 		SCARG(&bsa, gidset) = bset;
   1263 		error = sys_getgroups(l, &bsa, retval);
   1264 		if (error != 0)
   1265 			goto out;
   1266 		error = copyin(bset, kbset, n * sizeof (gid_t));
   1267 		if (error != 0)
   1268 			goto out;
   1269 		for (i = 0; i < n; i++)
   1270 			lset[i] = (linux_gid_t)kbset[i];
   1271 		error = copyout(lset, SCARG(uap, gidset),
   1272 		    n * sizeof (linux_gid_t));
   1273 	} else
   1274 		*retval = kauth_cred_ngroups(pc);
   1275 out:
   1276 	if (kbset != NULL)
   1277 		free(kbset, M_TEMP);
   1278 	if (lset != NULL)
   1279 		free(lset, M_TEMP);
   1280 	return error;
   1281 }
   1282 
   1283 int
   1284 linux_sys_setgroups16(l, v, retval)
   1285 	struct lwp *l;
   1286 	void *v;
   1287 	register_t *retval;
   1288 {
   1289 	struct linux_sys_setgroups16_args /* {
   1290 		syscallarg(int) gidsetsize;
   1291 		syscallarg(linux_gid_t *) gidset;
   1292 	} */ *uap = v;
   1293 	struct proc *p = l->l_proc;
   1294 	caddr_t sg;
   1295 	int n;
   1296 	int error, i;
   1297 	struct sys_setgroups_args bsa;
   1298 	gid_t *bset, *kbset;
   1299 	linux_gid_t *lset;
   1300 
   1301 	n = SCARG(uap, gidsetsize);
   1302 	if (n < 0 || n > NGROUPS)
   1303 		return EINVAL;
   1304 	sg = stackgap_init(p, 0);
   1305 	bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
   1306 	lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
   1307 	kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
   1308 	if (bset == NULL || kbset == NULL || lset == NULL)
   1309 	{
   1310 		error = ENOMEM;
   1311 		goto out;
   1312 	}
   1313 	error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t));
   1314 	if (error != 0)
   1315 		goto out;
   1316 	for (i = 0; i < n; i++)
   1317 		kbset[i] = (gid_t)lset[i];
   1318 	error = copyout(kbset, bset, n * sizeof (gid_t));
   1319 	if (error != 0)
   1320 		goto out;
   1321 	SCARG(&bsa, gidsetsize) = n;
   1322 	SCARG(&bsa, gidset) = bset;
   1323 	error = sys_setgroups(l, &bsa, retval);
   1324 
   1325 out:
   1326 	if (lset != NULL)
   1327 		free(lset, M_TEMP);
   1328 	if (kbset != NULL)
   1329 		free(kbset, M_TEMP);
   1330 
   1331 	return error;
   1332 }
   1333 
   1334 #endif /* __i386__ || __m68k__ || COMPAT_LINUX32 */
   1335 
   1336 #ifndef COMPAT_LINUX32
   1337 /*
   1338  * We have nonexistent fsuid equal to uid.
   1339  * If modification is requested, refuse.
   1340  */
   1341 int
   1342 linux_sys_setfsuid(l, v, retval)
   1343 	 struct lwp *l;
   1344 	 void *v;
   1345 	 register_t *retval;
   1346 {
   1347 	 struct linux_sys_setfsuid_args /* {
   1348 		 syscallarg(uid_t) uid;
   1349 	 } */ *uap = v;
   1350 	 uid_t uid;
   1351 
   1352 	 uid = SCARG(uap, uid);
   1353 	 if (kauth_cred_getuid(l->l_cred) != uid)
   1354 		 return sys_nosys(l, v, retval);
   1355 	 else
   1356 		 return (0);
   1357 }
   1358 
   1359 /* XXX XXX XXX */
   1360 # ifndef alpha
   1361 int
   1362 linux_sys_getfsuid(l, v, retval)
   1363 	struct lwp *l;
   1364 	void *v;
   1365 	register_t *retval;
   1366 {
   1367 	return sys_getuid(l, v, retval);
   1368 }
   1369 # endif
   1370 
   1371 int
   1372 linux_sys_setresuid(struct lwp *l, void *v, register_t *retval)
   1373 {
   1374 	struct linux_sys_setresuid_args /* {
   1375 		syscallarg(uid_t) ruid;
   1376 		syscallarg(uid_t) euid;
   1377 		syscallarg(uid_t) suid;
   1378 	} */ *uap = v;
   1379 
   1380 	/*
   1381 	 * Note: These checks are a little different than the NetBSD
   1382 	 * setreuid(2) call performs.  This precisely follows the
   1383 	 * behavior of the Linux kernel.
   1384 	 */
   1385 
   1386 	return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
   1387 			    SCARG(uap, suid),
   1388 			    ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
   1389 			    ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
   1390 			    ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
   1391 }
   1392 
   1393 int
   1394 linux_sys_getresuid(struct lwp *l, void *v, register_t *retval)
   1395 {
   1396 	struct linux_sys_getresuid_args /* {
   1397 		syscallarg(uid_t *) ruid;
   1398 		syscallarg(uid_t *) euid;
   1399 		syscallarg(uid_t *) suid;
   1400 	} */ *uap = v;
   1401 	kauth_cred_t pc = l->l_cred;
   1402 	int error;
   1403 	uid_t uid;
   1404 
   1405 	/*
   1406 	 * Linux copies these values out to userspace like so:
   1407 	 *
   1408 	 *	1. Copy out ruid.
   1409 	 *	2. If that succeeds, copy out euid.
   1410 	 *	3. If both of those succeed, copy out suid.
   1411 	 */
   1412 	uid = kauth_cred_getuid(pc);
   1413 	if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
   1414 		return (error);
   1415 
   1416 	uid = kauth_cred_geteuid(pc);
   1417 	if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
   1418 		return (error);
   1419 
   1420 	uid = kauth_cred_getsvuid(pc);
   1421 
   1422 	return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
   1423 }
   1424 
   1425 int
   1426 linux_sys_ptrace(l, v, retval)
   1427 	struct lwp *l;
   1428 	void *v;
   1429 	register_t *retval;
   1430 {
   1431 #if defined(PTRACE) || defined(_LKM)
   1432 	struct linux_sys_ptrace_args /* {
   1433 		i386, m68k, powerpc: T=int
   1434 		alpha, amd64: T=long
   1435 		syscallarg(T) request;
   1436 		syscallarg(T) pid;
   1437 		syscallarg(T) addr;
   1438 		syscallarg(T) data;
   1439 	} */ *uap = v;
   1440 	const int *ptr;
   1441 	int request;
   1442 	int error;
   1443 #ifdef _LKM
   1444 #define sys_ptrace (*sysent[SYS_ptrace].sy_call)
   1445 #endif
   1446 
   1447 	ptr = linux_ptrace_request_map;
   1448 	request = SCARG(uap, request);
   1449 	while (*ptr != -1)
   1450 		if (*ptr++ == request) {
   1451 			struct sys_ptrace_args pta;
   1452 
   1453 			SCARG(&pta, req) = *ptr;
   1454 			SCARG(&pta, pid) = SCARG(uap, pid);
   1455 			SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr);
   1456 			SCARG(&pta, data) = SCARG(uap, data);
   1457 
   1458 			/*
   1459 			 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
   1460 			 * to continue where the process left off previously.
   1461 			 * The same thing is achieved by addr == (caddr_t) 1
   1462 			 * on NetBSD, so rewrite 'addr' appropriately.
   1463 			 */
   1464 			if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
   1465 				SCARG(&pta, addr) = (caddr_t) 1;
   1466 
   1467 			error = sys_ptrace(l, &pta, retval);
   1468 			if (error)
   1469 				return error;
   1470 			switch (request) {
   1471 			case LINUX_PTRACE_PEEKTEXT:
   1472 			case LINUX_PTRACE_PEEKDATA:
   1473 				error = copyout (retval,
   1474 				    (caddr_t)SCARG(uap, data),
   1475 				    sizeof *retval);
   1476 				*retval = SCARG(uap, data);
   1477 				break;
   1478 			default:
   1479 				break;
   1480 			}
   1481 			return error;
   1482 		}
   1483 		else
   1484 			ptr++;
   1485 
   1486 	return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
   1487 #else
   1488 	return ENOSYS;
   1489 #endif /* PTRACE || _LKM */
   1490 }
   1491 
   1492 int
   1493 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
   1494 {
   1495 	struct linux_sys_reboot_args /* {
   1496 		syscallarg(int) magic1;
   1497 		syscallarg(int) magic2;
   1498 		syscallarg(int) cmd;
   1499 		syscallarg(void *) arg;
   1500 	} */ *uap = v;
   1501 	struct sys_reboot_args /* {
   1502 		syscallarg(int) opt;
   1503 		syscallarg(char *) bootstr;
   1504 	} */ sra;
   1505 	int error;
   1506 
   1507 	if ((error = kauth_authorize_system(l->l_cred,
   1508 	    KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
   1509 		return(error);
   1510 
   1511 	if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
   1512 		return(EINVAL);
   1513 	if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
   1514 	    SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
   1515 	    SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
   1516 		return(EINVAL);
   1517 
   1518 	switch (SCARG(uap, cmd)) {
   1519 	case LINUX_REBOOT_CMD_RESTART:
   1520 		SCARG(&sra, opt) = RB_AUTOBOOT;
   1521 		break;
   1522 	case LINUX_REBOOT_CMD_HALT:
   1523 		SCARG(&sra, opt) = RB_HALT;
   1524 		break;
   1525 	case LINUX_REBOOT_CMD_POWER_OFF:
   1526 		SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
   1527 		break;
   1528 	case LINUX_REBOOT_CMD_RESTART2:
   1529 		/* Reboot with an argument. */
   1530 		SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
   1531 		SCARG(&sra, bootstr) = SCARG(uap, arg);
   1532 		break;
   1533 	case LINUX_REBOOT_CMD_CAD_ON:
   1534 		return(EINVAL);	/* We don't implement ctrl-alt-delete */
   1535 	case LINUX_REBOOT_CMD_CAD_OFF:
   1536 		return(0);
   1537 	default:
   1538 		return(EINVAL);
   1539 	}
   1540 
   1541 	return(sys_reboot(l, &sra, retval));
   1542 }
   1543 
   1544 /*
   1545  * Copy of compat_12_sys_swapon().
   1546  */
   1547 int
   1548 linux_sys_swapon(l, v, retval)
   1549 	struct lwp *l;
   1550 	void *v;
   1551 	register_t *retval;
   1552 {
   1553 	struct sys_swapctl_args ua;
   1554 	struct linux_sys_swapon_args /* {
   1555 		syscallarg(const char *) name;
   1556 	} */ *uap = v;
   1557 
   1558 	SCARG(&ua, cmd) = SWAP_ON;
   1559 	SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
   1560 	SCARG(&ua, misc) = 0;	/* priority */
   1561 	return (sys_swapctl(l, &ua, retval));
   1562 }
   1563 
   1564 /*
   1565  * Stop swapping to the file or block device specified by path.
   1566  */
   1567 int
   1568 linux_sys_swapoff(l, v, retval)
   1569 	struct lwp *l;
   1570 	void *v;
   1571 	register_t *retval;
   1572 {
   1573 	struct sys_swapctl_args ua;
   1574 	struct linux_sys_swapoff_args /* {
   1575 		syscallarg(const char *) path;
   1576 	} */ *uap = v;
   1577 
   1578 	SCARG(&ua, cmd) = SWAP_OFF;
   1579 	SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
   1580 	return (sys_swapctl(l, &ua, retval));
   1581 }
   1582 
   1583 /*
   1584  * Copy of compat_09_sys_setdomainname()
   1585  */
   1586 /* ARGSUSED */
   1587 int
   1588 linux_sys_setdomainname(struct lwp *l, void *v, register_t *retval)
   1589 {
   1590 	struct linux_sys_setdomainname_args /* {
   1591 		syscallarg(char *) domainname;
   1592 		syscallarg(int) len;
   1593 	} */ *uap = v;
   1594 	int name[2];
   1595 
   1596 	name[0] = CTL_KERN;
   1597 	name[1] = KERN_DOMAINNAME;
   1598 	return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
   1599 			    SCARG(uap, len), l));
   1600 }
   1601 
   1602 /*
   1603  * sysinfo()
   1604  */
   1605 /* ARGSUSED */
   1606 int
   1607 linux_sys_sysinfo(struct lwp *l, void *v, register_t *retval)
   1608 {
   1609 	struct linux_sys_sysinfo_args /* {
   1610 		syscallarg(struct linux_sysinfo *) arg;
   1611 	} */ *uap = v;
   1612 	struct linux_sysinfo si;
   1613 	struct loadavg *la;
   1614 
   1615 	si.uptime = time_uptime;
   1616 	la = &averunnable;
   1617 	si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
   1618 	si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
   1619 	si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
   1620 	si.totalram = ctob((u_long)physmem);
   1621 	si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
   1622 	si.sharedram = 0;	/* XXX */
   1623 	si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
   1624 	si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
   1625 	si.freeswap =
   1626 	    (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
   1627 	si.procs = nprocs;
   1628 
   1629 	/* The following are only present in newer Linux kernels. */
   1630 	si.totalbig = 0;
   1631 	si.freebig = 0;
   1632 	si.mem_unit = 1;
   1633 
   1634 	return (copyout(&si, SCARG(uap, arg), sizeof si));
   1635 }
   1636 
   1637 int
   1638 linux_sys_getrlimit(l, v, retval)
   1639 	struct lwp *l;
   1640 	void *v;
   1641 	register_t *retval;
   1642 {
   1643 	struct linux_sys_getrlimit_args /* {
   1644 		syscallarg(int) which;
   1645 # ifdef LINUX_LARGEFILE64
   1646 		syscallarg(struct rlimit *) rlp;
   1647 # else
   1648 		syscallarg(struct orlimit *) rlp;
   1649 # endif
   1650 	} */ *uap = v;
   1651 	struct proc *p = l->l_proc;
   1652 	caddr_t sg = stackgap_init(p, 0);
   1653 	struct sys_getrlimit_args ap;
   1654 	struct rlimit rl;
   1655 # ifdef LINUX_LARGEFILE64
   1656 	struct rlimit orl;
   1657 # else
   1658 	struct orlimit orl;
   1659 # endif
   1660 	int error;
   1661 
   1662 	SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
   1663 	if ((error = SCARG(&ap, which)) < 0)
   1664 		return -error;
   1665 	SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
   1666 	if ((error = sys_getrlimit(l, &ap, retval)) != 0)
   1667 		return error;
   1668 	if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0)
   1669 		return error;
   1670 	bsd_to_linux_rlimit(&orl, &rl);
   1671 
   1672 	return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
   1673 }
   1674 
   1675 int
   1676 linux_sys_setrlimit(l, v, retval)
   1677 	struct lwp *l;
   1678 	void *v;
   1679 	register_t *retval;
   1680 {
   1681 	struct linux_sys_setrlimit_args /* {
   1682 		syscallarg(int) which;
   1683 # ifdef LINUX_LARGEFILE64
   1684 		syscallarg(struct rlimit *) rlp;
   1685 # else
   1686 		syscallarg(struct orlimit *) rlp;
   1687 # endif
   1688 	} */ *uap = v;
   1689 	struct proc *p = l->l_proc;
   1690 	caddr_t sg = stackgap_init(p, 0);
   1691 	struct sys_getrlimit_args ap;
   1692 	struct rlimit rl;
   1693 # ifdef LINUX_LARGEFILE64
   1694 	struct rlimit orl;
   1695 # else
   1696 	struct orlimit orl;
   1697 # endif
   1698 	int error;
   1699 
   1700 	SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
   1701 	SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
   1702 	if ((error = SCARG(&ap, which)) < 0)
   1703 		return -error;
   1704 	if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
   1705 		return error;
   1706 	linux_to_bsd_rlimit(&rl, &orl);
   1707 	if ((error = copyout(&rl, SCARG(&ap, rlp), sizeof(rl))) != 0)
   1708 		return error;
   1709 	return sys_setrlimit(l, &ap, retval);
   1710 }
   1711 
   1712 # if !defined(__mips__) && !defined(__amd64__)
   1713 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
   1714 int
   1715 linux_sys_ugetrlimit(l, v, retval)
   1716 	struct lwp *l;
   1717 	void *v;
   1718 	register_t *retval;
   1719 {
   1720 	return linux_sys_getrlimit(l, v, retval);
   1721 }
   1722 # endif
   1723 
   1724 /*
   1725  * This gets called for unsupported syscalls. The difference to sys_nosys()
   1726  * is that process does not get SIGSYS, the call just returns with ENOSYS.
   1727  * This is the way Linux does it and glibc depends on this behaviour.
   1728  */
   1729 int
   1730 linux_sys_nosys(struct lwp *l, void *v,
   1731     register_t *retval)
   1732 {
   1733 	return (ENOSYS);
   1734 }
   1735 
   1736 int
   1737 linux_sys_getpriority(l, v, retval)
   1738         struct lwp *l;
   1739         void *v;
   1740         register_t *retval;
   1741 {
   1742         struct linux_sys_getpriority_args /* {
   1743                 syscallarg(int) which;
   1744                 syscallarg(int) who;
   1745         } */ *uap = v;
   1746         struct sys_getpriority_args bsa;
   1747         int error;
   1748 
   1749         SCARG(&bsa, which) = SCARG(uap, which);
   1750         SCARG(&bsa, who) = SCARG(uap, who);
   1751 
   1752         if ((error = sys_getpriority(l, &bsa, retval)))
   1753                 return error;
   1754 
   1755         *retval = NZERO - *retval;
   1756 
   1757         return 0;
   1758 }
   1759 
   1760 #endif /* !COMPAT_LINUX32 */
   1761