Home | History | Annotate | Line # | Download | only in common
linux_misc.c revision 1.166
      1 /*	$NetBSD: linux_misc.c,v 1.166 2007/02/09 21:55:19 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
      9  * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Linux compatibility module. Try to deal with various Linux system calls.
     42  */
     43 
     44 /*
     45  * These functions have been moved to multiarch to allow
     46  * selection of which machines include them to be
     47  * determined by the individual files.linux_<arch> files.
     48  *
     49  * Function in multiarch:
     50  *	linux_sys_break			: linux_break.c
     51  *	linux_sys_alarm			: linux_misc_notalpha.c
     52  *	linux_sys_getresgid		: linux_misc_notalpha.c
     53  *	linux_sys_nice			: linux_misc_notalpha.c
     54  *	linux_sys_readdir		: linux_misc_notalpha.c
     55  *	linux_sys_setresgid		: linux_misc_notalpha.c
     56  *	linux_sys_time			: linux_misc_notalpha.c
     57  *	linux_sys_utime			: linux_misc_notalpha.c
     58  *	linux_sys_waitpid		: linux_misc_notalpha.c
     59  *	linux_sys_old_mmap		: linux_oldmmap.c
     60  *	linux_sys_oldolduname		: linux_oldolduname.c
     61  *	linux_sys_oldselect		: linux_oldselect.c
     62  *	linux_sys_olduname		: linux_olduname.c
     63  *	linux_sys_pipe			: linux_pipe.c
     64  */
     65 
     66 #include <sys/cdefs.h>
     67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.166 2007/02/09 21:55:19 ad Exp $");
     68 
     69 #if defined(_KERNEL_OPT)
     70 #include "opt_ptrace.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/namei.h>
     76 #include <sys/proc.h>
     77 #include <sys/dirent.h>
     78 #include <sys/file.h>
     79 #include <sys/stat.h>
     80 #include <sys/filedesc.h>
     81 #include <sys/ioctl.h>
     82 #include <sys/kernel.h>
     83 #include <sys/malloc.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/mman.h>
     86 #include <sys/mount.h>
     87 #include <sys/reboot.h>
     88 #include <sys/resource.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/signal.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/socket.h>
     93 #include <sys/time.h>
     94 #include <sys/times.h>
     95 #include <sys/vnode.h>
     96 #include <sys/uio.h>
     97 #include <sys/wait.h>
     98 #include <sys/utsname.h>
     99 #include <sys/unistd.h>
    100 #include <sys/swap.h>		/* for SWAP_ON */
    101 #include <sys/sysctl.h>		/* for KERN_DOMAINNAME */
    102 #include <sys/kauth.h>
    103 
    104 #include <sys/ptrace.h>
    105 #include <machine/ptrace.h>
    106 
    107 #include <sys/syscall.h>
    108 #include <sys/syscallargs.h>
    109 
    110 #include <compat/linux/common/linux_machdep.h>
    111 #include <compat/linux/common/linux_types.h>
    112 #include <compat/linux/common/linux_signal.h>
    113 
    114 #include <compat/linux/linux_syscallargs.h>
    115 
    116 #include <compat/linux/common/linux_fcntl.h>
    117 #include <compat/linux/common/linux_mmap.h>
    118 #include <compat/linux/common/linux_dirent.h>
    119 #include <compat/linux/common/linux_util.h>
    120 #include <compat/linux/common/linux_misc.h>
    121 #ifndef COMPAT_LINUX32
    122 #include <compat/linux/common/linux_limit.h>
    123 #endif
    124 #include <compat/linux/common/linux_ptrace.h>
    125 #include <compat/linux/common/linux_reboot.h>
    126 #include <compat/linux/common/linux_emuldata.h>
    127 
    128 #ifndef COMPAT_LINUX32
    129 const int linux_ptrace_request_map[] = {
    130 	LINUX_PTRACE_TRACEME,	PT_TRACE_ME,
    131 	LINUX_PTRACE_PEEKTEXT,	PT_READ_I,
    132 	LINUX_PTRACE_PEEKDATA,	PT_READ_D,
    133 	LINUX_PTRACE_POKETEXT,	PT_WRITE_I,
    134 	LINUX_PTRACE_POKEDATA,	PT_WRITE_D,
    135 	LINUX_PTRACE_CONT,	PT_CONTINUE,
    136 	LINUX_PTRACE_KILL,	PT_KILL,
    137 	LINUX_PTRACE_ATTACH,	PT_ATTACH,
    138 	LINUX_PTRACE_DETACH,	PT_DETACH,
    139 # ifdef PT_STEP
    140 	LINUX_PTRACE_SINGLESTEP,	PT_STEP,
    141 # endif
    142 	-1
    143 };
    144 
    145 const struct linux_mnttypes linux_fstypes[] = {
    146 	{ MOUNT_FFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    147 	{ MOUNT_NFS,		LINUX_NFS_SUPER_MAGIC 		},
    148 	{ MOUNT_MFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    149 	{ MOUNT_MSDOS,		LINUX_MSDOS_SUPER_MAGIC		},
    150 	{ MOUNT_LFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    151 	{ MOUNT_FDESC,		LINUX_DEFAULT_SUPER_MAGIC	},
    152 	{ MOUNT_PORTAL,		LINUX_DEFAULT_SUPER_MAGIC	},
    153 	{ MOUNT_NULL,		LINUX_DEFAULT_SUPER_MAGIC	},
    154 	{ MOUNT_OVERLAY,	LINUX_DEFAULT_SUPER_MAGIC	},
    155 	{ MOUNT_UMAP,		LINUX_DEFAULT_SUPER_MAGIC	},
    156 	{ MOUNT_KERNFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    157 	{ MOUNT_PROCFS,		LINUX_PROC_SUPER_MAGIC		},
    158 	{ MOUNT_AFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    159 	{ MOUNT_CD9660,		LINUX_ISOFS_SUPER_MAGIC		},
    160 	{ MOUNT_UNION,		LINUX_DEFAULT_SUPER_MAGIC	},
    161 	{ MOUNT_ADOSFS,		LINUX_ADFS_SUPER_MAGIC		},
    162 	{ MOUNT_EXT2FS,		LINUX_EXT2_SUPER_MAGIC		},
    163 	{ MOUNT_CFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    164 	{ MOUNT_CODA,		LINUX_CODA_SUPER_MAGIC		},
    165 	{ MOUNT_FILECORE,	LINUX_DEFAULT_SUPER_MAGIC	},
    166 	{ MOUNT_NTFS,		LINUX_DEFAULT_SUPER_MAGIC	},
    167 	{ MOUNT_SMBFS,		LINUX_SMB_SUPER_MAGIC		},
    168 	{ MOUNT_PTYFS,		LINUX_DEVPTS_SUPER_MAGIC	},
    169 	{ MOUNT_TMPFS,		LINUX_DEFAULT_SUPER_MAGIC	}
    170 };
    171 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
    172 
    173 # ifdef DEBUG_LINUX
    174 #define DPRINTF(a)	uprintf a
    175 # else
    176 #define DPRINTF(a)
    177 # endif
    178 
    179 /* Local linux_misc.c functions: */
    180 # ifndef __amd64__
    181 static void bsd_to_linux_statfs __P((const struct statvfs *,
    182     struct linux_statfs *));
    183 # endif
    184 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *,
    185     const struct linux_sys_mmap_args *));
    186 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *,
    187     register_t *, off_t));
    188 
    189 
    190 /*
    191  * The information on a terminated (or stopped) process needs
    192  * to be converted in order for Linux binaries to get a valid signal
    193  * number out of it.
    194  */
    195 void
    196 bsd_to_linux_wstat(st)
    197 	int *st;
    198 {
    199 
    200 	int sig;
    201 
    202 	if (WIFSIGNALED(*st)) {
    203 		sig = WTERMSIG(*st);
    204 		if (sig >= 0 && sig < NSIG)
    205 			*st= (*st& ~0177) | native_to_linux_signo[sig];
    206 	} else if (WIFSTOPPED(*st)) {
    207 		sig = WSTOPSIG(*st);
    208 		if (sig >= 0 && sig < NSIG)
    209 			*st = (*st & ~0xff00) |
    210 			    (native_to_linux_signo[sig] << 8);
    211 	}
    212 }
    213 
    214 /*
    215  * wait4(2).  Passed on to the NetBSD call, surrounded by code to
    216  * reserve some space for a NetBSD-style wait status, and converting
    217  * it to what Linux wants.
    218  */
    219 int
    220 linux_sys_wait4(l, v, retval)
    221 	struct lwp *l;
    222 	void *v;
    223 	register_t *retval;
    224 {
    225 	struct linux_sys_wait4_args /* {
    226 		syscallarg(int) pid;
    227 		syscallarg(int *) status;
    228 		syscallarg(int) options;
    229 		syscallarg(struct rusage *) rusage;
    230 	} */ *uap = v;
    231 	struct proc *p = l->l_proc;
    232 	struct sys_wait4_args w4a;
    233 	int error, *status, tstat, options, linux_options;
    234 	caddr_t sg;
    235 
    236 	if (SCARG(uap, status) != NULL) {
    237 		sg = stackgap_init(p, 0);
    238 		status = (int *) stackgap_alloc(p, &sg, sizeof *status);
    239 	} else
    240 		status = NULL;
    241 
    242 	linux_options = SCARG(uap, options);
    243 	options = 0;
    244 	if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
    245 		return (EINVAL);
    246 
    247 	if (linux_options & LINUX_WAIT4_WNOHANG)
    248 		options |= WNOHANG;
    249 	if (linux_options & LINUX_WAIT4_WUNTRACED)
    250 		options |= WUNTRACED;
    251 	if (linux_options & LINUX_WAIT4_WALL)
    252 		options |= WALLSIG;
    253 	if (linux_options & LINUX_WAIT4_WCLONE)
    254 		options |= WALTSIG;
    255 # ifdef DIAGNOSTIC
    256 	if (linux_options & LINUX_WAIT4_WNOTHREAD)
    257 		printf("WARNING: %s: linux process %d.%d called "
    258 		       "waitpid with __WNOTHREAD set!",
    259 		       __FILE__, p->p_pid, l->l_lid);
    260 
    261 # endif
    262 
    263 	SCARG(&w4a, pid) = SCARG(uap, pid);
    264 	SCARG(&w4a, status) = status;
    265 	SCARG(&w4a, options) = options;
    266 	SCARG(&w4a, rusage) = SCARG(uap, rusage);
    267 
    268 	if ((error = sys_wait4(l, &w4a, retval)))
    269 		return error;
    270 
    271 	sigdelset(&p->p_sigpend.sp_set, SIGCHLD);	/* XXXAD ksiginfo leak */
    272 
    273 	if (status != NULL) {
    274 		if ((error = copyin(status, &tstat, sizeof tstat)))
    275 			return error;
    276 
    277 		bsd_to_linux_wstat(&tstat);
    278 		return copyout(&tstat, SCARG(uap, status), sizeof tstat);
    279 	}
    280 
    281 	return 0;
    282 }
    283 
    284 /*
    285  * Linux brk(2). The check if the new address is >= the old one is
    286  * done in the kernel in Linux. NetBSD does it in the library.
    287  */
    288 int
    289 linux_sys_brk(l, v, retval)
    290 	struct lwp *l;
    291 	void *v;
    292 	register_t *retval;
    293 {
    294 	struct linux_sys_brk_args /* {
    295 		syscallarg(char *) nsize;
    296 	} */ *uap = v;
    297 	struct proc *p = l->l_proc;
    298 	char *nbrk = SCARG(uap, nsize);
    299 	struct sys_obreak_args oba;
    300 	struct vmspace *vm = p->p_vmspace;
    301 	struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
    302 
    303 	SCARG(&oba, nsize) = nbrk;
    304 
    305 	if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
    306 		ed->s->p_break = (char*)nbrk;
    307 	else
    308 		nbrk = ed->s->p_break;
    309 
    310 	retval[0] = (register_t)nbrk;
    311 
    312 	return 0;
    313 }
    314 
    315 # ifndef __amd64__
    316 /*
    317  * Convert NetBSD statvfs structure to Linux statfs structure.
    318  * Linux doesn't have f_flag, and we can't set f_frsize due
    319  * to glibc statvfs() bug (see below).
    320  */
    321 static void
    322 bsd_to_linux_statfs(bsp, lsp)
    323 	const struct statvfs *bsp;
    324 	struct linux_statfs *lsp;
    325 {
    326 	int i;
    327 
    328 	for (i = 0; i < linux_fstypes_cnt; i++) {
    329 		if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
    330 			lsp->l_ftype = linux_fstypes[i].linux;
    331 			break;
    332 		}
    333 	}
    334 
    335 	if (i == linux_fstypes_cnt) {
    336 		DPRINTF(("unhandled fstype in linux emulation: %s\n",
    337 		    bsp->f_fstypename));
    338 		lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
    339 	}
    340 
    341 	/*
    342 	 * The sizes are expressed in number of blocks. The block
    343 	 * size used for the size is f_frsize for POSIX-compliant
    344 	 * statvfs. Linux statfs uses f_bsize as the block size
    345 	 * (f_frsize used to not be available in Linux struct statfs).
    346 	 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block
    347 	 * counts for different f_frsize if f_frsize is provided by the kernel.
    348 	 * POSIX conforming apps thus get wrong size if f_frsize
    349 	 * is different to f_bsize. Thus, we just pretend we don't
    350 	 * support f_frsize.
    351 	 */
    352 
    353 	lsp->l_fbsize = bsp->f_frsize;
    354 	lsp->l_ffrsize = 0;			/* compat */
    355 	lsp->l_fblocks = bsp->f_blocks;
    356 	lsp->l_fbfree = bsp->f_bfree;
    357 	lsp->l_fbavail = bsp->f_bavail;
    358 	lsp->l_ffiles = bsp->f_files;
    359 	lsp->l_fffree = bsp->f_ffree;
    360 	/* Linux sets the fsid to 0..., we don't */
    361 	lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
    362 	lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
    363 	lsp->l_fnamelen = bsp->f_namemax;
    364 	(void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
    365 }
    366 
    367 /*
    368  * Implement the fs stat functions. Straightforward.
    369  */
    370 int
    371 linux_sys_statfs(l, v, retval)
    372 	struct lwp *l;
    373 	void *v;
    374 	register_t *retval;
    375 {
    376 	struct linux_sys_statfs_args /* {
    377 		syscallarg(const char *) path;
    378 		syscallarg(struct linux_statfs *) sp;
    379 	} */ *uap = v;
    380 	struct proc *p = l->l_proc;
    381 	struct statvfs *btmp, *bsp;
    382 	struct linux_statfs ltmp;
    383 	struct sys_statvfs1_args bsa;
    384 	caddr_t sg;
    385 	int error;
    386 
    387 	sg = stackgap_init(p, 0);
    388 	bsp = stackgap_alloc(p, &sg, sizeof (struct statvfs));
    389 
    390 	CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
    391 
    392 	SCARG(&bsa, path) = SCARG(uap, path);
    393 	SCARG(&bsa, buf) = bsp;
    394 	SCARG(&bsa, flags) = ST_WAIT;
    395 
    396 	if ((error = sys_statvfs1(l, &bsa, retval)))
    397 		return error;
    398 
    399 	btmp = STATVFSBUF_GET();
    400 	error = copyin(bsp, btmp, sizeof(*btmp));
    401 	if (error) {
    402 		goto out;
    403 	}
    404 	bsd_to_linux_statfs(btmp, &ltmp);
    405 	error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
    406 out:
    407 	STATVFSBUF_PUT(btmp);
    408 	return error;
    409 }
    410 
    411 int
    412 linux_sys_fstatfs(l, v, retval)
    413 	struct lwp *l;
    414 	void *v;
    415 	register_t *retval;
    416 {
    417 	struct linux_sys_fstatfs_args /* {
    418 		syscallarg(int) fd;
    419 		syscallarg(struct linux_statfs *) sp;
    420 	} */ *uap = v;
    421 	struct proc *p = l->l_proc;
    422 	struct statvfs *btmp, *bsp;
    423 	struct linux_statfs ltmp;
    424 	struct sys_fstatvfs1_args bsa;
    425 	caddr_t sg;
    426 	int error;
    427 
    428 	sg = stackgap_init(p, 0);
    429 	bsp = stackgap_alloc(p, &sg, sizeof (struct statvfs));
    430 
    431 	SCARG(&bsa, fd) = SCARG(uap, fd);
    432 	SCARG(&bsa, buf) = bsp;
    433 	SCARG(&bsa, flags) = ST_WAIT;
    434 
    435 	if ((error = sys_fstatvfs1(l, &bsa, retval)))
    436 		return error;
    437 
    438 	btmp = STATVFSBUF_GET();
    439 	error = copyin(bsp, btmp, sizeof(*btmp));
    440 	if (error) {
    441 		goto out;
    442 	}
    443 	bsd_to_linux_statfs(btmp, &ltmp);
    444 	error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
    445 out:
    446 	STATVFSBUF_PUT(btmp);
    447 	return error;
    448 }
    449 # endif /* !__amd64__ */
    450 
    451 /*
    452  * uname(). Just copy the info from the various strings stored in the
    453  * kernel, and put it in the Linux utsname structure. That structure
    454  * is almost the same as the NetBSD one, only it has fields 65 characters
    455  * long, and an extra domainname field.
    456  */
    457 int
    458 linux_sys_uname(struct lwp *l, void *v, register_t *retval)
    459 {
    460 	struct linux_sys_uname_args /* {
    461 		syscallarg(struct linux_utsname *) up;
    462 	} */ *uap = v;
    463 	struct linux_utsname luts;
    464 
    465 	strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
    466 	strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
    467 	strncpy(luts.l_release, linux_release, sizeof(luts.l_release));
    468 	strncpy(luts.l_version, linux_version, sizeof(luts.l_version));
    469 # ifdef LINUX_UNAME_ARCH
    470 	strncpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
    471 # else
    472 	strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
    473 # endif
    474 	strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
    475 
    476 	return copyout(&luts, SCARG(uap, up), sizeof(luts));
    477 }
    478 
    479 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
    480 /* Used indirectly on: arm, i386, m68k */
    481 
    482 /*
    483  * New type Linux mmap call.
    484  * Only called directly on machines with >= 6 free regs.
    485  */
    486 int
    487 linux_sys_mmap(l, v, retval)
    488 	struct lwp *l;
    489 	void *v;
    490 	register_t *retval;
    491 {
    492 	struct linux_sys_mmap_args /* {
    493 		syscallarg(unsigned long) addr;
    494 		syscallarg(size_t) len;
    495 		syscallarg(int) prot;
    496 		syscallarg(int) flags;
    497 		syscallarg(int) fd;
    498 		syscallarg(linux_off_t) offset;
    499 	} */ *uap = v;
    500 
    501 	if (SCARG(uap, offset) & PAGE_MASK)
    502 		return EINVAL;
    503 
    504 	return linux_mmap(l, uap, retval, SCARG(uap, offset));
    505 }
    506 
    507 /*
    508  * Guts of most architectures' mmap64() implementations.  This shares
    509  * its list of arguments with linux_sys_mmap().
    510  *
    511  * The difference in linux_sys_mmap2() is that "offset" is actually
    512  * (offset / pagesize), not an absolute byte count.  This translation
    513  * to pagesize offsets is done inside glibc between the mmap64() call
    514  * point, and the actual syscall.
    515  */
    516 int
    517 linux_sys_mmap2(l, v, retval)
    518 	struct lwp *l;
    519 	void *v;
    520 	register_t *retval;
    521 {
    522 	struct linux_sys_mmap2_args /* {
    523 		syscallarg(unsigned long) addr;
    524 		syscallarg(size_t) len;
    525 		syscallarg(int) prot;
    526 		syscallarg(int) flags;
    527 		syscallarg(int) fd;
    528 		syscallarg(linux_off_t) offset;
    529 	} */ *uap = v;
    530 
    531 	return linux_mmap(l, uap, retval,
    532 	    ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
    533 }
    534 
    535 /*
    536  * Massage arguments and call system mmap(2).
    537  */
    538 static int
    539 linux_mmap(l, uap, retval, offset)
    540 	struct lwp *l;
    541 	struct linux_sys_mmap_args *uap;
    542 	register_t *retval;
    543 	off_t offset;
    544 {
    545 	struct sys_mmap_args cma;
    546 	int error;
    547 	size_t mmoff=0;
    548 
    549 	if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
    550 		/*
    551 		 * Request for stack-like memory segment. On linux, this
    552 		 * works by mmap()ping (small) segment, which is automatically
    553 		 * extended when page fault happens below the currently
    554 		 * allocated area. We emulate this by allocating (typically
    555 		 * bigger) segment sized at current stack size limit, and
    556 		 * offsetting the requested and returned address accordingly.
    557 		 * Since physical pages are only allocated on-demand, this
    558 		 * is effectively identical.
    559 		 */
    560 		rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
    561 
    562 		if (SCARG(uap, len) < ssl) {
    563 			/* Compute the address offset */
    564 			mmoff = round_page(ssl) - SCARG(uap, len);
    565 
    566 			if (SCARG(uap, addr))
    567 				SCARG(uap, addr) -= mmoff;
    568 
    569 			SCARG(uap, len) = (size_t) ssl;
    570 		}
    571 	}
    572 
    573 	linux_to_bsd_mmap_args(&cma, uap);
    574 	SCARG(&cma, pos) = offset;
    575 
    576 	error = sys_mmap(l, &cma, retval);
    577 	if (error)
    578 		return (error);
    579 
    580 	/* Shift the returned address for stack-like segment if necessary */
    581 	if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
    582 		retval[0] += mmoff;
    583 
    584 	return (0);
    585 }
    586 
    587 static void
    588 linux_to_bsd_mmap_args(cma, uap)
    589 	struct sys_mmap_args *cma;
    590 	const struct linux_sys_mmap_args *uap;
    591 {
    592 	int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
    593 
    594 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
    595 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
    596 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
    597 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
    598 	/* XXX XAX ERH: Any other flags here?  There are more defined... */
    599 
    600 	SCARG(cma, addr) = (void *)SCARG(uap, addr);
    601 	SCARG(cma, len) = SCARG(uap, len);
    602 	SCARG(cma, prot) = SCARG(uap, prot);
    603 	if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
    604 		SCARG(cma, prot) |= VM_PROT_READ;
    605 	SCARG(cma, flags) = flags;
    606 	SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
    607 	SCARG(cma, pad) = 0;
    608 }
    609 
    610 #define	LINUX_MREMAP_MAYMOVE	1
    611 #define	LINUX_MREMAP_FIXED	2
    612 
    613 int
    614 linux_sys_mremap(l, v, retval)
    615 	struct lwp *l;
    616 	void *v;
    617 	register_t *retval;
    618 {
    619 	struct linux_sys_mremap_args /* {
    620 		syscallarg(void *) old_address;
    621 		syscallarg(size_t) old_size;
    622 		syscallarg(size_t) new_size;
    623 		syscallarg(u_long) flags;
    624 	} */ *uap = v;
    625 
    626 	struct proc *p;
    627 	struct vm_map *map;
    628 	vaddr_t oldva;
    629 	vaddr_t newva;
    630 	size_t oldsize;
    631 	size_t newsize;
    632 	int flags;
    633 	int uvmflags;
    634 	int error;
    635 
    636 	flags = SCARG(uap, flags);
    637 	oldva = (vaddr_t)SCARG(uap, old_address);
    638 	oldsize = round_page(SCARG(uap, old_size));
    639 	newsize = round_page(SCARG(uap, new_size));
    640 	if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
    641 		error = EINVAL;
    642 		goto done;
    643 	}
    644 	if ((flags & LINUX_MREMAP_FIXED) != 0) {
    645 		if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
    646 			error = EINVAL;
    647 			goto done;
    648 		}
    649 #if 0 /* notyet */
    650 		newva = SCARG(uap, new_address);
    651 		uvmflags = UVM_MREMAP_FIXED;
    652 #else /* notyet */
    653 		error = EOPNOTSUPP;
    654 		goto done;
    655 #endif /* notyet */
    656 	} else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
    657 		uvmflags = 0;
    658 	} else {
    659 		newva = oldva;
    660 		uvmflags = UVM_MREMAP_FIXED;
    661 	}
    662 	p = l->l_proc;
    663 	map = &p->p_vmspace->vm_map;
    664 	error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
    665 	    uvmflags);
    666 
    667 done:
    668 	*retval = (error != 0) ? 0 : (register_t)newva;
    669 	return error;
    670 }
    671 
    672 int
    673 linux_sys_msync(l, v, retval)
    674 	struct lwp *l;
    675 	void *v;
    676 	register_t *retval;
    677 {
    678 	struct linux_sys_msync_args /* {
    679 		syscallarg(caddr_t) addr;
    680 		syscallarg(int) len;
    681 		syscallarg(int) fl;
    682 	} */ *uap = v;
    683 
    684 	struct sys___msync13_args bma;
    685 
    686 	/* flags are ignored */
    687 	SCARG(&bma, addr) = SCARG(uap, addr);
    688 	SCARG(&bma, len) = SCARG(uap, len);
    689 	SCARG(&bma, flags) = SCARG(uap, fl);
    690 
    691 	return sys___msync13(l, &bma, retval);
    692 }
    693 
    694 int
    695 linux_sys_mprotect(struct lwp *l, void *v, register_t *retval)
    696 {
    697 	struct linux_sys_mprotect_args /* {
    698 		syscallarg(const void *) start;
    699 		syscallarg(unsigned long) len;
    700 		syscallarg(int) prot;
    701 	} */ *uap = v;
    702 	struct vm_map_entry *entry;
    703 	struct vm_map *map;
    704 	struct proc *p;
    705 	vaddr_t end, start, len, stacklim;
    706 	int prot, grows;
    707 
    708 	start = (vaddr_t)SCARG(uap, start);
    709 	len = round_page(SCARG(uap, len));
    710 	prot = SCARG(uap, prot);
    711 	grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
    712 	prot &= ~grows;
    713 	end = start + len;
    714 
    715 	if (start & PAGE_MASK)
    716 		return EINVAL;
    717 	if (end < start)
    718 		return EINVAL;
    719 	if (end == start)
    720 		return 0;
    721 
    722 	if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
    723 		return EINVAL;
    724 	if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
    725 		return EINVAL;
    726 
    727 	p = l->l_proc;
    728 	map = &p->p_vmspace->vm_map;
    729 	vm_map_lock(map);
    730 # ifdef notdef
    731 	VM_MAP_RANGE_CHECK(map, start, end);
    732 # endif
    733 	if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
    734 		vm_map_unlock(map);
    735 		return ENOMEM;
    736 	}
    737 
    738 	/*
    739 	 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
    740 	 */
    741 
    742 	stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
    743 	if (grows & LINUX_PROT_GROWSDOWN) {
    744 		if (USRSTACK - stacklim <= start && start < USRSTACK) {
    745 			start = USRSTACK - stacklim;
    746 		} else {
    747 			start = entry->start;
    748 		}
    749 	} else if (grows & LINUX_PROT_GROWSUP) {
    750 		if (USRSTACK <= end && end < USRSTACK + stacklim) {
    751 			end = USRSTACK + stacklim;
    752 		} else {
    753 			end = entry->end;
    754 		}
    755 	}
    756 	vm_map_unlock(map);
    757 	return uvm_map_protect(map, start, end, prot, FALSE);
    758 }
    759 
    760 /*
    761  * This code is partly stolen from src/lib/libc/compat-43/times.c
    762  */
    763 
    764 #define	CONVTCK(r)	(r.tv_sec * hz + r.tv_usec / (1000000 / hz))
    765 
    766 int
    767 linux_sys_times(l, v, retval)
    768 	struct lwp *l;
    769 	void *v;
    770 	register_t *retval;
    771 {
    772 	struct linux_sys_times_args /* {
    773 		syscallarg(struct times *) tms;
    774 	} */ *uap = v;
    775 	struct proc *p = l->l_proc;
    776 	struct timeval t;
    777 	int error;
    778 
    779 	if (SCARG(uap, tms)) {
    780 		struct linux_tms ltms;
    781 		struct rusage ru;
    782 
    783 		mutex_enter(&p->p_smutex);
    784 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    785 		ltms.ltms_utime = CONVTCK(ru.ru_utime);
    786 		ltms.ltms_stime = CONVTCK(ru.ru_stime);
    787 		ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
    788 		ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
    789 		mutex_exit(&p->p_smutex);
    790 
    791 		if ((error = copyout(&ltms, SCARG(uap, tms), sizeof ltms)))
    792 			return error;
    793 	}
    794 
    795 	getmicrouptime(&t);
    796 
    797 	retval[0] = ((linux_clock_t)(CONVTCK(t)));
    798 	return 0;
    799 }
    800 
    801 #undef CONVTCK
    802 
    803 /*
    804  * Linux 'readdir' call. This code is mostly taken from the
    805  * SunOS getdents call (see compat/sunos/sunos_misc.c), though
    806  * an attempt has been made to keep it a little cleaner (failing
    807  * miserably, because of the cruft needed if count 1 is passed).
    808  *
    809  * The d_off field should contain the offset of the next valid entry,
    810  * but in Linux it has the offset of the entry itself. We emulate
    811  * that bug here.
    812  *
    813  * Read in BSD-style entries, convert them, and copy them out.
    814  *
    815  * Note that this doesn't handle union-mounted filesystems.
    816  */
    817 int
    818 linux_sys_getdents(l, v, retval)
    819 	struct lwp *l;
    820 	void *v;
    821 	register_t *retval;
    822 {
    823 	struct linux_sys_getdents_args /* {
    824 		syscallarg(int) fd;
    825 		syscallarg(struct linux_dirent *) dent;
    826 		syscallarg(unsigned int) count;
    827 	} */ *uap = v;
    828 	struct dirent *bdp;
    829 	struct vnode *vp;
    830 	caddr_t	inp, tbuf;		/* BSD-format */
    831 	int len, reclen;		/* BSD-format */
    832 	caddr_t outp;			/* Linux-format */
    833 	int resid, linux_reclen = 0;	/* Linux-format */
    834 	struct file *fp;
    835 	struct uio auio;
    836 	struct iovec aiov;
    837 	struct linux_dirent idb;
    838 	off_t off;		/* true file offset */
    839 	int buflen, error, eofflag, nbytes, oldcall;
    840 	struct vattr va;
    841 	off_t *cookiebuf = NULL, *cookie;
    842 	int ncookies;
    843 
    844 	/* getvnode() will use the descriptor for us */
    845 	if ((error = getvnode(l->l_proc->p_fd, SCARG(uap, fd), &fp)) != 0)
    846 		return (error);
    847 
    848 	if ((fp->f_flag & FREAD) == 0) {
    849 		error = EBADF;
    850 		goto out1;
    851 	}
    852 
    853 	vp = (struct vnode *)fp->f_data;
    854 	if (vp->v_type != VDIR) {
    855 		error = EINVAL;
    856 		goto out1;
    857 	}
    858 
    859 	if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
    860 		goto out1;
    861 
    862 	nbytes = SCARG(uap, count);
    863 	if (nbytes == 1) {	/* emulating old, broken behaviour */
    864 		nbytes = sizeof (idb);
    865 		buflen = max(va.va_blocksize, nbytes);
    866 		oldcall = 1;
    867 	} else {
    868 		buflen = min(MAXBSIZE, nbytes);
    869 		if (buflen < va.va_blocksize)
    870 			buflen = va.va_blocksize;
    871 		oldcall = 0;
    872 	}
    873 	tbuf = malloc(buflen, M_TEMP, M_WAITOK);
    874 
    875 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    876 	off = fp->f_offset;
    877 again:
    878 	aiov.iov_base = tbuf;
    879 	aiov.iov_len = buflen;
    880 	auio.uio_iov = &aiov;
    881 	auio.uio_iovcnt = 1;
    882 	auio.uio_rw = UIO_READ;
    883 	auio.uio_resid = buflen;
    884 	auio.uio_offset = off;
    885 	UIO_SETUP_SYSSPACE(&auio);
    886 	/*
    887          * First we read into the malloc'ed buffer, then
    888          * we massage it into user space, one record at a time.
    889          */
    890 	error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
    891 	    &ncookies);
    892 	if (error)
    893 		goto out;
    894 
    895 	inp = tbuf;
    896 	outp = (caddr_t)SCARG(uap, dent);
    897 	resid = nbytes;
    898 	if ((len = buflen - auio.uio_resid) == 0)
    899 		goto eof;
    900 
    901 	for (cookie = cookiebuf; len > 0; len -= reclen) {
    902 		bdp = (struct dirent *)inp;
    903 		reclen = bdp->d_reclen;
    904 		if (reclen & 3)
    905 			panic("linux_readdir");
    906 		if (bdp->d_fileno == 0) {
    907 			inp += reclen;	/* it is a hole; squish it out */
    908 			if (cookie)
    909 				off = *cookie++;
    910 			else
    911 				off += reclen;
    912 			continue;
    913 		}
    914 		linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
    915 		if (reclen > len || resid < linux_reclen) {
    916 			/* entry too big for buffer, so just stop */
    917 			outp++;
    918 			break;
    919 		}
    920 		/*
    921 		 * Massage in place to make a Linux-shaped dirent (otherwise
    922 		 * we have to worry about touching user memory outside of
    923 		 * the copyout() call).
    924 		 */
    925 		idb.d_ino = bdp->d_fileno;
    926 		/*
    927 		 * The old readdir() call misuses the offset and reclen fields.
    928 		 */
    929 		if (oldcall) {
    930 			idb.d_off = (linux_off_t)linux_reclen;
    931 			idb.d_reclen = (u_short)bdp->d_namlen;
    932 		} else {
    933 			if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
    934 				compat_offseterr(vp, "linux_getdents");
    935 				error = EINVAL;
    936 				goto out;
    937 			}
    938 			idb.d_off = (linux_off_t)off;
    939 			idb.d_reclen = (u_short)linux_reclen;
    940 		}
    941 		strcpy(idb.d_name, bdp->d_name);
    942 		if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
    943 			goto out;
    944 		/* advance past this real entry */
    945 		inp += reclen;
    946 		if (cookie)
    947 			off = *cookie++; /* each entry points to itself */
    948 		else
    949 			off += reclen;
    950 		/* advance output past Linux-shaped entry */
    951 		outp += linux_reclen;
    952 		resid -= linux_reclen;
    953 		if (oldcall)
    954 			break;
    955 	}
    956 
    957 	/* if we squished out the whole block, try again */
    958 	if (outp == (caddr_t)SCARG(uap, dent))
    959 		goto again;
    960 	fp->f_offset = off;	/* update the vnode offset */
    961 
    962 	if (oldcall)
    963 		nbytes = resid + linux_reclen;
    964 
    965 eof:
    966 	*retval = nbytes - resid;
    967 out:
    968 	VOP_UNLOCK(vp, 0);
    969 	if (cookiebuf)
    970 		free(cookiebuf, M_TEMP);
    971 	free(tbuf, M_TEMP);
    972 out1:
    973 	FILE_UNUSE(fp, l);
    974 	return error;
    975 }
    976 
    977 /*
    978  * Even when just using registers to pass arguments to syscalls you can
    979  * have 5 of them on the i386. So this newer version of select() does
    980  * this.
    981  */
    982 int
    983 linux_sys_select(l, v, retval)
    984 	struct lwp *l;
    985 	void *v;
    986 	register_t *retval;
    987 {
    988 	struct linux_sys_select_args /* {
    989 		syscallarg(int) nfds;
    990 		syscallarg(fd_set *) readfds;
    991 		syscallarg(fd_set *) writefds;
    992 		syscallarg(fd_set *) exceptfds;
    993 		syscallarg(struct timeval *) timeout;
    994 	} */ *uap = v;
    995 
    996 	return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
    997 	    SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
    998 }
    999 
   1000 /*
   1001  * Common code for the old and new versions of select(). A couple of
   1002  * things are important:
   1003  * 1) return the amount of time left in the 'timeout' parameter
   1004  * 2) select never returns ERESTART on Linux, always return EINTR
   1005  */
   1006 int
   1007 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
   1008 	struct lwp *l;
   1009 	register_t *retval;
   1010 	int nfds;
   1011 	fd_set *readfds, *writefds, *exceptfds;
   1012 	struct timeval *timeout;
   1013 {
   1014 	struct sys_select_args bsa;
   1015 	struct proc *p = l->l_proc;
   1016 	struct timeval tv0, tv1, utv, *tvp;
   1017 	caddr_t sg;
   1018 	int error;
   1019 
   1020 	SCARG(&bsa, nd) = nfds;
   1021 	SCARG(&bsa, in) = readfds;
   1022 	SCARG(&bsa, ou) = writefds;
   1023 	SCARG(&bsa, ex) = exceptfds;
   1024 	SCARG(&bsa, tv) = timeout;
   1025 
   1026 	/*
   1027 	 * Store current time for computation of the amount of
   1028 	 * time left.
   1029 	 */
   1030 	if (timeout) {
   1031 		if ((error = copyin(timeout, &utv, sizeof(utv))))
   1032 			return error;
   1033 		if (itimerfix(&utv)) {
   1034 			/*
   1035 			 * The timeval was invalid.  Convert it to something
   1036 			 * valid that will act as it does under Linux.
   1037 			 */
   1038 			sg = stackgap_init(p, 0);
   1039 			tvp = stackgap_alloc(p, &sg, sizeof(utv));
   1040 			utv.tv_sec += utv.tv_usec / 1000000;
   1041 			utv.tv_usec %= 1000000;
   1042 			if (utv.tv_usec < 0) {
   1043 				utv.tv_sec -= 1;
   1044 				utv.tv_usec += 1000000;
   1045 			}
   1046 			if (utv.tv_sec < 0)
   1047 				timerclear(&utv);
   1048 			if ((error = copyout(&utv, tvp, sizeof(utv))))
   1049 				return error;
   1050 			SCARG(&bsa, tv) = tvp;
   1051 		}
   1052 		microtime(&tv0);
   1053 	}
   1054 
   1055 	error = sys_select(l, &bsa, retval);
   1056 	if (error) {
   1057 		/*
   1058 		 * See fs/select.c in the Linux kernel.  Without this,
   1059 		 * Maelstrom doesn't work.
   1060 		 */
   1061 		if (error == ERESTART)
   1062 			error = EINTR;
   1063 		return error;
   1064 	}
   1065 
   1066 	if (timeout) {
   1067 		if (*retval) {
   1068 			/*
   1069 			 * Compute how much time was left of the timeout,
   1070 			 * by subtracting the current time and the time
   1071 			 * before we started the call, and subtracting
   1072 			 * that result from the user-supplied value.
   1073 			 */
   1074 			microtime(&tv1);
   1075 			timersub(&tv1, &tv0, &tv1);
   1076 			timersub(&utv, &tv1, &utv);
   1077 			if (utv.tv_sec < 0)
   1078 				timerclear(&utv);
   1079 		} else
   1080 			timerclear(&utv);
   1081 		if ((error = copyout(&utv, timeout, sizeof(utv))))
   1082 			return error;
   1083 	}
   1084 
   1085 	return 0;
   1086 }
   1087 
   1088 /*
   1089  * Get the process group of a certain process. Look it up
   1090  * and return the value.
   1091  */
   1092 int
   1093 linux_sys_getpgid(l, v, retval)
   1094 	struct lwp *l;
   1095 	void *v;
   1096 	register_t *retval;
   1097 {
   1098 	struct linux_sys_getpgid_args /* {
   1099 		syscallarg(int) pid;
   1100 	} */ *uap = v;
   1101 	struct proc *p = l->l_proc;
   1102 	struct proc *targp;
   1103 
   1104 	if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
   1105 		if ((targp = pfind(SCARG(uap, pid))) == 0)
   1106 			return ESRCH;
   1107 	}
   1108 	else
   1109 		targp = p;
   1110 
   1111 	retval[0] = targp->p_pgid;
   1112 	return 0;
   1113 }
   1114 
   1115 /*
   1116  * Set the 'personality' (emulation mode) for the current process. Only
   1117  * accept the Linux personality here (0). This call is needed because
   1118  * the Linux ELF crt0 issues it in an ugly kludge to make sure that
   1119  * ELF binaries run in Linux mode, not SVR4 mode.
   1120  */
   1121 int
   1122 linux_sys_personality(struct lwp *l, void *v, register_t *retval)
   1123 {
   1124 	struct linux_sys_personality_args /* {
   1125 		syscallarg(int) per;
   1126 	} */ *uap = v;
   1127 
   1128 	if (SCARG(uap, per) != 0)
   1129 		return EINVAL;
   1130 	retval[0] = 0;
   1131 	return 0;
   1132 }
   1133 #endif /* !COMPAT_LINUX32 */
   1134 
   1135 #if defined(__i386__) || defined(__m68k__) || defined(COMPAT_LINUX32)
   1136 /*
   1137  * The calls are here because of type conversions.
   1138  */
   1139 int
   1140 linux_sys_setreuid16(l, v, retval)
   1141 	struct lwp *l;
   1142 	void *v;
   1143 	register_t *retval;
   1144 {
   1145 	struct linux_sys_setreuid16_args /* {
   1146 		syscallarg(int) ruid;
   1147 		syscallarg(int) euid;
   1148 	} */ *uap = v;
   1149 	struct sys_setreuid_args bsa;
   1150 
   1151 	SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
   1152 		(uid_t)-1 : SCARG(uap, ruid);
   1153 	SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
   1154 		(uid_t)-1 : SCARG(uap, euid);
   1155 
   1156 	return sys_setreuid(l, &bsa, retval);
   1157 }
   1158 
   1159 int
   1160 linux_sys_setregid16(l, v, retval)
   1161 	struct lwp *l;
   1162 	void *v;
   1163 	register_t *retval;
   1164 {
   1165 	struct linux_sys_setregid16_args /* {
   1166 		syscallarg(int) rgid;
   1167 		syscallarg(int) egid;
   1168 	} */ *uap = v;
   1169 	struct sys_setregid_args bsa;
   1170 
   1171 	SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
   1172 		(uid_t)-1 : SCARG(uap, rgid);
   1173 	SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
   1174 		(uid_t)-1 : SCARG(uap, egid);
   1175 
   1176 	return sys_setregid(l, &bsa, retval);
   1177 }
   1178 
   1179 int
   1180 linux_sys_setresuid16(l, v, retval)
   1181 	struct lwp *l;
   1182 	void *v;
   1183 	register_t *retval;
   1184 {
   1185 	struct linux_sys_setresuid16_args /* {
   1186 		syscallarg(uid_t) ruid;
   1187 		syscallarg(uid_t) euid;
   1188 		syscallarg(uid_t) suid;
   1189 	} */ *uap = v;
   1190 	struct linux_sys_setresuid16_args lsa;
   1191 
   1192 	SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
   1193 		(uid_t)-1 : SCARG(uap, ruid);
   1194 	SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
   1195 		(uid_t)-1 : SCARG(uap, euid);
   1196 	SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
   1197 		(uid_t)-1 : SCARG(uap, suid);
   1198 
   1199 	return linux_sys_setresuid(l, &lsa, retval);
   1200 }
   1201 
   1202 int
   1203 linux_sys_setresgid16(l, v, retval)
   1204 	struct lwp *l;
   1205 	void *v;
   1206 	register_t *retval;
   1207 {
   1208 	struct linux_sys_setresgid16_args /* {
   1209 		syscallarg(gid_t) rgid;
   1210 		syscallarg(gid_t) egid;
   1211 		syscallarg(gid_t) sgid;
   1212 	} */ *uap = v;
   1213 	struct linux_sys_setresgid16_args lsa;
   1214 
   1215 	SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
   1216 		(gid_t)-1 : SCARG(uap, rgid);
   1217 	SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
   1218 		(gid_t)-1 : SCARG(uap, egid);
   1219 	SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
   1220 		(gid_t)-1 : SCARG(uap, sgid);
   1221 
   1222 	return linux_sys_setresgid(l, &lsa, retval);
   1223 }
   1224 
   1225 int
   1226 linux_sys_getgroups16(l, v, retval)
   1227 	struct lwp *l;
   1228 	void *v;
   1229 	register_t *retval;
   1230 {
   1231 	struct linux_sys_getgroups16_args /* {
   1232 		syscallarg(int) gidsetsize;
   1233 		syscallarg(linux_gid_t *) gidset;
   1234 	} */ *uap = v;
   1235 	struct proc *p = l->l_proc;
   1236 	caddr_t sg;
   1237 	int n, error, i;
   1238 	struct sys_getgroups_args bsa;
   1239 	gid_t *bset, *kbset;
   1240 	linux_gid_t *lset;
   1241 	kauth_cred_t pc = l->l_cred;
   1242 
   1243 	n = SCARG(uap, gidsetsize);
   1244 	if (n < 0)
   1245 		return EINVAL;
   1246 	error = 0;
   1247 	bset = kbset = NULL;
   1248 	lset = NULL;
   1249 	if (n > 0) {
   1250 		n = min(kauth_cred_ngroups(pc), n);
   1251 		sg = stackgap_init(p, 0);
   1252 		bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
   1253 		kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
   1254 		lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
   1255 		if (bset == NULL || kbset == NULL || lset == NULL)
   1256 		{
   1257 			error = ENOMEM;
   1258 			goto out;
   1259 		}
   1260 		SCARG(&bsa, gidsetsize) = n;
   1261 		SCARG(&bsa, gidset) = bset;
   1262 		error = sys_getgroups(l, &bsa, retval);
   1263 		if (error != 0)
   1264 			goto out;
   1265 		error = copyin(bset, kbset, n * sizeof (gid_t));
   1266 		if (error != 0)
   1267 			goto out;
   1268 		for (i = 0; i < n; i++)
   1269 			lset[i] = (linux_gid_t)kbset[i];
   1270 		error = copyout(lset, SCARG(uap, gidset),
   1271 		    n * sizeof (linux_gid_t));
   1272 	} else
   1273 		*retval = kauth_cred_ngroups(pc);
   1274 out:
   1275 	if (kbset != NULL)
   1276 		free(kbset, M_TEMP);
   1277 	if (lset != NULL)
   1278 		free(lset, M_TEMP);
   1279 	return error;
   1280 }
   1281 
   1282 int
   1283 linux_sys_setgroups16(l, v, retval)
   1284 	struct lwp *l;
   1285 	void *v;
   1286 	register_t *retval;
   1287 {
   1288 	struct linux_sys_setgroups16_args /* {
   1289 		syscallarg(int) gidsetsize;
   1290 		syscallarg(linux_gid_t *) gidset;
   1291 	} */ *uap = v;
   1292 	struct proc *p = l->l_proc;
   1293 	caddr_t sg;
   1294 	int n;
   1295 	int error, i;
   1296 	struct sys_setgroups_args bsa;
   1297 	gid_t *bset, *kbset;
   1298 	linux_gid_t *lset;
   1299 
   1300 	n = SCARG(uap, gidsetsize);
   1301 	if (n < 0 || n > NGROUPS)
   1302 		return EINVAL;
   1303 	sg = stackgap_init(p, 0);
   1304 	bset = stackgap_alloc(p, &sg, n * sizeof (gid_t));
   1305 	lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK);
   1306 	kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK);
   1307 	if (bset == NULL || kbset == NULL || lset == NULL)
   1308 	{
   1309 		error = ENOMEM;
   1310 		goto out;
   1311 	}
   1312 	error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t));
   1313 	if (error != 0)
   1314 		goto out;
   1315 	for (i = 0; i < n; i++)
   1316 		kbset[i] = (gid_t)lset[i];
   1317 	error = copyout(kbset, bset, n * sizeof (gid_t));
   1318 	if (error != 0)
   1319 		goto out;
   1320 	SCARG(&bsa, gidsetsize) = n;
   1321 	SCARG(&bsa, gidset) = bset;
   1322 	error = sys_setgroups(l, &bsa, retval);
   1323 
   1324 out:
   1325 	if (lset != NULL)
   1326 		free(lset, M_TEMP);
   1327 	if (kbset != NULL)
   1328 		free(kbset, M_TEMP);
   1329 
   1330 	return error;
   1331 }
   1332 
   1333 #endif /* __i386__ || __m68k__ || COMPAT_LINUX32 */
   1334 
   1335 #ifndef COMPAT_LINUX32
   1336 /*
   1337  * We have nonexistent fsuid equal to uid.
   1338  * If modification is requested, refuse.
   1339  */
   1340 int
   1341 linux_sys_setfsuid(l, v, retval)
   1342 	 struct lwp *l;
   1343 	 void *v;
   1344 	 register_t *retval;
   1345 {
   1346 	 struct linux_sys_setfsuid_args /* {
   1347 		 syscallarg(uid_t) uid;
   1348 	 } */ *uap = v;
   1349 	 uid_t uid;
   1350 
   1351 	 uid = SCARG(uap, uid);
   1352 	 if (kauth_cred_getuid(l->l_cred) != uid)
   1353 		 return sys_nosys(l, v, retval);
   1354 	 else
   1355 		 return (0);
   1356 }
   1357 
   1358 /* XXX XXX XXX */
   1359 # ifndef alpha
   1360 int
   1361 linux_sys_getfsuid(l, v, retval)
   1362 	struct lwp *l;
   1363 	void *v;
   1364 	register_t *retval;
   1365 {
   1366 	return sys_getuid(l, v, retval);
   1367 }
   1368 # endif
   1369 
   1370 int
   1371 linux_sys_setresuid(struct lwp *l, void *v, register_t *retval)
   1372 {
   1373 	struct linux_sys_setresuid_args /* {
   1374 		syscallarg(uid_t) ruid;
   1375 		syscallarg(uid_t) euid;
   1376 		syscallarg(uid_t) suid;
   1377 	} */ *uap = v;
   1378 
   1379 	/*
   1380 	 * Note: These checks are a little different than the NetBSD
   1381 	 * setreuid(2) call performs.  This precisely follows the
   1382 	 * behavior of the Linux kernel.
   1383 	 */
   1384 
   1385 	return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
   1386 			    SCARG(uap, suid),
   1387 			    ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
   1388 			    ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
   1389 			    ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
   1390 }
   1391 
   1392 int
   1393 linux_sys_getresuid(struct lwp *l, void *v, register_t *retval)
   1394 {
   1395 	struct linux_sys_getresuid_args /* {
   1396 		syscallarg(uid_t *) ruid;
   1397 		syscallarg(uid_t *) euid;
   1398 		syscallarg(uid_t *) suid;
   1399 	} */ *uap = v;
   1400 	kauth_cred_t pc = l->l_cred;
   1401 	int error;
   1402 	uid_t uid;
   1403 
   1404 	/*
   1405 	 * Linux copies these values out to userspace like so:
   1406 	 *
   1407 	 *	1. Copy out ruid.
   1408 	 *	2. If that succeeds, copy out euid.
   1409 	 *	3. If both of those succeed, copy out suid.
   1410 	 */
   1411 	uid = kauth_cred_getuid(pc);
   1412 	if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
   1413 		return (error);
   1414 
   1415 	uid = kauth_cred_geteuid(pc);
   1416 	if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
   1417 		return (error);
   1418 
   1419 	uid = kauth_cred_getsvuid(pc);
   1420 
   1421 	return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
   1422 }
   1423 
   1424 int
   1425 linux_sys_ptrace(l, v, retval)
   1426 	struct lwp *l;
   1427 	void *v;
   1428 	register_t *retval;
   1429 {
   1430 #if defined(PTRACE) || defined(_LKM)
   1431 	struct linux_sys_ptrace_args /* {
   1432 		i386, m68k, powerpc: T=int
   1433 		alpha, amd64: T=long
   1434 		syscallarg(T) request;
   1435 		syscallarg(T) pid;
   1436 		syscallarg(T) addr;
   1437 		syscallarg(T) data;
   1438 	} */ *uap = v;
   1439 	const int *ptr;
   1440 	int request;
   1441 	int error;
   1442 #ifdef _LKM
   1443 #define sys_ptrace (*sysent[SYS_ptrace].sy_call)
   1444 #endif
   1445 
   1446 	ptr = linux_ptrace_request_map;
   1447 	request = SCARG(uap, request);
   1448 	while (*ptr != -1)
   1449 		if (*ptr++ == request) {
   1450 			struct sys_ptrace_args pta;
   1451 
   1452 			SCARG(&pta, req) = *ptr;
   1453 			SCARG(&pta, pid) = SCARG(uap, pid);
   1454 			SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr);
   1455 			SCARG(&pta, data) = SCARG(uap, data);
   1456 
   1457 			/*
   1458 			 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
   1459 			 * to continue where the process left off previously.
   1460 			 * The same thing is achieved by addr == (caddr_t) 1
   1461 			 * on NetBSD, so rewrite 'addr' appropriately.
   1462 			 */
   1463 			if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
   1464 				SCARG(&pta, addr) = (caddr_t) 1;
   1465 
   1466 			error = sys_ptrace(l, &pta, retval);
   1467 			if (error)
   1468 				return error;
   1469 			switch (request) {
   1470 			case LINUX_PTRACE_PEEKTEXT:
   1471 			case LINUX_PTRACE_PEEKDATA:
   1472 				error = copyout (retval,
   1473 				    (caddr_t)SCARG(uap, data),
   1474 				    sizeof *retval);
   1475 				*retval = SCARG(uap, data);
   1476 				break;
   1477 			default:
   1478 				break;
   1479 			}
   1480 			return error;
   1481 		}
   1482 		else
   1483 			ptr++;
   1484 
   1485 	return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
   1486 #else
   1487 	return ENOSYS;
   1488 #endif /* PTRACE || _LKM */
   1489 }
   1490 
   1491 int
   1492 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
   1493 {
   1494 	struct linux_sys_reboot_args /* {
   1495 		syscallarg(int) magic1;
   1496 		syscallarg(int) magic2;
   1497 		syscallarg(int) cmd;
   1498 		syscallarg(void *) arg;
   1499 	} */ *uap = v;
   1500 	struct sys_reboot_args /* {
   1501 		syscallarg(int) opt;
   1502 		syscallarg(char *) bootstr;
   1503 	} */ sra;
   1504 	int error;
   1505 
   1506 	if ((error = kauth_authorize_system(l->l_cred,
   1507 	    KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
   1508 		return(error);
   1509 
   1510 	if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
   1511 		return(EINVAL);
   1512 	if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
   1513 	    SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
   1514 	    SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
   1515 		return(EINVAL);
   1516 
   1517 	switch (SCARG(uap, cmd)) {
   1518 	case LINUX_REBOOT_CMD_RESTART:
   1519 		SCARG(&sra, opt) = RB_AUTOBOOT;
   1520 		break;
   1521 	case LINUX_REBOOT_CMD_HALT:
   1522 		SCARG(&sra, opt) = RB_HALT;
   1523 		break;
   1524 	case LINUX_REBOOT_CMD_POWER_OFF:
   1525 		SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
   1526 		break;
   1527 	case LINUX_REBOOT_CMD_RESTART2:
   1528 		/* Reboot with an argument. */
   1529 		SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
   1530 		SCARG(&sra, bootstr) = SCARG(uap, arg);
   1531 		break;
   1532 	case LINUX_REBOOT_CMD_CAD_ON:
   1533 		return(EINVAL);	/* We don't implement ctrl-alt-delete */
   1534 	case LINUX_REBOOT_CMD_CAD_OFF:
   1535 		return(0);
   1536 	default:
   1537 		return(EINVAL);
   1538 	}
   1539 
   1540 	return(sys_reboot(l, &sra, retval));
   1541 }
   1542 
   1543 /*
   1544  * Copy of compat_12_sys_swapon().
   1545  */
   1546 int
   1547 linux_sys_swapon(l, v, retval)
   1548 	struct lwp *l;
   1549 	void *v;
   1550 	register_t *retval;
   1551 {
   1552 	struct sys_swapctl_args ua;
   1553 	struct linux_sys_swapon_args /* {
   1554 		syscallarg(const char *) name;
   1555 	} */ *uap = v;
   1556 
   1557 	SCARG(&ua, cmd) = SWAP_ON;
   1558 	SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
   1559 	SCARG(&ua, misc) = 0;	/* priority */
   1560 	return (sys_swapctl(l, &ua, retval));
   1561 }
   1562 
   1563 /*
   1564  * Stop swapping to the file or block device specified by path.
   1565  */
   1566 int
   1567 linux_sys_swapoff(l, v, retval)
   1568 	struct lwp *l;
   1569 	void *v;
   1570 	register_t *retval;
   1571 {
   1572 	struct sys_swapctl_args ua;
   1573 	struct linux_sys_swapoff_args /* {
   1574 		syscallarg(const char *) path;
   1575 	} */ *uap = v;
   1576 
   1577 	SCARG(&ua, cmd) = SWAP_OFF;
   1578 	SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
   1579 	return (sys_swapctl(l, &ua, retval));
   1580 }
   1581 
   1582 /*
   1583  * Copy of compat_09_sys_setdomainname()
   1584  */
   1585 /* ARGSUSED */
   1586 int
   1587 linux_sys_setdomainname(struct lwp *l, void *v, register_t *retval)
   1588 {
   1589 	struct linux_sys_setdomainname_args /* {
   1590 		syscallarg(char *) domainname;
   1591 		syscallarg(int) len;
   1592 	} */ *uap = v;
   1593 	int name[2];
   1594 
   1595 	name[0] = CTL_KERN;
   1596 	name[1] = KERN_DOMAINNAME;
   1597 	return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
   1598 			    SCARG(uap, len), l));
   1599 }
   1600 
   1601 /*
   1602  * sysinfo()
   1603  */
   1604 /* ARGSUSED */
   1605 int
   1606 linux_sys_sysinfo(struct lwp *l, void *v, register_t *retval)
   1607 {
   1608 	struct linux_sys_sysinfo_args /* {
   1609 		syscallarg(struct linux_sysinfo *) arg;
   1610 	} */ *uap = v;
   1611 	struct linux_sysinfo si;
   1612 	struct loadavg *la;
   1613 
   1614 	si.uptime = time_uptime;
   1615 	la = &averunnable;
   1616 	si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
   1617 	si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
   1618 	si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
   1619 	si.totalram = ctob((u_long)physmem);
   1620 	si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
   1621 	si.sharedram = 0;	/* XXX */
   1622 	si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
   1623 	si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
   1624 	si.freeswap =
   1625 	    (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
   1626 	si.procs = nprocs;
   1627 
   1628 	/* The following are only present in newer Linux kernels. */
   1629 	si.totalbig = 0;
   1630 	si.freebig = 0;
   1631 	si.mem_unit = 1;
   1632 
   1633 	return (copyout(&si, SCARG(uap, arg), sizeof si));
   1634 }
   1635 
   1636 int
   1637 linux_sys_getrlimit(l, v, retval)
   1638 	struct lwp *l;
   1639 	void *v;
   1640 	register_t *retval;
   1641 {
   1642 	struct linux_sys_getrlimit_args /* {
   1643 		syscallarg(int) which;
   1644 # ifdef LINUX_LARGEFILE64
   1645 		syscallarg(struct rlimit *) rlp;
   1646 # else
   1647 		syscallarg(struct orlimit *) rlp;
   1648 # endif
   1649 	} */ *uap = v;
   1650 	struct proc *p = l->l_proc;
   1651 	caddr_t sg = stackgap_init(p, 0);
   1652 	struct sys_getrlimit_args ap;
   1653 	struct rlimit rl;
   1654 # ifdef LINUX_LARGEFILE64
   1655 	struct rlimit orl;
   1656 # else
   1657 	struct orlimit orl;
   1658 # endif
   1659 	int error;
   1660 
   1661 	SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
   1662 	if ((error = SCARG(&ap, which)) < 0)
   1663 		return -error;
   1664 	SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
   1665 	if ((error = sys_getrlimit(l, &ap, retval)) != 0)
   1666 		return error;
   1667 	if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0)
   1668 		return error;
   1669 	bsd_to_linux_rlimit(&orl, &rl);
   1670 
   1671 	return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
   1672 }
   1673 
   1674 int
   1675 linux_sys_setrlimit(l, v, retval)
   1676 	struct lwp *l;
   1677 	void *v;
   1678 	register_t *retval;
   1679 {
   1680 	struct linux_sys_setrlimit_args /* {
   1681 		syscallarg(int) which;
   1682 # ifdef LINUX_LARGEFILE64
   1683 		syscallarg(struct rlimit *) rlp;
   1684 # else
   1685 		syscallarg(struct orlimit *) rlp;
   1686 # endif
   1687 	} */ *uap = v;
   1688 	struct proc *p = l->l_proc;
   1689 	caddr_t sg = stackgap_init(p, 0);
   1690 	struct sys_getrlimit_args ap;
   1691 	struct rlimit rl;
   1692 # ifdef LINUX_LARGEFILE64
   1693 	struct rlimit orl;
   1694 # else
   1695 	struct orlimit orl;
   1696 # endif
   1697 	int error;
   1698 
   1699 	SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which));
   1700 	SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl);
   1701 	if ((error = SCARG(&ap, which)) < 0)
   1702 		return -error;
   1703 	if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
   1704 		return error;
   1705 	linux_to_bsd_rlimit(&rl, &orl);
   1706 	if ((error = copyout(&rl, SCARG(&ap, rlp), sizeof(rl))) != 0)
   1707 		return error;
   1708 	return sys_setrlimit(l, &ap, retval);
   1709 }
   1710 
   1711 # if !defined(__mips__) && !defined(__amd64__)
   1712 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
   1713 int
   1714 linux_sys_ugetrlimit(l, v, retval)
   1715 	struct lwp *l;
   1716 	void *v;
   1717 	register_t *retval;
   1718 {
   1719 	return linux_sys_getrlimit(l, v, retval);
   1720 }
   1721 # endif
   1722 
   1723 /*
   1724  * This gets called for unsupported syscalls. The difference to sys_nosys()
   1725  * is that process does not get SIGSYS, the call just returns with ENOSYS.
   1726  * This is the way Linux does it and glibc depends on this behaviour.
   1727  */
   1728 int
   1729 linux_sys_nosys(struct lwp *l, void *v,
   1730     register_t *retval)
   1731 {
   1732 	return (ENOSYS);
   1733 }
   1734 
   1735 int
   1736 linux_sys_getpriority(l, v, retval)
   1737         struct lwp *l;
   1738         void *v;
   1739         register_t *retval;
   1740 {
   1741         struct linux_sys_getpriority_args /* {
   1742                 syscallarg(int) which;
   1743                 syscallarg(int) who;
   1744         } */ *uap = v;
   1745         struct sys_getpriority_args bsa;
   1746         int error;
   1747 
   1748         SCARG(&bsa, which) = SCARG(uap, which);
   1749         SCARG(&bsa, who) = SCARG(uap, who);
   1750 
   1751         if ((error = sys_getpriority(l, &bsa, retval)))
   1752                 return error;
   1753 
   1754         *retval = NZERO - *retval;
   1755 
   1756         return 0;
   1757 }
   1758 
   1759 #endif /* !COMPAT_LINUX32 */
   1760