linux_misc.c revision 1.189 1 /* $NetBSD: linux_misc.c,v 1.189 2007/12/08 18:36:08 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Linux compatibility module. Try to deal with various Linux system calls.
42 */
43
44 /*
45 * These functions have been moved to multiarch to allow
46 * selection of which machines include them to be
47 * determined by the individual files.linux_<arch> files.
48 *
49 * Function in multiarch:
50 * linux_sys_break : linux_break.c
51 * linux_sys_alarm : linux_misc_notalpha.c
52 * linux_sys_getresgid : linux_misc_notalpha.c
53 * linux_sys_nice : linux_misc_notalpha.c
54 * linux_sys_readdir : linux_misc_notalpha.c
55 * linux_sys_setresgid : linux_misc_notalpha.c
56 * linux_sys_time : linux_misc_notalpha.c
57 * linux_sys_utime : linux_misc_notalpha.c
58 * linux_sys_waitpid : linux_misc_notalpha.c
59 * linux_sys_old_mmap : linux_oldmmap.c
60 * linux_sys_oldolduname : linux_oldolduname.c
61 * linux_sys_oldselect : linux_oldselect.c
62 * linux_sys_olduname : linux_olduname.c
63 * linux_sys_pipe : linux_pipe.c
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.189 2007/12/08 18:36:08 dsl Exp $");
68
69 #if defined(_KERNEL_OPT)
70 #include "opt_ptrace.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/namei.h>
76 #include <sys/proc.h>
77 #include <sys/dirent.h>
78 #include <sys/file.h>
79 #include <sys/stat.h>
80 #include <sys/filedesc.h>
81 #include <sys/ioctl.h>
82 #include <sys/kernel.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/mman.h>
86 #include <sys/mount.h>
87 #include <sys/prot.h>
88 #include <sys/reboot.h>
89 #include <sys/resource.h>
90 #include <sys/resourcevar.h>
91 #include <sys/select.h>
92 #include <sys/signal.h>
93 #include <sys/signalvar.h>
94 #include <sys/socket.h>
95 #include <sys/time.h>
96 #include <sys/times.h>
97 #include <sys/vnode.h>
98 #include <sys/uio.h>
99 #include <sys/wait.h>
100 #include <sys/utsname.h>
101 #include <sys/unistd.h>
102 #include <sys/vfs_syscalls.h>
103 #include <sys/swap.h> /* for SWAP_ON */
104 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
105 #include <sys/kauth.h>
106
107 #include <sys/ptrace.h>
108 #include <machine/ptrace.h>
109
110 #include <sys/syscall.h>
111 #include <sys/syscallargs.h>
112
113 #include <compat/linux/common/linux_machdep.h>
114 #include <compat/linux/common/linux_types.h>
115 #include <compat/linux/common/linux_signal.h>
116 #include <compat/linux/common/linux_ipc.h>
117 #include <compat/linux/common/linux_sem.h>
118
119 #include <compat/linux/linux_syscallargs.h>
120
121 #include <compat/linux/common/linux_fcntl.h>
122 #include <compat/linux/common/linux_mmap.h>
123 #include <compat/linux/common/linux_dirent.h>
124 #include <compat/linux/common/linux_util.h>
125 #include <compat/linux/common/linux_misc.h>
126 #ifndef COMPAT_LINUX32
127 #include <compat/linux/common/linux_statfs.h>
128 #include <compat/linux/common/linux_limit.h>
129 #endif
130 #include <compat/linux/common/linux_ptrace.h>
131 #include <compat/linux/common/linux_reboot.h>
132 #include <compat/linux/common/linux_emuldata.h>
133
134 #ifndef COMPAT_LINUX32
135 const int linux_ptrace_request_map[] = {
136 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
137 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
138 LINUX_PTRACE_PEEKDATA, PT_READ_D,
139 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
140 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
141 LINUX_PTRACE_CONT, PT_CONTINUE,
142 LINUX_PTRACE_KILL, PT_KILL,
143 LINUX_PTRACE_ATTACH, PT_ATTACH,
144 LINUX_PTRACE_DETACH, PT_DETACH,
145 # ifdef PT_STEP
146 LINUX_PTRACE_SINGLESTEP, PT_STEP,
147 # endif
148 LINUX_PTRACE_SYSCALL, PT_SYSCALL,
149 -1
150 };
151
152 const struct linux_mnttypes linux_fstypes[] = {
153 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
155 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
157 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
158 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
159 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
160 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
161 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
162 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
163 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
164 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
165 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
166 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
167 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
168 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
169 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
170 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
171 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
172 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
173 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
174 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
175 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
176 { MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC }
177 };
178 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
179
180 # ifdef DEBUG_LINUX
181 #define DPRINTF(a) uprintf a
182 # else
183 #define DPRINTF(a)
184 # endif
185
186 /* Local linux_misc.c functions: */
187 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
188 const struct linux_sys_mmap_args *);
189 static int linux_mmap(struct lwp *, struct linux_sys_mmap_args *,
190 register_t *, off_t);
191
192
193 /*
194 * The information on a terminated (or stopped) process needs
195 * to be converted in order for Linux binaries to get a valid signal
196 * number out of it.
197 */
198 int
199 bsd_to_linux_wstat(int st)
200 {
201
202 int sig;
203
204 if (WIFSIGNALED(st)) {
205 sig = WTERMSIG(st);
206 if (sig >= 0 && sig < NSIG)
207 st= (st & ~0177) | native_to_linux_signo[sig];
208 } else if (WIFSTOPPED(st)) {
209 sig = WSTOPSIG(st);
210 if (sig >= 0 && sig < NSIG)
211 st = (st & ~0xff00) |
212 (native_to_linux_signo[sig] << 8);
213 }
214 return st;
215 }
216
217 /*
218 * wait4(2). Passed on to the NetBSD call, surrounded by code to
219 * reserve some space for a NetBSD-style wait status, and converting
220 * it to what Linux wants.
221 */
222 int
223 linux_sys_wait4(struct lwp *l, void *v, register_t *retval)
224 {
225 struct linux_sys_wait4_args /* {
226 syscallarg(int) pid;
227 syscallarg(int *) status;
228 syscallarg(int) options;
229 syscallarg(struct rusage *) rusage;
230 } */ *uap = v;
231 int error, status, options, linux_options, was_zombie;
232 struct rusage ru;
233
234 linux_options = SCARG(uap, options);
235 options = WOPTSCHECKED;
236 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
237 return (EINVAL);
238
239 if (linux_options & LINUX_WAIT4_WNOHANG)
240 options |= WNOHANG;
241 if (linux_options & LINUX_WAIT4_WUNTRACED)
242 options |= WUNTRACED;
243 if (linux_options & LINUX_WAIT4_WALL)
244 options |= WALLSIG;
245 if (linux_options & LINUX_WAIT4_WCLONE)
246 options |= WALTSIG;
247 # ifdef DIAGNOSTIC
248 if (linux_options & LINUX_WAIT4_WNOTHREAD)
249 printf("WARNING: %s: linux process %d.%d called "
250 "waitpid with __WNOTHREAD set!",
251 __FILE__, l->l_proc->p_pid, l->l_lid);
252
253 # endif
254
255 error = do_sys_wait(l, &SCARG(uap, pid), &status, options,
256 SCARG(uap, rusage) != NULL ? &ru : NULL, &was_zombie);
257
258 retval[0] = SCARG(uap, pid);
259 if (SCARG(uap, pid) == 0)
260 return error;
261
262 sigdelset(&l->l_proc->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
263
264 if (SCARG(uap, rusage) != NULL)
265 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
266
267 if (error == 0 && SCARG(uap, status) != NULL) {
268 status = bsd_to_linux_wstat(status);
269 error = copyout(&status, SCARG(uap, status), sizeof status);
270 }
271
272 return error;
273 }
274
275 /*
276 * Linux brk(2). The check if the new address is >= the old one is
277 * done in the kernel in Linux. NetBSD does it in the library.
278 */
279 int
280 linux_sys_brk(struct lwp *l, void *v, register_t *retval)
281 {
282 struct linux_sys_brk_args /* {
283 syscallarg(char *) nsize;
284 } */ *uap = v;
285 struct proc *p = l->l_proc;
286 char *nbrk = SCARG(uap, nsize);
287 struct sys_obreak_args oba;
288 struct vmspace *vm = p->p_vmspace;
289 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
290
291 SCARG(&oba, nsize) = nbrk;
292
293 if ((void *) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
294 ed->s->p_break = (char*)nbrk;
295 else
296 nbrk = ed->s->p_break;
297
298 retval[0] = (register_t)nbrk;
299
300 return 0;
301 }
302
303 /*
304 * Implement the fs stat functions. Straightforward.
305 */
306 int
307 linux_sys_statfs(struct lwp *l, void *v, register_t *retval)
308 {
309 struct linux_sys_statfs_args /* {
310 syscallarg(const char *) path;
311 syscallarg(struct linux_statfs *) sp;
312 } */ *uap = v;
313 struct statvfs *sb;
314 struct linux_statfs ltmp;
315 int error;
316
317 sb = STATVFSBUF_GET();
318 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
319 if (error == 0) {
320 bsd_to_linux_statfs(sb, <mp);
321 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
322 }
323 STATVFSBUF_PUT(sb);
324
325 return error;
326 }
327
328 int
329 linux_sys_fstatfs(struct lwp *l, void *v, register_t *retval)
330 {
331 struct linux_sys_fstatfs_args /* {
332 syscallarg(int) fd;
333 syscallarg(struct linux_statfs *) sp;
334 } */ *uap = v;
335 struct statvfs *sb;
336 struct linux_statfs ltmp;
337 int error;
338
339 sb = STATVFSBUF_GET();
340 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
341 if (error == 0) {
342 bsd_to_linux_statfs(sb, <mp);
343 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
344 }
345 STATVFSBUF_PUT(sb);
346
347 return error;
348 }
349
350 /*
351 * uname(). Just copy the info from the various strings stored in the
352 * kernel, and put it in the Linux utsname structure. That structure
353 * is almost the same as the NetBSD one, only it has fields 65 characters
354 * long, and an extra domainname field.
355 */
356 int
357 linux_sys_uname(struct lwp *l, void *v, register_t *retval)
358 {
359 struct linux_sys_uname_args /* {
360 syscallarg(struct linux_utsname *) up;
361 } */ *uap = v;
362 struct linux_utsname luts;
363
364 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
365 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
366 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
367 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
368 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
369 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
370
371 return copyout(&luts, SCARG(uap, up), sizeof(luts));
372 }
373
374 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
375 /* Used indirectly on: arm, i386, m68k */
376
377 /*
378 * New type Linux mmap call.
379 * Only called directly on machines with >= 6 free regs.
380 */
381 int
382 linux_sys_mmap(struct lwp *l, void *v, register_t *retval)
383 {
384 struct linux_sys_mmap_args /* {
385 syscallarg(unsigned long) addr;
386 syscallarg(size_t) len;
387 syscallarg(int) prot;
388 syscallarg(int) flags;
389 syscallarg(int) fd;
390 syscallarg(linux_off_t) offset;
391 } */ *uap = v;
392
393 if (SCARG(uap, offset) & PAGE_MASK)
394 return EINVAL;
395
396 return linux_mmap(l, uap, retval, SCARG(uap, offset));
397 }
398
399 /*
400 * Guts of most architectures' mmap64() implementations. This shares
401 * its list of arguments with linux_sys_mmap().
402 *
403 * The difference in linux_sys_mmap2() is that "offset" is actually
404 * (offset / pagesize), not an absolute byte count. This translation
405 * to pagesize offsets is done inside glibc between the mmap64() call
406 * point, and the actual syscall.
407 */
408 int
409 linux_sys_mmap2(struct lwp *l, void *v, register_t *retval)
410 {
411 struct linux_sys_mmap2_args /* {
412 syscallarg(unsigned long) addr;
413 syscallarg(size_t) len;
414 syscallarg(int) prot;
415 syscallarg(int) flags;
416 syscallarg(int) fd;
417 syscallarg(linux_off_t) offset;
418 } */ *uap = v;
419
420 return linux_mmap(l, uap, retval,
421 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
422 }
423
424 /*
425 * Massage arguments and call system mmap(2).
426 */
427 static int
428 linux_mmap(struct lwp *l, struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
429 {
430 struct sys_mmap_args cma;
431 int error;
432 size_t mmoff=0;
433
434 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
435 /*
436 * Request for stack-like memory segment. On linux, this
437 * works by mmap()ping (small) segment, which is automatically
438 * extended when page fault happens below the currently
439 * allocated area. We emulate this by allocating (typically
440 * bigger) segment sized at current stack size limit, and
441 * offsetting the requested and returned address accordingly.
442 * Since physical pages are only allocated on-demand, this
443 * is effectively identical.
444 */
445 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
446
447 if (SCARG(uap, len) < ssl) {
448 /* Compute the address offset */
449 mmoff = round_page(ssl) - SCARG(uap, len);
450
451 if (SCARG(uap, addr))
452 SCARG(uap, addr) -= mmoff;
453
454 SCARG(uap, len) = (size_t) ssl;
455 }
456 }
457
458 linux_to_bsd_mmap_args(&cma, uap);
459 SCARG(&cma, pos) = offset;
460
461 error = sys_mmap(l, &cma, retval);
462 if (error)
463 return (error);
464
465 /* Shift the returned address for stack-like segment if necessary */
466 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff)
467 retval[0] += mmoff;
468
469 return (0);
470 }
471
472 static void
473 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
474 {
475 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
476
477 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
478 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
479 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
480 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
481 /* XXX XAX ERH: Any other flags here? There are more defined... */
482
483 SCARG(cma, addr) = (void *)SCARG(uap, addr);
484 SCARG(cma, len) = SCARG(uap, len);
485 SCARG(cma, prot) = SCARG(uap, prot);
486 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
487 SCARG(cma, prot) |= VM_PROT_READ;
488 SCARG(cma, flags) = flags;
489 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
490 SCARG(cma, pad) = 0;
491 }
492
493 #define LINUX_MREMAP_MAYMOVE 1
494 #define LINUX_MREMAP_FIXED 2
495
496 int
497 linux_sys_mremap(struct lwp *l, void *v, register_t *retval)
498 {
499 struct linux_sys_mremap_args /* {
500 syscallarg(void *) old_address;
501 syscallarg(size_t) old_size;
502 syscallarg(size_t) new_size;
503 syscallarg(u_long) flags;
504 } */ *uap = v;
505
506 struct proc *p;
507 struct vm_map *map;
508 vaddr_t oldva;
509 vaddr_t newva;
510 size_t oldsize;
511 size_t newsize;
512 int flags;
513 int uvmflags;
514 int error;
515
516 flags = SCARG(uap, flags);
517 oldva = (vaddr_t)SCARG(uap, old_address);
518 oldsize = round_page(SCARG(uap, old_size));
519 newsize = round_page(SCARG(uap, new_size));
520 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
521 error = EINVAL;
522 goto done;
523 }
524 if ((flags & LINUX_MREMAP_FIXED) != 0) {
525 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
526 error = EINVAL;
527 goto done;
528 }
529 #if 0 /* notyet */
530 newva = SCARG(uap, new_address);
531 uvmflags = MAP_FIXED;
532 #else /* notyet */
533 error = EOPNOTSUPP;
534 goto done;
535 #endif /* notyet */
536 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
537 uvmflags = 0;
538 } else {
539 newva = oldva;
540 uvmflags = MAP_FIXED;
541 }
542 p = l->l_proc;
543 map = &p->p_vmspace->vm_map;
544 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
545 uvmflags);
546
547 done:
548 *retval = (error != 0) ? 0 : (register_t)newva;
549 return error;
550 }
551
552 int
553 linux_sys_msync(struct lwp *l, void *v, register_t *retval)
554 {
555 struct linux_sys_msync_args /* {
556 syscallarg(void *) addr;
557 syscallarg(int) len;
558 syscallarg(int) fl;
559 } */ *uap = v;
560
561 struct sys___msync13_args bma;
562
563 /* flags are ignored */
564 SCARG(&bma, addr) = SCARG(uap, addr);
565 SCARG(&bma, len) = SCARG(uap, len);
566 SCARG(&bma, flags) = SCARG(uap, fl);
567
568 return sys___msync13(l, &bma, retval);
569 }
570
571 int
572 linux_sys_mprotect(struct lwp *l, void *v, register_t *retval)
573 {
574 struct linux_sys_mprotect_args /* {
575 syscallarg(const void *) start;
576 syscallarg(unsigned long) len;
577 syscallarg(int) prot;
578 } */ *uap = v;
579 struct vm_map_entry *entry;
580 struct vm_map *map;
581 struct proc *p;
582 vaddr_t end, start, len, stacklim;
583 int prot, grows;
584
585 start = (vaddr_t)SCARG(uap, start);
586 len = round_page(SCARG(uap, len));
587 prot = SCARG(uap, prot);
588 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
589 prot &= ~grows;
590 end = start + len;
591
592 if (start & PAGE_MASK)
593 return EINVAL;
594 if (end < start)
595 return EINVAL;
596 if (end == start)
597 return 0;
598
599 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
600 return EINVAL;
601 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
602 return EINVAL;
603
604 p = l->l_proc;
605 map = &p->p_vmspace->vm_map;
606 vm_map_lock(map);
607 # ifdef notdef
608 VM_MAP_RANGE_CHECK(map, start, end);
609 # endif
610 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
611 vm_map_unlock(map);
612 return ENOMEM;
613 }
614
615 /*
616 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
617 */
618
619 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
620 if (grows & LINUX_PROT_GROWSDOWN) {
621 if (USRSTACK - stacklim <= start && start < USRSTACK) {
622 start = USRSTACK - stacklim;
623 } else {
624 start = entry->start;
625 }
626 } else if (grows & LINUX_PROT_GROWSUP) {
627 if (USRSTACK <= end && end < USRSTACK + stacklim) {
628 end = USRSTACK + stacklim;
629 } else {
630 end = entry->end;
631 }
632 }
633 vm_map_unlock(map);
634 return uvm_map_protect(map, start, end, prot, FALSE);
635 }
636
637 /*
638 * This code is partly stolen from src/lib/libc/compat-43/times.c
639 */
640
641 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
642
643 int
644 linux_sys_times(struct lwp *l, void *v, register_t *retval)
645 {
646 struct linux_sys_times_args /* {
647 syscallarg(struct times *) tms;
648 } */ *uap = v;
649 struct proc *p = l->l_proc;
650 struct timeval t;
651 int error;
652
653 if (SCARG(uap, tms)) {
654 struct linux_tms ltms;
655 struct rusage ru;
656
657 mutex_enter(&p->p_smutex);
658 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
659 ltms.ltms_utime = CONVTCK(ru.ru_utime);
660 ltms.ltms_stime = CONVTCK(ru.ru_stime);
661 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
662 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
663 mutex_exit(&p->p_smutex);
664
665 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
666 return error;
667 }
668
669 getmicrouptime(&t);
670
671 retval[0] = ((linux_clock_t)(CONVTCK(t)));
672 return 0;
673 }
674
675 #undef CONVTCK
676
677 /*
678 * Linux 'readdir' call. This code is mostly taken from the
679 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
680 * an attempt has been made to keep it a little cleaner (failing
681 * miserably, because of the cruft needed if count 1 is passed).
682 *
683 * The d_off field should contain the offset of the next valid entry,
684 * but in Linux it has the offset of the entry itself. We emulate
685 * that bug here.
686 *
687 * Read in BSD-style entries, convert them, and copy them out.
688 *
689 * Note that this doesn't handle union-mounted filesystems.
690 */
691 int
692 linux_sys_getdents(struct lwp *l, void *v, register_t *retval)
693 {
694 struct linux_sys_getdents_args /* {
695 syscallarg(int) fd;
696 syscallarg(struct linux_dirent *) dent;
697 syscallarg(unsigned int) count;
698 } */ *uap = v;
699 struct dirent *bdp;
700 struct vnode *vp;
701 char *inp, *tbuf; /* BSD-format */
702 int len, reclen; /* BSD-format */
703 char *outp; /* Linux-format */
704 int resid, linux_reclen = 0; /* Linux-format */
705 struct file *fp;
706 struct uio auio;
707 struct iovec aiov;
708 struct linux_dirent idb;
709 off_t off; /* true file offset */
710 int buflen, error, eofflag, nbytes, oldcall;
711 struct vattr va;
712 off_t *cookiebuf = NULL, *cookie;
713 int ncookies;
714
715 /* getvnode() will use the descriptor for us */
716 if ((error = getvnode(l->l_proc->p_fd, SCARG(uap, fd), &fp)) != 0)
717 return (error);
718
719 if ((fp->f_flag & FREAD) == 0) {
720 error = EBADF;
721 goto out1;
722 }
723
724 vp = (struct vnode *)fp->f_data;
725 if (vp->v_type != VDIR) {
726 error = EINVAL;
727 goto out1;
728 }
729
730 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
731 goto out1;
732
733 nbytes = SCARG(uap, count);
734 if (nbytes == 1) { /* emulating old, broken behaviour */
735 nbytes = sizeof (idb);
736 buflen = max(va.va_blocksize, nbytes);
737 oldcall = 1;
738 } else {
739 buflen = min(MAXBSIZE, nbytes);
740 if (buflen < va.va_blocksize)
741 buflen = va.va_blocksize;
742 oldcall = 0;
743 }
744 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
745
746 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
747 off = fp->f_offset;
748 again:
749 aiov.iov_base = tbuf;
750 aiov.iov_len = buflen;
751 auio.uio_iov = &aiov;
752 auio.uio_iovcnt = 1;
753 auio.uio_rw = UIO_READ;
754 auio.uio_resid = buflen;
755 auio.uio_offset = off;
756 UIO_SETUP_SYSSPACE(&auio);
757 /*
758 * First we read into the malloc'ed buffer, then
759 * we massage it into user space, one record at a time.
760 */
761 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
762 &ncookies);
763 if (error)
764 goto out;
765
766 inp = tbuf;
767 outp = (void *)SCARG(uap, dent);
768 resid = nbytes;
769 if ((len = buflen - auio.uio_resid) == 0)
770 goto eof;
771
772 for (cookie = cookiebuf; len > 0; len -= reclen) {
773 bdp = (struct dirent *)inp;
774 reclen = bdp->d_reclen;
775 if (reclen & 3)
776 panic("linux_readdir");
777 if (bdp->d_fileno == 0) {
778 inp += reclen; /* it is a hole; squish it out */
779 if (cookie)
780 off = *cookie++;
781 else
782 off += reclen;
783 continue;
784 }
785 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
786 if (reclen > len || resid < linux_reclen) {
787 /* entry too big for buffer, so just stop */
788 outp++;
789 break;
790 }
791 /*
792 * Massage in place to make a Linux-shaped dirent (otherwise
793 * we have to worry about touching user memory outside of
794 * the copyout() call).
795 */
796 idb.d_ino = bdp->d_fileno;
797 /*
798 * The old readdir() call misuses the offset and reclen fields.
799 */
800 if (oldcall) {
801 idb.d_off = (linux_off_t)linux_reclen;
802 idb.d_reclen = (u_short)bdp->d_namlen;
803 } else {
804 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
805 compat_offseterr(vp, "linux_getdents");
806 error = EINVAL;
807 goto out;
808 }
809 idb.d_off = (linux_off_t)off;
810 idb.d_reclen = (u_short)linux_reclen;
811 }
812 strcpy(idb.d_name, bdp->d_name);
813 if ((error = copyout((void *)&idb, outp, linux_reclen)))
814 goto out;
815 /* advance past this real entry */
816 inp += reclen;
817 if (cookie)
818 off = *cookie++; /* each entry points to itself */
819 else
820 off += reclen;
821 /* advance output past Linux-shaped entry */
822 outp += linux_reclen;
823 resid -= linux_reclen;
824 if (oldcall)
825 break;
826 }
827
828 /* if we squished out the whole block, try again */
829 if (outp == (void *)SCARG(uap, dent))
830 goto again;
831 fp->f_offset = off; /* update the vnode offset */
832
833 if (oldcall)
834 nbytes = resid + linux_reclen;
835
836 eof:
837 *retval = nbytes - resid;
838 out:
839 VOP_UNLOCK(vp, 0);
840 if (cookiebuf)
841 free(cookiebuf, M_TEMP);
842 free(tbuf, M_TEMP);
843 out1:
844 FILE_UNUSE(fp, l);
845 return error;
846 }
847
848 /*
849 * Even when just using registers to pass arguments to syscalls you can
850 * have 5 of them on the i386. So this newer version of select() does
851 * this.
852 */
853 int
854 linux_sys_select(struct lwp *l, void *v, register_t *retval)
855 {
856 struct linux_sys_select_args /* {
857 syscallarg(int) nfds;
858 syscallarg(fd_set *) readfds;
859 syscallarg(fd_set *) writefds;
860 syscallarg(fd_set *) exceptfds;
861 syscallarg(struct timeval *) timeout;
862 } */ *uap = v;
863
864 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
865 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
866 }
867
868 /*
869 * Common code for the old and new versions of select(). A couple of
870 * things are important:
871 * 1) return the amount of time left in the 'timeout' parameter
872 * 2) select never returns ERESTART on Linux, always return EINTR
873 */
874 int
875 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
876 struct lwp *l;
877 register_t *retval;
878 int nfds;
879 fd_set *readfds, *writefds, *exceptfds;
880 struct timeval *timeout;
881 {
882 struct timeval tv0, tv1, utv, *tv = NULL;
883 int error;
884
885 /*
886 * Store current time for computation of the amount of
887 * time left.
888 */
889 if (timeout) {
890 if ((error = copyin(timeout, &utv, sizeof(utv))))
891 return error;
892 if (itimerfix(&utv)) {
893 /*
894 * The timeval was invalid. Convert it to something
895 * valid that will act as it does under Linux.
896 */
897 utv.tv_sec += utv.tv_usec / 1000000;
898 utv.tv_usec %= 1000000;
899 if (utv.tv_usec < 0) {
900 utv.tv_sec -= 1;
901 utv.tv_usec += 1000000;
902 }
903 if (utv.tv_sec < 0)
904 timerclear(&utv);
905 }
906 tv = &utv;
907 microtime(&tv0);
908 }
909
910 error = selcommon(l, retval, nfds, readfds, writefds, exceptfds,
911 tv, NULL);
912
913 if (error) {
914 /*
915 * See fs/select.c in the Linux kernel. Without this,
916 * Maelstrom doesn't work.
917 */
918 if (error == ERESTART)
919 error = EINTR;
920 return error;
921 }
922
923 if (timeout) {
924 if (*retval) {
925 /*
926 * Compute how much time was left of the timeout,
927 * by subtracting the current time and the time
928 * before we started the call, and subtracting
929 * that result from the user-supplied value.
930 */
931 microtime(&tv1);
932 timersub(&tv1, &tv0, &tv1);
933 timersub(&utv, &tv1, &utv);
934 if (utv.tv_sec < 0)
935 timerclear(&utv);
936 } else
937 timerclear(&utv);
938 if ((error = copyout(&utv, timeout, sizeof(utv))))
939 return error;
940 }
941
942 return 0;
943 }
944
945 /*
946 * Get the process group of a certain process. Look it up
947 * and return the value.
948 */
949 int
950 linux_sys_getpgid(struct lwp *l, void *v, register_t *retval)
951 {
952 struct linux_sys_getpgid_args /* {
953 syscallarg(int) pid;
954 } */ *uap = v;
955 struct proc *p = l->l_proc;
956 struct proc *targp;
957
958 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
959 if ((targp = pfind(SCARG(uap, pid))) == 0)
960 return ESRCH;
961 }
962 else
963 targp = p;
964
965 retval[0] = targp->p_pgid;
966 return 0;
967 }
968
969 /*
970 * Set the 'personality' (emulation mode) for the current process. Only
971 * accept the Linux personality here (0). This call is needed because
972 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
973 * ELF binaries run in Linux mode, not SVR4 mode.
974 */
975 int
976 linux_sys_personality(struct lwp *l, void *v, register_t *retval)
977 {
978 struct linux_sys_personality_args /* {
979 syscallarg(int) per;
980 } */ *uap = v;
981
982 if (SCARG(uap, per) != 0)
983 return EINVAL;
984 retval[0] = 0;
985 return 0;
986 }
987 #endif /* !COMPAT_LINUX32 */
988
989 #if defined(__i386__) || defined(__m68k__) || defined(COMPAT_LINUX32)
990 /*
991 * The calls are here because of type conversions.
992 */
993 #ifndef COMPAT_LINUX32
994 int
995 linux_sys_setreuid16(struct lwp *l, void *v, register_t *retval)
996 {
997 struct linux_sys_setreuid16_args /* {
998 syscallarg(int) ruid;
999 syscallarg(int) euid;
1000 } */ *uap = v;
1001 struct sys_setreuid_args bsa;
1002
1003 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1004 (uid_t)-1 : SCARG(uap, ruid);
1005 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1006 (uid_t)-1 : SCARG(uap, euid);
1007
1008 return sys_setreuid(l, &bsa, retval);
1009 }
1010
1011 int
1012 linux_sys_setregid16(struct lwp *l, void *v, register_t *retval)
1013 {
1014 struct linux_sys_setregid16_args /* {
1015 syscallarg(int) rgid;
1016 syscallarg(int) egid;
1017 } */ *uap = v;
1018 struct sys_setregid_args bsa;
1019
1020 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1021 (uid_t)-1 : SCARG(uap, rgid);
1022 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1023 (uid_t)-1 : SCARG(uap, egid);
1024
1025 return sys_setregid(l, &bsa, retval);
1026 }
1027
1028 int
1029 linux_sys_setresuid16(struct lwp *l, void *v, register_t *retval)
1030 {
1031 struct linux_sys_setresuid16_args /* {
1032 syscallarg(uid_t) ruid;
1033 syscallarg(uid_t) euid;
1034 syscallarg(uid_t) suid;
1035 } */ *uap = v;
1036 struct linux_sys_setresuid16_args lsa;
1037
1038 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
1039 (uid_t)-1 : SCARG(uap, ruid);
1040 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
1041 (uid_t)-1 : SCARG(uap, euid);
1042 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
1043 (uid_t)-1 : SCARG(uap, suid);
1044
1045 return linux_sys_setresuid(l, &lsa, retval);
1046 }
1047
1048 int
1049 linux_sys_setresgid16(struct lwp *l, void *v, register_t *retval)
1050 {
1051 struct linux_sys_setresgid16_args /* {
1052 syscallarg(gid_t) rgid;
1053 syscallarg(gid_t) egid;
1054 syscallarg(gid_t) sgid;
1055 } */ *uap = v;
1056 struct linux_sys_setresgid16_args lsa;
1057
1058 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
1059 (gid_t)-1 : SCARG(uap, rgid);
1060 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
1061 (gid_t)-1 : SCARG(uap, egid);
1062 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
1063 (gid_t)-1 : SCARG(uap, sgid);
1064
1065 return linux_sys_setresgid(l, &lsa, retval);
1066 }
1067 #endif /* COMPAT_LINUX32 */
1068
1069 int
1070 linux_sys_getgroups16(struct lwp *l, void *v, register_t *retval)
1071 {
1072 struct linux_sys_getgroups16_args /* {
1073 syscallarg(int) gidsetsize;
1074 syscallarg(linux_gid_t *) gidset;
1075 } */ *uap = v;
1076 linux_gid_t lset[16];
1077 linux_gid_t *gidset;
1078 unsigned int ngrps;
1079 int i, n, j;
1080 int error;
1081
1082 ngrps = kauth_cred_ngroups(l->l_cred);
1083 *retval = ngrps;
1084 if (SCARG(uap, gidsetsize) == 0)
1085 return 0;
1086 if (SCARG(uap, gidsetsize) < ngrps)
1087 return EINVAL;
1088
1089 gidset = SCARG(uap, gidset);
1090 for (i = 0; i < (n = ngrps); i += n, gidset += n) {
1091 n -= i;
1092 if (n > __arraycount(lset))
1093 n = __arraycount(lset);
1094 for (j = 0; j < n; j++)
1095 lset[j] = kauth_cred_group(l->l_cred, i + j);
1096 error = copyout(lset, gidset, n * sizeof(lset[0]));
1097 if (error != 0)
1098 return error;
1099 }
1100
1101 return 0;
1102 }
1103
1104 /*
1105 * It is very unlikly that any problem using 16bit groups is written
1106 * to allow for more than 16 of them, so don't bother trying to
1107 * support that.
1108 */
1109 #define COMPAT_NGROUPS16 16
1110
1111 int
1112 linux_sys_setgroups16(struct lwp *l, void *v, register_t *retval)
1113 {
1114 struct linux_sys_setgroups16_args /* {
1115 syscallarg(int) gidsetsize;
1116 syscallarg(linux_gid_t *) gidset;
1117 } */ *uap = v;
1118 linux_gid_t lset[COMPAT_NGROUPS16];
1119 kauth_cred_t ncred;
1120 int error;
1121 gid_t grbuf[COMPAT_NGROUPS16];
1122 unsigned int i, ngroups = SCARG(uap, gidsetsize);
1123
1124 if (ngroups > COMPAT_NGROUPS16)
1125 return EINVAL;
1126 error = copyin(SCARG(uap, gidset), lset, ngroups);
1127 if (error != 0)
1128 return error;
1129
1130 for (i = 0; i < ngroups; i++)
1131 grbuf[i] = lset[i];
1132
1133 ncred = kauth_cred_alloc();
1134 error = kauth_cred_setgroups(ncred, grbuf, SCARG(uap, gidsetsize),
1135 -1, UIO_SYSSPACE);
1136 if (error != 0) {
1137 kauth_cred_free(ncred);
1138 return error;
1139 }
1140
1141 return kauth_proc_setgroups(l, ncred);
1142 }
1143
1144 #endif /* __i386__ || __m68k__ || COMPAT_LINUX32 */
1145
1146 #ifndef COMPAT_LINUX32
1147 /*
1148 * We have nonexistent fsuid equal to uid.
1149 * If modification is requested, refuse.
1150 */
1151 int
1152 linux_sys_setfsuid(struct lwp *l, void *v, register_t *retval)
1153 {
1154 struct linux_sys_setfsuid_args /* {
1155 syscallarg(uid_t) uid;
1156 } */ *uap = v;
1157 uid_t uid;
1158
1159 uid = SCARG(uap, uid);
1160 if (kauth_cred_getuid(l->l_cred) != uid)
1161 return sys_nosys(l, v, retval);
1162 else
1163 return (0);
1164 }
1165
1166 /* XXX XXX XXX */
1167 # ifndef alpha
1168 int
1169 linux_sys_getfsuid(struct lwp *l, void *v, register_t *retval)
1170 {
1171 return sys_getuid(l, v, retval);
1172 }
1173 # endif
1174
1175 int
1176 linux_sys_setresuid(struct lwp *l, void *v, register_t *retval)
1177 {
1178 struct linux_sys_setresuid_args /* {
1179 syscallarg(uid_t) ruid;
1180 syscallarg(uid_t) euid;
1181 syscallarg(uid_t) suid;
1182 } */ *uap = v;
1183
1184 /*
1185 * Note: These checks are a little different than the NetBSD
1186 * setreuid(2) call performs. This precisely follows the
1187 * behavior of the Linux kernel.
1188 */
1189
1190 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1191 SCARG(uap, suid),
1192 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1193 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1194 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1195 }
1196
1197 int
1198 linux_sys_getresuid(struct lwp *l, void *v, register_t *retval)
1199 {
1200 struct linux_sys_getresuid_args /* {
1201 syscallarg(uid_t *) ruid;
1202 syscallarg(uid_t *) euid;
1203 syscallarg(uid_t *) suid;
1204 } */ *uap = v;
1205 kauth_cred_t pc = l->l_cred;
1206 int error;
1207 uid_t uid;
1208
1209 /*
1210 * Linux copies these values out to userspace like so:
1211 *
1212 * 1. Copy out ruid.
1213 * 2. If that succeeds, copy out euid.
1214 * 3. If both of those succeed, copy out suid.
1215 */
1216 uid = kauth_cred_getuid(pc);
1217 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1218 return (error);
1219
1220 uid = kauth_cred_geteuid(pc);
1221 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1222 return (error);
1223
1224 uid = kauth_cred_getsvuid(pc);
1225
1226 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1227 }
1228
1229 int
1230 linux_sys_ptrace(struct lwp *l, void *v, register_t *retval)
1231 {
1232 #if defined(PTRACE) || defined(_LKM)
1233 struct linux_sys_ptrace_args /* {
1234 i386, m68k, powerpc: T=int
1235 alpha, amd64: T=long
1236 syscallarg(T) request;
1237 syscallarg(T) pid;
1238 syscallarg(T) addr;
1239 syscallarg(T) data;
1240 } */ *uap = v;
1241 const int *ptr;
1242 int request;
1243 int error;
1244 #ifdef _LKM
1245 #define sys_ptrace (*sysent[SYS_ptrace].sy_call)
1246 #endif
1247
1248 ptr = linux_ptrace_request_map;
1249 request = SCARG(uap, request);
1250 while (*ptr != -1)
1251 if (*ptr++ == request) {
1252 struct sys_ptrace_args pta;
1253
1254 SCARG(&pta, req) = *ptr;
1255 SCARG(&pta, pid) = SCARG(uap, pid);
1256 SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1257 SCARG(&pta, data) = SCARG(uap, data);
1258
1259 /*
1260 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1261 * to continue where the process left off previously.
1262 * The same thing is achieved by addr == (void *) 1
1263 * on NetBSD, so rewrite 'addr' appropriately.
1264 */
1265 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1266 SCARG(&pta, addr) = (void *) 1;
1267
1268 error = sys_ptrace(l, &pta, retval);
1269 if (error)
1270 return error;
1271 switch (request) {
1272 case LINUX_PTRACE_PEEKTEXT:
1273 case LINUX_PTRACE_PEEKDATA:
1274 error = copyout (retval,
1275 (void *)SCARG(uap, data),
1276 sizeof *retval);
1277 *retval = SCARG(uap, data);
1278 break;
1279 default:
1280 break;
1281 }
1282 return error;
1283 }
1284 else
1285 ptr++;
1286
1287 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1288 #else
1289 return ENOSYS;
1290 #endif /* PTRACE || _LKM */
1291 }
1292
1293 int
1294 linux_sys_reboot(struct lwp *l, void *v, register_t *retval)
1295 {
1296 struct linux_sys_reboot_args /* {
1297 syscallarg(int) magic1;
1298 syscallarg(int) magic2;
1299 syscallarg(int) cmd;
1300 syscallarg(void *) arg;
1301 } */ *uap = v;
1302 struct sys_reboot_args /* {
1303 syscallarg(int) opt;
1304 syscallarg(char *) bootstr;
1305 } */ sra;
1306 int error;
1307
1308 if ((error = kauth_authorize_system(l->l_cred,
1309 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1310 return(error);
1311
1312 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1313 return(EINVAL);
1314 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1315 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1316 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1317 return(EINVAL);
1318
1319 switch (SCARG(uap, cmd)) {
1320 case LINUX_REBOOT_CMD_RESTART:
1321 SCARG(&sra, opt) = RB_AUTOBOOT;
1322 break;
1323 case LINUX_REBOOT_CMD_HALT:
1324 SCARG(&sra, opt) = RB_HALT;
1325 break;
1326 case LINUX_REBOOT_CMD_POWER_OFF:
1327 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1328 break;
1329 case LINUX_REBOOT_CMD_RESTART2:
1330 /* Reboot with an argument. */
1331 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1332 SCARG(&sra, bootstr) = SCARG(uap, arg);
1333 break;
1334 case LINUX_REBOOT_CMD_CAD_ON:
1335 return(EINVAL); /* We don't implement ctrl-alt-delete */
1336 case LINUX_REBOOT_CMD_CAD_OFF:
1337 return(0);
1338 default:
1339 return(EINVAL);
1340 }
1341
1342 return(sys_reboot(l, &sra, retval));
1343 }
1344
1345 /*
1346 * Copy of compat_12_sys_swapon().
1347 */
1348 int
1349 linux_sys_swapon(struct lwp *l, void *v, register_t *retval)
1350 {
1351 struct sys_swapctl_args ua;
1352 struct linux_sys_swapon_args /* {
1353 syscallarg(const char *) name;
1354 } */ *uap = v;
1355
1356 SCARG(&ua, cmd) = SWAP_ON;
1357 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1358 SCARG(&ua, misc) = 0; /* priority */
1359 return (sys_swapctl(l, &ua, retval));
1360 }
1361
1362 /*
1363 * Stop swapping to the file or block device specified by path.
1364 */
1365 int
1366 linux_sys_swapoff(struct lwp *l, void *v, register_t *retval)
1367 {
1368 struct sys_swapctl_args ua;
1369 struct linux_sys_swapoff_args /* {
1370 syscallarg(const char *) path;
1371 } */ *uap = v;
1372
1373 SCARG(&ua, cmd) = SWAP_OFF;
1374 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1375 return (sys_swapctl(l, &ua, retval));
1376 }
1377
1378 /*
1379 * Copy of compat_09_sys_setdomainname()
1380 */
1381 /* ARGSUSED */
1382 int
1383 linux_sys_setdomainname(struct lwp *l, void *v, register_t *retval)
1384 {
1385 struct linux_sys_setdomainname_args /* {
1386 syscallarg(char *) domainname;
1387 syscallarg(int) len;
1388 } */ *uap = v;
1389 int name[2];
1390
1391 name[0] = CTL_KERN;
1392 name[1] = KERN_DOMAINNAME;
1393 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1394 SCARG(uap, len), l));
1395 }
1396
1397 /*
1398 * sysinfo()
1399 */
1400 /* ARGSUSED */
1401 int
1402 linux_sys_sysinfo(struct lwp *l, void *v, register_t *retval)
1403 {
1404 struct linux_sys_sysinfo_args /* {
1405 syscallarg(struct linux_sysinfo *) arg;
1406 } */ *uap = v;
1407 struct linux_sysinfo si;
1408 struct loadavg *la;
1409
1410 si.uptime = time_uptime;
1411 la = &averunnable;
1412 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1413 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1414 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1415 si.totalram = ctob((u_long)physmem);
1416 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
1417 si.sharedram = 0; /* XXX */
1418 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
1419 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1420 si.freeswap =
1421 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1422 si.procs = nprocs;
1423
1424 /* The following are only present in newer Linux kernels. */
1425 si.totalbig = 0;
1426 si.freebig = 0;
1427 si.mem_unit = 1;
1428
1429 return (copyout(&si, SCARG(uap, arg), sizeof si));
1430 }
1431
1432 int
1433 linux_sys_getrlimit(struct lwp *l, void *v, register_t *retval)
1434 {
1435 struct linux_sys_getrlimit_args /* {
1436 syscallarg(int) which;
1437 # ifdef LINUX_LARGEFILE64
1438 syscallarg(struct rlimit *) rlp;
1439 # else
1440 syscallarg(struct orlimit *) rlp;
1441 # endif
1442 } */ *uap = v;
1443 # ifdef LINUX_LARGEFILE64
1444 struct rlimit orl;
1445 # else
1446 struct orlimit orl;
1447 # endif
1448 int which;
1449
1450 which = linux_to_bsd_limit(SCARG(uap, which));
1451 if (which < 0)
1452 return -which;
1453
1454 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1455
1456 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1457 }
1458
1459 int
1460 linux_sys_setrlimit(struct lwp *l, void *v, register_t *retval)
1461 {
1462 struct linux_sys_setrlimit_args /* {
1463 syscallarg(int) which;
1464 # ifdef LINUX_LARGEFILE64
1465 syscallarg(struct rlimit *) rlp;
1466 # else
1467 syscallarg(struct orlimit *) rlp;
1468 # endif
1469 } */ *uap = v;
1470 struct rlimit rl;
1471 # ifdef LINUX_LARGEFILE64
1472 struct rlimit orl;
1473 # else
1474 struct orlimit orl;
1475 # endif
1476 int error;
1477 int which;
1478
1479 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1480 return error;
1481
1482 which = linux_to_bsd_limit(SCARG(uap, which));
1483 if (which < 0)
1484 return -which;
1485
1486 linux_to_bsd_rlimit(&rl, &orl);
1487 return dosetrlimit(l, l->l_proc, which, &rl);
1488 }
1489
1490 # if !defined(__mips__) && !defined(__amd64__)
1491 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1492 int
1493 linux_sys_ugetrlimit(struct lwp *l, void *v, register_t *retval)
1494 {
1495 return linux_sys_getrlimit(l, v, retval);
1496 }
1497 # endif
1498
1499 /*
1500 * This gets called for unsupported syscalls. The difference to sys_nosys()
1501 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1502 * This is the way Linux does it and glibc depends on this behaviour.
1503 */
1504 int
1505 linux_sys_nosys(struct lwp *l, void *v,
1506 register_t *retval)
1507 {
1508 return (ENOSYS);
1509 }
1510
1511 int
1512 linux_sys_getpriority(struct lwp *l, void *v, register_t *retval)
1513 {
1514 struct linux_sys_getpriority_args /* {
1515 syscallarg(int) which;
1516 syscallarg(int) who;
1517 } */ *uap = v;
1518 struct sys_getpriority_args bsa;
1519 int error;
1520
1521 SCARG(&bsa, which) = SCARG(uap, which);
1522 SCARG(&bsa, who) = SCARG(uap, who);
1523
1524 if ((error = sys_getpriority(l, &bsa, retval)))
1525 return error;
1526
1527 *retval = NZERO - *retval;
1528
1529 return 0;
1530 }
1531
1532 #endif /* !COMPAT_LINUX32 */
1533