linux_misc.c revision 1.199 1 /* $NetBSD: linux_misc.c,v 1.199 2008/05/28 12:01:10 njoly Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Linux compatibility module. Try to deal with various Linux system calls.
35 */
36
37 /*
38 * These functions have been moved to multiarch to allow
39 * selection of which machines include them to be
40 * determined by the individual files.linux_<arch> files.
41 *
42 * Function in multiarch:
43 * linux_sys_break : linux_break.c
44 * linux_sys_alarm : linux_misc_notalpha.c
45 * linux_sys_getresgid : linux_misc_notalpha.c
46 * linux_sys_nice : linux_misc_notalpha.c
47 * linux_sys_readdir : linux_misc_notalpha.c
48 * linux_sys_setresgid : linux_misc_notalpha.c
49 * linux_sys_time : linux_misc_notalpha.c
50 * linux_sys_utime : linux_misc_notalpha.c
51 * linux_sys_waitpid : linux_misc_notalpha.c
52 * linux_sys_old_mmap : linux_oldmmap.c
53 * linux_sys_oldolduname : linux_oldolduname.c
54 * linux_sys_oldselect : linux_oldselect.c
55 * linux_sys_olduname : linux_olduname.c
56 * linux_sys_pipe : linux_pipe.c
57 */
58
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.199 2008/05/28 12:01:10 njoly Exp $");
61
62 #if defined(_KERNEL_OPT)
63 #include "opt_ptrace.h"
64 #endif
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/namei.h>
69 #include <sys/proc.h>
70 #include <sys/dirent.h>
71 #include <sys/file.h>
72 #include <sys/stat.h>
73 #include <sys/filedesc.h>
74 #include <sys/ioctl.h>
75 #include <sys/kernel.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/prot.h>
81 #include <sys/reboot.h>
82 #include <sys/resource.h>
83 #include <sys/resourcevar.h>
84 #include <sys/select.h>
85 #include <sys/signal.h>
86 #include <sys/signalvar.h>
87 #include <sys/socket.h>
88 #include <sys/time.h>
89 #include <sys/times.h>
90 #include <sys/vnode.h>
91 #include <sys/uio.h>
92 #include <sys/wait.h>
93 #include <sys/utsname.h>
94 #include <sys/unistd.h>
95 #include <sys/vfs_syscalls.h>
96 #include <sys/swap.h> /* for SWAP_ON */
97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
98 #include <sys/kauth.h>
99
100 #include <sys/ptrace.h>
101 #include <machine/ptrace.h>
102
103 #include <sys/syscall.h>
104 #include <sys/syscallargs.h>
105
106 #include <compat/linux/common/linux_machdep.h>
107 #include <compat/linux/common/linux_types.h>
108 #include <compat/linux/common/linux_signal.h>
109 #include <compat/linux/common/linux_ipc.h>
110 #include <compat/linux/common/linux_sem.h>
111
112 #include <compat/linux/linux_syscallargs.h>
113
114 #include <compat/linux/common/linux_fcntl.h>
115 #include <compat/linux/common/linux_mmap.h>
116 #include <compat/linux/common/linux_dirent.h>
117 #include <compat/linux/common/linux_util.h>
118 #include <compat/linux/common/linux_misc.h>
119 #ifndef COMPAT_LINUX32
120 #include <compat/linux/common/linux_statfs.h>
121 #include <compat/linux/common/linux_limit.h>
122 #endif
123 #include <compat/linux/common/linux_ptrace.h>
124 #include <compat/linux/common/linux_reboot.h>
125 #include <compat/linux/common/linux_emuldata.h>
126
127 #ifndef COMPAT_LINUX32
128 const int linux_ptrace_request_map[] = {
129 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
130 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
131 LINUX_PTRACE_PEEKDATA, PT_READ_D,
132 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
133 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
134 LINUX_PTRACE_CONT, PT_CONTINUE,
135 LINUX_PTRACE_KILL, PT_KILL,
136 LINUX_PTRACE_ATTACH, PT_ATTACH,
137 LINUX_PTRACE_DETACH, PT_DETACH,
138 # ifdef PT_STEP
139 LINUX_PTRACE_SINGLESTEP, PT_STEP,
140 # endif
141 LINUX_PTRACE_SYSCALL, PT_SYSCALL,
142 -1
143 };
144
145 const struct linux_mnttypes linux_fstypes[] = {
146 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
148 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
150 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
153 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
155 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
158 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
159 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
160 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
161 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
162 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
163 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
164 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
165 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
166 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
167 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
168 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
169 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC }
170 };
171 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
172
173 # ifdef DEBUG_LINUX
174 #define DPRINTF(a) uprintf a
175 # else
176 #define DPRINTF(a)
177 # endif
178
179 /* Local linux_misc.c functions: */
180 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
181 const struct linux_sys_mmap_args *);
182 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
183 register_t *, off_t);
184
185
186 /*
187 * The information on a terminated (or stopped) process needs
188 * to be converted in order for Linux binaries to get a valid signal
189 * number out of it.
190 */
191 int
192 bsd_to_linux_wstat(int st)
193 {
194
195 int sig;
196
197 if (WIFSIGNALED(st)) {
198 sig = WTERMSIG(st);
199 if (sig >= 0 && sig < NSIG)
200 st= (st & ~0177) | native_to_linux_signo[sig];
201 } else if (WIFSTOPPED(st)) {
202 sig = WSTOPSIG(st);
203 if (sig >= 0 && sig < NSIG)
204 st = (st & ~0xff00) |
205 (native_to_linux_signo[sig] << 8);
206 }
207 return st;
208 }
209
210 /*
211 * wait4(2). Passed on to the NetBSD call, surrounded by code to
212 * reserve some space for a NetBSD-style wait status, and converting
213 * it to what Linux wants.
214 */
215 int
216 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
217 {
218 /* {
219 syscallarg(int) pid;
220 syscallarg(int *) status;
221 syscallarg(int) options;
222 syscallarg(struct rusage *) rusage;
223 } */
224 int error, status, options, linux_options, was_zombie;
225 struct rusage ru;
226 int pid = SCARG(uap, pid);
227 proc_t *p;
228
229 linux_options = SCARG(uap, options);
230 options = WOPTSCHECKED;
231 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
232 return (EINVAL);
233
234 if (linux_options & LINUX_WAIT4_WNOHANG)
235 options |= WNOHANG;
236 if (linux_options & LINUX_WAIT4_WUNTRACED)
237 options |= WUNTRACED;
238 if (linux_options & LINUX_WAIT4_WALL)
239 options |= WALLSIG;
240 if (linux_options & LINUX_WAIT4_WCLONE)
241 options |= WALTSIG;
242 # ifdef DIAGNOSTIC
243 if (linux_options & LINUX_WAIT4_WNOTHREAD)
244 printf("WARNING: %s: linux process %d.%d called "
245 "waitpid with __WNOTHREAD set!",
246 __FILE__, l->l_proc->p_pid, l->l_lid);
247
248 # endif
249
250 error = do_sys_wait(l, &pid, &status, options,
251 SCARG(uap, rusage) != NULL ? &ru : NULL, &was_zombie);
252
253 retval[0] = pid;
254 if (pid == 0)
255 return error;
256
257 p = curproc;
258 mutex_enter(p->p_lock);
259 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
260 mutex_exit(p->p_lock);
261
262 if (SCARG(uap, rusage) != NULL)
263 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
264
265 if (error == 0 && SCARG(uap, status) != NULL) {
266 status = bsd_to_linux_wstat(status);
267 error = copyout(&status, SCARG(uap, status), sizeof status);
268 }
269
270 return error;
271 }
272
273 /*
274 * Linux brk(2). The check if the new address is >= the old one is
275 * done in the kernel in Linux. NetBSD does it in the library.
276 */
277 int
278 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
279 {
280 /* {
281 syscallarg(char *) nsize;
282 } */
283 struct proc *p = l->l_proc;
284 char *nbrk = SCARG(uap, nsize);
285 struct sys_obreak_args oba;
286 struct vmspace *vm = p->p_vmspace;
287 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
288
289 SCARG(&oba, nsize) = nbrk;
290
291 if ((void *) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
292 ed->s->p_break = (char*)nbrk;
293 else
294 nbrk = ed->s->p_break;
295
296 retval[0] = (register_t)nbrk;
297
298 return 0;
299 }
300
301 /*
302 * Implement the fs stat functions. Straightforward.
303 */
304 int
305 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
306 {
307 /* {
308 syscallarg(const char *) path;
309 syscallarg(struct linux_statfs *) sp;
310 } */
311 struct statvfs *sb;
312 struct linux_statfs ltmp;
313 int error;
314
315 sb = STATVFSBUF_GET();
316 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
317 if (error == 0) {
318 bsd_to_linux_statfs(sb, <mp);
319 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
320 }
321 STATVFSBUF_PUT(sb);
322
323 return error;
324 }
325
326 int
327 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
328 {
329 /* {
330 syscallarg(int) fd;
331 syscallarg(struct linux_statfs *) sp;
332 } */
333 struct statvfs *sb;
334 struct linux_statfs ltmp;
335 int error;
336
337 sb = STATVFSBUF_GET();
338 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
339 if (error == 0) {
340 bsd_to_linux_statfs(sb, <mp);
341 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
342 }
343 STATVFSBUF_PUT(sb);
344
345 return error;
346 }
347
348 /*
349 * uname(). Just copy the info from the various strings stored in the
350 * kernel, and put it in the Linux utsname structure. That structure
351 * is almost the same as the NetBSD one, only it has fields 65 characters
352 * long, and an extra domainname field.
353 */
354 int
355 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
356 {
357 /* {
358 syscallarg(struct linux_utsname *) up;
359 } */
360 struct linux_utsname luts;
361
362 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
363 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
364 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
365 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
366 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
367 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
368
369 return copyout(&luts, SCARG(uap, up), sizeof(luts));
370 }
371
372 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
373 /* Used indirectly on: arm, i386, m68k */
374
375 /*
376 * New type Linux mmap call.
377 * Only called directly on machines with >= 6 free regs.
378 */
379 int
380 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
381 {
382 /* {
383 syscallarg(unsigned long) addr;
384 syscallarg(size_t) len;
385 syscallarg(int) prot;
386 syscallarg(int) flags;
387 syscallarg(int) fd;
388 syscallarg(linux_off_t) offset;
389 } */
390
391 if (SCARG(uap, offset) & PAGE_MASK)
392 return EINVAL;
393
394 return linux_mmap(l, uap, retval, SCARG(uap, offset));
395 }
396
397 /*
398 * Guts of most architectures' mmap64() implementations. This shares
399 * its list of arguments with linux_sys_mmap().
400 *
401 * The difference in linux_sys_mmap2() is that "offset" is actually
402 * (offset / pagesize), not an absolute byte count. This translation
403 * to pagesize offsets is done inside glibc between the mmap64() call
404 * point, and the actual syscall.
405 */
406 int
407 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
408 {
409 /* {
410 syscallarg(unsigned long) addr;
411 syscallarg(size_t) len;
412 syscallarg(int) prot;
413 syscallarg(int) flags;
414 syscallarg(int) fd;
415 syscallarg(linux_off_t) offset;
416 } */
417
418 return linux_mmap(l, uap, retval,
419 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
420 }
421
422 /*
423 * Massage arguments and call system mmap(2).
424 */
425 static int
426 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
427 {
428 struct sys_mmap_args cma;
429 int error;
430 size_t mmoff=0;
431
432 linux_to_bsd_mmap_args(&cma, uap);
433 SCARG(&cma, pos) = offset;
434
435 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
436 /*
437 * Request for stack-like memory segment. On linux, this
438 * works by mmap()ping (small) segment, which is automatically
439 * extended when page fault happens below the currently
440 * allocated area. We emulate this by allocating (typically
441 * bigger) segment sized at current stack size limit, and
442 * offsetting the requested and returned address accordingly.
443 * Since physical pages are only allocated on-demand, this
444 * is effectively identical.
445 */
446 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
447
448 if (SCARG(&cma, len) < ssl) {
449 /* Compute the address offset */
450 mmoff = round_page(ssl) - SCARG(uap, len);
451
452 if (SCARG(&cma, addr))
453 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
454
455 SCARG(&cma, len) = (size_t) ssl;
456 }
457 }
458
459 error = sys_mmap(l, &cma, retval);
460 if (error)
461 return (error);
462
463 /* Shift the returned address for stack-like segment if necessary */
464 retval[0] += mmoff;
465
466 return (0);
467 }
468
469 static void
470 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
471 {
472 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
473
474 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
475 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
476 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
477 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
478 /* XXX XAX ERH: Any other flags here? There are more defined... */
479
480 SCARG(cma, addr) = (void *)SCARG(uap, addr);
481 SCARG(cma, len) = SCARG(uap, len);
482 SCARG(cma, prot) = SCARG(uap, prot);
483 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
484 SCARG(cma, prot) |= VM_PROT_READ;
485 SCARG(cma, flags) = flags;
486 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
487 SCARG(cma, pad) = 0;
488 }
489
490 #define LINUX_MREMAP_MAYMOVE 1
491 #define LINUX_MREMAP_FIXED 2
492
493 int
494 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
495 {
496 /* {
497 syscallarg(void *) old_address;
498 syscallarg(size_t) old_size;
499 syscallarg(size_t) new_size;
500 syscallarg(u_long) flags;
501 } */
502
503 struct proc *p;
504 struct vm_map *map;
505 vaddr_t oldva;
506 vaddr_t newva;
507 size_t oldsize;
508 size_t newsize;
509 int flags;
510 int uvmflags;
511 int error;
512
513 flags = SCARG(uap, flags);
514 oldva = (vaddr_t)SCARG(uap, old_address);
515 oldsize = round_page(SCARG(uap, old_size));
516 newsize = round_page(SCARG(uap, new_size));
517 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
518 error = EINVAL;
519 goto done;
520 }
521 if ((flags & LINUX_MREMAP_FIXED) != 0) {
522 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
523 error = EINVAL;
524 goto done;
525 }
526 #if 0 /* notyet */
527 newva = SCARG(uap, new_address);
528 uvmflags = MAP_FIXED;
529 #else /* notyet */
530 error = EOPNOTSUPP;
531 goto done;
532 #endif /* notyet */
533 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
534 uvmflags = 0;
535 } else {
536 newva = oldva;
537 uvmflags = MAP_FIXED;
538 }
539 p = l->l_proc;
540 map = &p->p_vmspace->vm_map;
541 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
542 uvmflags);
543
544 done:
545 *retval = (error != 0) ? 0 : (register_t)newva;
546 return error;
547 }
548
549 int
550 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
551 {
552 /* {
553 syscallarg(const void *) start;
554 syscallarg(unsigned long) len;
555 syscallarg(int) prot;
556 } */
557 struct vm_map_entry *entry;
558 struct vm_map *map;
559 struct proc *p;
560 vaddr_t end, start, len, stacklim;
561 int prot, grows;
562
563 start = (vaddr_t)SCARG(uap, start);
564 len = round_page(SCARG(uap, len));
565 prot = SCARG(uap, prot);
566 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
567 prot &= ~grows;
568 end = start + len;
569
570 if (start & PAGE_MASK)
571 return EINVAL;
572 if (end < start)
573 return EINVAL;
574 if (end == start)
575 return 0;
576
577 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
578 return EINVAL;
579 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
580 return EINVAL;
581
582 p = l->l_proc;
583 map = &p->p_vmspace->vm_map;
584 vm_map_lock(map);
585 # ifdef notdef
586 VM_MAP_RANGE_CHECK(map, start, end);
587 # endif
588 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
589 vm_map_unlock(map);
590 return ENOMEM;
591 }
592
593 /*
594 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
595 */
596
597 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
598 if (grows & LINUX_PROT_GROWSDOWN) {
599 if (USRSTACK - stacklim <= start && start < USRSTACK) {
600 start = USRSTACK - stacklim;
601 } else {
602 start = entry->start;
603 }
604 } else if (grows & LINUX_PROT_GROWSUP) {
605 if (USRSTACK <= end && end < USRSTACK + stacklim) {
606 end = USRSTACK + stacklim;
607 } else {
608 end = entry->end;
609 }
610 }
611 vm_map_unlock(map);
612 return uvm_map_protect(map, start, end, prot, FALSE);
613 }
614
615 /*
616 * This code is partly stolen from src/lib/libc/compat-43/times.c
617 */
618
619 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
620
621 int
622 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
623 {
624 /* {
625 syscallarg(struct times *) tms;
626 } */
627 struct proc *p = l->l_proc;
628 struct timeval t;
629 int error;
630
631 if (SCARG(uap, tms)) {
632 struct linux_tms ltms;
633 struct rusage ru;
634
635 mutex_enter(p->p_lock);
636 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
637 ltms.ltms_utime = CONVTCK(ru.ru_utime);
638 ltms.ltms_stime = CONVTCK(ru.ru_stime);
639 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
640 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
641 mutex_exit(p->p_lock);
642
643 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
644 return error;
645 }
646
647 getmicrouptime(&t);
648
649 retval[0] = ((linux_clock_t)(CONVTCK(t)));
650 return 0;
651 }
652
653 #undef CONVTCK
654
655 /*
656 * Linux 'readdir' call. This code is mostly taken from the
657 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
658 * an attempt has been made to keep it a little cleaner (failing
659 * miserably, because of the cruft needed if count 1 is passed).
660 *
661 * The d_off field should contain the offset of the next valid entry,
662 * but in Linux it has the offset of the entry itself. We emulate
663 * that bug here.
664 *
665 * Read in BSD-style entries, convert them, and copy them out.
666 *
667 * Note that this doesn't handle union-mounted filesystems.
668 */
669 int
670 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
671 {
672 /* {
673 syscallarg(int) fd;
674 syscallarg(struct linux_dirent *) dent;
675 syscallarg(unsigned int) count;
676 } */
677 struct dirent *bdp;
678 struct vnode *vp;
679 char *inp, *tbuf; /* BSD-format */
680 int len, reclen; /* BSD-format */
681 char *outp; /* Linux-format */
682 int resid, linux_reclen = 0; /* Linux-format */
683 struct file *fp;
684 struct uio auio;
685 struct iovec aiov;
686 struct linux_dirent idb;
687 off_t off; /* true file offset */
688 int buflen, error, eofflag, nbytes, oldcall;
689 struct vattr va;
690 off_t *cookiebuf = NULL, *cookie;
691 int ncookies;
692
693 /* getvnode() will use the descriptor for us */
694 if ((error = getvnode(SCARG(uap, fd), &fp)) != 0)
695 return (error);
696
697 if ((fp->f_flag & FREAD) == 0) {
698 error = EBADF;
699 goto out1;
700 }
701
702 vp = (struct vnode *)fp->f_data;
703 if (vp->v_type != VDIR) {
704 error = EINVAL;
705 goto out1;
706 }
707
708 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
709 goto out1;
710
711 nbytes = SCARG(uap, count);
712 if (nbytes == 1) { /* emulating old, broken behaviour */
713 nbytes = sizeof (idb);
714 buflen = max(va.va_blocksize, nbytes);
715 oldcall = 1;
716 } else {
717 buflen = min(MAXBSIZE, nbytes);
718 if (buflen < va.va_blocksize)
719 buflen = va.va_blocksize;
720 oldcall = 0;
721 }
722 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
723
724 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
725 off = fp->f_offset;
726 again:
727 aiov.iov_base = tbuf;
728 aiov.iov_len = buflen;
729 auio.uio_iov = &aiov;
730 auio.uio_iovcnt = 1;
731 auio.uio_rw = UIO_READ;
732 auio.uio_resid = buflen;
733 auio.uio_offset = off;
734 UIO_SETUP_SYSSPACE(&auio);
735 /*
736 * First we read into the malloc'ed buffer, then
737 * we massage it into user space, one record at a time.
738 */
739 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
740 &ncookies);
741 if (error)
742 goto out;
743
744 inp = tbuf;
745 outp = (void *)SCARG(uap, dent);
746 resid = nbytes;
747 if ((len = buflen - auio.uio_resid) == 0)
748 goto eof;
749
750 for (cookie = cookiebuf; len > 0; len -= reclen) {
751 bdp = (struct dirent *)inp;
752 reclen = bdp->d_reclen;
753 if (reclen & 3)
754 panic("linux_readdir");
755 if (bdp->d_fileno == 0) {
756 inp += reclen; /* it is a hole; squish it out */
757 if (cookie)
758 off = *cookie++;
759 else
760 off += reclen;
761 continue;
762 }
763 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
764 if (reclen > len || resid < linux_reclen) {
765 /* entry too big for buffer, so just stop */
766 outp++;
767 break;
768 }
769 /*
770 * Massage in place to make a Linux-shaped dirent (otherwise
771 * we have to worry about touching user memory outside of
772 * the copyout() call).
773 */
774 idb.d_ino = bdp->d_fileno;
775 /*
776 * The old readdir() call misuses the offset and reclen fields.
777 */
778 if (oldcall) {
779 idb.d_off = (linux_off_t)linux_reclen;
780 idb.d_reclen = (u_short)bdp->d_namlen;
781 } else {
782 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
783 compat_offseterr(vp, "linux_getdents");
784 error = EINVAL;
785 goto out;
786 }
787 idb.d_off = (linux_off_t)off;
788 idb.d_reclen = (u_short)linux_reclen;
789 }
790 strcpy(idb.d_name, bdp->d_name);
791 if ((error = copyout((void *)&idb, outp, linux_reclen)))
792 goto out;
793 /* advance past this real entry */
794 inp += reclen;
795 if (cookie)
796 off = *cookie++; /* each entry points to itself */
797 else
798 off += reclen;
799 /* advance output past Linux-shaped entry */
800 outp += linux_reclen;
801 resid -= linux_reclen;
802 if (oldcall)
803 break;
804 }
805
806 /* if we squished out the whole block, try again */
807 if (outp == (void *)SCARG(uap, dent))
808 goto again;
809 fp->f_offset = off; /* update the vnode offset */
810
811 if (oldcall)
812 nbytes = resid + linux_reclen;
813
814 eof:
815 *retval = nbytes - resid;
816 out:
817 VOP_UNLOCK(vp, 0);
818 if (cookiebuf)
819 free(cookiebuf, M_TEMP);
820 free(tbuf, M_TEMP);
821 out1:
822 fd_putfile(SCARG(uap, fd));
823 return error;
824 }
825
826 /*
827 * Even when just using registers to pass arguments to syscalls you can
828 * have 5 of them on the i386. So this newer version of select() does
829 * this.
830 */
831 int
832 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
833 {
834 /* {
835 syscallarg(int) nfds;
836 syscallarg(fd_set *) readfds;
837 syscallarg(fd_set *) writefds;
838 syscallarg(fd_set *) exceptfds;
839 syscallarg(struct timeval *) timeout;
840 } */
841
842 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
843 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
844 }
845
846 /*
847 * Common code for the old and new versions of select(). A couple of
848 * things are important:
849 * 1) return the amount of time left in the 'timeout' parameter
850 * 2) select never returns ERESTART on Linux, always return EINTR
851 */
852 int
853 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
854 struct lwp *l;
855 register_t *retval;
856 int nfds;
857 fd_set *readfds, *writefds, *exceptfds;
858 struct timeval *timeout;
859 {
860 struct timeval tv0, tv1, utv, *tv = NULL;
861 int error;
862
863 /*
864 * Store current time for computation of the amount of
865 * time left.
866 */
867 if (timeout) {
868 if ((error = copyin(timeout, &utv, sizeof(utv))))
869 return error;
870 if (itimerfix(&utv)) {
871 /*
872 * The timeval was invalid. Convert it to something
873 * valid that will act as it does under Linux.
874 */
875 utv.tv_sec += utv.tv_usec / 1000000;
876 utv.tv_usec %= 1000000;
877 if (utv.tv_usec < 0) {
878 utv.tv_sec -= 1;
879 utv.tv_usec += 1000000;
880 }
881 if (utv.tv_sec < 0)
882 timerclear(&utv);
883 }
884 tv = &utv;
885 microtime(&tv0);
886 }
887
888 error = selcommon(l, retval, nfds, readfds, writefds, exceptfds,
889 tv, NULL);
890
891 if (error) {
892 /*
893 * See fs/select.c in the Linux kernel. Without this,
894 * Maelstrom doesn't work.
895 */
896 if (error == ERESTART)
897 error = EINTR;
898 return error;
899 }
900
901 if (timeout) {
902 if (*retval) {
903 /*
904 * Compute how much time was left of the timeout,
905 * by subtracting the current time and the time
906 * before we started the call, and subtracting
907 * that result from the user-supplied value.
908 */
909 microtime(&tv1);
910 timersub(&tv1, &tv0, &tv1);
911 timersub(&utv, &tv1, &utv);
912 if (utv.tv_sec < 0)
913 timerclear(&utv);
914 } else
915 timerclear(&utv);
916 if ((error = copyout(&utv, timeout, sizeof(utv))))
917 return error;
918 }
919
920 return 0;
921 }
922
923 /*
924 * Set the 'personality' (emulation mode) for the current process. Only
925 * accept the Linux personality here (0). This call is needed because
926 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
927 * ELF binaries run in Linux mode, not SVR4 mode.
928 */
929 int
930 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
931 {
932 /* {
933 syscallarg(int) per;
934 } */
935
936 if (SCARG(uap, per) != 0)
937 return EINVAL;
938 retval[0] = 0;
939 return 0;
940 }
941
942 /*
943 * We have nonexistent fsuid equal to uid.
944 * If modification is requested, refuse.
945 */
946 int
947 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
948 {
949 /* {
950 syscallarg(uid_t) uid;
951 } */
952 uid_t uid;
953
954 uid = SCARG(uap, uid);
955 if (kauth_cred_getuid(l->l_cred) != uid)
956 return sys_nosys(l, uap, retval);
957
958 *retval = uid;
959 return 0;
960 }
961
962 int
963 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
964 {
965 /* {
966 syscallarg(gid_t) gid;
967 } */
968 gid_t gid;
969
970 gid = SCARG(uap, gid);
971 if (kauth_cred_getgid(l->l_cred) != gid)
972 return sys_nosys(l, uap, retval);
973
974 *retval = gid;
975 return 0;
976 }
977
978 int
979 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
980 {
981 /* {
982 syscallarg(uid_t) ruid;
983 syscallarg(uid_t) euid;
984 syscallarg(uid_t) suid;
985 } */
986
987 /*
988 * Note: These checks are a little different than the NetBSD
989 * setreuid(2) call performs. This precisely follows the
990 * behavior of the Linux kernel.
991 */
992
993 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
994 SCARG(uap, suid),
995 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
996 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
997 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
998 }
999
1000 int
1001 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
1002 {
1003 /* {
1004 syscallarg(uid_t *) ruid;
1005 syscallarg(uid_t *) euid;
1006 syscallarg(uid_t *) suid;
1007 } */
1008 kauth_cred_t pc = l->l_cred;
1009 int error;
1010 uid_t uid;
1011
1012 /*
1013 * Linux copies these values out to userspace like so:
1014 *
1015 * 1. Copy out ruid.
1016 * 2. If that succeeds, copy out euid.
1017 * 3. If both of those succeed, copy out suid.
1018 */
1019 uid = kauth_cred_getuid(pc);
1020 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1021 return (error);
1022
1023 uid = kauth_cred_geteuid(pc);
1024 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1025 return (error);
1026
1027 uid = kauth_cred_getsvuid(pc);
1028
1029 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1030 }
1031
1032 int
1033 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
1034 {
1035 /* {
1036 i386, m68k, powerpc: T=int
1037 alpha, amd64: T=long
1038 syscallarg(T) request;
1039 syscallarg(T) pid;
1040 syscallarg(T) addr;
1041 syscallarg(T) data;
1042 } */
1043 #if defined(PTRACE) || defined(_LKM)
1044 const int *ptr;
1045 int request;
1046 int error;
1047 #ifdef _LKM
1048 #define sys_ptrace (*sysent[SYS_ptrace].sy_call)
1049 #endif
1050
1051 ptr = linux_ptrace_request_map;
1052 request = SCARG(uap, request);
1053 while (*ptr != -1)
1054 if (*ptr++ == request) {
1055 struct sys_ptrace_args pta;
1056
1057 SCARG(&pta, req) = *ptr;
1058 SCARG(&pta, pid) = SCARG(uap, pid);
1059 SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1060 SCARG(&pta, data) = SCARG(uap, data);
1061
1062 /*
1063 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1064 * to continue where the process left off previously.
1065 * The same thing is achieved by addr == (void *) 1
1066 * on NetBSD, so rewrite 'addr' appropriately.
1067 */
1068 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1069 SCARG(&pta, addr) = (void *) 1;
1070
1071 error = sys_ptrace(l, &pta, retval);
1072 if (error)
1073 return error;
1074 switch (request) {
1075 case LINUX_PTRACE_PEEKTEXT:
1076 case LINUX_PTRACE_PEEKDATA:
1077 error = copyout (retval,
1078 (void *)SCARG(uap, data),
1079 sizeof *retval);
1080 *retval = SCARG(uap, data);
1081 break;
1082 default:
1083 break;
1084 }
1085 return error;
1086 }
1087 else
1088 ptr++;
1089
1090 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1091 #else
1092 return ENOSYS;
1093 #endif /* PTRACE || _LKM */
1094 }
1095
1096 int
1097 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
1098 {
1099 /* {
1100 syscallarg(int) magic1;
1101 syscallarg(int) magic2;
1102 syscallarg(int) cmd;
1103 syscallarg(void *) arg;
1104 } */
1105 struct sys_reboot_args /* {
1106 syscallarg(int) opt;
1107 syscallarg(char *) bootstr;
1108 } */ sra;
1109 int error;
1110
1111 if ((error = kauth_authorize_system(l->l_cred,
1112 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1113 return(error);
1114
1115 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1116 return(EINVAL);
1117 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1118 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1119 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1120 return(EINVAL);
1121
1122 switch (SCARG(uap, cmd)) {
1123 case LINUX_REBOOT_CMD_RESTART:
1124 SCARG(&sra, opt) = RB_AUTOBOOT;
1125 break;
1126 case LINUX_REBOOT_CMD_HALT:
1127 SCARG(&sra, opt) = RB_HALT;
1128 break;
1129 case LINUX_REBOOT_CMD_POWER_OFF:
1130 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1131 break;
1132 case LINUX_REBOOT_CMD_RESTART2:
1133 /* Reboot with an argument. */
1134 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1135 SCARG(&sra, bootstr) = SCARG(uap, arg);
1136 break;
1137 case LINUX_REBOOT_CMD_CAD_ON:
1138 return(EINVAL); /* We don't implement ctrl-alt-delete */
1139 case LINUX_REBOOT_CMD_CAD_OFF:
1140 return(0);
1141 default:
1142 return(EINVAL);
1143 }
1144
1145 return(sys_reboot(l, &sra, retval));
1146 }
1147
1148 /*
1149 * Copy of compat_12_sys_swapon().
1150 */
1151 int
1152 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
1153 {
1154 /* {
1155 syscallarg(const char *) name;
1156 } */
1157 struct sys_swapctl_args ua;
1158
1159 SCARG(&ua, cmd) = SWAP_ON;
1160 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1161 SCARG(&ua, misc) = 0; /* priority */
1162 return (sys_swapctl(l, &ua, retval));
1163 }
1164
1165 /*
1166 * Stop swapping to the file or block device specified by path.
1167 */
1168 int
1169 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
1170 {
1171 /* {
1172 syscallarg(const char *) path;
1173 } */
1174 struct sys_swapctl_args ua;
1175
1176 SCARG(&ua, cmd) = SWAP_OFF;
1177 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1178 return (sys_swapctl(l, &ua, retval));
1179 }
1180
1181 /*
1182 * Copy of compat_09_sys_setdomainname()
1183 */
1184 /* ARGSUSED */
1185 int
1186 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
1187 {
1188 /* {
1189 syscallarg(char *) domainname;
1190 syscallarg(int) len;
1191 } */
1192 int name[2];
1193
1194 name[0] = CTL_KERN;
1195 name[1] = KERN_DOMAINNAME;
1196 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1197 SCARG(uap, len), l));
1198 }
1199
1200 /*
1201 * sysinfo()
1202 */
1203 /* ARGSUSED */
1204 int
1205 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
1206 {
1207 /* {
1208 syscallarg(struct linux_sysinfo *) arg;
1209 } */
1210 struct linux_sysinfo si;
1211 struct loadavg *la;
1212
1213 si.uptime = time_uptime;
1214 la = &averunnable;
1215 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1216 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1217 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1218 si.totalram = ctob((u_long)physmem);
1219 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
1220 si.sharedram = 0; /* XXX */
1221 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
1222 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1223 si.freeswap =
1224 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1225 si.procs = nprocs;
1226
1227 /* The following are only present in newer Linux kernels. */
1228 si.totalbig = 0;
1229 si.freebig = 0;
1230 si.mem_unit = 1;
1231
1232 return (copyout(&si, SCARG(uap, arg), sizeof si));
1233 }
1234
1235 int
1236 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
1237 {
1238 /* {
1239 syscallarg(int) which;
1240 # ifdef LINUX_LARGEFILE64
1241 syscallarg(struct rlimit *) rlp;
1242 # else
1243 syscallarg(struct orlimit *) rlp;
1244 # endif
1245 } */
1246 # ifdef LINUX_LARGEFILE64
1247 struct rlimit orl;
1248 # else
1249 struct orlimit orl;
1250 # endif
1251 int which;
1252
1253 which = linux_to_bsd_limit(SCARG(uap, which));
1254 if (which < 0)
1255 return -which;
1256
1257 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1258
1259 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1260 }
1261
1262 int
1263 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
1264 {
1265 /* {
1266 syscallarg(int) which;
1267 # ifdef LINUX_LARGEFILE64
1268 syscallarg(struct rlimit *) rlp;
1269 # else
1270 syscallarg(struct orlimit *) rlp;
1271 # endif
1272 } */
1273 struct rlimit rl;
1274 # ifdef LINUX_LARGEFILE64
1275 struct rlimit orl;
1276 # else
1277 struct orlimit orl;
1278 # endif
1279 int error;
1280 int which;
1281
1282 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1283 return error;
1284
1285 which = linux_to_bsd_limit(SCARG(uap, which));
1286 if (which < 0)
1287 return -which;
1288
1289 linux_to_bsd_rlimit(&rl, &orl);
1290 return dosetrlimit(l, l->l_proc, which, &rl);
1291 }
1292
1293 # if !defined(__mips__) && !defined(__amd64__)
1294 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1295 int
1296 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
1297 {
1298 return linux_sys_getrlimit(l, (const void *)uap, retval);
1299 }
1300 # endif
1301
1302 /*
1303 * This gets called for unsupported syscalls. The difference to sys_nosys()
1304 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1305 * This is the way Linux does it and glibc depends on this behaviour.
1306 */
1307 int
1308 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
1309 {
1310 return (ENOSYS);
1311 }
1312
1313 int
1314 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
1315 {
1316 /* {
1317 syscallarg(int) which;
1318 syscallarg(int) who;
1319 } */
1320 struct sys_getpriority_args bsa;
1321 int error;
1322
1323 SCARG(&bsa, which) = SCARG(uap, which);
1324 SCARG(&bsa, who) = SCARG(uap, who);
1325
1326 if ((error = sys_getpriority(l, &bsa, retval)))
1327 return error;
1328
1329 *retval = NZERO - *retval;
1330
1331 return 0;
1332 }
1333
1334 #endif /* !COMPAT_LINUX32 */
1335