linux_misc.c revision 1.206 1 /* $NetBSD: linux_misc.c,v 1.206 2009/03/14 21:04:18 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Linux compatibility module. Try to deal with various Linux system calls.
35 */
36
37 /*
38 * These functions have been moved to multiarch to allow
39 * selection of which machines include them to be
40 * determined by the individual files.linux_<arch> files.
41 *
42 * Function in multiarch:
43 * linux_sys_break : linux_break.c
44 * linux_sys_alarm : linux_misc_notalpha.c
45 * linux_sys_getresgid : linux_misc_notalpha.c
46 * linux_sys_nice : linux_misc_notalpha.c
47 * linux_sys_readdir : linux_misc_notalpha.c
48 * linux_sys_setresgid : linux_misc_notalpha.c
49 * linux_sys_time : linux_misc_notalpha.c
50 * linux_sys_utime : linux_misc_notalpha.c
51 * linux_sys_waitpid : linux_misc_notalpha.c
52 * linux_sys_old_mmap : linux_oldmmap.c
53 * linux_sys_oldolduname : linux_oldolduname.c
54 * linux_sys_oldselect : linux_oldselect.c
55 * linux_sys_olduname : linux_olduname.c
56 * linux_sys_pipe : linux_pipe.c
57 */
58
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.206 2009/03/14 21:04:18 dsl Exp $");
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/dirent.h>
67 #include <sys/file.h>
68 #include <sys/stat.h>
69 #include <sys/filedesc.h>
70 #include <sys/ioctl.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/prot.h>
77 #include <sys/reboot.h>
78 #include <sys/resource.h>
79 #include <sys/resourcevar.h>
80 #include <sys/select.h>
81 #include <sys/signal.h>
82 #include <sys/signalvar.h>
83 #include <sys/socket.h>
84 #include <sys/time.h>
85 #include <sys/times.h>
86 #include <sys/vnode.h>
87 #include <sys/uio.h>
88 #include <sys/wait.h>
89 #include <sys/utsname.h>
90 #include <sys/unistd.h>
91 #include <sys/vfs_syscalls.h>
92 #include <sys/swap.h> /* for SWAP_ON */
93 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
94 #include <sys/kauth.h>
95
96 #include <sys/ptrace.h>
97 #include <machine/ptrace.h>
98
99 #include <sys/syscall.h>
100 #include <sys/syscallargs.h>
101
102 #include <compat/sys/resource.h>
103
104 #include <compat/linux/common/linux_machdep.h>
105 #include <compat/linux/common/linux_types.h>
106 #include <compat/linux/common/linux_signal.h>
107 #include <compat/linux/common/linux_ipc.h>
108 #include <compat/linux/common/linux_sem.h>
109
110 #include <compat/linux/linux_syscallargs.h>
111
112 #include <compat/linux/common/linux_fcntl.h>
113 #include <compat/linux/common/linux_mmap.h>
114 #include <compat/linux/common/linux_dirent.h>
115 #include <compat/linux/common/linux_util.h>
116 #include <compat/linux/common/linux_misc.h>
117 #ifndef COMPAT_LINUX32
118 #include <compat/linux/common/linux_statfs.h>
119 #include <compat/linux/common/linux_limit.h>
120 #endif
121 #include <compat/linux/common/linux_ptrace.h>
122 #include <compat/linux/common/linux_reboot.h>
123 #include <compat/linux/common/linux_emuldata.h>
124
125 #ifndef COMPAT_LINUX32
126 const int linux_ptrace_request_map[] = {
127 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
128 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
129 LINUX_PTRACE_PEEKDATA, PT_READ_D,
130 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
131 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
132 LINUX_PTRACE_CONT, PT_CONTINUE,
133 LINUX_PTRACE_KILL, PT_KILL,
134 LINUX_PTRACE_ATTACH, PT_ATTACH,
135 LINUX_PTRACE_DETACH, PT_DETACH,
136 # ifdef PT_STEP
137 LINUX_PTRACE_SINGLESTEP, PT_STEP,
138 # endif
139 LINUX_PTRACE_SYSCALL, PT_SYSCALL,
140 -1
141 };
142
143 const struct linux_mnttypes linux_fstypes[] = {
144 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
146 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
148 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
150 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
153 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
155 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
156 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
158 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
159 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
160 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
161 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
162 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
163 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
164 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
165 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
166 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
167 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC }
168 };
169 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
170
171 # ifdef DEBUG_LINUX
172 #define DPRINTF(a) uprintf a
173 # else
174 #define DPRINTF(a)
175 # endif
176
177 /* Local linux_misc.c functions: */
178 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
179 const struct linux_sys_mmap_args *);
180 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
181 register_t *, off_t);
182
183
184 /*
185 * The information on a terminated (or stopped) process needs
186 * to be converted in order for Linux binaries to get a valid signal
187 * number out of it.
188 */
189 int
190 bsd_to_linux_wstat(int st)
191 {
192
193 int sig;
194
195 if (WIFSIGNALED(st)) {
196 sig = WTERMSIG(st);
197 if (sig >= 0 && sig < NSIG)
198 st= (st & ~0177) | native_to_linux_signo[sig];
199 } else if (WIFSTOPPED(st)) {
200 sig = WSTOPSIG(st);
201 if (sig >= 0 && sig < NSIG)
202 st = (st & ~0xff00) |
203 (native_to_linux_signo[sig] << 8);
204 }
205 return st;
206 }
207
208 /*
209 * wait4(2). Passed on to the NetBSD call, surrounded by code to
210 * reserve some space for a NetBSD-style wait status, and converting
211 * it to what Linux wants.
212 */
213 int
214 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
215 {
216 /* {
217 syscallarg(int) pid;
218 syscallarg(int *) status;
219 syscallarg(int) options;
220 syscallarg(struct rusage50 *) rusage;
221 } */
222 int error, status, options, linux_options, was_zombie;
223 struct rusage ru;
224 struct rusage50 ru50;
225 int pid = SCARG(uap, pid);
226 proc_t *p;
227
228 linux_options = SCARG(uap, options);
229 options = WOPTSCHECKED;
230 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
231 return (EINVAL);
232
233 if (linux_options & LINUX_WAIT4_WNOHANG)
234 options |= WNOHANG;
235 if (linux_options & LINUX_WAIT4_WUNTRACED)
236 options |= WUNTRACED;
237 if (linux_options & LINUX_WAIT4_WALL)
238 options |= WALLSIG;
239 if (linux_options & LINUX_WAIT4_WCLONE)
240 options |= WALTSIG;
241 # ifdef DIAGNOSTIC
242 if (linux_options & LINUX_WAIT4_WNOTHREAD)
243 printf("WARNING: %s: linux process %d.%d called "
244 "waitpid with __WNOTHREAD set!",
245 __FILE__, l->l_proc->p_pid, l->l_lid);
246
247 # endif
248
249 error = do_sys_wait(l, &pid, &status, options,
250 SCARG(uap, rusage) != NULL ? &ru : NULL, &was_zombie);
251
252 retval[0] = pid;
253 if (pid == 0)
254 return error;
255
256 p = curproc;
257 mutex_enter(p->p_lock);
258 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
259 mutex_exit(p->p_lock);
260
261 if (SCARG(uap, rusage) != NULL) {
262 rusage_to_rusage50(&ru, &ru50);
263 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
264 }
265
266 if (error == 0 && SCARG(uap, status) != NULL) {
267 status = bsd_to_linux_wstat(status);
268 error = copyout(&status, SCARG(uap, status), sizeof status);
269 }
270
271 return error;
272 }
273
274 /*
275 * Linux brk(2). The check if the new address is >= the old one is
276 * done in the kernel in Linux. NetBSD does it in the library.
277 */
278 int
279 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
280 {
281 /* {
282 syscallarg(char *) nsize;
283 } */
284 struct proc *p = l->l_proc;
285 char *nbrk = SCARG(uap, nsize);
286 struct sys_obreak_args oba;
287 struct vmspace *vm = p->p_vmspace;
288 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
289
290 SCARG(&oba, nsize) = nbrk;
291
292 if ((void *) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
293 ed->s->p_break = (char*)nbrk;
294 else
295 nbrk = ed->s->p_break;
296
297 retval[0] = (register_t)nbrk;
298
299 return 0;
300 }
301
302 /*
303 * Implement the fs stat functions. Straightforward.
304 */
305 int
306 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
307 {
308 /* {
309 syscallarg(const char *) path;
310 syscallarg(struct linux_statfs *) sp;
311 } */
312 struct statvfs *sb;
313 struct linux_statfs ltmp;
314 int error;
315
316 sb = STATVFSBUF_GET();
317 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
318 if (error == 0) {
319 bsd_to_linux_statfs(sb, <mp);
320 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
321 }
322 STATVFSBUF_PUT(sb);
323
324 return error;
325 }
326
327 int
328 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
329 {
330 /* {
331 syscallarg(int) fd;
332 syscallarg(struct linux_statfs *) sp;
333 } */
334 struct statvfs *sb;
335 struct linux_statfs ltmp;
336 int error;
337
338 sb = STATVFSBUF_GET();
339 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
340 if (error == 0) {
341 bsd_to_linux_statfs(sb, <mp);
342 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
343 }
344 STATVFSBUF_PUT(sb);
345
346 return error;
347 }
348
349 /*
350 * uname(). Just copy the info from the various strings stored in the
351 * kernel, and put it in the Linux utsname structure. That structure
352 * is almost the same as the NetBSD one, only it has fields 65 characters
353 * long, and an extra domainname field.
354 */
355 int
356 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
357 {
358 /* {
359 syscallarg(struct linux_utsname *) up;
360 } */
361 struct linux_utsname luts;
362
363 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
364 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
365 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
366 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
367 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
368 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
369
370 return copyout(&luts, SCARG(uap, up), sizeof(luts));
371 }
372
373 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
374 /* Used indirectly on: arm, i386, m68k */
375
376 /*
377 * New type Linux mmap call.
378 * Only called directly on machines with >= 6 free regs.
379 */
380 int
381 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
382 {
383 /* {
384 syscallarg(unsigned long) addr;
385 syscallarg(size_t) len;
386 syscallarg(int) prot;
387 syscallarg(int) flags;
388 syscallarg(int) fd;
389 syscallarg(linux_off_t) offset;
390 } */
391
392 if (SCARG(uap, offset) & PAGE_MASK)
393 return EINVAL;
394
395 return linux_mmap(l, uap, retval, SCARG(uap, offset));
396 }
397
398 /*
399 * Guts of most architectures' mmap64() implementations. This shares
400 * its list of arguments with linux_sys_mmap().
401 *
402 * The difference in linux_sys_mmap2() is that "offset" is actually
403 * (offset / pagesize), not an absolute byte count. This translation
404 * to pagesize offsets is done inside glibc between the mmap64() call
405 * point, and the actual syscall.
406 */
407 int
408 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
409 {
410 /* {
411 syscallarg(unsigned long) addr;
412 syscallarg(size_t) len;
413 syscallarg(int) prot;
414 syscallarg(int) flags;
415 syscallarg(int) fd;
416 syscallarg(linux_off_t) offset;
417 } */
418
419 return linux_mmap(l, uap, retval,
420 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
421 }
422
423 /*
424 * Massage arguments and call system mmap(2).
425 */
426 static int
427 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
428 {
429 struct sys_mmap_args cma;
430 int error;
431 size_t mmoff=0;
432
433 linux_to_bsd_mmap_args(&cma, uap);
434 SCARG(&cma, pos) = offset;
435
436 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
437 /*
438 * Request for stack-like memory segment. On linux, this
439 * works by mmap()ping (small) segment, which is automatically
440 * extended when page fault happens below the currently
441 * allocated area. We emulate this by allocating (typically
442 * bigger) segment sized at current stack size limit, and
443 * offsetting the requested and returned address accordingly.
444 * Since physical pages are only allocated on-demand, this
445 * is effectively identical.
446 */
447 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
448
449 if (SCARG(&cma, len) < ssl) {
450 /* Compute the address offset */
451 mmoff = round_page(ssl) - SCARG(uap, len);
452
453 if (SCARG(&cma, addr))
454 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
455
456 SCARG(&cma, len) = (size_t) ssl;
457 }
458 }
459
460 error = sys_mmap(l, &cma, retval);
461 if (error)
462 return (error);
463
464 /* Shift the returned address for stack-like segment if necessary */
465 retval[0] += mmoff;
466
467 return (0);
468 }
469
470 static void
471 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
472 {
473 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
474
475 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
476 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
477 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
478 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
479 /* XXX XAX ERH: Any other flags here? There are more defined... */
480
481 SCARG(cma, addr) = (void *)SCARG(uap, addr);
482 SCARG(cma, len) = SCARG(uap, len);
483 SCARG(cma, prot) = SCARG(uap, prot);
484 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
485 SCARG(cma, prot) |= VM_PROT_READ;
486 SCARG(cma, flags) = flags;
487 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
488 SCARG(cma, pad) = 0;
489 }
490
491 #define LINUX_MREMAP_MAYMOVE 1
492 #define LINUX_MREMAP_FIXED 2
493
494 int
495 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
496 {
497 /* {
498 syscallarg(void *) old_address;
499 syscallarg(size_t) old_size;
500 syscallarg(size_t) new_size;
501 syscallarg(u_long) flags;
502 } */
503
504 struct proc *p;
505 struct vm_map *map;
506 vaddr_t oldva;
507 vaddr_t newva;
508 size_t oldsize;
509 size_t newsize;
510 int flags;
511 int uvmflags;
512 int error;
513
514 flags = SCARG(uap, flags);
515 oldva = (vaddr_t)SCARG(uap, old_address);
516 oldsize = round_page(SCARG(uap, old_size));
517 newsize = round_page(SCARG(uap, new_size));
518 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
519 error = EINVAL;
520 goto done;
521 }
522 if ((flags & LINUX_MREMAP_FIXED) != 0) {
523 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
524 error = EINVAL;
525 goto done;
526 }
527 #if 0 /* notyet */
528 newva = SCARG(uap, new_address);
529 uvmflags = MAP_FIXED;
530 #else /* notyet */
531 error = EOPNOTSUPP;
532 goto done;
533 #endif /* notyet */
534 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
535 uvmflags = 0;
536 } else {
537 newva = oldva;
538 uvmflags = MAP_FIXED;
539 }
540 p = l->l_proc;
541 map = &p->p_vmspace->vm_map;
542 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
543 uvmflags);
544
545 done:
546 *retval = (error != 0) ? 0 : (register_t)newva;
547 return error;
548 }
549
550 int
551 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
552 {
553 /* {
554 syscallarg(const void *) start;
555 syscallarg(unsigned long) len;
556 syscallarg(int) prot;
557 } */
558 struct vm_map_entry *entry;
559 struct vm_map *map;
560 struct proc *p;
561 vaddr_t end, start, len, stacklim;
562 int prot, grows;
563
564 start = (vaddr_t)SCARG(uap, start);
565 len = round_page(SCARG(uap, len));
566 prot = SCARG(uap, prot);
567 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
568 prot &= ~grows;
569 end = start + len;
570
571 if (start & PAGE_MASK)
572 return EINVAL;
573 if (end < start)
574 return EINVAL;
575 if (end == start)
576 return 0;
577
578 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
579 return EINVAL;
580 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
581 return EINVAL;
582
583 p = l->l_proc;
584 map = &p->p_vmspace->vm_map;
585 vm_map_lock(map);
586 # ifdef notdef
587 VM_MAP_RANGE_CHECK(map, start, end);
588 # endif
589 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
590 vm_map_unlock(map);
591 return ENOMEM;
592 }
593
594 /*
595 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
596 */
597
598 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
599 if (grows & LINUX_PROT_GROWSDOWN) {
600 if (USRSTACK - stacklim <= start && start < USRSTACK) {
601 start = USRSTACK - stacklim;
602 } else {
603 start = entry->start;
604 }
605 } else if (grows & LINUX_PROT_GROWSUP) {
606 if (USRSTACK <= end && end < USRSTACK + stacklim) {
607 end = USRSTACK + stacklim;
608 } else {
609 end = entry->end;
610 }
611 }
612 vm_map_unlock(map);
613 return uvm_map_protect(map, start, end, prot, FALSE);
614 }
615
616 /*
617 * This code is partly stolen from src/lib/libc/compat-43/times.c
618 */
619
620 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
621
622 int
623 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
624 {
625 /* {
626 syscallarg(struct times *) tms;
627 } */
628 struct proc *p = l->l_proc;
629 struct timeval t;
630 int error;
631
632 if (SCARG(uap, tms)) {
633 struct linux_tms ltms;
634 struct rusage ru;
635
636 mutex_enter(p->p_lock);
637 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
638 ltms.ltms_utime = CONVTCK(ru.ru_utime);
639 ltms.ltms_stime = CONVTCK(ru.ru_stime);
640 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
641 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
642 mutex_exit(p->p_lock);
643
644 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
645 return error;
646 }
647
648 getmicrouptime(&t);
649
650 retval[0] = ((linux_clock_t)(CONVTCK(t)));
651 return 0;
652 }
653
654 #undef CONVTCK
655
656 /*
657 * Linux 'readdir' call. This code is mostly taken from the
658 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
659 * an attempt has been made to keep it a little cleaner (failing
660 * miserably, because of the cruft needed if count 1 is passed).
661 *
662 * The d_off field should contain the offset of the next valid entry,
663 * but in Linux it has the offset of the entry itself. We emulate
664 * that bug here.
665 *
666 * Read in BSD-style entries, convert them, and copy them out.
667 *
668 * Note that this doesn't handle union-mounted filesystems.
669 */
670 int
671 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
672 {
673 /* {
674 syscallarg(int) fd;
675 syscallarg(struct linux_dirent *) dent;
676 syscallarg(unsigned int) count;
677 } */
678 struct dirent *bdp;
679 struct vnode *vp;
680 char *inp, *tbuf; /* BSD-format */
681 int len, reclen; /* BSD-format */
682 char *outp; /* Linux-format */
683 int resid, linux_reclen = 0; /* Linux-format */
684 struct file *fp;
685 struct uio auio;
686 struct iovec aiov;
687 struct linux_dirent idb;
688 off_t off; /* true file offset */
689 int buflen, error, eofflag, nbytes, oldcall;
690 struct vattr va;
691 off_t *cookiebuf = NULL, *cookie;
692 int ncookies;
693
694 /* fd_getvnode() will use the descriptor for us */
695 if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0)
696 return (error);
697
698 if ((fp->f_flag & FREAD) == 0) {
699 error = EBADF;
700 goto out1;
701 }
702
703 vp = (struct vnode *)fp->f_data;
704 if (vp->v_type != VDIR) {
705 error = EINVAL;
706 goto out1;
707 }
708
709 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
710 goto out1;
711
712 nbytes = SCARG(uap, count);
713 if (nbytes == 1) { /* emulating old, broken behaviour */
714 nbytes = sizeof (idb);
715 buflen = max(va.va_blocksize, nbytes);
716 oldcall = 1;
717 } else {
718 buflen = min(MAXBSIZE, nbytes);
719 if (buflen < va.va_blocksize)
720 buflen = va.va_blocksize;
721 oldcall = 0;
722 }
723 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
724
725 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
726 off = fp->f_offset;
727 again:
728 aiov.iov_base = tbuf;
729 aiov.iov_len = buflen;
730 auio.uio_iov = &aiov;
731 auio.uio_iovcnt = 1;
732 auio.uio_rw = UIO_READ;
733 auio.uio_resid = buflen;
734 auio.uio_offset = off;
735 UIO_SETUP_SYSSPACE(&auio);
736 /*
737 * First we read into the malloc'ed buffer, then
738 * we massage it into user space, one record at a time.
739 */
740 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
741 &ncookies);
742 if (error)
743 goto out;
744
745 inp = tbuf;
746 outp = (void *)SCARG(uap, dent);
747 resid = nbytes;
748 if ((len = buflen - auio.uio_resid) == 0)
749 goto eof;
750
751 for (cookie = cookiebuf; len > 0; len -= reclen) {
752 bdp = (struct dirent *)inp;
753 reclen = bdp->d_reclen;
754 if (reclen & 3)
755 panic("linux_readdir");
756 if (bdp->d_fileno == 0) {
757 inp += reclen; /* it is a hole; squish it out */
758 if (cookie)
759 off = *cookie++;
760 else
761 off += reclen;
762 continue;
763 }
764 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
765 if (reclen > len || resid < linux_reclen) {
766 /* entry too big for buffer, so just stop */
767 outp++;
768 break;
769 }
770 /*
771 * Massage in place to make a Linux-shaped dirent (otherwise
772 * we have to worry about touching user memory outside of
773 * the copyout() call).
774 */
775 idb.d_ino = bdp->d_fileno;
776 /*
777 * The old readdir() call misuses the offset and reclen fields.
778 */
779 if (oldcall) {
780 idb.d_off = (linux_off_t)linux_reclen;
781 idb.d_reclen = (u_short)bdp->d_namlen;
782 } else {
783 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
784 compat_offseterr(vp, "linux_getdents");
785 error = EINVAL;
786 goto out;
787 }
788 idb.d_off = (linux_off_t)off;
789 idb.d_reclen = (u_short)linux_reclen;
790 }
791 strcpy(idb.d_name, bdp->d_name);
792 if ((error = copyout((void *)&idb, outp, linux_reclen)))
793 goto out;
794 /* advance past this real entry */
795 inp += reclen;
796 if (cookie)
797 off = *cookie++; /* each entry points to itself */
798 else
799 off += reclen;
800 /* advance output past Linux-shaped entry */
801 outp += linux_reclen;
802 resid -= linux_reclen;
803 if (oldcall)
804 break;
805 }
806
807 /* if we squished out the whole block, try again */
808 if (outp == (void *)SCARG(uap, dent))
809 goto again;
810 fp->f_offset = off; /* update the vnode offset */
811
812 if (oldcall)
813 nbytes = resid + linux_reclen;
814
815 eof:
816 *retval = nbytes - resid;
817 out:
818 VOP_UNLOCK(vp, 0);
819 if (cookiebuf)
820 free(cookiebuf, M_TEMP);
821 free(tbuf, M_TEMP);
822 out1:
823 fd_putfile(SCARG(uap, fd));
824 return error;
825 }
826
827 /*
828 * Even when just using registers to pass arguments to syscalls you can
829 * have 5 of them on the i386. So this newer version of select() does
830 * this.
831 */
832 int
833 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
834 {
835 /* {
836 syscallarg(int) nfds;
837 syscallarg(fd_set *) readfds;
838 syscallarg(fd_set *) writefds;
839 syscallarg(fd_set *) exceptfds;
840 syscallarg(struct timeval50 *) timeout;
841 } */
842
843 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
844 SCARG(uap, writefds), SCARG(uap, exceptfds),
845 (struct linux_timeval *)SCARG(uap, timeout));
846 }
847
848 /*
849 * Common code for the old and new versions of select(). A couple of
850 * things are important:
851 * 1) return the amount of time left in the 'timeout' parameter
852 * 2) select never returns ERESTART on Linux, always return EINTR
853 */
854 int
855 linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout)
856 {
857 struct timeval tv0, tv1, utv, *tv = NULL;
858 struct linux_timeval ltv;
859 int error;
860
861 /*
862 * Store current time for computation of the amount of
863 * time left.
864 */
865 if (timeout) {
866 if ((error = copyin(timeout, <v, sizeof(ltv))))
867 return error;
868 utv.tv_sec = ltv.tv_sec;
869 utv.tv_usec = ltv.tv_usec;
870 if (itimerfix(&utv)) {
871 /*
872 * The timeval was invalid. Convert it to something
873 * valid that will act as it does under Linux.
874 */
875 utv.tv_sec += utv.tv_usec / 1000000;
876 utv.tv_usec %= 1000000;
877 if (utv.tv_usec < 0) {
878 utv.tv_sec -= 1;
879 utv.tv_usec += 1000000;
880 }
881 if (utv.tv_sec < 0)
882 timerclear(&utv);
883 }
884 tv = &utv;
885 microtime(&tv0);
886 }
887
888 error = selcommon(l, retval, nfds, readfds, writefds, exceptfds,
889 tv, NULL);
890
891 if (error) {
892 /*
893 * See fs/select.c in the Linux kernel. Without this,
894 * Maelstrom doesn't work.
895 */
896 if (error == ERESTART)
897 error = EINTR;
898 return error;
899 }
900
901 if (timeout) {
902 if (*retval) {
903 /*
904 * Compute how much time was left of the timeout,
905 * by subtracting the current time and the time
906 * before we started the call, and subtracting
907 * that result from the user-supplied value.
908 */
909 microtime(&tv1);
910 timersub(&tv1, &tv0, &tv1);
911 timersub(&utv, &tv1, &utv);
912 if (utv.tv_sec < 0)
913 timerclear(&utv);
914 } else
915 timerclear(&utv);
916 ltv.tv_sec = utv.tv_sec;
917 ltv.tv_usec = utv.tv_usec;
918 if ((error = copyout(<v, timeout, sizeof(ltv))))
919 return error;
920 }
921
922 return 0;
923 }
924
925 /*
926 * Set the 'personality' (emulation mode) for the current process. Only
927 * accept the Linux personality here (0). This call is needed because
928 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
929 * ELF binaries run in Linux mode, not SVR4 mode.
930 */
931 int
932 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
933 {
934 /* {
935 syscallarg(int) per;
936 } */
937
938 switch (SCARG(uap, per)) {
939 case LINUX_PER_LINUX:
940 case LINUX_PER_QUERY:
941 break;
942 default:
943 return EINVAL;
944 }
945
946 retval[0] = LINUX_PER_LINUX;
947 return 0;
948 }
949
950 /*
951 * We have nonexistent fsuid equal to uid.
952 * If modification is requested, refuse.
953 */
954 int
955 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
956 {
957 /* {
958 syscallarg(uid_t) uid;
959 } */
960 uid_t uid;
961
962 uid = SCARG(uap, uid);
963 if (kauth_cred_getuid(l->l_cred) != uid)
964 return sys_nosys(l, uap, retval);
965
966 *retval = uid;
967 return 0;
968 }
969
970 int
971 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
972 {
973 /* {
974 syscallarg(gid_t) gid;
975 } */
976 gid_t gid;
977
978 gid = SCARG(uap, gid);
979 if (kauth_cred_getgid(l->l_cred) != gid)
980 return sys_nosys(l, uap, retval);
981
982 *retval = gid;
983 return 0;
984 }
985
986 int
987 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
988 {
989 /* {
990 syscallarg(uid_t) ruid;
991 syscallarg(uid_t) euid;
992 syscallarg(uid_t) suid;
993 } */
994
995 /*
996 * Note: These checks are a little different than the NetBSD
997 * setreuid(2) call performs. This precisely follows the
998 * behavior of the Linux kernel.
999 */
1000
1001 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1002 SCARG(uap, suid),
1003 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1004 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1005 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1006 }
1007
1008 int
1009 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
1010 {
1011 /* {
1012 syscallarg(uid_t *) ruid;
1013 syscallarg(uid_t *) euid;
1014 syscallarg(uid_t *) suid;
1015 } */
1016 kauth_cred_t pc = l->l_cred;
1017 int error;
1018 uid_t uid;
1019
1020 /*
1021 * Linux copies these values out to userspace like so:
1022 *
1023 * 1. Copy out ruid.
1024 * 2. If that succeeds, copy out euid.
1025 * 3. If both of those succeed, copy out suid.
1026 */
1027 uid = kauth_cred_getuid(pc);
1028 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1029 return (error);
1030
1031 uid = kauth_cred_geteuid(pc);
1032 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1033 return (error);
1034
1035 uid = kauth_cred_getsvuid(pc);
1036
1037 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1038 }
1039
1040 int
1041 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
1042 {
1043 /* {
1044 i386, m68k, powerpc: T=int
1045 alpha, amd64: T=long
1046 syscallarg(T) request;
1047 syscallarg(T) pid;
1048 syscallarg(T) addr;
1049 syscallarg(T) data;
1050 } */
1051 const int *ptr;
1052 int request;
1053 int error;
1054
1055 ptr = linux_ptrace_request_map;
1056 request = SCARG(uap, request);
1057 while (*ptr != -1)
1058 if (*ptr++ == request) {
1059 struct sys_ptrace_args pta;
1060
1061 SCARG(&pta, req) = *ptr;
1062 SCARG(&pta, pid) = SCARG(uap, pid);
1063 SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1064 SCARG(&pta, data) = SCARG(uap, data);
1065
1066 /*
1067 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1068 * to continue where the process left off previously.
1069 * The same thing is achieved by addr == (void *) 1
1070 * on NetBSD, so rewrite 'addr' appropriately.
1071 */
1072 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1073 SCARG(&pta, addr) = (void *) 1;
1074
1075 error = sysent[SYS_ptrace].sy_call(l, &pta, retval);
1076 if (error)
1077 return error;
1078 switch (request) {
1079 case LINUX_PTRACE_PEEKTEXT:
1080 case LINUX_PTRACE_PEEKDATA:
1081 error = copyout (retval,
1082 (void *)SCARG(uap, data),
1083 sizeof *retval);
1084 *retval = SCARG(uap, data);
1085 break;
1086 default:
1087 break;
1088 }
1089 return error;
1090 }
1091 else
1092 ptr++;
1093
1094 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1095 }
1096
1097 int
1098 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
1099 {
1100 /* {
1101 syscallarg(int) magic1;
1102 syscallarg(int) magic2;
1103 syscallarg(int) cmd;
1104 syscallarg(void *) arg;
1105 } */
1106 struct sys_reboot_args /* {
1107 syscallarg(int) opt;
1108 syscallarg(char *) bootstr;
1109 } */ sra;
1110 int error;
1111
1112 if ((error = kauth_authorize_system(l->l_cred,
1113 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1114 return(error);
1115
1116 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1117 return(EINVAL);
1118 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1119 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1120 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1121 return(EINVAL);
1122
1123 switch ((unsigned long)SCARG(uap, cmd)) {
1124 case LINUX_REBOOT_CMD_RESTART:
1125 SCARG(&sra, opt) = RB_AUTOBOOT;
1126 break;
1127 case LINUX_REBOOT_CMD_HALT:
1128 SCARG(&sra, opt) = RB_HALT;
1129 break;
1130 case LINUX_REBOOT_CMD_POWER_OFF:
1131 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1132 break;
1133 case LINUX_REBOOT_CMD_RESTART2:
1134 /* Reboot with an argument. */
1135 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1136 SCARG(&sra, bootstr) = SCARG(uap, arg);
1137 break;
1138 case LINUX_REBOOT_CMD_CAD_ON:
1139 return(EINVAL); /* We don't implement ctrl-alt-delete */
1140 case LINUX_REBOOT_CMD_CAD_OFF:
1141 return(0);
1142 default:
1143 return(EINVAL);
1144 }
1145
1146 return(sys_reboot(l, &sra, retval));
1147 }
1148
1149 /*
1150 * Copy of compat_12_sys_swapon().
1151 */
1152 int
1153 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
1154 {
1155 /* {
1156 syscallarg(const char *) name;
1157 } */
1158 struct sys_swapctl_args ua;
1159
1160 SCARG(&ua, cmd) = SWAP_ON;
1161 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1162 SCARG(&ua, misc) = 0; /* priority */
1163 return (sys_swapctl(l, &ua, retval));
1164 }
1165
1166 /*
1167 * Stop swapping to the file or block device specified by path.
1168 */
1169 int
1170 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
1171 {
1172 /* {
1173 syscallarg(const char *) path;
1174 } */
1175 struct sys_swapctl_args ua;
1176
1177 SCARG(&ua, cmd) = SWAP_OFF;
1178 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1179 return (sys_swapctl(l, &ua, retval));
1180 }
1181
1182 /*
1183 * Copy of compat_09_sys_setdomainname()
1184 */
1185 /* ARGSUSED */
1186 int
1187 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
1188 {
1189 /* {
1190 syscallarg(char *) domainname;
1191 syscallarg(int) len;
1192 } */
1193 int name[2];
1194
1195 name[0] = CTL_KERN;
1196 name[1] = KERN_DOMAINNAME;
1197 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1198 SCARG(uap, len), l));
1199 }
1200
1201 /*
1202 * sysinfo()
1203 */
1204 /* ARGSUSED */
1205 int
1206 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
1207 {
1208 /* {
1209 syscallarg(struct linux_sysinfo *) arg;
1210 } */
1211 struct linux_sysinfo si;
1212 struct loadavg *la;
1213
1214 si.uptime = time_uptime;
1215 la = &averunnable;
1216 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1217 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1218 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1219 si.totalram = ctob((u_long)physmem);
1220 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
1221 si.sharedram = 0; /* XXX */
1222 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
1223 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1224 si.freeswap =
1225 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1226 si.procs = nprocs;
1227
1228 /* The following are only present in newer Linux kernels. */
1229 si.totalbig = 0;
1230 si.freebig = 0;
1231 si.mem_unit = 1;
1232
1233 return (copyout(&si, SCARG(uap, arg), sizeof si));
1234 }
1235
1236 int
1237 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
1238 {
1239 /* {
1240 syscallarg(int) which;
1241 # ifdef LINUX_LARGEFILE64
1242 syscallarg(struct rlimit *) rlp;
1243 # else
1244 syscallarg(struct orlimit *) rlp;
1245 # endif
1246 } */
1247 # ifdef LINUX_LARGEFILE64
1248 struct rlimit orl;
1249 # else
1250 struct orlimit orl;
1251 # endif
1252 int which;
1253
1254 which = linux_to_bsd_limit(SCARG(uap, which));
1255 if (which < 0)
1256 return -which;
1257
1258 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1259
1260 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1261 }
1262
1263 int
1264 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
1265 {
1266 /* {
1267 syscallarg(int) which;
1268 # ifdef LINUX_LARGEFILE64
1269 syscallarg(struct rlimit *) rlp;
1270 # else
1271 syscallarg(struct orlimit *) rlp;
1272 # endif
1273 } */
1274 struct rlimit rl;
1275 # ifdef LINUX_LARGEFILE64
1276 struct rlimit orl;
1277 # else
1278 struct orlimit orl;
1279 # endif
1280 int error;
1281 int which;
1282
1283 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1284 return error;
1285
1286 which = linux_to_bsd_limit(SCARG(uap, which));
1287 if (which < 0)
1288 return -which;
1289
1290 linux_to_bsd_rlimit(&rl, &orl);
1291 return dosetrlimit(l, l->l_proc, which, &rl);
1292 }
1293
1294 # if !defined(__mips__) && !defined(__amd64__)
1295 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1296 int
1297 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
1298 {
1299 return linux_sys_getrlimit(l, (const void *)uap, retval);
1300 }
1301 # endif
1302
1303 /*
1304 * This gets called for unsupported syscalls. The difference to sys_nosys()
1305 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1306 * This is the way Linux does it and glibc depends on this behaviour.
1307 */
1308 int
1309 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
1310 {
1311 return (ENOSYS);
1312 }
1313
1314 int
1315 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
1316 {
1317 /* {
1318 syscallarg(int) which;
1319 syscallarg(int) who;
1320 } */
1321 struct sys_getpriority_args bsa;
1322 int error;
1323
1324 SCARG(&bsa, which) = SCARG(uap, which);
1325 SCARG(&bsa, who) = SCARG(uap, who);
1326
1327 if ((error = sys_getpriority(l, &bsa, retval)))
1328 return error;
1329
1330 *retval = NZERO - *retval;
1331
1332 return 0;
1333 }
1334
1335 #endif /* !COMPAT_LINUX32 */
1336