linux_misc.c revision 1.219.16.1 1 /* $NetBSD: linux_misc.c,v 1.219.16.1 2017/08/19 04:19:58 snj Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Linux compatibility module. Try to deal with various Linux system calls.
35 */
36
37 /*
38 * These functions have been moved to multiarch to allow
39 * selection of which machines include them to be
40 * determined by the individual files.linux_<arch> files.
41 *
42 * Function in multiarch:
43 * linux_sys_break : linux_break.c
44 * linux_sys_alarm : linux_misc_notalpha.c
45 * linux_sys_getresgid : linux_misc_notalpha.c
46 * linux_sys_nice : linux_misc_notalpha.c
47 * linux_sys_readdir : linux_misc_notalpha.c
48 * linux_sys_setresgid : linux_misc_notalpha.c
49 * linux_sys_time : linux_misc_notalpha.c
50 * linux_sys_utime : linux_misc_notalpha.c
51 * linux_sys_waitpid : linux_misc_notalpha.c
52 * linux_sys_old_mmap : linux_oldmmap.c
53 * linux_sys_oldolduname : linux_oldolduname.c
54 * linux_sys_oldselect : linux_oldselect.c
55 * linux_sys_olduname : linux_olduname.c
56 * linux_sys_pipe : linux_pipe.c
57 */
58
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.219.16.1 2017/08/19 04:19:58 snj Exp $");
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/dirent.h>
67 #include <sys/file.h>
68 #include <sys/stat.h>
69 #include <sys/filedesc.h>
70 #include <sys/ioctl.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/prot.h>
77 #include <sys/reboot.h>
78 #include <sys/resource.h>
79 #include <sys/resourcevar.h>
80 #include <sys/select.h>
81 #include <sys/signal.h>
82 #include <sys/signalvar.h>
83 #include <sys/socket.h>
84 #include <sys/time.h>
85 #include <sys/times.h>
86 #include <sys/vnode.h>
87 #include <sys/uio.h>
88 #include <sys/wait.h>
89 #include <sys/utsname.h>
90 #include <sys/unistd.h>
91 #include <sys/vfs_syscalls.h>
92 #include <sys/swap.h> /* for SWAP_ON */
93 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
94 #include <sys/kauth.h>
95
96 #include <sys/ptrace.h>
97 #include <machine/ptrace.h>
98
99 #include <sys/syscall.h>
100 #include <sys/syscallargs.h>
101
102 #include <compat/sys/resource.h>
103
104 #include <compat/linux/common/linux_machdep.h>
105 #include <compat/linux/common/linux_types.h>
106 #include <compat/linux/common/linux_signal.h>
107 #include <compat/linux/common/linux_ipc.h>
108 #include <compat/linux/common/linux_sem.h>
109
110 #include <compat/linux/common/linux_fcntl.h>
111 #include <compat/linux/common/linux_mmap.h>
112 #include <compat/linux/common/linux_dirent.h>
113 #include <compat/linux/common/linux_util.h>
114 #include <compat/linux/common/linux_misc.h>
115 #ifndef COMPAT_LINUX32
116 #include <compat/linux/common/linux_statfs.h>
117 #include <compat/linux/common/linux_limit.h>
118 #endif
119 #include <compat/linux/common/linux_ptrace.h>
120 #include <compat/linux/common/linux_reboot.h>
121 #include <compat/linux/common/linux_emuldata.h>
122
123 #include <compat/linux/linux_syscallargs.h>
124
125 #ifndef COMPAT_LINUX32
126 const int linux_ptrace_request_map[] = {
127 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
128 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
129 LINUX_PTRACE_PEEKDATA, PT_READ_D,
130 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
131 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
132 LINUX_PTRACE_CONT, PT_CONTINUE,
133 LINUX_PTRACE_KILL, PT_KILL,
134 LINUX_PTRACE_ATTACH, PT_ATTACH,
135 LINUX_PTRACE_DETACH, PT_DETACH,
136 # ifdef PT_STEP
137 LINUX_PTRACE_SINGLESTEP, PT_STEP,
138 # endif
139 LINUX_PTRACE_SYSCALL, PT_SYSCALL,
140 -1
141 };
142
143 const struct linux_mnttypes linux_fstypes[] = {
144 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
146 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
148 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
150 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
153 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
155 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
157 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
158 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
159 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
160 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
161 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
162 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
163 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
164 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
165 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
166 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC }
167 };
168 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
169
170 # ifdef DEBUG_LINUX
171 #define DPRINTF(a) uprintf a
172 # else
173 #define DPRINTF(a)
174 # endif
175
176 /* Local linux_misc.c functions: */
177 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
178 const struct linux_sys_mmap_args *);
179 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
180 register_t *, off_t);
181
182
183 /*
184 * The information on a terminated (or stopped) process needs
185 * to be converted in order for Linux binaries to get a valid signal
186 * number out of it.
187 */
188 int
189 bsd_to_linux_wstat(int st)
190 {
191
192 int sig;
193
194 if (WIFSIGNALED(st)) {
195 sig = WTERMSIG(st);
196 if (sig >= 0 && sig < NSIG)
197 st= (st & ~0177) | native_to_linux_signo[sig];
198 } else if (WIFSTOPPED(st)) {
199 sig = WSTOPSIG(st);
200 if (sig >= 0 && sig < NSIG)
201 st = (st & ~0xff00) |
202 (native_to_linux_signo[sig] << 8);
203 }
204 return st;
205 }
206
207 /*
208 * wait4(2). Passed on to the NetBSD call, surrounded by code to
209 * reserve some space for a NetBSD-style wait status, and converting
210 * it to what Linux wants.
211 */
212 int
213 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
214 {
215 /* {
216 syscallarg(int) pid;
217 syscallarg(int *) status;
218 syscallarg(int) options;
219 syscallarg(struct rusage50 *) rusage;
220 } */
221 int error, status, options, linux_options, pid = SCARG(uap, pid);
222 struct rusage50 ru50;
223 struct rusage ru;
224 proc_t *p;
225
226 linux_options = SCARG(uap, options);
227 options = WOPTSCHECKED;
228 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
229 return (EINVAL);
230
231 if (linux_options & LINUX_WAIT4_WNOHANG)
232 options |= WNOHANG;
233 if (linux_options & LINUX_WAIT4_WUNTRACED)
234 options |= WUNTRACED;
235 if (linux_options & LINUX_WAIT4_WALL)
236 options |= WALLSIG;
237 if (linux_options & LINUX_WAIT4_WCLONE)
238 options |= WALTSIG;
239 # ifdef DIAGNOSTIC
240 if (linux_options & LINUX_WAIT4_WNOTHREAD)
241 printf("WARNING: %s: linux process %d.%d called "
242 "waitpid with __WNOTHREAD set!",
243 __FILE__, l->l_proc->p_pid, l->l_lid);
244
245 # endif
246
247 error = do_sys_wait(&pid, &status, options,
248 SCARG(uap, rusage) != NULL ? &ru : NULL);
249
250 retval[0] = pid;
251 if (pid == 0)
252 return error;
253
254 p = curproc;
255 mutex_enter(p->p_lock);
256 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
257 mutex_exit(p->p_lock);
258
259 if (SCARG(uap, rusage) != NULL) {
260 rusage_to_rusage50(&ru, &ru50);
261 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
262 }
263
264 if (error == 0 && SCARG(uap, status) != NULL) {
265 status = bsd_to_linux_wstat(status);
266 error = copyout(&status, SCARG(uap, status), sizeof status);
267 }
268
269 return error;
270 }
271
272 /*
273 * Linux brk(2). Like native, but always return the new break value.
274 */
275 int
276 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
277 {
278 /* {
279 syscallarg(char *) nsize;
280 } */
281 struct proc *p = l->l_proc;
282 struct vmspace *vm = p->p_vmspace;
283 struct sys_obreak_args oba;
284
285 SCARG(&oba, nsize) = SCARG(uap, nsize);
286
287 (void) sys_obreak(l, &oba, retval);
288 retval[0] = (register_t)((char *)vm->vm_daddr + ptoa(vm->vm_dsize));
289 return 0;
290 }
291
292 /*
293 * Implement the fs stat functions. Straightforward.
294 */
295 int
296 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
297 {
298 /* {
299 syscallarg(const char *) path;
300 syscallarg(struct linux_statfs *) sp;
301 } */
302 struct statvfs *sb;
303 struct linux_statfs ltmp;
304 int error;
305
306 sb = STATVFSBUF_GET();
307 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
308 if (error == 0) {
309 bsd_to_linux_statfs(sb, <mp);
310 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
311 }
312 STATVFSBUF_PUT(sb);
313
314 return error;
315 }
316
317 int
318 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
319 {
320 /* {
321 syscallarg(int) fd;
322 syscallarg(struct linux_statfs *) sp;
323 } */
324 struct statvfs *sb;
325 struct linux_statfs ltmp;
326 int error;
327
328 sb = STATVFSBUF_GET();
329 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
330 if (error == 0) {
331 bsd_to_linux_statfs(sb, <mp);
332 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
333 }
334 STATVFSBUF_PUT(sb);
335
336 return error;
337 }
338
339 /*
340 * uname(). Just copy the info from the various strings stored in the
341 * kernel, and put it in the Linux utsname structure. That structure
342 * is almost the same as the NetBSD one, only it has fields 65 characters
343 * long, and an extra domainname field.
344 */
345 int
346 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
347 {
348 /* {
349 syscallarg(struct linux_utsname *) up;
350 } */
351 struct linux_utsname luts;
352
353 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
354 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
355 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
356 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
357 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
358 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
359
360 return copyout(&luts, SCARG(uap, up), sizeof(luts));
361 }
362
363 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
364 /* Used indirectly on: arm, i386, m68k */
365
366 /*
367 * New type Linux mmap call.
368 * Only called directly on machines with >= 6 free regs.
369 */
370 int
371 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
372 {
373 /* {
374 syscallarg(unsigned long) addr;
375 syscallarg(size_t) len;
376 syscallarg(int) prot;
377 syscallarg(int) flags;
378 syscallarg(int) fd;
379 syscallarg(linux_off_t) offset;
380 } */
381
382 if (SCARG(uap, offset) & PAGE_MASK)
383 return EINVAL;
384
385 return linux_mmap(l, uap, retval, SCARG(uap, offset));
386 }
387
388 /*
389 * Guts of most architectures' mmap64() implementations. This shares
390 * its list of arguments with linux_sys_mmap().
391 *
392 * The difference in linux_sys_mmap2() is that "offset" is actually
393 * (offset / pagesize), not an absolute byte count. This translation
394 * to pagesize offsets is done inside glibc between the mmap64() call
395 * point, and the actual syscall.
396 */
397 int
398 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
399 {
400 /* {
401 syscallarg(unsigned long) addr;
402 syscallarg(size_t) len;
403 syscallarg(int) prot;
404 syscallarg(int) flags;
405 syscallarg(int) fd;
406 syscallarg(linux_off_t) offset;
407 } */
408
409 return linux_mmap(l, uap, retval,
410 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
411 }
412
413 /*
414 * Massage arguments and call system mmap(2).
415 */
416 static int
417 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
418 {
419 struct sys_mmap_args cma;
420 int error;
421 size_t mmoff=0;
422
423 linux_to_bsd_mmap_args(&cma, uap);
424 SCARG(&cma, pos) = offset;
425
426 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
427 /*
428 * Request for stack-like memory segment. On linux, this
429 * works by mmap()ping (small) segment, which is automatically
430 * extended when page fault happens below the currently
431 * allocated area. We emulate this by allocating (typically
432 * bigger) segment sized at current stack size limit, and
433 * offsetting the requested and returned address accordingly.
434 * Since physical pages are only allocated on-demand, this
435 * is effectively identical.
436 */
437 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
438
439 if (SCARG(&cma, len) < ssl) {
440 /* Compute the address offset */
441 mmoff = round_page(ssl) - SCARG(uap, len);
442
443 if (SCARG(&cma, addr))
444 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
445
446 SCARG(&cma, len) = (size_t) ssl;
447 }
448 }
449
450 error = sys_mmap(l, &cma, retval);
451 if (error)
452 return (error);
453
454 /* Shift the returned address for stack-like segment if necessary */
455 retval[0] += mmoff;
456
457 return (0);
458 }
459
460 static void
461 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
462 {
463 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
464
465 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
466 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
467 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
468 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
469 /* XXX XAX ERH: Any other flags here? There are more defined... */
470
471 SCARG(cma, addr) = (void *)SCARG(uap, addr);
472 SCARG(cma, len) = SCARG(uap, len);
473 SCARG(cma, prot) = SCARG(uap, prot);
474 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
475 SCARG(cma, prot) |= VM_PROT_READ;
476 SCARG(cma, flags) = flags;
477 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
478 SCARG(cma, PAD) = 0;
479 }
480
481 #define LINUX_MREMAP_MAYMOVE 1
482 #define LINUX_MREMAP_FIXED 2
483
484 int
485 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
486 {
487 /* {
488 syscallarg(void *) old_address;
489 syscallarg(size_t) old_size;
490 syscallarg(size_t) new_size;
491 syscallarg(u_long) flags;
492 } */
493
494 struct proc *p;
495 struct vm_map *map;
496 vaddr_t oldva;
497 vaddr_t newva;
498 size_t oldsize;
499 size_t newsize;
500 int flags;
501 int uvmflags;
502 int error;
503
504 flags = SCARG(uap, flags);
505 oldva = (vaddr_t)SCARG(uap, old_address);
506 oldsize = round_page(SCARG(uap, old_size));
507 newsize = round_page(SCARG(uap, new_size));
508 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
509 error = EINVAL;
510 goto done;
511 }
512 if ((flags & LINUX_MREMAP_FIXED) != 0) {
513 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
514 error = EINVAL;
515 goto done;
516 }
517 #if 0 /* notyet */
518 newva = SCARG(uap, new_address);
519 uvmflags = MAP_FIXED;
520 #else /* notyet */
521 error = EOPNOTSUPP;
522 goto done;
523 #endif /* notyet */
524 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
525 uvmflags = 0;
526 } else {
527 newva = oldva;
528 uvmflags = MAP_FIXED;
529 }
530 p = l->l_proc;
531 map = &p->p_vmspace->vm_map;
532 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
533 uvmflags);
534
535 done:
536 *retval = (error != 0) ? 0 : (register_t)newva;
537 return error;
538 }
539
540 int
541 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
542 {
543 /* {
544 syscallarg(const void *) start;
545 syscallarg(unsigned long) len;
546 syscallarg(int) prot;
547 } */
548 struct vm_map_entry *entry;
549 struct vm_map *map;
550 struct proc *p;
551 vaddr_t end, start, len, stacklim;
552 int prot, grows;
553
554 start = (vaddr_t)SCARG(uap, start);
555 len = round_page(SCARG(uap, len));
556 prot = SCARG(uap, prot);
557 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
558 prot &= ~grows;
559 end = start + len;
560
561 if (start & PAGE_MASK)
562 return EINVAL;
563 if (end < start)
564 return EINVAL;
565 if (end == start)
566 return 0;
567
568 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
569 return EINVAL;
570 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
571 return EINVAL;
572
573 p = l->l_proc;
574 map = &p->p_vmspace->vm_map;
575 vm_map_lock(map);
576 # ifdef notdef
577 VM_MAP_RANGE_CHECK(map, start, end);
578 # endif
579 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
580 vm_map_unlock(map);
581 return ENOMEM;
582 }
583
584 /*
585 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
586 */
587
588 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
589 if (grows & LINUX_PROT_GROWSDOWN) {
590 if (USRSTACK - stacklim <= start && start < USRSTACK) {
591 start = USRSTACK - stacklim;
592 } else {
593 start = entry->start;
594 }
595 } else if (grows & LINUX_PROT_GROWSUP) {
596 if (USRSTACK <= end && end < USRSTACK + stacklim) {
597 end = USRSTACK + stacklim;
598 } else {
599 end = entry->end;
600 }
601 }
602 vm_map_unlock(map);
603 return uvm_map_protect(map, start, end, prot, FALSE);
604 }
605
606 /*
607 * This code is partly stolen from src/lib/libc/compat-43/times.c
608 */
609
610 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
611
612 int
613 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
614 {
615 /* {
616 syscallarg(struct times *) tms;
617 } */
618 struct proc *p = l->l_proc;
619 struct timeval t;
620 int error;
621
622 if (SCARG(uap, tms)) {
623 struct linux_tms ltms;
624 struct rusage ru;
625
626 mutex_enter(p->p_lock);
627 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
628 ltms.ltms_utime = CONVTCK(ru.ru_utime);
629 ltms.ltms_stime = CONVTCK(ru.ru_stime);
630 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
631 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
632 mutex_exit(p->p_lock);
633
634 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
635 return error;
636 }
637
638 getmicrouptime(&t);
639
640 retval[0] = ((linux_clock_t)(CONVTCK(t)));
641 return 0;
642 }
643
644 #undef CONVTCK
645
646 /*
647 * Linux 'readdir' call. This code is mostly taken from the
648 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
649 * an attempt has been made to keep it a little cleaner (failing
650 * miserably, because of the cruft needed if count 1 is passed).
651 *
652 * The d_off field should contain the offset of the next valid entry,
653 * but in Linux it has the offset of the entry itself. We emulate
654 * that bug here.
655 *
656 * Read in BSD-style entries, convert them, and copy them out.
657 *
658 * Note that this doesn't handle union-mounted filesystems.
659 */
660 int
661 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
662 {
663 /* {
664 syscallarg(int) fd;
665 syscallarg(struct linux_dirent *) dent;
666 syscallarg(unsigned int) count;
667 } */
668 struct dirent *bdp;
669 struct vnode *vp;
670 char *inp, *tbuf; /* BSD-format */
671 int len, reclen; /* BSD-format */
672 char *outp; /* Linux-format */
673 int resid, linux_reclen = 0; /* Linux-format */
674 struct file *fp;
675 struct uio auio;
676 struct iovec aiov;
677 struct linux_dirent idb;
678 off_t off; /* true file offset */
679 int buflen, error, eofflag, nbytes, oldcall;
680 struct vattr va;
681 off_t *cookiebuf = NULL, *cookie;
682 int ncookies;
683
684 /* fd_getvnode() will use the descriptor for us */
685 if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0)
686 return (error);
687
688 if ((fp->f_flag & FREAD) == 0) {
689 error = EBADF;
690 goto out1;
691 }
692
693 vp = (struct vnode *)fp->f_data;
694 if (vp->v_type != VDIR) {
695 error = ENOTDIR;
696 goto out1;
697 }
698
699 vn_lock(vp, LK_SHARED | LK_RETRY);
700 error = VOP_GETATTR(vp, &va, l->l_cred);
701 VOP_UNLOCK(vp);
702 if (error)
703 goto out1;
704
705 nbytes = SCARG(uap, count);
706 if (nbytes == 1) { /* emulating old, broken behaviour */
707 nbytes = sizeof (idb);
708 buflen = max(va.va_blocksize, nbytes);
709 oldcall = 1;
710 } else {
711 buflen = min(MAXBSIZE, nbytes);
712 if (buflen < va.va_blocksize)
713 buflen = va.va_blocksize;
714 oldcall = 0;
715 }
716 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
717
718 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
719 off = fp->f_offset;
720 again:
721 aiov.iov_base = tbuf;
722 aiov.iov_len = buflen;
723 auio.uio_iov = &aiov;
724 auio.uio_iovcnt = 1;
725 auio.uio_rw = UIO_READ;
726 auio.uio_resid = buflen;
727 auio.uio_offset = off;
728 UIO_SETUP_SYSSPACE(&auio);
729 /*
730 * First we read into the malloc'ed buffer, then
731 * we massage it into user space, one record at a time.
732 */
733 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
734 &ncookies);
735 if (error)
736 goto out;
737
738 inp = tbuf;
739 outp = (void *)SCARG(uap, dent);
740 resid = nbytes;
741 if ((len = buflen - auio.uio_resid) == 0)
742 goto eof;
743
744 for (cookie = cookiebuf; len > 0; len -= reclen) {
745 bdp = (struct dirent *)inp;
746 reclen = bdp->d_reclen;
747 if (reclen & 3) {
748 error = EIO;
749 goto out;
750 }
751 if (bdp->d_fileno == 0) {
752 inp += reclen; /* it is a hole; squish it out */
753 if (cookie)
754 off = *cookie++;
755 else
756 off += reclen;
757 continue;
758 }
759 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
760 if (reclen > len || resid < linux_reclen) {
761 /* entry too big for buffer, so just stop */
762 outp++;
763 break;
764 }
765 /*
766 * Massage in place to make a Linux-shaped dirent (otherwise
767 * we have to worry about touching user memory outside of
768 * the copyout() call).
769 */
770 idb.d_ino = bdp->d_fileno;
771 /*
772 * The old readdir() call misuses the offset and reclen fields.
773 */
774 if (oldcall) {
775 idb.d_off = (linux_off_t)linux_reclen;
776 idb.d_reclen = (u_short)bdp->d_namlen;
777 } else {
778 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
779 compat_offseterr(vp, "linux_getdents");
780 error = EINVAL;
781 goto out;
782 }
783 idb.d_off = (linux_off_t)off;
784 idb.d_reclen = (u_short)linux_reclen;
785 }
786 strcpy(idb.d_name, bdp->d_name);
787 idb.d_name[strlen(idb.d_name) + 1] = bdp->d_type;
788 if ((error = copyout((void *)&idb, outp, linux_reclen)))
789 goto out;
790 /* advance past this real entry */
791 inp += reclen;
792 if (cookie)
793 off = *cookie++; /* each entry points to itself */
794 else
795 off += reclen;
796 /* advance output past Linux-shaped entry */
797 outp += linux_reclen;
798 resid -= linux_reclen;
799 if (oldcall)
800 break;
801 }
802
803 /* if we squished out the whole block, try again */
804 if (outp == (void *)SCARG(uap, dent)) {
805 if (cookiebuf)
806 free(cookiebuf, M_TEMP);
807 cookiebuf = NULL;
808 goto again;
809 }
810 fp->f_offset = off; /* update the vnode offset */
811
812 if (oldcall)
813 nbytes = resid + linux_reclen;
814
815 eof:
816 *retval = nbytes - resid;
817 out:
818 VOP_UNLOCK(vp);
819 if (cookiebuf)
820 free(cookiebuf, M_TEMP);
821 free(tbuf, M_TEMP);
822 out1:
823 fd_putfile(SCARG(uap, fd));
824 return error;
825 }
826
827 /*
828 * Even when just using registers to pass arguments to syscalls you can
829 * have 5 of them on the i386. So this newer version of select() does
830 * this.
831 */
832 int
833 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
834 {
835 /* {
836 syscallarg(int) nfds;
837 syscallarg(fd_set *) readfds;
838 syscallarg(fd_set *) writefds;
839 syscallarg(fd_set *) exceptfds;
840 syscallarg(struct timeval50 *) timeout;
841 } */
842
843 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
844 SCARG(uap, writefds), SCARG(uap, exceptfds),
845 (struct linux_timeval *)SCARG(uap, timeout));
846 }
847
848 /*
849 * Common code for the old and new versions of select(). A couple of
850 * things are important:
851 * 1) return the amount of time left in the 'timeout' parameter
852 * 2) select never returns ERESTART on Linux, always return EINTR
853 */
854 int
855 linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds,
856 fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout)
857 {
858 struct timespec ts0, ts1, uts, *ts = NULL;
859 struct linux_timeval ltv;
860 int error;
861
862 /*
863 * Store current time for computation of the amount of
864 * time left.
865 */
866 if (timeout) {
867 if ((error = copyin(timeout, <v, sizeof(ltv))))
868 return error;
869 uts.tv_sec = ltv.tv_sec;
870 uts.tv_nsec = ltv.tv_usec * 1000;
871 if (itimespecfix(&uts)) {
872 /*
873 * The timeval was invalid. Convert it to something
874 * valid that will act as it does under Linux.
875 */
876 uts.tv_sec += uts.tv_nsec / 1000000000;
877 uts.tv_nsec %= 1000000000;
878 if (uts.tv_nsec < 0) {
879 uts.tv_sec -= 1;
880 uts.tv_nsec += 1000000000;
881 }
882 if (uts.tv_sec < 0)
883 timespecclear(&uts);
884 }
885 ts = &uts;
886 nanotime(&ts0);
887 }
888
889 error = selcommon(retval, nfds, readfds, writefds, exceptfds, ts, NULL);
890
891 if (error) {
892 /*
893 * See fs/select.c in the Linux kernel. Without this,
894 * Maelstrom doesn't work.
895 */
896 if (error == ERESTART)
897 error = EINTR;
898 return error;
899 }
900
901 if (timeout) {
902 if (*retval) {
903 /*
904 * Compute how much time was left of the timeout,
905 * by subtracting the current time and the time
906 * before we started the call, and subtracting
907 * that result from the user-supplied value.
908 */
909 nanotime(&ts1);
910 timespecsub(&ts1, &ts0, &ts1);
911 timespecsub(&uts, &ts1, &uts);
912 if (uts.tv_sec < 0)
913 timespecclear(&uts);
914 } else
915 timespecclear(&uts);
916 ltv.tv_sec = uts.tv_sec;
917 ltv.tv_usec = uts.tv_nsec / 1000;
918 if ((error = copyout(<v, timeout, sizeof(ltv))))
919 return error;
920 }
921
922 return 0;
923 }
924
925 /*
926 * Set the 'personality' (emulation mode) for the current process. Only
927 * accept the Linux personality here (0). This call is needed because
928 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
929 * ELF binaries run in Linux mode, not SVR4 mode.
930 */
931 int
932 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
933 {
934 /* {
935 syscallarg(unsigned long) per;
936 } */
937 struct linux_emuldata *led;
938 int per;
939
940 per = SCARG(uap, per);
941 led = l->l_emuldata;
942 if (per == LINUX_PER_QUERY) {
943 retval[0] = led->led_personality;
944 return 0;
945 }
946
947 switch (per & LINUX_PER_MASK) {
948 case LINUX_PER_LINUX:
949 case LINUX_PER_LINUX32:
950 led->led_personality = per;
951 break;
952
953 default:
954 return EINVAL;
955 }
956
957 retval[0] = per;
958 return 0;
959 }
960
961 /*
962 * We have nonexistent fsuid equal to uid.
963 * If modification is requested, refuse.
964 */
965 int
966 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
967 {
968 /* {
969 syscallarg(uid_t) uid;
970 } */
971 uid_t uid;
972
973 uid = SCARG(uap, uid);
974 if (kauth_cred_getuid(l->l_cred) != uid)
975 return sys_nosys(l, uap, retval);
976
977 *retval = uid;
978 return 0;
979 }
980
981 int
982 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
983 {
984 /* {
985 syscallarg(gid_t) gid;
986 } */
987 gid_t gid;
988
989 gid = SCARG(uap, gid);
990 if (kauth_cred_getgid(l->l_cred) != gid)
991 return sys_nosys(l, uap, retval);
992
993 *retval = gid;
994 return 0;
995 }
996
997 int
998 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
999 {
1000 /* {
1001 syscallarg(uid_t) ruid;
1002 syscallarg(uid_t) euid;
1003 syscallarg(uid_t) suid;
1004 } */
1005
1006 /*
1007 * Note: These checks are a little different than the NetBSD
1008 * setreuid(2) call performs. This precisely follows the
1009 * behavior of the Linux kernel.
1010 */
1011
1012 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1013 SCARG(uap, suid),
1014 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1015 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1016 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1017 }
1018
1019 int
1020 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
1021 {
1022 /* {
1023 syscallarg(uid_t *) ruid;
1024 syscallarg(uid_t *) euid;
1025 syscallarg(uid_t *) suid;
1026 } */
1027 kauth_cred_t pc = l->l_cred;
1028 int error;
1029 uid_t uid;
1030
1031 /*
1032 * Linux copies these values out to userspace like so:
1033 *
1034 * 1. Copy out ruid.
1035 * 2. If that succeeds, copy out euid.
1036 * 3. If both of those succeed, copy out suid.
1037 */
1038 uid = kauth_cred_getuid(pc);
1039 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1040 return (error);
1041
1042 uid = kauth_cred_geteuid(pc);
1043 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1044 return (error);
1045
1046 uid = kauth_cred_getsvuid(pc);
1047
1048 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1049 }
1050
1051 int
1052 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
1053 {
1054 /* {
1055 i386, m68k, powerpc: T=int
1056 alpha, amd64: T=long
1057 syscallarg(T) request;
1058 syscallarg(T) pid;
1059 syscallarg(T) addr;
1060 syscallarg(T) data;
1061 } */
1062 const int *ptr;
1063 int request;
1064 int error;
1065
1066 ptr = linux_ptrace_request_map;
1067 request = SCARG(uap, request);
1068 while (*ptr != -1)
1069 if (*ptr++ == request) {
1070 struct sys_ptrace_args pta;
1071
1072 SCARG(&pta, req) = *ptr;
1073 SCARG(&pta, pid) = SCARG(uap, pid);
1074 SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1075 SCARG(&pta, data) = SCARG(uap, data);
1076
1077 /*
1078 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1079 * to continue where the process left off previously.
1080 * The same thing is achieved by addr == (void *) 1
1081 * on NetBSD, so rewrite 'addr' appropriately.
1082 */
1083 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1084 SCARG(&pta, addr) = (void *) 1;
1085
1086 error = sysent[SYS_ptrace].sy_call(l, &pta, retval);
1087 if (error)
1088 return error;
1089 switch (request) {
1090 case LINUX_PTRACE_PEEKTEXT:
1091 case LINUX_PTRACE_PEEKDATA:
1092 error = copyout (retval,
1093 (void *)SCARG(uap, data),
1094 sizeof *retval);
1095 *retval = SCARG(uap, data);
1096 break;
1097 default:
1098 break;
1099 }
1100 return error;
1101 }
1102 else
1103 ptr++;
1104
1105 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1106 }
1107
1108 int
1109 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
1110 {
1111 /* {
1112 syscallarg(int) magic1;
1113 syscallarg(int) magic2;
1114 syscallarg(int) cmd;
1115 syscallarg(void *) arg;
1116 } */
1117 struct sys_reboot_args /* {
1118 syscallarg(int) opt;
1119 syscallarg(char *) bootstr;
1120 } */ sra;
1121 int error;
1122
1123 if ((error = kauth_authorize_system(l->l_cred,
1124 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1125 return(error);
1126
1127 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1128 return(EINVAL);
1129 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1130 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1131 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1132 return(EINVAL);
1133
1134 switch ((unsigned long)SCARG(uap, cmd)) {
1135 case LINUX_REBOOT_CMD_RESTART:
1136 SCARG(&sra, opt) = RB_AUTOBOOT;
1137 break;
1138 case LINUX_REBOOT_CMD_HALT:
1139 SCARG(&sra, opt) = RB_HALT;
1140 break;
1141 case LINUX_REBOOT_CMD_POWER_OFF:
1142 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1143 break;
1144 case LINUX_REBOOT_CMD_RESTART2:
1145 /* Reboot with an argument. */
1146 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1147 SCARG(&sra, bootstr) = SCARG(uap, arg);
1148 break;
1149 case LINUX_REBOOT_CMD_CAD_ON:
1150 return(EINVAL); /* We don't implement ctrl-alt-delete */
1151 case LINUX_REBOOT_CMD_CAD_OFF:
1152 return(0);
1153 default:
1154 return(EINVAL);
1155 }
1156
1157 return(sys_reboot(l, &sra, retval));
1158 }
1159
1160 /*
1161 * Copy of compat_12_sys_swapon().
1162 */
1163 int
1164 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
1165 {
1166 /* {
1167 syscallarg(const char *) name;
1168 } */
1169 struct sys_swapctl_args ua;
1170
1171 SCARG(&ua, cmd) = SWAP_ON;
1172 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1173 SCARG(&ua, misc) = 0; /* priority */
1174 return (sys_swapctl(l, &ua, retval));
1175 }
1176
1177 /*
1178 * Stop swapping to the file or block device specified by path.
1179 */
1180 int
1181 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
1182 {
1183 /* {
1184 syscallarg(const char *) path;
1185 } */
1186 struct sys_swapctl_args ua;
1187
1188 SCARG(&ua, cmd) = SWAP_OFF;
1189 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1190 return (sys_swapctl(l, &ua, retval));
1191 }
1192
1193 /*
1194 * Copy of compat_09_sys_setdomainname()
1195 */
1196 /* ARGSUSED */
1197 int
1198 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
1199 {
1200 /* {
1201 syscallarg(char *) domainname;
1202 syscallarg(int) len;
1203 } */
1204 int name[2];
1205
1206 name[0] = CTL_KERN;
1207 name[1] = KERN_DOMAINNAME;
1208 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1209 SCARG(uap, len), l));
1210 }
1211
1212 /*
1213 * sysinfo()
1214 */
1215 /* ARGSUSED */
1216 int
1217 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
1218 {
1219 /* {
1220 syscallarg(struct linux_sysinfo *) arg;
1221 } */
1222 struct linux_sysinfo si;
1223 struct loadavg *la;
1224
1225 si.uptime = time_uptime;
1226 la = &averunnable;
1227 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1228 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1229 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1230 si.totalram = ctob((u_long)physmem);
1231 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
1232 si.sharedram = 0; /* XXX */
1233 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
1234 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1235 si.freeswap =
1236 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1237 si.procs = nprocs;
1238
1239 /* The following are only present in newer Linux kernels. */
1240 si.totalbig = 0;
1241 si.freebig = 0;
1242 si.mem_unit = 1;
1243
1244 return (copyout(&si, SCARG(uap, arg), sizeof si));
1245 }
1246
1247 int
1248 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
1249 {
1250 /* {
1251 syscallarg(int) which;
1252 # ifdef LINUX_LARGEFILE64
1253 syscallarg(struct rlimit *) rlp;
1254 # else
1255 syscallarg(struct orlimit *) rlp;
1256 # endif
1257 } */
1258 # ifdef LINUX_LARGEFILE64
1259 struct rlimit orl;
1260 # else
1261 struct orlimit orl;
1262 # endif
1263 int which;
1264
1265 which = linux_to_bsd_limit(SCARG(uap, which));
1266 if (which < 0)
1267 return -which;
1268
1269 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1270
1271 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1272 }
1273
1274 int
1275 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
1276 {
1277 /* {
1278 syscallarg(int) which;
1279 # ifdef LINUX_LARGEFILE64
1280 syscallarg(struct rlimit *) rlp;
1281 # else
1282 syscallarg(struct orlimit *) rlp;
1283 # endif
1284 } */
1285 struct rlimit rl;
1286 # ifdef LINUX_LARGEFILE64
1287 struct rlimit orl;
1288 # else
1289 struct orlimit orl;
1290 # endif
1291 int error;
1292 int which;
1293
1294 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1295 return error;
1296
1297 which = linux_to_bsd_limit(SCARG(uap, which));
1298 if (which < 0)
1299 return -which;
1300
1301 linux_to_bsd_rlimit(&rl, &orl);
1302 return dosetrlimit(l, l->l_proc, which, &rl);
1303 }
1304
1305 # if !defined(__mips__) && !defined(__amd64__)
1306 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1307 int
1308 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
1309 {
1310 return linux_sys_getrlimit(l, (const void *)uap, retval);
1311 }
1312 # endif
1313
1314 /*
1315 * This gets called for unsupported syscalls. The difference to sys_nosys()
1316 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1317 * This is the way Linux does it and glibc depends on this behaviour.
1318 */
1319 int
1320 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
1321 {
1322 return (ENOSYS);
1323 }
1324
1325 int
1326 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
1327 {
1328 /* {
1329 syscallarg(int) which;
1330 syscallarg(int) who;
1331 } */
1332 struct sys_getpriority_args bsa;
1333 int error;
1334
1335 SCARG(&bsa, which) = SCARG(uap, which);
1336 SCARG(&bsa, who) = SCARG(uap, who);
1337
1338 if ((error = sys_getpriority(l, &bsa, retval)))
1339 return error;
1340
1341 *retval = NZERO - *retval;
1342
1343 return 0;
1344 }
1345 #endif /* !COMPAT_LINUX32 */
1346