linux_misc.c revision 1.219.2.1 1 /* $NetBSD: linux_misc.c,v 1.219.2.1 2012/10/30 17:20:43 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Linux compatibility module. Try to deal with various Linux system calls.
35 */
36
37 /*
38 * These functions have been moved to multiarch to allow
39 * selection of which machines include them to be
40 * determined by the individual files.linux_<arch> files.
41 *
42 * Function in multiarch:
43 * linux_sys_break : linux_break.c
44 * linux_sys_alarm : linux_misc_notalpha.c
45 * linux_sys_getresgid : linux_misc_notalpha.c
46 * linux_sys_nice : linux_misc_notalpha.c
47 * linux_sys_readdir : linux_misc_notalpha.c
48 * linux_sys_setresgid : linux_misc_notalpha.c
49 * linux_sys_time : linux_misc_notalpha.c
50 * linux_sys_utime : linux_misc_notalpha.c
51 * linux_sys_waitpid : linux_misc_notalpha.c
52 * linux_sys_old_mmap : linux_oldmmap.c
53 * linux_sys_oldolduname : linux_oldolduname.c
54 * linux_sys_oldselect : linux_oldselect.c
55 * linux_sys_olduname : linux_olduname.c
56 * linux_sys_pipe : linux_pipe.c
57 */
58
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.219.2.1 2012/10/30 17:20:43 yamt Exp $");
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/dirent.h>
67 #include <sys/file.h>
68 #include <sys/stat.h>
69 #include <sys/filedesc.h>
70 #include <sys/ioctl.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/poll.h>
77 #include <sys/prot.h>
78 #include <sys/reboot.h>
79 #include <sys/resource.h>
80 #include <sys/resourcevar.h>
81 #include <sys/select.h>
82 #include <sys/signal.h>
83 #include <sys/signalvar.h>
84 #include <sys/socket.h>
85 #include <sys/time.h>
86 #include <sys/times.h>
87 #include <sys/vnode.h>
88 #include <sys/uio.h>
89 #include <sys/wait.h>
90 #include <sys/utsname.h>
91 #include <sys/unistd.h>
92 #include <sys/vfs_syscalls.h>
93 #include <sys/swap.h> /* for SWAP_ON */
94 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
95 #include <sys/kauth.h>
96
97 #include <sys/ptrace.h>
98 #include <machine/ptrace.h>
99
100 #include <sys/syscall.h>
101 #include <sys/syscallargs.h>
102
103 #include <compat/sys/resource.h>
104
105 #include <compat/linux/common/linux_machdep.h>
106 #include <compat/linux/common/linux_types.h>
107 #include <compat/linux/common/linux_signal.h>
108 #include <compat/linux/common/linux_ipc.h>
109 #include <compat/linux/common/linux_sem.h>
110
111 #include <compat/linux/common/linux_fcntl.h>
112 #include <compat/linux/common/linux_mmap.h>
113 #include <compat/linux/common/linux_dirent.h>
114 #include <compat/linux/common/linux_util.h>
115 #include <compat/linux/common/linux_misc.h>
116 #ifndef COMPAT_LINUX32
117 #include <compat/linux/common/linux_statfs.h>
118 #include <compat/linux/common/linux_limit.h>
119 #endif
120 #include <compat/linux/common/linux_ptrace.h>
121 #include <compat/linux/common/linux_reboot.h>
122 #include <compat/linux/common/linux_emuldata.h>
123 #include <compat/linux/common/linux_sched.h>
124
125 #include <compat/linux/linux_syscallargs.h>
126
127 #ifndef COMPAT_LINUX32
128 const int linux_ptrace_request_map[] = {
129 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
130 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
131 LINUX_PTRACE_PEEKDATA, PT_READ_D,
132 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
133 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
134 LINUX_PTRACE_CONT, PT_CONTINUE,
135 LINUX_PTRACE_KILL, PT_KILL,
136 LINUX_PTRACE_ATTACH, PT_ATTACH,
137 LINUX_PTRACE_DETACH, PT_DETACH,
138 # ifdef PT_STEP
139 LINUX_PTRACE_SINGLESTEP, PT_STEP,
140 # endif
141 LINUX_PTRACE_SYSCALL, PT_SYSCALL,
142 -1
143 };
144
145 const struct linux_mnttypes linux_fstypes[] = {
146 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
148 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
150 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
153 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
155 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
157 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
158 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
159 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
160 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
161 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
162 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
163 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
164 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
165 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
166 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
167 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
168 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC }
169 };
170 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
171
172 # ifdef DEBUG_LINUX
173 #define DPRINTF(a) uprintf a
174 # else
175 #define DPRINTF(a)
176 # endif
177
178 /* Local linux_misc.c functions: */
179 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
180 const struct linux_sys_mmap_args *);
181 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
182 register_t *, off_t);
183
184
185 /*
186 * The information on a terminated (or stopped) process needs
187 * to be converted in order for Linux binaries to get a valid signal
188 * number out of it.
189 */
190 int
191 bsd_to_linux_wstat(int st)
192 {
193
194 int sig;
195
196 if (WIFSIGNALED(st)) {
197 sig = WTERMSIG(st);
198 if (sig >= 0 && sig < NSIG)
199 st= (st & ~0177) | native_to_linux_signo[sig];
200 } else if (WIFSTOPPED(st)) {
201 sig = WSTOPSIG(st);
202 if (sig >= 0 && sig < NSIG)
203 st = (st & ~0xff00) |
204 (native_to_linux_signo[sig] << 8);
205 }
206 return st;
207 }
208
209 /*
210 * wait4(2). Passed on to the NetBSD call, surrounded by code to
211 * reserve some space for a NetBSD-style wait status, and converting
212 * it to what Linux wants.
213 */
214 int
215 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
216 {
217 /* {
218 syscallarg(int) pid;
219 syscallarg(int *) status;
220 syscallarg(int) options;
221 syscallarg(struct rusage50 *) rusage;
222 } */
223 int error, status, options, linux_options, pid = SCARG(uap, pid);
224 struct rusage50 ru50;
225 struct rusage ru;
226 proc_t *p;
227
228 linux_options = SCARG(uap, options);
229 options = WOPTSCHECKED;
230 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
231 return (EINVAL);
232
233 if (linux_options & LINUX_WAIT4_WNOHANG)
234 options |= WNOHANG;
235 if (linux_options & LINUX_WAIT4_WUNTRACED)
236 options |= WUNTRACED;
237 if (linux_options & LINUX_WAIT4_WALL)
238 options |= WALLSIG;
239 if (linux_options & LINUX_WAIT4_WCLONE)
240 options |= WALTSIG;
241 # ifdef DIAGNOSTIC
242 if (linux_options & LINUX_WAIT4_WNOTHREAD)
243 printf("WARNING: %s: linux process %d.%d called "
244 "waitpid with __WNOTHREAD set!",
245 __FILE__, l->l_proc->p_pid, l->l_lid);
246
247 # endif
248
249 error = do_sys_wait(&pid, &status, options,
250 SCARG(uap, rusage) != NULL ? &ru : NULL);
251
252 retval[0] = pid;
253 if (pid == 0)
254 return error;
255
256 p = curproc;
257 mutex_enter(p->p_lock);
258 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
259 mutex_exit(p->p_lock);
260
261 if (SCARG(uap, rusage) != NULL) {
262 rusage_to_rusage50(&ru, &ru50);
263 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
264 }
265
266 if (error == 0 && SCARG(uap, status) != NULL) {
267 status = bsd_to_linux_wstat(status);
268 error = copyout(&status, SCARG(uap, status), sizeof status);
269 }
270
271 return error;
272 }
273
274 /*
275 * Linux brk(2). Like native, but always return the new break value.
276 */
277 int
278 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
279 {
280 /* {
281 syscallarg(char *) nsize;
282 } */
283 struct proc *p = l->l_proc;
284 struct vmspace *vm = p->p_vmspace;
285 struct sys_obreak_args oba;
286
287 SCARG(&oba, nsize) = SCARG(uap, nsize);
288
289 (void) sys_obreak(l, &oba, retval);
290 retval[0] = (register_t)((char *)vm->vm_daddr + ptoa(vm->vm_dsize));
291 return 0;
292 }
293
294 /*
295 * Implement the fs stat functions. Straightforward.
296 */
297 int
298 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
299 {
300 /* {
301 syscallarg(const char *) path;
302 syscallarg(struct linux_statfs *) sp;
303 } */
304 struct statvfs *sb;
305 struct linux_statfs ltmp;
306 int error;
307
308 sb = STATVFSBUF_GET();
309 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
310 if (error == 0) {
311 bsd_to_linux_statfs(sb, <mp);
312 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
313 }
314 STATVFSBUF_PUT(sb);
315
316 return error;
317 }
318
319 int
320 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
321 {
322 /* {
323 syscallarg(int) fd;
324 syscallarg(struct linux_statfs *) sp;
325 } */
326 struct statvfs *sb;
327 struct linux_statfs ltmp;
328 int error;
329
330 sb = STATVFSBUF_GET();
331 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
332 if (error == 0) {
333 bsd_to_linux_statfs(sb, <mp);
334 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
335 }
336 STATVFSBUF_PUT(sb);
337
338 return error;
339 }
340
341 /*
342 * uname(). Just copy the info from the various strings stored in the
343 * kernel, and put it in the Linux utsname structure. That structure
344 * is almost the same as the NetBSD one, only it has fields 65 characters
345 * long, and an extra domainname field.
346 */
347 int
348 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
349 {
350 /* {
351 syscallarg(struct linux_utsname *) up;
352 } */
353 struct linux_utsname luts;
354
355 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
356 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
357 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
358 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
359 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
360 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
361
362 return copyout(&luts, SCARG(uap, up), sizeof(luts));
363 }
364
365 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
366 /* Used indirectly on: arm, i386, m68k */
367
368 /*
369 * New type Linux mmap call.
370 * Only called directly on machines with >= 6 free regs.
371 */
372 int
373 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
374 {
375 /* {
376 syscallarg(unsigned long) addr;
377 syscallarg(size_t) len;
378 syscallarg(int) prot;
379 syscallarg(int) flags;
380 syscallarg(int) fd;
381 syscallarg(linux_off_t) offset;
382 } */
383
384 if (SCARG(uap, offset) & PAGE_MASK)
385 return EINVAL;
386
387 return linux_mmap(l, uap, retval, SCARG(uap, offset));
388 }
389
390 /*
391 * Guts of most architectures' mmap64() implementations. This shares
392 * its list of arguments with linux_sys_mmap().
393 *
394 * The difference in linux_sys_mmap2() is that "offset" is actually
395 * (offset / pagesize), not an absolute byte count. This translation
396 * to pagesize offsets is done inside glibc between the mmap64() call
397 * point, and the actual syscall.
398 */
399 int
400 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
401 {
402 /* {
403 syscallarg(unsigned long) addr;
404 syscallarg(size_t) len;
405 syscallarg(int) prot;
406 syscallarg(int) flags;
407 syscallarg(int) fd;
408 syscallarg(linux_off_t) offset;
409 } */
410
411 return linux_mmap(l, uap, retval,
412 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
413 }
414
415 /*
416 * Massage arguments and call system mmap(2).
417 */
418 static int
419 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
420 {
421 struct sys_mmap_args cma;
422 int error;
423 size_t mmoff=0;
424
425 linux_to_bsd_mmap_args(&cma, uap);
426 SCARG(&cma, pos) = offset;
427
428 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
429 /*
430 * Request for stack-like memory segment. On linux, this
431 * works by mmap()ping (small) segment, which is automatically
432 * extended when page fault happens below the currently
433 * allocated area. We emulate this by allocating (typically
434 * bigger) segment sized at current stack size limit, and
435 * offsetting the requested and returned address accordingly.
436 * Since physical pages are only allocated on-demand, this
437 * is effectively identical.
438 */
439 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
440
441 if (SCARG(&cma, len) < ssl) {
442 /* Compute the address offset */
443 mmoff = round_page(ssl) - SCARG(uap, len);
444
445 if (SCARG(&cma, addr))
446 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
447
448 SCARG(&cma, len) = (size_t) ssl;
449 }
450 }
451
452 error = sys_mmap(l, &cma, retval);
453 if (error)
454 return (error);
455
456 /* Shift the returned address for stack-like segment if necessary */
457 retval[0] += mmoff;
458
459 return (0);
460 }
461
462 static void
463 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
464 {
465 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
466
467 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
468 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
469 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
470 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
471 /* XXX XAX ERH: Any other flags here? There are more defined... */
472
473 SCARG(cma, addr) = (void *)SCARG(uap, addr);
474 SCARG(cma, len) = SCARG(uap, len);
475 SCARG(cma, prot) = SCARG(uap, prot);
476 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
477 SCARG(cma, prot) |= VM_PROT_READ;
478 SCARG(cma, flags) = flags;
479 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
480 SCARG(cma, PAD) = 0;
481 }
482
483 #define LINUX_MREMAP_MAYMOVE 1
484 #define LINUX_MREMAP_FIXED 2
485
486 int
487 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
488 {
489 /* {
490 syscallarg(void *) old_address;
491 syscallarg(size_t) old_size;
492 syscallarg(size_t) new_size;
493 syscallarg(u_long) flags;
494 } */
495
496 struct proc *p;
497 struct vm_map *map;
498 vaddr_t oldva;
499 vaddr_t newva;
500 size_t oldsize;
501 size_t newsize;
502 int flags;
503 int uvmflags;
504 int error;
505
506 flags = SCARG(uap, flags);
507 oldva = (vaddr_t)SCARG(uap, old_address);
508 oldsize = round_page(SCARG(uap, old_size));
509 newsize = round_page(SCARG(uap, new_size));
510 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
511 error = EINVAL;
512 goto done;
513 }
514 if ((flags & LINUX_MREMAP_FIXED) != 0) {
515 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
516 error = EINVAL;
517 goto done;
518 }
519 #if 0 /* notyet */
520 newva = SCARG(uap, new_address);
521 uvmflags = MAP_FIXED;
522 #else /* notyet */
523 error = EOPNOTSUPP;
524 goto done;
525 #endif /* notyet */
526 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
527 uvmflags = 0;
528 } else {
529 newva = oldva;
530 uvmflags = MAP_FIXED;
531 }
532 p = l->l_proc;
533 map = &p->p_vmspace->vm_map;
534 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
535 uvmflags);
536
537 done:
538 *retval = (error != 0) ? 0 : (register_t)newva;
539 return error;
540 }
541
542 int
543 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
544 {
545 /* {
546 syscallarg(const void *) start;
547 syscallarg(unsigned long) len;
548 syscallarg(int) prot;
549 } */
550 struct vm_map_entry *entry;
551 struct vm_map *map;
552 struct proc *p;
553 vaddr_t end, start, len, stacklim;
554 int prot, grows;
555
556 start = (vaddr_t)SCARG(uap, start);
557 len = round_page(SCARG(uap, len));
558 prot = SCARG(uap, prot);
559 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
560 prot &= ~grows;
561 end = start + len;
562
563 if (start & PAGE_MASK)
564 return EINVAL;
565 if (end < start)
566 return EINVAL;
567 if (end == start)
568 return 0;
569
570 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
571 return EINVAL;
572 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
573 return EINVAL;
574
575 p = l->l_proc;
576 map = &p->p_vmspace->vm_map;
577 vm_map_lock(map);
578 # ifdef notdef
579 VM_MAP_RANGE_CHECK(map, start, end);
580 # endif
581 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
582 vm_map_unlock(map);
583 return ENOMEM;
584 }
585
586 /*
587 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
588 */
589
590 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
591 if (grows & LINUX_PROT_GROWSDOWN) {
592 if (USRSTACK - stacklim <= start && start < USRSTACK) {
593 start = USRSTACK - stacklim;
594 } else {
595 start = entry->start;
596 }
597 } else if (grows & LINUX_PROT_GROWSUP) {
598 if (USRSTACK <= end && end < USRSTACK + stacklim) {
599 end = USRSTACK + stacklim;
600 } else {
601 end = entry->end;
602 }
603 }
604 vm_map_unlock(map);
605 return uvm_map_protect(map, start, end, prot, FALSE);
606 }
607
608 /*
609 * This code is partly stolen from src/lib/libc/compat-43/times.c
610 */
611
612 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
613
614 int
615 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
616 {
617 /* {
618 syscallarg(struct times *) tms;
619 } */
620 struct proc *p = l->l_proc;
621 struct timeval t;
622 int error;
623
624 if (SCARG(uap, tms)) {
625 struct linux_tms ltms;
626 struct rusage ru;
627
628 mutex_enter(p->p_lock);
629 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
630 ltms.ltms_utime = CONVTCK(ru.ru_utime);
631 ltms.ltms_stime = CONVTCK(ru.ru_stime);
632 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
633 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
634 mutex_exit(p->p_lock);
635
636 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
637 return error;
638 }
639
640 getmicrouptime(&t);
641
642 retval[0] = ((linux_clock_t)(CONVTCK(t)));
643 return 0;
644 }
645
646 #undef CONVTCK
647
648 /*
649 * Linux 'readdir' call. This code is mostly taken from the
650 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
651 * an attempt has been made to keep it a little cleaner (failing
652 * miserably, because of the cruft needed if count 1 is passed).
653 *
654 * The d_off field should contain the offset of the next valid entry,
655 * but in Linux it has the offset of the entry itself. We emulate
656 * that bug here.
657 *
658 * Read in BSD-style entries, convert them, and copy them out.
659 *
660 * Note that this doesn't handle union-mounted filesystems.
661 */
662 int
663 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
664 {
665 /* {
666 syscallarg(int) fd;
667 syscallarg(struct linux_dirent *) dent;
668 syscallarg(unsigned int) count;
669 } */
670 struct dirent *bdp;
671 struct vnode *vp;
672 char *inp, *tbuf; /* BSD-format */
673 int len, reclen; /* BSD-format */
674 char *outp; /* Linux-format */
675 int resid, linux_reclen = 0; /* Linux-format */
676 struct file *fp;
677 struct uio auio;
678 struct iovec aiov;
679 struct linux_dirent idb;
680 off_t off; /* true file offset */
681 int buflen, error, eofflag, nbytes, oldcall;
682 struct vattr va;
683 off_t *cookiebuf = NULL, *cookie;
684 int ncookies;
685
686 /* fd_getvnode() will use the descriptor for us */
687 if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0)
688 return (error);
689
690 if ((fp->f_flag & FREAD) == 0) {
691 error = EBADF;
692 goto out1;
693 }
694
695 vp = (struct vnode *)fp->f_data;
696 if (vp->v_type != VDIR) {
697 error = ENOTDIR;
698 goto out1;
699 }
700
701 vn_lock(vp, LK_SHARED | LK_RETRY);
702 error = VOP_GETATTR(vp, &va, l->l_cred);
703 VOP_UNLOCK(vp);
704 if (error)
705 goto out1;
706
707 nbytes = SCARG(uap, count);
708 if (nbytes == 1) { /* emulating old, broken behaviour */
709 nbytes = sizeof (idb);
710 buflen = max(va.va_blocksize, nbytes);
711 oldcall = 1;
712 } else {
713 buflen = min(MAXBSIZE, nbytes);
714 if (buflen < va.va_blocksize)
715 buflen = va.va_blocksize;
716 oldcall = 0;
717 }
718 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
719
720 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
721 off = fp->f_offset;
722 again:
723 aiov.iov_base = tbuf;
724 aiov.iov_len = buflen;
725 auio.uio_iov = &aiov;
726 auio.uio_iovcnt = 1;
727 auio.uio_rw = UIO_READ;
728 auio.uio_resid = buflen;
729 auio.uio_offset = off;
730 UIO_SETUP_SYSSPACE(&auio);
731 /*
732 * First we read into the malloc'ed buffer, then
733 * we massage it into user space, one record at a time.
734 */
735 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
736 &ncookies);
737 if (error)
738 goto out;
739
740 inp = tbuf;
741 outp = (void *)SCARG(uap, dent);
742 resid = nbytes;
743 if ((len = buflen - auio.uio_resid) == 0)
744 goto eof;
745
746 for (cookie = cookiebuf; len > 0; len -= reclen) {
747 bdp = (struct dirent *)inp;
748 reclen = bdp->d_reclen;
749 if (reclen & 3)
750 panic("linux_readdir");
751 if (bdp->d_fileno == 0) {
752 inp += reclen; /* it is a hole; squish it out */
753 if (cookie)
754 off = *cookie++;
755 else
756 off += reclen;
757 continue;
758 }
759 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
760 if (reclen > len || resid < linux_reclen) {
761 /* entry too big for buffer, so just stop */
762 outp++;
763 break;
764 }
765 /*
766 * Massage in place to make a Linux-shaped dirent (otherwise
767 * we have to worry about touching user memory outside of
768 * the copyout() call).
769 */
770 idb.d_ino = bdp->d_fileno;
771 /*
772 * The old readdir() call misuses the offset and reclen fields.
773 */
774 if (oldcall) {
775 idb.d_off = (linux_off_t)linux_reclen;
776 idb.d_reclen = (u_short)bdp->d_namlen;
777 } else {
778 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
779 compat_offseterr(vp, "linux_getdents");
780 error = EINVAL;
781 goto out;
782 }
783 idb.d_off = (linux_off_t)off;
784 idb.d_reclen = (u_short)linux_reclen;
785 }
786 strcpy(idb.d_name, bdp->d_name);
787 idb.d_name[strlen(idb.d_name) + 1] = bdp->d_type;
788 if ((error = copyout((void *)&idb, outp, linux_reclen)))
789 goto out;
790 /* advance past this real entry */
791 inp += reclen;
792 if (cookie)
793 off = *cookie++; /* each entry points to itself */
794 else
795 off += reclen;
796 /* advance output past Linux-shaped entry */
797 outp += linux_reclen;
798 resid -= linux_reclen;
799 if (oldcall)
800 break;
801 }
802
803 /* if we squished out the whole block, try again */
804 if (outp == (void *)SCARG(uap, dent)) {
805 if (cookiebuf)
806 free(cookiebuf, M_TEMP);
807 cookiebuf = NULL;
808 goto again;
809 }
810 fp->f_offset = off; /* update the vnode offset */
811
812 if (oldcall)
813 nbytes = resid + linux_reclen;
814
815 eof:
816 *retval = nbytes - resid;
817 out:
818 VOP_UNLOCK(vp);
819 if (cookiebuf)
820 free(cookiebuf, M_TEMP);
821 free(tbuf, M_TEMP);
822 out1:
823 fd_putfile(SCARG(uap, fd));
824 return error;
825 }
826
827 /*
828 * Even when just using registers to pass arguments to syscalls you can
829 * have 5 of them on the i386. So this newer version of select() does
830 * this.
831 */
832 int
833 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
834 {
835 /* {
836 syscallarg(int) nfds;
837 syscallarg(fd_set *) readfds;
838 syscallarg(fd_set *) writefds;
839 syscallarg(fd_set *) exceptfds;
840 syscallarg(struct timeval50 *) timeout;
841 } */
842
843 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
844 SCARG(uap, writefds), SCARG(uap, exceptfds),
845 (struct linux_timeval *)SCARG(uap, timeout));
846 }
847
848 /*
849 * Common code for the old and new versions of select(). A couple of
850 * things are important:
851 * 1) return the amount of time left in the 'timeout' parameter
852 * 2) select never returns ERESTART on Linux, always return EINTR
853 */
854 int
855 linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds,
856 fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout)
857 {
858 struct timespec ts0, ts1, uts, *ts = NULL;
859 struct linux_timeval ltv;
860 int error;
861
862 /*
863 * Store current time for computation of the amount of
864 * time left.
865 */
866 if (timeout) {
867 if ((error = copyin(timeout, <v, sizeof(ltv))))
868 return error;
869 uts.tv_sec = ltv.tv_sec;
870 uts.tv_nsec = ltv.tv_usec * 1000;
871 if (itimespecfix(&uts)) {
872 /*
873 * The timeval was invalid. Convert it to something
874 * valid that will act as it does under Linux.
875 */
876 uts.tv_sec += uts.tv_nsec / 1000000000;
877 uts.tv_nsec %= 1000000000;
878 if (uts.tv_nsec < 0) {
879 uts.tv_sec -= 1;
880 uts.tv_nsec += 1000000000;
881 }
882 if (uts.tv_sec < 0)
883 timespecclear(&uts);
884 }
885 ts = &uts;
886 nanotime(&ts0);
887 }
888
889 error = selcommon(retval, nfds, readfds, writefds, exceptfds, ts, NULL);
890
891 if (error) {
892 /*
893 * See fs/select.c in the Linux kernel. Without this,
894 * Maelstrom doesn't work.
895 */
896 if (error == ERESTART)
897 error = EINTR;
898 return error;
899 }
900
901 if (timeout) {
902 if (*retval) {
903 /*
904 * Compute how much time was left of the timeout,
905 * by subtracting the current time and the time
906 * before we started the call, and subtracting
907 * that result from the user-supplied value.
908 */
909 nanotime(&ts1);
910 timespecsub(&ts1, &ts0, &ts1);
911 timespecsub(&uts, &ts1, &uts);
912 if (uts.tv_sec < 0)
913 timespecclear(&uts);
914 } else
915 timespecclear(&uts);
916 ltv.tv_sec = uts.tv_sec;
917 ltv.tv_usec = uts.tv_nsec / 1000;
918 if ((error = copyout(<v, timeout, sizeof(ltv))))
919 return error;
920 }
921
922 return 0;
923 }
924
925 int
926 linux_sys_ppoll(struct lwp *l,
927 const struct linux_sys_ppoll_args *uap, register_t *retval)
928 {
929 /* {
930 syscallarg(struct pollfd *) fds;
931 syscallarg(int) nfds;
932 syscallarg(struct linux_timespec *) timeout;
933 syscallarg(linux_sigset_t *) sigset;
934 } */
935 struct linux_timespec lts0, *lts;
936 struct timespec ts0, *ts = NULL;
937 linux_sigset_t lsigmask0, *lsigmask;
938 sigset_t sigmask0, *sigmask = NULL;
939 int error;
940
941 lts = SCARG(uap, timeout);
942 if (lts) {
943 if ((error = copyin(lts, <s0, sizeof(lts0))) != 0)
944 return error;
945 linux_to_native_timespec(&ts0, <s0);
946 ts = &ts0;
947 }
948
949 lsigmask = SCARG(uap, sigset);
950 if (lsigmask) {
951 if ((error = copyin(lsigmask, &lsigmask0, sizeof(lsigmask0))))
952 return error;
953 linux_to_native_sigset(&sigmask0, &lsigmask0);
954 sigmask = &sigmask0;
955 }
956
957 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds),
958 ts, sigmask);
959 }
960
961 /*
962 * Set the 'personality' (emulation mode) for the current process. Only
963 * accept the Linux personality here (0). This call is needed because
964 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
965 * ELF binaries run in Linux mode, not SVR4 mode.
966 */
967 int
968 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
969 {
970 /* {
971 syscallarg(unsigned long) per;
972 } */
973 struct linux_emuldata *led;
974 int per;
975
976 per = SCARG(uap, per);
977 led = l->l_emuldata;
978 if (per == LINUX_PER_QUERY) {
979 retval[0] = led->led_personality;
980 return 0;
981 }
982
983 switch (per & LINUX_PER_MASK) {
984 case LINUX_PER_LINUX:
985 case LINUX_PER_LINUX32:
986 led->led_personality = per;
987 break;
988
989 default:
990 return EINVAL;
991 }
992
993 retval[0] = per;
994 return 0;
995 }
996
997 /*
998 * We have nonexistent fsuid equal to uid.
999 * If modification is requested, refuse.
1000 */
1001 int
1002 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
1003 {
1004 /* {
1005 syscallarg(uid_t) uid;
1006 } */
1007 uid_t uid;
1008
1009 uid = SCARG(uap, uid);
1010 if (kauth_cred_getuid(l->l_cred) != uid)
1011 return sys_nosys(l, uap, retval);
1012
1013 *retval = uid;
1014 return 0;
1015 }
1016
1017 int
1018 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
1019 {
1020 /* {
1021 syscallarg(gid_t) gid;
1022 } */
1023 gid_t gid;
1024
1025 gid = SCARG(uap, gid);
1026 if (kauth_cred_getgid(l->l_cred) != gid)
1027 return sys_nosys(l, uap, retval);
1028
1029 *retval = gid;
1030 return 0;
1031 }
1032
1033 int
1034 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
1035 {
1036 /* {
1037 syscallarg(uid_t) ruid;
1038 syscallarg(uid_t) euid;
1039 syscallarg(uid_t) suid;
1040 } */
1041
1042 /*
1043 * Note: These checks are a little different than the NetBSD
1044 * setreuid(2) call performs. This precisely follows the
1045 * behavior of the Linux kernel.
1046 */
1047
1048 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1049 SCARG(uap, suid),
1050 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1051 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1052 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1053 }
1054
1055 int
1056 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
1057 {
1058 /* {
1059 syscallarg(uid_t *) ruid;
1060 syscallarg(uid_t *) euid;
1061 syscallarg(uid_t *) suid;
1062 } */
1063 kauth_cred_t pc = l->l_cred;
1064 int error;
1065 uid_t uid;
1066
1067 /*
1068 * Linux copies these values out to userspace like so:
1069 *
1070 * 1. Copy out ruid.
1071 * 2. If that succeeds, copy out euid.
1072 * 3. If both of those succeed, copy out suid.
1073 */
1074 uid = kauth_cred_getuid(pc);
1075 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1076 return (error);
1077
1078 uid = kauth_cred_geteuid(pc);
1079 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1080 return (error);
1081
1082 uid = kauth_cred_getsvuid(pc);
1083
1084 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1085 }
1086
1087 int
1088 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
1089 {
1090 /* {
1091 i386, m68k, powerpc: T=int
1092 alpha, amd64: T=long
1093 syscallarg(T) request;
1094 syscallarg(T) pid;
1095 syscallarg(T) addr;
1096 syscallarg(T) data;
1097 } */
1098 const int *ptr;
1099 int request;
1100 int error;
1101
1102 ptr = linux_ptrace_request_map;
1103 request = SCARG(uap, request);
1104 while (*ptr != -1)
1105 if (*ptr++ == request) {
1106 struct sys_ptrace_args pta;
1107
1108 SCARG(&pta, req) = *ptr;
1109 SCARG(&pta, pid) = SCARG(uap, pid);
1110 SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1111 SCARG(&pta, data) = SCARG(uap, data);
1112
1113 /*
1114 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1115 * to continue where the process left off previously.
1116 * The same thing is achieved by addr == (void *) 1
1117 * on NetBSD, so rewrite 'addr' appropriately.
1118 */
1119 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1120 SCARG(&pta, addr) = (void *) 1;
1121
1122 error = sysent[SYS_ptrace].sy_call(l, &pta, retval);
1123 if (error)
1124 return error;
1125 switch (request) {
1126 case LINUX_PTRACE_PEEKTEXT:
1127 case LINUX_PTRACE_PEEKDATA:
1128 error = copyout (retval,
1129 (void *)SCARG(uap, data),
1130 sizeof *retval);
1131 *retval = SCARG(uap, data);
1132 break;
1133 default:
1134 break;
1135 }
1136 return error;
1137 }
1138 else
1139 ptr++;
1140
1141 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1142 }
1143
1144 int
1145 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
1146 {
1147 /* {
1148 syscallarg(int) magic1;
1149 syscallarg(int) magic2;
1150 syscallarg(int) cmd;
1151 syscallarg(void *) arg;
1152 } */
1153 struct sys_reboot_args /* {
1154 syscallarg(int) opt;
1155 syscallarg(char *) bootstr;
1156 } */ sra;
1157 int error;
1158
1159 if ((error = kauth_authorize_system(l->l_cred,
1160 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1161 return(error);
1162
1163 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1164 return(EINVAL);
1165 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1166 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1167 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1168 return(EINVAL);
1169
1170 switch ((unsigned long)SCARG(uap, cmd)) {
1171 case LINUX_REBOOT_CMD_RESTART:
1172 SCARG(&sra, opt) = RB_AUTOBOOT;
1173 break;
1174 case LINUX_REBOOT_CMD_HALT:
1175 SCARG(&sra, opt) = RB_HALT;
1176 break;
1177 case LINUX_REBOOT_CMD_POWER_OFF:
1178 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1179 break;
1180 case LINUX_REBOOT_CMD_RESTART2:
1181 /* Reboot with an argument. */
1182 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1183 SCARG(&sra, bootstr) = SCARG(uap, arg);
1184 break;
1185 case LINUX_REBOOT_CMD_CAD_ON:
1186 return(EINVAL); /* We don't implement ctrl-alt-delete */
1187 case LINUX_REBOOT_CMD_CAD_OFF:
1188 return(0);
1189 default:
1190 return(EINVAL);
1191 }
1192
1193 return(sys_reboot(l, &sra, retval));
1194 }
1195
1196 /*
1197 * Copy of compat_12_sys_swapon().
1198 */
1199 int
1200 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
1201 {
1202 /* {
1203 syscallarg(const char *) name;
1204 } */
1205 struct sys_swapctl_args ua;
1206
1207 SCARG(&ua, cmd) = SWAP_ON;
1208 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1209 SCARG(&ua, misc) = 0; /* priority */
1210 return (sys_swapctl(l, &ua, retval));
1211 }
1212
1213 /*
1214 * Stop swapping to the file or block device specified by path.
1215 */
1216 int
1217 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
1218 {
1219 /* {
1220 syscallarg(const char *) path;
1221 } */
1222 struct sys_swapctl_args ua;
1223
1224 SCARG(&ua, cmd) = SWAP_OFF;
1225 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1226 return (sys_swapctl(l, &ua, retval));
1227 }
1228
1229 /*
1230 * Copy of compat_09_sys_setdomainname()
1231 */
1232 /* ARGSUSED */
1233 int
1234 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
1235 {
1236 /* {
1237 syscallarg(char *) domainname;
1238 syscallarg(int) len;
1239 } */
1240 int name[2];
1241
1242 name[0] = CTL_KERN;
1243 name[1] = KERN_DOMAINNAME;
1244 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1245 SCARG(uap, len), l));
1246 }
1247
1248 /*
1249 * sysinfo()
1250 */
1251 /* ARGSUSED */
1252 int
1253 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
1254 {
1255 /* {
1256 syscallarg(struct linux_sysinfo *) arg;
1257 } */
1258 struct linux_sysinfo si;
1259 struct loadavg *la;
1260
1261 si.uptime = time_uptime;
1262 la = &averunnable;
1263 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1264 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1265 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1266 si.totalram = ctob((u_long)physmem);
1267 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
1268 si.sharedram = 0; /* XXX */
1269 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
1270 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1271 si.freeswap =
1272 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1273 si.procs = nprocs;
1274
1275 /* The following are only present in newer Linux kernels. */
1276 si.totalbig = 0;
1277 si.freebig = 0;
1278 si.mem_unit = 1;
1279
1280 return (copyout(&si, SCARG(uap, arg), sizeof si));
1281 }
1282
1283 int
1284 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
1285 {
1286 /* {
1287 syscallarg(int) which;
1288 # ifdef LINUX_LARGEFILE64
1289 syscallarg(struct rlimit *) rlp;
1290 # else
1291 syscallarg(struct orlimit *) rlp;
1292 # endif
1293 } */
1294 # ifdef LINUX_LARGEFILE64
1295 struct rlimit orl;
1296 # else
1297 struct orlimit orl;
1298 # endif
1299 int which;
1300
1301 which = linux_to_bsd_limit(SCARG(uap, which));
1302 if (which < 0)
1303 return -which;
1304
1305 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1306
1307 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1308 }
1309
1310 int
1311 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
1312 {
1313 /* {
1314 syscallarg(int) which;
1315 # ifdef LINUX_LARGEFILE64
1316 syscallarg(struct rlimit *) rlp;
1317 # else
1318 syscallarg(struct orlimit *) rlp;
1319 # endif
1320 } */
1321 struct rlimit rl;
1322 # ifdef LINUX_LARGEFILE64
1323 struct rlimit orl;
1324 # else
1325 struct orlimit orl;
1326 # endif
1327 int error;
1328 int which;
1329
1330 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1331 return error;
1332
1333 which = linux_to_bsd_limit(SCARG(uap, which));
1334 if (which < 0)
1335 return -which;
1336
1337 linux_to_bsd_rlimit(&rl, &orl);
1338 return dosetrlimit(l, l->l_proc, which, &rl);
1339 }
1340
1341 # if !defined(__mips__) && !defined(__amd64__)
1342 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1343 int
1344 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
1345 {
1346 return linux_sys_getrlimit(l, (const void *)uap, retval);
1347 }
1348 # endif
1349
1350 /*
1351 * This gets called for unsupported syscalls. The difference to sys_nosys()
1352 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1353 * This is the way Linux does it and glibc depends on this behaviour.
1354 */
1355 int
1356 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
1357 {
1358 return (ENOSYS);
1359 }
1360
1361 int
1362 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
1363 {
1364 /* {
1365 syscallarg(int) which;
1366 syscallarg(int) who;
1367 } */
1368 struct sys_getpriority_args bsa;
1369 int error;
1370
1371 SCARG(&bsa, which) = SCARG(uap, which);
1372 SCARG(&bsa, who) = SCARG(uap, who);
1373
1374 if ((error = sys_getpriority(l, &bsa, retval)))
1375 return error;
1376
1377 *retval = NZERO - *retval;
1378
1379 return 0;
1380 }
1381 #endif /* !COMPAT_LINUX32 */
1382