linux_misc.c revision 1.229.2.3 1 /* $NetBSD: linux_misc.c,v 1.229.2.3 2020/01/21 19:19:16 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Linux compatibility module. Try to deal with various Linux system calls.
35 */
36
37 /*
38 * These functions have been moved to multiarch to allow
39 * selection of which machines include them to be
40 * determined by the individual files.linux_<arch> files.
41 *
42 * Function in multiarch:
43 * linux_sys_break : linux_break.c
44 * linux_sys_alarm : linux_misc_notalpha.c
45 * linux_sys_getresgid : linux_misc_notalpha.c
46 * linux_sys_nice : linux_misc_notalpha.c
47 * linux_sys_readdir : linux_misc_notalpha.c
48 * linux_sys_setresgid : linux_misc_notalpha.c
49 * linux_sys_time : linux_misc_notalpha.c
50 * linux_sys_utime : linux_misc_notalpha.c
51 * linux_sys_waitpid : linux_misc_notalpha.c
52 * linux_sys_old_mmap : linux_oldmmap.c
53 * linux_sys_oldolduname : linux_oldolduname.c
54 * linux_sys_oldselect : linux_oldselect.c
55 * linux_sys_olduname : linux_olduname.c
56 * linux_sys_pipe : linux_pipe.c
57 */
58
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.229.2.3 2020/01/21 19:19:16 martin Exp $");
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/dirent.h>
67 #include <sys/file.h>
68 #include <sys/stat.h>
69 #include <sys/filedesc.h>
70 #include <sys/ioctl.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/poll.h>
77 #include <sys/prot.h>
78 #include <sys/reboot.h>
79 #include <sys/resource.h>
80 #include <sys/resourcevar.h>
81 #include <sys/select.h>
82 #include <sys/signal.h>
83 #include <sys/signalvar.h>
84 #include <sys/socket.h>
85 #include <sys/time.h>
86 #include <sys/times.h>
87 #include <sys/vnode.h>
88 #include <sys/uio.h>
89 #include <sys/wait.h>
90 #include <sys/utsname.h>
91 #include <sys/unistd.h>
92 #include <sys/vfs_syscalls.h>
93 #include <sys/swap.h> /* for SWAP_ON */
94 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
95 #include <sys/kauth.h>
96
97 #include <sys/ptrace.h>
98 #include <machine/ptrace.h>
99
100 #include <sys/syscall.h>
101 #include <sys/syscallargs.h>
102
103 #include <compat/sys/resource.h>
104
105 #include <compat/linux/common/linux_machdep.h>
106 #include <compat/linux/common/linux_types.h>
107 #include <compat/linux/common/linux_signal.h>
108 #include <compat/linux/common/linux_ipc.h>
109 #include <compat/linux/common/linux_sem.h>
110
111 #include <compat/linux/common/linux_fcntl.h>
112 #include <compat/linux/common/linux_mmap.h>
113 #include <compat/linux/common/linux_dirent.h>
114 #include <compat/linux/common/linux_util.h>
115 #include <compat/linux/common/linux_misc.h>
116 #include <compat/linux/common/linux_statfs.h>
117 #include <compat/linux/common/linux_limit.h>
118 #include <compat/linux/common/linux_ptrace.h>
119 #include <compat/linux/common/linux_reboot.h>
120 #include <compat/linux/common/linux_emuldata.h>
121 #include <compat/linux/common/linux_sched.h>
122
123 #include <compat/linux/linux_syscallargs.h>
124
125 const int linux_ptrace_request_map[] = {
126 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
127 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
128 LINUX_PTRACE_PEEKDATA, PT_READ_D,
129 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
130 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
131 LINUX_PTRACE_CONT, PT_CONTINUE,
132 LINUX_PTRACE_KILL, PT_KILL,
133 LINUX_PTRACE_ATTACH, PT_ATTACH,
134 LINUX_PTRACE_DETACH, PT_DETACH,
135 # ifdef PT_STEP
136 LINUX_PTRACE_SINGLESTEP, PT_STEP,
137 # endif
138 LINUX_PTRACE_SYSCALL, PT_SYSCALL,
139 -1
140 };
141
142 const struct linux_mnttypes linux_fstypes[] = {
143 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
144 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
145 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
146 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
147 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
148 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
150 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
153 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
154 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
155 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
156 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
158 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
159 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
160 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
161 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
162 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
163 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
164 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
165 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC }
166 };
167 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
168
169 # ifdef DEBUG_LINUX
170 #define DPRINTF(a) uprintf a
171 # else
172 #define DPRINTF(a)
173 # endif
174
175 /* Local linux_misc.c functions: */
176 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
177 const struct linux_sys_mmap_args *);
178 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
179 register_t *, off_t);
180
181
182 /*
183 * The information on a terminated (or stopped) process needs
184 * to be converted in order for Linux binaries to get a valid signal
185 * number out of it.
186 */
187 int
188 bsd_to_linux_wstat(int st)
189 {
190
191 int sig;
192
193 if (WIFSIGNALED(st)) {
194 sig = WTERMSIG(st);
195 if (sig >= 0 && sig < NSIG)
196 st= (st & ~0177) | native_to_linux_signo[sig];
197 } else if (WIFSTOPPED(st)) {
198 sig = WSTOPSIG(st);
199 if (sig >= 0 && sig < NSIG)
200 st = (st & ~0xff00) |
201 (native_to_linux_signo[sig] << 8);
202 }
203 return st;
204 }
205
206 /*
207 * wait4(2). Passed on to the NetBSD call, surrounded by code to
208 * reserve some space for a NetBSD-style wait status, and converting
209 * it to what Linux wants.
210 */
211 int
212 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
213 {
214 /* {
215 syscallarg(int) pid;
216 syscallarg(int *) status;
217 syscallarg(int) options;
218 syscallarg(struct rusage50 *) rusage;
219 } */
220 int error, status, options, linux_options, pid = SCARG(uap, pid);
221 struct rusage50 ru50;
222 struct rusage ru;
223 proc_t *p;
224
225 linux_options = SCARG(uap, options);
226 options = WOPTSCHECKED;
227 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
228 return (EINVAL);
229
230 if (linux_options & LINUX_WAIT4_WNOHANG)
231 options |= WNOHANG;
232 if (linux_options & LINUX_WAIT4_WUNTRACED)
233 options |= WUNTRACED;
234 if (linux_options & LINUX_WAIT4_WALL)
235 options |= WALLSIG;
236 if (linux_options & LINUX_WAIT4_WCLONE)
237 options |= WALTSIG;
238 # ifdef DIAGNOSTIC
239 if (linux_options & LINUX_WAIT4_WNOTHREAD)
240 printf("WARNING: %s: linux process %d.%d called "
241 "waitpid with __WNOTHREAD set!",
242 __FILE__, l->l_proc->p_pid, l->l_lid);
243
244 # endif
245
246 error = do_sys_wait(&pid, &status, options,
247 SCARG(uap, rusage) != NULL ? &ru : NULL);
248
249 retval[0] = pid;
250 if (pid == 0)
251 return error;
252
253 p = curproc;
254 mutex_enter(p->p_lock);
255 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
256 mutex_exit(p->p_lock);
257
258 if (SCARG(uap, rusage) != NULL) {
259 rusage_to_rusage50(&ru, &ru50);
260 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
261 }
262
263 if (error == 0 && SCARG(uap, status) != NULL) {
264 status = bsd_to_linux_wstat(status);
265 error = copyout(&status, SCARG(uap, status), sizeof status);
266 }
267
268 return error;
269 }
270
271 /*
272 * Linux brk(2). Like native, but always return the new break value.
273 */
274 int
275 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
276 {
277 /* {
278 syscallarg(char *) nsize;
279 } */
280 struct proc *p = l->l_proc;
281 struct vmspace *vm = p->p_vmspace;
282 struct sys_obreak_args oba;
283
284 SCARG(&oba, nsize) = SCARG(uap, nsize);
285
286 (void) sys_obreak(l, &oba, retval);
287 retval[0] = (register_t)((char *)vm->vm_daddr + ptoa(vm->vm_dsize));
288 return 0;
289 }
290
291 /*
292 * Implement the fs stat functions. Straightforward.
293 */
294 int
295 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
296 {
297 /* {
298 syscallarg(const char *) path;
299 syscallarg(struct linux_statfs *) sp;
300 } */
301 struct statvfs *sb;
302 struct linux_statfs ltmp;
303 int error;
304
305 sb = STATVFSBUF_GET();
306 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
307 if (error == 0) {
308 bsd_to_linux_statfs(sb, <mp);
309 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
310 }
311 STATVFSBUF_PUT(sb);
312
313 return error;
314 }
315
316 int
317 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
318 {
319 /* {
320 syscallarg(int) fd;
321 syscallarg(struct linux_statfs *) sp;
322 } */
323 struct statvfs *sb;
324 struct linux_statfs ltmp;
325 int error;
326
327 sb = STATVFSBUF_GET();
328 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
329 if (error == 0) {
330 bsd_to_linux_statfs(sb, <mp);
331 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
332 }
333 STATVFSBUF_PUT(sb);
334
335 return error;
336 }
337
338 /*
339 * uname(). Just copy the info from the various strings stored in the
340 * kernel, and put it in the Linux utsname structure. That structure
341 * is almost the same as the NetBSD one, only it has fields 65 characters
342 * long, and an extra domainname field.
343 */
344 int
345 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
346 {
347 /* {
348 syscallarg(struct linux_utsname *) up;
349 } */
350 struct linux_utsname luts;
351
352 memset(&luts, 0, sizeof(luts));
353 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
354 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
355 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
356 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
357 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
358 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
359
360 return copyout(&luts, SCARG(uap, up), sizeof(luts));
361 }
362
363 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
364 /* Used indirectly on: arm, i386, m68k */
365
366 /*
367 * New type Linux mmap call.
368 * Only called directly on machines with >= 6 free regs.
369 */
370 int
371 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
372 {
373 /* {
374 syscallarg(unsigned long) addr;
375 syscallarg(size_t) len;
376 syscallarg(int) prot;
377 syscallarg(int) flags;
378 syscallarg(int) fd;
379 syscallarg(linux_off_t) offset;
380 } */
381
382 if (SCARG(uap, offset) & PAGE_MASK)
383 return EINVAL;
384
385 return linux_mmap(l, uap, retval, SCARG(uap, offset));
386 }
387
388 /*
389 * Guts of most architectures' mmap64() implementations. This shares
390 * its list of arguments with linux_sys_mmap().
391 *
392 * The difference in linux_sys_mmap2() is that "offset" is actually
393 * (offset / pagesize), not an absolute byte count. This translation
394 * to pagesize offsets is done inside glibc between the mmap64() call
395 * point, and the actual syscall.
396 */
397 int
398 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
399 {
400 /* {
401 syscallarg(unsigned long) addr;
402 syscallarg(size_t) len;
403 syscallarg(int) prot;
404 syscallarg(int) flags;
405 syscallarg(int) fd;
406 syscallarg(linux_off_t) offset;
407 } */
408
409 return linux_mmap(l, uap, retval,
410 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
411 }
412
413 /*
414 * Massage arguments and call system mmap(2).
415 */
416 static int
417 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
418 {
419 struct sys_mmap_args cma;
420 int error;
421 size_t mmoff=0;
422
423 linux_to_bsd_mmap_args(&cma, uap);
424 SCARG(&cma, pos) = offset;
425
426 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
427 /*
428 * Request for stack-like memory segment. On linux, this
429 * works by mmap()ping (small) segment, which is automatically
430 * extended when page fault happens below the currently
431 * allocated area. We emulate this by allocating (typically
432 * bigger) segment sized at current stack size limit, and
433 * offsetting the requested and returned address accordingly.
434 * Since physical pages are only allocated on-demand, this
435 * is effectively identical.
436 */
437 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
438
439 if (SCARG(&cma, len) < ssl) {
440 /* Compute the address offset */
441 mmoff = round_page(ssl) - SCARG(uap, len);
442
443 if (SCARG(&cma, addr))
444 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
445
446 SCARG(&cma, len) = (size_t) ssl;
447 }
448 }
449
450 error = sys_mmap(l, &cma, retval);
451 if (error)
452 return (error);
453
454 /* Shift the returned address for stack-like segment if necessary */
455 retval[0] += mmoff;
456
457 return (0);
458 }
459
460 static void
461 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
462 {
463 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
464
465 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
466 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
467 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
468 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
469 /* XXX XAX ERH: Any other flags here? There are more defined... */
470
471 SCARG(cma, addr) = (void *)SCARG(uap, addr);
472 SCARG(cma, len) = SCARG(uap, len);
473 SCARG(cma, prot) = SCARG(uap, prot);
474 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
475 SCARG(cma, prot) |= VM_PROT_READ;
476 SCARG(cma, flags) = flags;
477 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
478 SCARG(cma, PAD) = 0;
479 }
480
481 #define LINUX_MREMAP_MAYMOVE 1
482 #define LINUX_MREMAP_FIXED 2
483
484 int
485 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
486 {
487 /* {
488 syscallarg(void *) old_address;
489 syscallarg(size_t) old_size;
490 syscallarg(size_t) new_size;
491 syscallarg(u_long) flags;
492 } */
493
494 struct proc *p;
495 struct vm_map *map;
496 vaddr_t oldva;
497 vaddr_t newva;
498 size_t oldsize;
499 size_t newsize;
500 int flags;
501 int uvmflags;
502 int error;
503
504 flags = SCARG(uap, flags);
505 oldva = (vaddr_t)SCARG(uap, old_address);
506 oldsize = round_page(SCARG(uap, old_size));
507 newsize = round_page(SCARG(uap, new_size));
508 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
509 error = EINVAL;
510 goto done;
511 }
512 if ((flags & LINUX_MREMAP_FIXED) != 0) {
513 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
514 error = EINVAL;
515 goto done;
516 }
517 #if 0 /* notyet */
518 newva = SCARG(uap, new_address);
519 uvmflags = MAP_FIXED;
520 #else /* notyet */
521 error = EOPNOTSUPP;
522 goto done;
523 #endif /* notyet */
524 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
525 uvmflags = 0;
526 } else {
527 newva = oldva;
528 uvmflags = MAP_FIXED;
529 }
530 p = l->l_proc;
531 map = &p->p_vmspace->vm_map;
532 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
533 uvmflags);
534
535 done:
536 *retval = (error != 0) ? 0 : (register_t)newva;
537 return error;
538 }
539
540 #ifdef USRSTACK
541 int
542 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
543 {
544 /* {
545 syscallarg(const void *) start;
546 syscallarg(unsigned long) len;
547 syscallarg(int) prot;
548 } */
549 struct vm_map_entry *entry;
550 struct vm_map *map;
551 struct proc *p;
552 vaddr_t end, start, len, stacklim;
553 int prot, grows;
554
555 start = (vaddr_t)SCARG(uap, start);
556 len = round_page(SCARG(uap, len));
557 prot = SCARG(uap, prot);
558 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
559 prot &= ~grows;
560 end = start + len;
561
562 if (start & PAGE_MASK)
563 return EINVAL;
564 if (end < start)
565 return EINVAL;
566 if (end == start)
567 return 0;
568
569 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
570 return EINVAL;
571 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
572 return EINVAL;
573
574 p = l->l_proc;
575 map = &p->p_vmspace->vm_map;
576 vm_map_lock(map);
577 # ifdef notdef
578 VM_MAP_RANGE_CHECK(map, start, end);
579 # endif
580 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
581 vm_map_unlock(map);
582 return ENOMEM;
583 }
584
585 /*
586 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
587 */
588
589 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
590 if (grows & LINUX_PROT_GROWSDOWN) {
591 if (USRSTACK - stacklim <= start && start < USRSTACK) {
592 start = USRSTACK - stacklim;
593 } else {
594 start = entry->start;
595 }
596 } else if (grows & LINUX_PROT_GROWSUP) {
597 if (USRSTACK <= end && end < USRSTACK + stacklim) {
598 end = USRSTACK + stacklim;
599 } else {
600 end = entry->end;
601 }
602 }
603 vm_map_unlock(map);
604 return uvm_map_protect(map, start, end, prot, FALSE);
605 }
606 #endif /* USRSTACK */
607
608 /*
609 * This code is partly stolen from src/lib/libc/compat-43/times.c
610 */
611
612 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
613
614 int
615 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
616 {
617 /* {
618 syscallarg(struct times *) tms;
619 } */
620 struct proc *p = l->l_proc;
621 struct timeval t;
622 int error;
623
624 if (SCARG(uap, tms)) {
625 struct linux_tms ltms;
626 struct rusage ru;
627
628 mutex_enter(p->p_lock);
629 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
630 ltms.ltms_utime = CONVTCK(ru.ru_utime);
631 ltms.ltms_stime = CONVTCK(ru.ru_stime);
632 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
633 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
634 mutex_exit(p->p_lock);
635
636 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
637 return error;
638 }
639
640 getmicrouptime(&t);
641
642 retval[0] = ((linux_clock_t)(CONVTCK(t)));
643 return 0;
644 }
645
646 #undef CONVTCK
647
648 /*
649 * Linux 'readdir' call. This code is mostly taken from the
650 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
651 * an attempt has been made to keep it a little cleaner (failing
652 * miserably, because of the cruft needed if count 1 is passed).
653 *
654 * The d_off field should contain the offset of the next valid entry,
655 * but in Linux it has the offset of the entry itself. We emulate
656 * that bug here.
657 *
658 * Read in BSD-style entries, convert them, and copy them out.
659 *
660 * Note that this doesn't handle union-mounted filesystems.
661 */
662 int
663 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
664 {
665 /* {
666 syscallarg(int) fd;
667 syscallarg(struct linux_dirent *) dent;
668 syscallarg(unsigned int) count;
669 } */
670 struct dirent *bdp;
671 struct vnode *vp;
672 char *inp, *tbuf; /* BSD-format */
673 int len, reclen; /* BSD-format */
674 char *outp; /* Linux-format */
675 int resid, linux_reclen = 0; /* Linux-format */
676 struct file *fp;
677 struct uio auio;
678 struct iovec aiov;
679 struct linux_dirent idb;
680 off_t off; /* true file offset */
681 int buflen, error, eofflag, nbytes, oldcall;
682 struct vattr va;
683 off_t *cookiebuf = NULL, *cookie;
684 int ncookies;
685
686 /* fd_getvnode() will use the descriptor for us */
687 if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0)
688 return (error);
689
690 if ((fp->f_flag & FREAD) == 0) {
691 error = EBADF;
692 goto out1;
693 }
694
695 vp = (struct vnode *)fp->f_data;
696 if (vp->v_type != VDIR) {
697 error = ENOTDIR;
698 goto out1;
699 }
700
701 vn_lock(vp, LK_SHARED | LK_RETRY);
702 error = VOP_GETATTR(vp, &va, l->l_cred);
703 VOP_UNLOCK(vp);
704 if (error)
705 goto out1;
706
707 nbytes = SCARG(uap, count);
708 if (nbytes == 1) { /* emulating old, broken behaviour */
709 nbytes = sizeof (idb);
710 buflen = max(va.va_blocksize, nbytes);
711 oldcall = 1;
712 } else {
713 buflen = min(MAXBSIZE, nbytes);
714 if (buflen < va.va_blocksize)
715 buflen = va.va_blocksize;
716 oldcall = 0;
717 }
718 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
719
720 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
721 off = fp->f_offset;
722 again:
723 aiov.iov_base = tbuf;
724 aiov.iov_len = buflen;
725 auio.uio_iov = &aiov;
726 auio.uio_iovcnt = 1;
727 auio.uio_rw = UIO_READ;
728 auio.uio_resid = buflen;
729 auio.uio_offset = off;
730 UIO_SETUP_SYSSPACE(&auio);
731 /*
732 * First we read into the malloc'ed buffer, then
733 * we massage it into user space, one record at a time.
734 */
735 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
736 &ncookies);
737 if (error)
738 goto out;
739
740 inp = tbuf;
741 outp = (void *)SCARG(uap, dent);
742 resid = nbytes;
743 if ((len = buflen - auio.uio_resid) == 0)
744 goto eof;
745
746 for (cookie = cookiebuf; len > 0; len -= reclen) {
747 bdp = (struct dirent *)inp;
748 reclen = bdp->d_reclen;
749 if (reclen & 3) {
750 error = EIO;
751 goto out;
752 }
753 if (bdp->d_fileno == 0) {
754 inp += reclen; /* it is a hole; squish it out */
755 if (cookie)
756 off = *cookie++;
757 else
758 off += reclen;
759 continue;
760 }
761 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
762 if (reclen > len || resid < linux_reclen) {
763 /* entry too big for buffer, so just stop */
764 outp++;
765 break;
766 }
767 /*
768 * Massage in place to make a Linux-shaped dirent (otherwise
769 * we have to worry about touching user memory outside of
770 * the copyout() call).
771 */
772 memset(&idb, 0, sizeof(idb));
773 idb.d_ino = bdp->d_fileno;
774 /*
775 * The old readdir() call misuses the offset and reclen fields.
776 */
777 if (oldcall) {
778 idb.d_off = (linux_off_t)linux_reclen;
779 idb.d_reclen = (u_short)bdp->d_namlen;
780 } else {
781 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
782 compat_offseterr(vp, "linux_getdents");
783 error = EINVAL;
784 goto out;
785 }
786 idb.d_off = (linux_off_t)off;
787 idb.d_reclen = (u_short)linux_reclen;
788 /* Linux puts d_type at the end of each record */
789 *((char *)&idb + idb.d_reclen - 1) = bdp->d_type;
790 }
791 strcpy(idb.d_name, bdp->d_name);
792 if ((error = copyout((void *)&idb, outp, linux_reclen)))
793 goto out;
794 /* advance past this real entry */
795 inp += reclen;
796 if (cookie)
797 off = *cookie++; /* each entry points to itself */
798 else
799 off += reclen;
800 /* advance output past Linux-shaped entry */
801 outp += linux_reclen;
802 resid -= linux_reclen;
803 if (oldcall)
804 break;
805 }
806
807 /* if we squished out the whole block, try again */
808 if (outp == (void *)SCARG(uap, dent)) {
809 if (cookiebuf)
810 free(cookiebuf, M_TEMP);
811 cookiebuf = NULL;
812 goto again;
813 }
814 fp->f_offset = off; /* update the vnode offset */
815
816 if (oldcall)
817 nbytes = resid + linux_reclen;
818
819 eof:
820 *retval = nbytes - resid;
821 out:
822 VOP_UNLOCK(vp);
823 if (cookiebuf)
824 free(cookiebuf, M_TEMP);
825 free(tbuf, M_TEMP);
826 out1:
827 fd_putfile(SCARG(uap, fd));
828 return error;
829 }
830
831 /*
832 * Even when just using registers to pass arguments to syscalls you can
833 * have 5 of them on the i386. So this newer version of select() does
834 * this.
835 */
836 int
837 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
838 {
839 /* {
840 syscallarg(int) nfds;
841 syscallarg(fd_set *) readfds;
842 syscallarg(fd_set *) writefds;
843 syscallarg(fd_set *) exceptfds;
844 syscallarg(struct timeval50 *) timeout;
845 } */
846
847 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
848 SCARG(uap, writefds), SCARG(uap, exceptfds),
849 (struct linux_timeval *)SCARG(uap, timeout));
850 }
851
852 /*
853 * Common code for the old and new versions of select(). A couple of
854 * things are important:
855 * 1) return the amount of time left in the 'timeout' parameter
856 * 2) select never returns ERESTART on Linux, always return EINTR
857 */
858 int
859 linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds,
860 fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout)
861 {
862 struct timespec ts0, ts1, uts, *ts = NULL;
863 struct linux_timeval ltv;
864 int error;
865
866 /*
867 * Store current time for computation of the amount of
868 * time left.
869 */
870 if (timeout) {
871 if ((error = copyin(timeout, <v, sizeof(ltv))))
872 return error;
873 uts.tv_sec = ltv.tv_sec;
874 uts.tv_nsec = ltv.tv_usec * 1000;
875 if (itimespecfix(&uts)) {
876 /*
877 * The timeval was invalid. Convert it to something
878 * valid that will act as it does under Linux.
879 */
880 uts.tv_sec += uts.tv_nsec / 1000000000;
881 uts.tv_nsec %= 1000000000;
882 if (uts.tv_nsec < 0) {
883 uts.tv_sec -= 1;
884 uts.tv_nsec += 1000000000;
885 }
886 if (uts.tv_sec < 0)
887 timespecclear(&uts);
888 }
889 ts = &uts;
890 nanotime(&ts0);
891 }
892
893 error = selcommon(retval, nfds, readfds, writefds, exceptfds, ts, NULL);
894
895 if (error) {
896 /*
897 * See fs/select.c in the Linux kernel. Without this,
898 * Maelstrom doesn't work.
899 */
900 if (error == ERESTART)
901 error = EINTR;
902 return error;
903 }
904
905 if (timeout) {
906 if (*retval) {
907 /*
908 * Compute how much time was left of the timeout,
909 * by subtracting the current time and the time
910 * before we started the call, and subtracting
911 * that result from the user-supplied value.
912 */
913 nanotime(&ts1);
914 timespecsub(&ts1, &ts0, &ts1);
915 timespecsub(&uts, &ts1, &uts);
916 if (uts.tv_sec < 0)
917 timespecclear(&uts);
918 } else
919 timespecclear(&uts);
920 ltv.tv_sec = uts.tv_sec;
921 ltv.tv_usec = uts.tv_nsec / 1000;
922 if ((error = copyout(<v, timeout, sizeof(ltv))))
923 return error;
924 }
925
926 return 0;
927 }
928
929 /*
930 * Derived from FreeBSD's sys/compat/linux/linux_misc.c:linux_pselect6()
931 * which was contributed by Dmitry Chagin
932 * https://svnweb.freebsd.org/base?view=revision&revision=283403
933 */
934 int
935 linux_sys_pselect6(struct lwp *l,
936 const struct linux_sys_pselect6_args *uap, register_t *retval)
937 {
938 /* {
939 syscallarg(int) nfds;
940 syscallarg(fd_set *) readfds;
941 syscallarg(fd_set *) writefds;
942 syscallarg(fd_set *) exceptfds;
943 syscallarg(struct timespec *) timeout;
944 syscallarg(linux_sized_sigset_t *) ss;
945 } */
946 struct timespec uts, ts0, ts1, *tsp;
947 linux_sized_sigset_t lsss;
948 struct linux_timespec lts;
949 linux_sigset_t lss;
950 sigset_t *ssp;
951 sigset_t ss;
952 int error;
953
954 ssp = NULL;
955 if (SCARG(uap, ss) != NULL) {
956 if ((error = copyin(SCARG(uap, ss), &lsss, sizeof(lsss))) != 0)
957 return (error);
958 if (lsss.ss_len != sizeof(lss))
959 return (EINVAL);
960 if (lsss.ss != NULL) {
961 if ((error = copyin(lsss.ss, &lss, sizeof(lss))) != 0)
962 return (error);
963 linux_to_native_sigset(&ss, &lss);
964 ssp = &ss;
965 }
966 }
967
968 if (SCARG(uap, timeout) != NULL) {
969 error = copyin(SCARG(uap, timeout), <s, sizeof(lts));
970 if (error != 0)
971 return (error);
972 linux_to_native_timespec(&uts, <s);
973
974 if (itimespecfix(&uts))
975 return (EINVAL);
976
977 nanotime(&ts0);
978 tsp = &uts;
979 } else {
980 tsp = NULL;
981 }
982
983 error = selcommon(retval, SCARG(uap, nfds), SCARG(uap, readfds),
984 SCARG(uap, writefds), SCARG(uap, exceptfds), tsp, ssp);
985
986 if (error == 0 && tsp != NULL) {
987 if (retval != 0) {
988 /*
989 * Compute how much time was left of the timeout,
990 * by subtracting the current time and the time
991 * before we started the call, and subtracting
992 * that result from the user-supplied value.
993 */
994 nanotime(&ts1);
995 timespecsub(&ts1, &ts0, &ts1);
996 timespecsub(&uts, &ts1, &uts);
997 if (uts.tv_sec < 0)
998 timespecclear(&uts);
999 } else {
1000 timespecclear(&uts);
1001 }
1002
1003 native_to_linux_timespec(<s, &uts);
1004 error = copyout(<s, SCARG(uap, timeout), sizeof(lts));
1005 }
1006
1007 return (error);
1008 }
1009
1010 int
1011 linux_sys_ppoll(struct lwp *l,
1012 const struct linux_sys_ppoll_args *uap, register_t *retval)
1013 {
1014 /* {
1015 syscallarg(struct pollfd *) fds;
1016 syscallarg(int) nfds;
1017 syscallarg(struct linux_timespec *) timeout;
1018 syscallarg(linux_sigset_t *) sigset;
1019 } */
1020 struct linux_timespec lts0, *lts;
1021 struct timespec ts0, *ts = NULL;
1022 linux_sigset_t lsigmask0, *lsigmask;
1023 sigset_t sigmask0, *sigmask = NULL;
1024 int error;
1025
1026 lts = SCARG(uap, timeout);
1027 if (lts) {
1028 if ((error = copyin(lts, <s0, sizeof(lts0))) != 0)
1029 return error;
1030 linux_to_native_timespec(&ts0, <s0);
1031 ts = &ts0;
1032 }
1033
1034 lsigmask = SCARG(uap, sigset);
1035 if (lsigmask) {
1036 if ((error = copyin(lsigmask, &lsigmask0, sizeof(lsigmask0))))
1037 return error;
1038 linux_to_native_sigset(&sigmask0, &lsigmask0);
1039 sigmask = &sigmask0;
1040 }
1041
1042 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds),
1043 ts, sigmask);
1044 }
1045
1046 /*
1047 * Set the 'personality' (emulation mode) for the current process. Only
1048 * accept the Linux personality here (0). This call is needed because
1049 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1050 * ELF binaries run in Linux mode, not SVR4 mode.
1051 */
1052 int
1053 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
1054 {
1055 /* {
1056 syscallarg(unsigned long) per;
1057 } */
1058 struct linux_emuldata *led;
1059 int per;
1060
1061 per = SCARG(uap, per);
1062 led = l->l_emuldata;
1063 if (per == LINUX_PER_QUERY) {
1064 retval[0] = led->led_personality;
1065 return 0;
1066 }
1067
1068 switch (per & LINUX_PER_MASK) {
1069 case LINUX_PER_LINUX:
1070 case LINUX_PER_LINUX32:
1071 led->led_personality = per;
1072 break;
1073
1074 default:
1075 return EINVAL;
1076 }
1077
1078 retval[0] = per;
1079 return 0;
1080 }
1081
1082 /*
1083 * We have nonexistent fsuid equal to uid.
1084 * If modification is requested, refuse.
1085 */
1086 int
1087 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
1088 {
1089 /* {
1090 syscallarg(uid_t) uid;
1091 } */
1092 uid_t uid;
1093
1094 uid = SCARG(uap, uid);
1095 if (kauth_cred_getuid(l->l_cred) != uid)
1096 return sys_nosys(l, uap, retval);
1097
1098 *retval = uid;
1099 return 0;
1100 }
1101
1102 int
1103 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
1104 {
1105 /* {
1106 syscallarg(gid_t) gid;
1107 } */
1108 gid_t gid;
1109
1110 gid = SCARG(uap, gid);
1111 if (kauth_cred_getgid(l->l_cred) != gid)
1112 return sys_nosys(l, uap, retval);
1113
1114 *retval = gid;
1115 return 0;
1116 }
1117
1118 int
1119 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
1120 {
1121 /* {
1122 syscallarg(uid_t) ruid;
1123 syscallarg(uid_t) euid;
1124 syscallarg(uid_t) suid;
1125 } */
1126
1127 /*
1128 * Note: These checks are a little different than the NetBSD
1129 * setreuid(2) call performs. This precisely follows the
1130 * behavior of the Linux kernel.
1131 */
1132
1133 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1134 SCARG(uap, suid),
1135 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1136 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1137 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1138 }
1139
1140 int
1141 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
1142 {
1143 /* {
1144 syscallarg(uid_t *) ruid;
1145 syscallarg(uid_t *) euid;
1146 syscallarg(uid_t *) suid;
1147 } */
1148 kauth_cred_t pc = l->l_cred;
1149 int error;
1150 uid_t uid;
1151
1152 /*
1153 * Linux copies these values out to userspace like so:
1154 *
1155 * 1. Copy out ruid.
1156 * 2. If that succeeds, copy out euid.
1157 * 3. If both of those succeed, copy out suid.
1158 */
1159 uid = kauth_cred_getuid(pc);
1160 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1161 return (error);
1162
1163 uid = kauth_cred_geteuid(pc);
1164 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1165 return (error);
1166
1167 uid = kauth_cred_getsvuid(pc);
1168
1169 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1170 }
1171
1172 int
1173 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
1174 {
1175 /* {
1176 i386, m68k, powerpc: T=int
1177 alpha, amd64: T=long
1178 syscallarg(T) request;
1179 syscallarg(T) pid;
1180 syscallarg(T) addr;
1181 syscallarg(T) data;
1182 } */
1183 const int *ptr;
1184 int request;
1185 int error;
1186
1187 ptr = linux_ptrace_request_map;
1188 request = SCARG(uap, request);
1189 while (*ptr != -1)
1190 if (*ptr++ == request) {
1191 struct sys_ptrace_args pta;
1192
1193 SCARG(&pta, req) = *ptr;
1194 SCARG(&pta, pid) = SCARG(uap, pid);
1195 SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1196 SCARG(&pta, data) = SCARG(uap, data);
1197
1198 /*
1199 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1200 * to continue where the process left off previously.
1201 * The same thing is achieved by addr == (void *) 1
1202 * on NetBSD, so rewrite 'addr' appropriately.
1203 */
1204 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1205 SCARG(&pta, addr) = (void *) 1;
1206
1207 error = sysent[SYS_ptrace].sy_call(l, &pta, retval);
1208 if (error)
1209 return error;
1210 switch (request) {
1211 case LINUX_PTRACE_PEEKTEXT:
1212 case LINUX_PTRACE_PEEKDATA:
1213 error = copyout (retval,
1214 (void *)SCARG(uap, data),
1215 sizeof *retval);
1216 *retval = SCARG(uap, data);
1217 break;
1218 default:
1219 break;
1220 }
1221 return error;
1222 }
1223 else
1224 ptr++;
1225
1226 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1227 }
1228
1229 int
1230 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
1231 {
1232 /* {
1233 syscallarg(int) magic1;
1234 syscallarg(int) magic2;
1235 syscallarg(int) cmd;
1236 syscallarg(void *) arg;
1237 } */
1238 struct sys_reboot_args /* {
1239 syscallarg(int) opt;
1240 syscallarg(char *) bootstr;
1241 } */ sra;
1242 int error;
1243
1244 if ((error = kauth_authorize_system(l->l_cred,
1245 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1246 return(error);
1247
1248 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1249 return(EINVAL);
1250 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1251 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1252 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1253 return(EINVAL);
1254
1255 switch ((unsigned long)SCARG(uap, cmd)) {
1256 case LINUX_REBOOT_CMD_RESTART:
1257 SCARG(&sra, opt) = RB_AUTOBOOT;
1258 break;
1259 case LINUX_REBOOT_CMD_HALT:
1260 SCARG(&sra, opt) = RB_HALT;
1261 break;
1262 case LINUX_REBOOT_CMD_POWER_OFF:
1263 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1264 break;
1265 case LINUX_REBOOT_CMD_RESTART2:
1266 /* Reboot with an argument. */
1267 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1268 SCARG(&sra, bootstr) = SCARG(uap, arg);
1269 break;
1270 case LINUX_REBOOT_CMD_CAD_ON:
1271 return(EINVAL); /* We don't implement ctrl-alt-delete */
1272 case LINUX_REBOOT_CMD_CAD_OFF:
1273 return(0);
1274 default:
1275 return(EINVAL);
1276 }
1277
1278 return(sys_reboot(l, &sra, retval));
1279 }
1280
1281 /*
1282 * Copy of compat_12_sys_swapon().
1283 */
1284 int
1285 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
1286 {
1287 /* {
1288 syscallarg(const char *) name;
1289 } */
1290 struct sys_swapctl_args ua;
1291
1292 SCARG(&ua, cmd) = SWAP_ON;
1293 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1294 SCARG(&ua, misc) = 0; /* priority */
1295 return (sys_swapctl(l, &ua, retval));
1296 }
1297
1298 /*
1299 * Stop swapping to the file or block device specified by path.
1300 */
1301 int
1302 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
1303 {
1304 /* {
1305 syscallarg(const char *) path;
1306 } */
1307 struct sys_swapctl_args ua;
1308
1309 SCARG(&ua, cmd) = SWAP_OFF;
1310 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1311 return (sys_swapctl(l, &ua, retval));
1312 }
1313
1314 /*
1315 * Copy of compat_09_sys_setdomainname()
1316 */
1317 /* ARGSUSED */
1318 int
1319 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
1320 {
1321 /* {
1322 syscallarg(char *) domainname;
1323 syscallarg(int) len;
1324 } */
1325 int name[2];
1326
1327 name[0] = CTL_KERN;
1328 name[1] = KERN_DOMAINNAME;
1329 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1330 SCARG(uap, len), l));
1331 }
1332
1333 /*
1334 * sysinfo()
1335 */
1336 /* ARGSUSED */
1337 int
1338 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
1339 {
1340 /* {
1341 syscallarg(struct linux_sysinfo *) arg;
1342 } */
1343 struct linux_sysinfo si;
1344 struct loadavg *la;
1345
1346 memset(&si, 0, sizeof(si));
1347 si.uptime = time_uptime;
1348 la = &averunnable;
1349 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1350 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1351 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1352 si.totalram = ctob((u_long)physmem);
1353 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
1354 si.sharedram = 0; /* XXX */
1355 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
1356 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1357 si.freeswap =
1358 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1359 si.procs = nprocs;
1360
1361 /* The following are only present in newer Linux kernels. */
1362 si.totalbig = 0;
1363 si.freebig = 0;
1364 si.mem_unit = 1;
1365
1366 return (copyout(&si, SCARG(uap, arg), sizeof si));
1367 }
1368
1369 int
1370 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
1371 {
1372 /* {
1373 syscallarg(int) which;
1374 # ifdef LINUX_LARGEFILE64
1375 syscallarg(struct rlimit *) rlp;
1376 # else
1377 syscallarg(struct orlimit *) rlp;
1378 # endif
1379 } */
1380 # ifdef LINUX_LARGEFILE64
1381 struct rlimit orl;
1382 # else
1383 struct orlimit orl;
1384 # endif
1385 int which;
1386
1387 which = linux_to_bsd_limit(SCARG(uap, which));
1388 if (which < 0)
1389 return -which;
1390
1391 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1392
1393 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1394 }
1395
1396 int
1397 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
1398 {
1399 /* {
1400 syscallarg(int) which;
1401 # ifdef LINUX_LARGEFILE64
1402 syscallarg(struct rlimit *) rlp;
1403 # else
1404 syscallarg(struct orlimit *) rlp;
1405 # endif
1406 } */
1407 struct rlimit rl;
1408 # ifdef LINUX_LARGEFILE64
1409 struct rlimit orl;
1410 # else
1411 struct orlimit orl;
1412 # endif
1413 int error;
1414 int which;
1415
1416 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1417 return error;
1418
1419 which = linux_to_bsd_limit(SCARG(uap, which));
1420 if (which < 0)
1421 return -which;
1422
1423 linux_to_bsd_rlimit(&rl, &orl);
1424 return dosetrlimit(l, l->l_proc, which, &rl);
1425 }
1426
1427 # if !defined(__mips__) && !defined(__amd64__)
1428 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1429 int
1430 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
1431 {
1432 return linux_sys_getrlimit(l, (const void *)uap, retval);
1433 }
1434 # endif
1435
1436 /*
1437 * This gets called for unsupported syscalls. The difference to sys_nosys()
1438 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1439 * This is the way Linux does it and glibc depends on this behaviour.
1440 */
1441 int
1442 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
1443 {
1444 return (ENOSYS);
1445 }
1446
1447 int
1448 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
1449 {
1450 /* {
1451 syscallarg(int) which;
1452 syscallarg(int) who;
1453 } */
1454 struct sys_getpriority_args bsa;
1455 int error;
1456
1457 SCARG(&bsa, which) = SCARG(uap, which);
1458 SCARG(&bsa, who) = SCARG(uap, who);
1459
1460 if ((error = sys_getpriority(l, &bsa, retval)))
1461 return error;
1462
1463 *retval = NZERO - *retval;
1464
1465 return 0;
1466 }
1467
1468 int
1469 linux_do_sys_utimensat(struct lwp *l, int fd, const char *path, struct timespec *tsp, int flags, register_t *retval)
1470 {
1471 int follow, error;
1472
1473 follow = (flags & LINUX_AT_SYMLINK_NOFOLLOW) ? NOFOLLOW : FOLLOW;
1474
1475 if (path == NULL && fd != AT_FDCWD) {
1476 file_t *fp;
1477
1478 /* fd_getvnode() will use the descriptor for us */
1479 if ((error = fd_getvnode(fd, &fp)) != 0)
1480 return error;
1481 error = do_sys_utimensat(l, AT_FDCWD, fp->f_data, NULL, 0,
1482 tsp, UIO_SYSSPACE);
1483 fd_putfile(fd);
1484 return error;
1485 }
1486
1487 return do_sys_utimensat(l, fd, NULL, path, follow, tsp, UIO_SYSSPACE);
1488 }
1489
1490 int
1491 linux_sys_utimensat(struct lwp *l, const struct linux_sys_utimensat_args *uap,
1492 register_t *retval)
1493 {
1494 /* {
1495 syscallarg(int) fd;
1496 syscallarg(const char *) path;
1497 syscallarg(const struct linux_timespec *) times;
1498 syscallarg(int) flag;
1499 } */
1500 int error;
1501 struct linux_timespec lts[2];
1502 struct timespec *tsp = NULL, ts[2];
1503
1504 if (SCARG(uap, times)) {
1505 error = copyin(SCARG(uap, times), <s, sizeof(lts));
1506 if (error != 0)
1507 return error;
1508 linux_to_native_timespec(&ts[0], <s[0]);
1509 linux_to_native_timespec(&ts[1], <s[1]);
1510 tsp = ts;
1511 }
1512
1513 return linux_do_sys_utimensat(l, SCARG(uap, fd), SCARG(uap, path),
1514 tsp, SCARG(uap, flag), retval);
1515 }
1516