linux_misc.c revision 1.251 1 /* $NetBSD: linux_misc.c,v 1.251 2020/06/11 22:21:05 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Linux compatibility module. Try to deal with various Linux system calls.
35 */
36
37 /*
38 * These functions have been moved to multiarch to allow
39 * selection of which machines include them to be
40 * determined by the individual files.linux_<arch> files.
41 *
42 * Function in multiarch:
43 * linux_sys_break : linux_break.c
44 * linux_sys_alarm : linux_misc_notalpha.c
45 * linux_sys_getresgid : linux_misc_notalpha.c
46 * linux_sys_nice : linux_misc_notalpha.c
47 * linux_sys_readdir : linux_misc_notalpha.c
48 * linux_sys_setresgid : linux_misc_notalpha.c
49 * linux_sys_time : linux_misc_notalpha.c
50 * linux_sys_utime : linux_misc_notalpha.c
51 * linux_sys_waitpid : linux_misc_notalpha.c
52 * linux_sys_old_mmap : linux_oldmmap.c
53 * linux_sys_oldolduname : linux_oldolduname.c
54 * linux_sys_oldselect : linux_oldselect.c
55 * linux_sys_olduname : linux_olduname.c
56 * linux_sys_pipe : linux_pipe.c
57 */
58
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.251 2020/06/11 22:21:05 ad Exp $");
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/dirent.h>
67 #include <sys/file.h>
68 #include <sys/stat.h>
69 #include <sys/filedesc.h>
70 #include <sys/ioctl.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/poll.h>
77 #include <sys/prot.h>
78 #include <sys/reboot.h>
79 #include <sys/resource.h>
80 #include <sys/resourcevar.h>
81 #include <sys/select.h>
82 #include <sys/signal.h>
83 #include <sys/signalvar.h>
84 #include <sys/socket.h>
85 #include <sys/time.h>
86 #include <sys/times.h>
87 #include <sys/vnode.h>
88 #include <sys/uio.h>
89 #include <sys/wait.h>
90 #include <sys/utsname.h>
91 #include <sys/unistd.h>
92 #include <sys/vfs_syscalls.h>
93 #include <sys/swap.h> /* for SWAP_ON */
94 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
95 #include <sys/kauth.h>
96 #include <sys/futex.h>
97
98 #include <sys/ptrace.h>
99 #include <machine/ptrace.h>
100
101 #include <sys/syscall.h>
102 #include <sys/syscallargs.h>
103
104 #include <compat/sys/resource.h>
105
106 #include <compat/linux/common/linux_machdep.h>
107 #include <compat/linux/common/linux_types.h>
108 #include <compat/linux/common/linux_signal.h>
109 #include <compat/linux/common/linux_ipc.h>
110 #include <compat/linux/common/linux_sem.h>
111
112 #include <compat/linux/common/linux_fcntl.h>
113 #include <compat/linux/common/linux_mmap.h>
114 #include <compat/linux/common/linux_dirent.h>
115 #include <compat/linux/common/linux_util.h>
116 #include <compat/linux/common/linux_misc.h>
117 #include <compat/linux/common/linux_statfs.h>
118 #include <compat/linux/common/linux_limit.h>
119 #include <compat/linux/common/linux_ptrace.h>
120 #include <compat/linux/common/linux_reboot.h>
121 #include <compat/linux/common/linux_emuldata.h>
122 #include <compat/linux/common/linux_sched.h>
123
124 #include <compat/linux/linux_syscallargs.h>
125
126 const int linux_ptrace_request_map[] = {
127 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
128 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
129 LINUX_PTRACE_PEEKDATA, PT_READ_D,
130 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
131 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
132 LINUX_PTRACE_CONT, PT_CONTINUE,
133 LINUX_PTRACE_KILL, PT_KILL,
134 LINUX_PTRACE_ATTACH, PT_ATTACH,
135 LINUX_PTRACE_DETACH, PT_DETACH,
136 # ifdef PT_STEP
137 LINUX_PTRACE_SINGLESTEP, PT_STEP,
138 # endif
139 LINUX_PTRACE_SYSCALL, PT_SYSCALL,
140 -1
141 };
142
143 const struct linux_mnttypes linux_fstypes[] = {
144 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
146 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
148 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
150 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
153 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
155 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
157 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
158 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
159 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
160 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
161 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
162 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
163 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
164 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
165 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
166 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC }
167 };
168 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
169
170 # ifdef DEBUG_LINUX
171 #define DPRINTF(a) uprintf a
172 # else
173 #define DPRINTF(a)
174 # endif
175
176 /* Local linux_misc.c functions: */
177 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
178 const struct linux_sys_mmap_args *);
179 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
180 register_t *, off_t);
181
182
183 /*
184 * The information on a terminated (or stopped) process needs
185 * to be converted in order for Linux binaries to get a valid signal
186 * number out of it.
187 */
188 int
189 bsd_to_linux_wstat(int st)
190 {
191
192 int sig;
193
194 if (WIFSIGNALED(st)) {
195 sig = WTERMSIG(st);
196 if (sig >= 0 && sig < NSIG)
197 st= (st & ~0177) | native_to_linux_signo[sig];
198 } else if (WIFSTOPPED(st)) {
199 sig = WSTOPSIG(st);
200 if (sig >= 0 && sig < NSIG)
201 st = (st & ~0xff00) |
202 (native_to_linux_signo[sig] << 8);
203 }
204 return st;
205 }
206
207 /*
208 * wait4(2). Passed on to the NetBSD call, surrounded by code to
209 * reserve some space for a NetBSD-style wait status, and converting
210 * it to what Linux wants.
211 */
212 int
213 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
214 {
215 /* {
216 syscallarg(int) pid;
217 syscallarg(int *) status;
218 syscallarg(int) options;
219 syscallarg(struct rusage50 *) rusage;
220 } */
221 int error, status, options, linux_options, pid = SCARG(uap, pid);
222 struct rusage50 ru50;
223 struct rusage ru;
224 proc_t *p;
225
226 linux_options = SCARG(uap, options);
227 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
228 return (EINVAL);
229
230 options = 0;
231 if (linux_options & LINUX_WAIT4_WNOHANG)
232 options |= WNOHANG;
233 if (linux_options & LINUX_WAIT4_WUNTRACED)
234 options |= WUNTRACED;
235 if (linux_options & LINUX_WAIT4_WCONTINUED)
236 options |= WCONTINUED;
237 if (linux_options & LINUX_WAIT4_WALL)
238 options |= WALLSIG;
239 if (linux_options & LINUX_WAIT4_WCLONE)
240 options |= WALTSIG;
241 # ifdef DIAGNOSTIC
242 if (linux_options & LINUX_WAIT4_WNOTHREAD)
243 printf("WARNING: %s: linux process %d.%d called "
244 "waitpid with __WNOTHREAD set!\n",
245 __FILE__, l->l_proc->p_pid, l->l_lid);
246
247 # endif
248
249 error = do_sys_wait(&pid, &status, options,
250 SCARG(uap, rusage) != NULL ? &ru : NULL);
251
252 retval[0] = pid;
253 if (pid == 0)
254 return error;
255
256 p = curproc;
257 mutex_enter(p->p_lock);
258 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
259 mutex_exit(p->p_lock);
260
261 if (SCARG(uap, rusage) != NULL) {
262 rusage_to_rusage50(&ru, &ru50);
263 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
264 }
265
266 if (error == 0 && SCARG(uap, status) != NULL) {
267 status = bsd_to_linux_wstat(status);
268 error = copyout(&status, SCARG(uap, status), sizeof status);
269 }
270
271 return error;
272 }
273
274 /*
275 * Linux brk(2). Like native, but always return the new break value.
276 */
277 int
278 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
279 {
280 /* {
281 syscallarg(char *) nsize;
282 } */
283 struct proc *p = l->l_proc;
284 struct vmspace *vm = p->p_vmspace;
285 struct sys_obreak_args oba;
286
287 SCARG(&oba, nsize) = SCARG(uap, nsize);
288
289 (void) sys_obreak(l, &oba, retval);
290 retval[0] = (register_t)((char *)vm->vm_daddr + ptoa(vm->vm_dsize));
291 return 0;
292 }
293
294 /*
295 * Implement the fs stat functions. Straightforward.
296 */
297 int
298 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
299 {
300 /* {
301 syscallarg(const char *) path;
302 syscallarg(struct linux_statfs *) sp;
303 } */
304 struct statvfs *sb;
305 struct linux_statfs ltmp;
306 int error;
307
308 sb = STATVFSBUF_GET();
309 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
310 if (error == 0) {
311 bsd_to_linux_statfs(sb, <mp);
312 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
313 }
314 STATVFSBUF_PUT(sb);
315
316 return error;
317 }
318
319 int
320 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
321 {
322 /* {
323 syscallarg(int) fd;
324 syscallarg(struct linux_statfs *) sp;
325 } */
326 struct statvfs *sb;
327 struct linux_statfs ltmp;
328 int error;
329
330 sb = STATVFSBUF_GET();
331 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
332 if (error == 0) {
333 bsd_to_linux_statfs(sb, <mp);
334 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
335 }
336 STATVFSBUF_PUT(sb);
337
338 return error;
339 }
340
341 /*
342 * uname(). Just copy the info from the various strings stored in the
343 * kernel, and put it in the Linux utsname structure. That structure
344 * is almost the same as the NetBSD one, only it has fields 65 characters
345 * long, and an extra domainname field.
346 */
347 int
348 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
349 {
350 /* {
351 syscallarg(struct linux_utsname *) up;
352 } */
353 struct linux_utsname luts;
354
355 memset(&luts, 0, sizeof(luts));
356 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
357 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
358 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
359 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
360 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
361 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
362
363 return copyout(&luts, SCARG(uap, up), sizeof(luts));
364 }
365
366 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
367 /* Used indirectly on: arm, i386, m68k */
368
369 /*
370 * New type Linux mmap call.
371 * Only called directly on machines with >= 6 free regs.
372 */
373 int
374 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
375 {
376 /* {
377 syscallarg(unsigned long) addr;
378 syscallarg(size_t) len;
379 syscallarg(int) prot;
380 syscallarg(int) flags;
381 syscallarg(int) fd;
382 syscallarg(linux_off_t) offset;
383 } */
384
385 if (SCARG(uap, offset) & PAGE_MASK)
386 return EINVAL;
387
388 return linux_mmap(l, uap, retval, SCARG(uap, offset));
389 }
390
391 /*
392 * Guts of most architectures' mmap64() implementations. This shares
393 * its list of arguments with linux_sys_mmap().
394 *
395 * The difference in linux_sys_mmap2() is that "offset" is actually
396 * (offset / pagesize), not an absolute byte count. This translation
397 * to pagesize offsets is done inside glibc between the mmap64() call
398 * point, and the actual syscall.
399 */
400 int
401 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
402 {
403 /* {
404 syscallarg(unsigned long) addr;
405 syscallarg(size_t) len;
406 syscallarg(int) prot;
407 syscallarg(int) flags;
408 syscallarg(int) fd;
409 syscallarg(linux_off_t) offset;
410 } */
411
412 return linux_mmap(l, uap, retval,
413 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
414 }
415
416 /*
417 * Massage arguments and call system mmap(2).
418 */
419 static int
420 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
421 {
422 struct sys_mmap_args cma;
423 int error;
424 size_t mmoff=0;
425
426 linux_to_bsd_mmap_args(&cma, uap);
427 SCARG(&cma, pos) = offset;
428
429 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
430 /*
431 * Request for stack-like memory segment. On linux, this
432 * works by mmap()ping (small) segment, which is automatically
433 * extended when page fault happens below the currently
434 * allocated area. We emulate this by allocating (typically
435 * bigger) segment sized at current stack size limit, and
436 * offsetting the requested and returned address accordingly.
437 * Since physical pages are only allocated on-demand, this
438 * is effectively identical.
439 */
440 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
441
442 if (SCARG(&cma, len) < ssl) {
443 /* Compute the address offset */
444 mmoff = round_page(ssl) - SCARG(uap, len);
445
446 if (SCARG(&cma, addr))
447 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
448
449 SCARG(&cma, len) = (size_t) ssl;
450 }
451 }
452
453 error = sys_mmap(l, &cma, retval);
454 if (error)
455 return (error);
456
457 /* Shift the returned address for stack-like segment if necessary */
458 retval[0] += mmoff;
459
460 return (0);
461 }
462
463 static void
464 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
465 {
466 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
467
468 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
469 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
470 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
471 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
472 flags |= cvtto_bsd_mask(fl, LINUX_MAP_LOCKED, MAP_WIRED);
473 /* XXX XAX ERH: Any other flags here? There are more defined... */
474
475 SCARG(cma, addr) = (void *)SCARG(uap, addr);
476 SCARG(cma, len) = SCARG(uap, len);
477 SCARG(cma, prot) = SCARG(uap, prot);
478 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
479 SCARG(cma, prot) |= VM_PROT_READ;
480 SCARG(cma, flags) = flags;
481 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
482 SCARG(cma, PAD) = 0;
483 }
484
485 #define LINUX_MREMAP_MAYMOVE 1
486 #define LINUX_MREMAP_FIXED 2
487
488 int
489 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
490 {
491 /* {
492 syscallarg(void *) old_address;
493 syscallarg(size_t) old_size;
494 syscallarg(size_t) new_size;
495 syscallarg(u_long) flags;
496 } */
497
498 struct proc *p;
499 struct vm_map *map;
500 vaddr_t oldva;
501 vaddr_t newva;
502 size_t oldsize;
503 size_t newsize;
504 int flags;
505 int uvmflags;
506 int error;
507
508 flags = SCARG(uap, flags);
509 oldva = (vaddr_t)SCARG(uap, old_address);
510 oldsize = round_page(SCARG(uap, old_size));
511 newsize = round_page(SCARG(uap, new_size));
512 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
513 error = EINVAL;
514 goto done;
515 }
516 if ((flags & LINUX_MREMAP_FIXED) != 0) {
517 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
518 error = EINVAL;
519 goto done;
520 }
521 #if 0 /* notyet */
522 newva = SCARG(uap, new_address);
523 uvmflags = MAP_FIXED;
524 #else /* notyet */
525 error = EOPNOTSUPP;
526 goto done;
527 #endif /* notyet */
528 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
529 uvmflags = 0;
530 } else {
531 newva = oldva;
532 uvmflags = MAP_FIXED;
533 }
534 p = l->l_proc;
535 map = &p->p_vmspace->vm_map;
536 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
537 uvmflags);
538
539 done:
540 *retval = (error != 0) ? 0 : (register_t)newva;
541 return error;
542 }
543
544 #ifdef USRSTACK
545 int
546 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
547 {
548 /* {
549 syscallarg(const void *) start;
550 syscallarg(unsigned long) len;
551 syscallarg(int) prot;
552 } */
553 struct vm_map_entry *entry;
554 struct vm_map *map;
555 struct proc *p;
556 vaddr_t end, start, len, stacklim;
557 int prot, grows;
558
559 start = (vaddr_t)SCARG(uap, start);
560 len = round_page(SCARG(uap, len));
561 prot = SCARG(uap, prot);
562 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
563 prot &= ~grows;
564 end = start + len;
565
566 if (start & PAGE_MASK)
567 return EINVAL;
568 if (end < start)
569 return EINVAL;
570 if (end == start)
571 return 0;
572
573 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
574 return EINVAL;
575 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
576 return EINVAL;
577
578 p = l->l_proc;
579 map = &p->p_vmspace->vm_map;
580 vm_map_lock(map);
581 # ifdef notdef
582 VM_MAP_RANGE_CHECK(map, start, end);
583 # endif
584 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
585 vm_map_unlock(map);
586 return ENOMEM;
587 }
588
589 /*
590 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
591 */
592
593 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
594 if (grows & LINUX_PROT_GROWSDOWN) {
595 if (USRSTACK - stacklim <= start && start < USRSTACK) {
596 start = USRSTACK - stacklim;
597 } else {
598 start = entry->start;
599 }
600 } else if (grows & LINUX_PROT_GROWSUP) {
601 if (USRSTACK <= end && end < USRSTACK + stacklim) {
602 end = USRSTACK + stacklim;
603 } else {
604 end = entry->end;
605 }
606 }
607 vm_map_unlock(map);
608 return uvm_map_protect_user(l, start, end, prot);
609 }
610 #endif /* USRSTACK */
611
612 /*
613 * This code is partly stolen from src/lib/libc/compat-43/times.c
614 */
615
616 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
617
618 int
619 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
620 {
621 /* {
622 syscallarg(struct times *) tms;
623 } */
624 struct proc *p = l->l_proc;
625 struct timeval t;
626 int error;
627
628 if (SCARG(uap, tms)) {
629 struct linux_tms ltms;
630 struct rusage ru;
631
632 mutex_enter(p->p_lock);
633 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
634 ltms.ltms_utime = CONVTCK(ru.ru_utime);
635 ltms.ltms_stime = CONVTCK(ru.ru_stime);
636 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
637 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
638 mutex_exit(p->p_lock);
639
640 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
641 return error;
642 }
643
644 getmicrouptime(&t);
645
646 retval[0] = ((linux_clock_t)(CONVTCK(t)));
647 return 0;
648 }
649
650 #undef CONVTCK
651
652 /*
653 * Linux 'readdir' call. This code is mostly taken from the
654 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
655 * an attempt has been made to keep it a little cleaner (failing
656 * miserably, because of the cruft needed if count 1 is passed).
657 *
658 * The d_off field should contain the offset of the next valid entry,
659 * but in Linux it has the offset of the entry itself. We emulate
660 * that bug here.
661 *
662 * Read in BSD-style entries, convert them, and copy them out.
663 *
664 * Note that this doesn't handle union-mounted filesystems.
665 */
666 int
667 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
668 {
669 /* {
670 syscallarg(int) fd;
671 syscallarg(struct linux_dirent *) dent;
672 syscallarg(unsigned int) count;
673 } */
674 struct dirent *bdp;
675 struct vnode *vp;
676 char *inp, *tbuf; /* BSD-format */
677 int len, reclen; /* BSD-format */
678 char *outp; /* Linux-format */
679 int resid, linux_reclen = 0; /* Linux-format */
680 struct file *fp;
681 struct uio auio;
682 struct iovec aiov;
683 struct linux_dirent idb;
684 off_t off; /* true file offset */
685 int buflen, error, eofflag, nbytes, oldcall;
686 struct vattr va;
687 off_t *cookiebuf = NULL, *cookie;
688 int ncookies;
689
690 /* fd_getvnode() will use the descriptor for us */
691 if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0)
692 return (error);
693
694 if ((fp->f_flag & FREAD) == 0) {
695 error = EBADF;
696 goto out1;
697 }
698
699 vp = (struct vnode *)fp->f_data;
700 if (vp->v_type != VDIR) {
701 error = ENOTDIR;
702 goto out1;
703 }
704
705 vn_lock(vp, LK_SHARED | LK_RETRY);
706 error = VOP_GETATTR(vp, &va, l->l_cred);
707 VOP_UNLOCK(vp);
708 if (error)
709 goto out1;
710
711 nbytes = SCARG(uap, count);
712 if (nbytes == 1) { /* emulating old, broken behaviour */
713 nbytes = sizeof (idb);
714 buflen = uimax(va.va_blocksize, nbytes);
715 oldcall = 1;
716 } else {
717 buflen = uimin(MAXBSIZE, nbytes);
718 if (buflen < va.va_blocksize)
719 buflen = va.va_blocksize;
720 oldcall = 0;
721 }
722 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
723
724 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
725 off = fp->f_offset;
726 again:
727 aiov.iov_base = tbuf;
728 aiov.iov_len = buflen;
729 auio.uio_iov = &aiov;
730 auio.uio_iovcnt = 1;
731 auio.uio_rw = UIO_READ;
732 auio.uio_resid = buflen;
733 auio.uio_offset = off;
734 UIO_SETUP_SYSSPACE(&auio);
735 /*
736 * First we read into the malloc'ed buffer, then
737 * we massage it into user space, one record at a time.
738 */
739 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
740 &ncookies);
741 if (error)
742 goto out;
743
744 inp = tbuf;
745 outp = (void *)SCARG(uap, dent);
746 resid = nbytes;
747 if ((len = buflen - auio.uio_resid) == 0)
748 goto eof;
749
750 for (cookie = cookiebuf; len > 0; len -= reclen) {
751 bdp = (struct dirent *)inp;
752 reclen = bdp->d_reclen;
753 if (reclen & 3) {
754 error = EIO;
755 goto out;
756 }
757 if (bdp->d_fileno == 0) {
758 inp += reclen; /* it is a hole; squish it out */
759 if (cookie)
760 off = *cookie++;
761 else
762 off += reclen;
763 continue;
764 }
765 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
766 if (reclen > len || resid < linux_reclen) {
767 /* entry too big for buffer, so just stop */
768 outp++;
769 break;
770 }
771 /*
772 * Massage in place to make a Linux-shaped dirent (otherwise
773 * we have to worry about touching user memory outside of
774 * the copyout() call).
775 */
776 memset(&idb, 0, sizeof(idb));
777 idb.d_ino = bdp->d_fileno;
778 /*
779 * The old readdir() call misuses the offset and reclen fields.
780 */
781 if (oldcall) {
782 idb.d_off = (linux_off_t)linux_reclen;
783 idb.d_reclen = (u_short)bdp->d_namlen;
784 } else {
785 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
786 compat_offseterr(vp, "linux_getdents");
787 error = EINVAL;
788 goto out;
789 }
790 idb.d_off = (linux_off_t)off;
791 idb.d_reclen = (u_short)linux_reclen;
792 /* Linux puts d_type at the end of each record */
793 *((char *)&idb + idb.d_reclen - 1) = bdp->d_type;
794 }
795 memcpy(idb.d_name, bdp->d_name,
796 MIN(sizeof(idb.d_name), bdp->d_namlen + 1));
797 if ((error = copyout((void *)&idb, outp, linux_reclen)))
798 goto out;
799 /* advance past this real entry */
800 inp += reclen;
801 if (cookie)
802 off = *cookie++; /* each entry points to itself */
803 else
804 off += reclen;
805 /* advance output past Linux-shaped entry */
806 outp += linux_reclen;
807 resid -= linux_reclen;
808 if (oldcall)
809 break;
810 }
811
812 /* if we squished out the whole block, try again */
813 if (outp == (void *)SCARG(uap, dent)) {
814 if (cookiebuf)
815 free(cookiebuf, M_TEMP);
816 cookiebuf = NULL;
817 goto again;
818 }
819 fp->f_offset = off; /* update the vnode offset */
820
821 if (oldcall)
822 nbytes = resid + linux_reclen;
823
824 eof:
825 *retval = nbytes - resid;
826 out:
827 VOP_UNLOCK(vp);
828 if (cookiebuf)
829 free(cookiebuf, M_TEMP);
830 free(tbuf, M_TEMP);
831 out1:
832 fd_putfile(SCARG(uap, fd));
833 return error;
834 }
835
836 /*
837 * Even when just using registers to pass arguments to syscalls you can
838 * have 5 of them on the i386. So this newer version of select() does
839 * this.
840 */
841 int
842 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
843 {
844 /* {
845 syscallarg(int) nfds;
846 syscallarg(fd_set *) readfds;
847 syscallarg(fd_set *) writefds;
848 syscallarg(fd_set *) exceptfds;
849 syscallarg(struct timeval50 *) timeout;
850 } */
851
852 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
853 SCARG(uap, writefds), SCARG(uap, exceptfds),
854 (struct linux_timeval *)SCARG(uap, timeout));
855 }
856
857 /*
858 * Common code for the old and new versions of select(). A couple of
859 * things are important:
860 * 1) return the amount of time left in the 'timeout' parameter
861 * 2) select never returns ERESTART on Linux, always return EINTR
862 */
863 int
864 linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds,
865 fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout)
866 {
867 struct timespec ts0, ts1, uts, *ts = NULL;
868 struct linux_timeval ltv;
869 int error;
870
871 /*
872 * Store current time for computation of the amount of
873 * time left.
874 */
875 if (timeout) {
876 if ((error = copyin(timeout, <v, sizeof(ltv))))
877 return error;
878 uts.tv_sec = ltv.tv_sec;
879 uts.tv_nsec = (long)((unsigned long)ltv.tv_usec * 1000);
880 if (itimespecfix(&uts)) {
881 /*
882 * The timeval was invalid. Convert it to something
883 * valid that will act as it does under Linux.
884 */
885 uts.tv_sec += uts.tv_nsec / 1000000000;
886 uts.tv_nsec %= 1000000000;
887 if (uts.tv_nsec < 0) {
888 uts.tv_sec -= 1;
889 uts.tv_nsec += 1000000000;
890 }
891 if (uts.tv_sec < 0)
892 timespecclear(&uts);
893 }
894 ts = &uts;
895 nanotime(&ts0);
896 }
897
898 error = selcommon(retval, nfds, readfds, writefds, exceptfds, ts, NULL);
899
900 if (error) {
901 /*
902 * See fs/select.c in the Linux kernel. Without this,
903 * Maelstrom doesn't work.
904 */
905 if (error == ERESTART)
906 error = EINTR;
907 return error;
908 }
909
910 if (timeout) {
911 if (*retval) {
912 /*
913 * Compute how much time was left of the timeout,
914 * by subtracting the current time and the time
915 * before we started the call, and subtracting
916 * that result from the user-supplied value.
917 */
918 nanotime(&ts1);
919 timespecsub(&ts1, &ts0, &ts1);
920 timespecsub(&uts, &ts1, &uts);
921 if (uts.tv_sec < 0)
922 timespecclear(&uts);
923 } else
924 timespecclear(&uts);
925 ltv.tv_sec = uts.tv_sec;
926 ltv.tv_usec = uts.tv_nsec / 1000;
927 if ((error = copyout(<v, timeout, sizeof(ltv))))
928 return error;
929 }
930
931 return 0;
932 }
933
934 /*
935 * Derived from FreeBSD's sys/compat/linux/linux_misc.c:linux_pselect6()
936 * which was contributed by Dmitry Chagin
937 * https://svnweb.freebsd.org/base?view=revision&revision=283403
938 */
939 int
940 linux_sys_pselect6(struct lwp *l,
941 const struct linux_sys_pselect6_args *uap, register_t *retval)
942 {
943 /* {
944 syscallarg(int) nfds;
945 syscallarg(fd_set *) readfds;
946 syscallarg(fd_set *) writefds;
947 syscallarg(fd_set *) exceptfds;
948 syscallarg(struct timespec *) timeout;
949 syscallarg(linux_sized_sigset_t *) ss;
950 } */
951 struct timespec uts, ts0, ts1, *tsp;
952 linux_sized_sigset_t lsss;
953 struct linux_timespec lts;
954 linux_sigset_t lss;
955 sigset_t *ssp;
956 sigset_t ss;
957 int error;
958
959 ssp = NULL;
960 if (SCARG(uap, ss) != NULL) {
961 if ((error = copyin(SCARG(uap, ss), &lsss, sizeof(lsss))) != 0)
962 return (error);
963 if (lsss.ss_len != sizeof(lss))
964 return (EINVAL);
965 if (lsss.ss != NULL) {
966 if ((error = copyin(lsss.ss, &lss, sizeof(lss))) != 0)
967 return (error);
968 linux_to_native_sigset(&ss, &lss);
969 ssp = &ss;
970 }
971 }
972
973 if (SCARG(uap, timeout) != NULL) {
974 error = copyin(SCARG(uap, timeout), <s, sizeof(lts));
975 if (error != 0)
976 return (error);
977 linux_to_native_timespec(&uts, <s);
978
979 if (itimespecfix(&uts))
980 return (EINVAL);
981
982 nanotime(&ts0);
983 tsp = &uts;
984 } else {
985 tsp = NULL;
986 }
987
988 error = selcommon(retval, SCARG(uap, nfds), SCARG(uap, readfds),
989 SCARG(uap, writefds), SCARG(uap, exceptfds), tsp, ssp);
990
991 if (error == 0 && tsp != NULL) {
992 if (retval != 0) {
993 /*
994 * Compute how much time was left of the timeout,
995 * by subtracting the current time and the time
996 * before we started the call, and subtracting
997 * that result from the user-supplied value.
998 */
999 nanotime(&ts1);
1000 timespecsub(&ts1, &ts0, &ts1);
1001 timespecsub(&uts, &ts1, &uts);
1002 if (uts.tv_sec < 0)
1003 timespecclear(&uts);
1004 } else {
1005 timespecclear(&uts);
1006 }
1007
1008 native_to_linux_timespec(<s, &uts);
1009 error = copyout(<s, SCARG(uap, timeout), sizeof(lts));
1010 }
1011
1012 return (error);
1013 }
1014
1015 int
1016 linux_sys_ppoll(struct lwp *l,
1017 const struct linux_sys_ppoll_args *uap, register_t *retval)
1018 {
1019 /* {
1020 syscallarg(struct pollfd *) fds;
1021 syscallarg(u_int) nfds;
1022 syscallarg(struct linux_timespec *) timeout;
1023 syscallarg(linux_sigset_t *) sigset;
1024 } */
1025 struct linux_timespec lts0, *lts;
1026 struct timespec ts0, *ts = NULL;
1027 linux_sigset_t lsigmask0, *lsigmask;
1028 sigset_t sigmask0, *sigmask = NULL;
1029 int error;
1030
1031 lts = SCARG(uap, timeout);
1032 if (lts) {
1033 if ((error = copyin(lts, <s0, sizeof(lts0))) != 0)
1034 return error;
1035 linux_to_native_timespec(&ts0, <s0);
1036 ts = &ts0;
1037 }
1038
1039 lsigmask = SCARG(uap, sigset);
1040 if (lsigmask) {
1041 if ((error = copyin(lsigmask, &lsigmask0, sizeof(lsigmask0))))
1042 return error;
1043 linux_to_native_sigset(&sigmask0, &lsigmask0);
1044 sigmask = &sigmask0;
1045 }
1046
1047 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds),
1048 ts, sigmask);
1049 }
1050
1051 /*
1052 * Set the 'personality' (emulation mode) for the current process. Only
1053 * accept the Linux personality here (0). This call is needed because
1054 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1055 * ELF binaries run in Linux mode, not SVR4 mode.
1056 */
1057 int
1058 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
1059 {
1060 /* {
1061 syscallarg(unsigned long) per;
1062 } */
1063 struct linux_emuldata *led;
1064 int per;
1065
1066 per = SCARG(uap, per);
1067 led = l->l_emuldata;
1068 if (per == LINUX_PER_QUERY) {
1069 retval[0] = led->led_personality;
1070 return 0;
1071 }
1072
1073 switch (per & LINUX_PER_MASK) {
1074 case LINUX_PER_LINUX:
1075 case LINUX_PER_LINUX32:
1076 led->led_personality = per;
1077 break;
1078
1079 default:
1080 return EINVAL;
1081 }
1082
1083 retval[0] = per;
1084 return 0;
1085 }
1086
1087 /*
1088 * We have nonexistent fsuid equal to uid.
1089 * If modification is requested, refuse.
1090 */
1091 int
1092 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
1093 {
1094 /* {
1095 syscallarg(uid_t) uid;
1096 } */
1097 uid_t uid;
1098
1099 uid = SCARG(uap, uid);
1100 if (kauth_cred_getuid(l->l_cred) != uid)
1101 return sys_nosys(l, uap, retval);
1102
1103 *retval = uid;
1104 return 0;
1105 }
1106
1107 int
1108 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
1109 {
1110 /* {
1111 syscallarg(gid_t) gid;
1112 } */
1113 gid_t gid;
1114
1115 gid = SCARG(uap, gid);
1116 if (kauth_cred_getgid(l->l_cred) != gid)
1117 return sys_nosys(l, uap, retval);
1118
1119 *retval = gid;
1120 return 0;
1121 }
1122
1123 int
1124 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
1125 {
1126 /* {
1127 syscallarg(uid_t) ruid;
1128 syscallarg(uid_t) euid;
1129 syscallarg(uid_t) suid;
1130 } */
1131
1132 /*
1133 * Note: These checks are a little different than the NetBSD
1134 * setreuid(2) call performs. This precisely follows the
1135 * behavior of the Linux kernel.
1136 */
1137
1138 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1139 SCARG(uap, suid),
1140 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1141 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1142 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1143 }
1144
1145 int
1146 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
1147 {
1148 /* {
1149 syscallarg(uid_t *) ruid;
1150 syscallarg(uid_t *) euid;
1151 syscallarg(uid_t *) suid;
1152 } */
1153 kauth_cred_t pc = l->l_cred;
1154 int error;
1155 uid_t uid;
1156
1157 /*
1158 * Linux copies these values out to userspace like so:
1159 *
1160 * 1. Copy out ruid.
1161 * 2. If that succeeds, copy out euid.
1162 * 3. If both of those succeed, copy out suid.
1163 */
1164 uid = kauth_cred_getuid(pc);
1165 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1166 return (error);
1167
1168 uid = kauth_cred_geteuid(pc);
1169 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1170 return (error);
1171
1172 uid = kauth_cred_getsvuid(pc);
1173
1174 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1175 }
1176
1177 int
1178 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
1179 {
1180 /* {
1181 i386, m68k, powerpc: T=int
1182 alpha, amd64: T=long
1183 syscallarg(T) request;
1184 syscallarg(T) pid;
1185 syscallarg(T) addr;
1186 syscallarg(T) data;
1187 } */
1188 const int *ptr;
1189 int request;
1190 int error;
1191
1192 ptr = linux_ptrace_request_map;
1193 request = SCARG(uap, request);
1194 while (*ptr != -1)
1195 if (*ptr++ == request) {
1196 struct sys_ptrace_args pta;
1197
1198 SCARG(&pta, req) = *ptr;
1199 SCARG(&pta, pid) = SCARG(uap, pid);
1200 SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1201 SCARG(&pta, data) = SCARG(uap, data);
1202
1203 /*
1204 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1205 * to continue where the process left off previously.
1206 * The same thing is achieved by addr == (void *) 1
1207 * on NetBSD, so rewrite 'addr' appropriately.
1208 */
1209 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1210 SCARG(&pta, addr) = (void *) 1;
1211
1212 error = sysent[SYS_ptrace].sy_call(l, &pta, retval);
1213 if (error)
1214 return error;
1215 switch (request) {
1216 case LINUX_PTRACE_PEEKTEXT:
1217 case LINUX_PTRACE_PEEKDATA:
1218 error = copyout (retval,
1219 (void *)SCARG(uap, data),
1220 sizeof *retval);
1221 *retval = SCARG(uap, data);
1222 break;
1223 default:
1224 break;
1225 }
1226 return error;
1227 }
1228 else
1229 ptr++;
1230
1231 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1232 }
1233
1234 int
1235 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
1236 {
1237 /* {
1238 syscallarg(int) magic1;
1239 syscallarg(int) magic2;
1240 syscallarg(int) cmd;
1241 syscallarg(void *) arg;
1242 } */
1243 struct sys_reboot_args /* {
1244 syscallarg(int) opt;
1245 syscallarg(char *) bootstr;
1246 } */ sra;
1247 int error;
1248
1249 if ((error = kauth_authorize_system(l->l_cred,
1250 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1251 return(error);
1252
1253 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1254 return(EINVAL);
1255 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1256 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1257 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1258 return(EINVAL);
1259
1260 switch ((unsigned long)SCARG(uap, cmd)) {
1261 case LINUX_REBOOT_CMD_RESTART:
1262 SCARG(&sra, opt) = RB_AUTOBOOT;
1263 break;
1264 case LINUX_REBOOT_CMD_HALT:
1265 SCARG(&sra, opt) = RB_HALT;
1266 break;
1267 case LINUX_REBOOT_CMD_POWER_OFF:
1268 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1269 break;
1270 case LINUX_REBOOT_CMD_RESTART2:
1271 /* Reboot with an argument. */
1272 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1273 SCARG(&sra, bootstr) = SCARG(uap, arg);
1274 break;
1275 case LINUX_REBOOT_CMD_CAD_ON:
1276 return(EINVAL); /* We don't implement ctrl-alt-delete */
1277 case LINUX_REBOOT_CMD_CAD_OFF:
1278 return(0);
1279 default:
1280 return(EINVAL);
1281 }
1282
1283 return(sys_reboot(l, &sra, retval));
1284 }
1285
1286 /*
1287 * Copy of compat_12_sys_swapon().
1288 */
1289 int
1290 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
1291 {
1292 /* {
1293 syscallarg(const char *) name;
1294 } */
1295 struct sys_swapctl_args ua;
1296
1297 SCARG(&ua, cmd) = SWAP_ON;
1298 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1299 SCARG(&ua, misc) = 0; /* priority */
1300 return (sys_swapctl(l, &ua, retval));
1301 }
1302
1303 /*
1304 * Stop swapping to the file or block device specified by path.
1305 */
1306 int
1307 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
1308 {
1309 /* {
1310 syscallarg(const char *) path;
1311 } */
1312 struct sys_swapctl_args ua;
1313
1314 SCARG(&ua, cmd) = SWAP_OFF;
1315 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1316 return (sys_swapctl(l, &ua, retval));
1317 }
1318
1319 /*
1320 * Copy of compat_09_sys_setdomainname()
1321 */
1322 /* ARGSUSED */
1323 int
1324 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
1325 {
1326 /* {
1327 syscallarg(char *) domainname;
1328 syscallarg(int) len;
1329 } */
1330 int name[2];
1331
1332 name[0] = CTL_KERN;
1333 name[1] = KERN_DOMAINNAME;
1334 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1335 SCARG(uap, len), l));
1336 }
1337
1338 /*
1339 * sysinfo()
1340 */
1341 /* ARGSUSED */
1342 int
1343 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
1344 {
1345 /* {
1346 syscallarg(struct linux_sysinfo *) arg;
1347 } */
1348 struct linux_sysinfo si;
1349 struct loadavg *la;
1350 int64_t filepg;
1351
1352 memset(&si, 0, sizeof(si));
1353 si.uptime = time_uptime;
1354 la = &averunnable;
1355 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1356 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1357 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1358 si.totalram = ctob((u_long)physmem);
1359 /* uvm_availmem() may sync the counters. */
1360 si.freeram = (u_long)uvm_availmem(true) * uvmexp.pagesize;
1361 filepg = cpu_count_get(CPU_COUNT_FILECLEAN) +
1362 cpu_count_get(CPU_COUNT_FILEDIRTY) +
1363 cpu_count_get(CPU_COUNT_FILEUNKNOWN) -
1364 cpu_count_get(CPU_COUNT_EXECPAGES);
1365 si.sharedram = 0; /* XXX */
1366 si.bufferram = (u_long)(filepg * uvmexp.pagesize);
1367 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1368 si.freeswap =
1369 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1370 si.procs = atomic_load_relaxed(&nprocs);
1371
1372 /* The following are only present in newer Linux kernels. */
1373 si.totalbig = 0;
1374 si.freebig = 0;
1375 si.mem_unit = 1;
1376
1377 return (copyout(&si, SCARG(uap, arg), sizeof si));
1378 }
1379
1380 int
1381 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
1382 {
1383 /* {
1384 syscallarg(int) which;
1385 # ifdef LINUX_LARGEFILE64
1386 syscallarg(struct rlimit *) rlp;
1387 # else
1388 syscallarg(struct orlimit *) rlp;
1389 # endif
1390 } */
1391 # ifdef LINUX_LARGEFILE64
1392 struct rlimit orl;
1393 # else
1394 struct orlimit orl;
1395 # endif
1396 int which;
1397
1398 which = linux_to_bsd_limit(SCARG(uap, which));
1399 if (which < 0)
1400 return -which;
1401
1402 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1403
1404 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1405 }
1406
1407 int
1408 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
1409 {
1410 /* {
1411 syscallarg(int) which;
1412 # ifdef LINUX_LARGEFILE64
1413 syscallarg(struct rlimit *) rlp;
1414 # else
1415 syscallarg(struct orlimit *) rlp;
1416 # endif
1417 } */
1418 struct rlimit rl;
1419 # ifdef LINUX_LARGEFILE64
1420 struct rlimit orl;
1421 # else
1422 struct orlimit orl;
1423 # endif
1424 int error;
1425 int which;
1426
1427 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1428 return error;
1429
1430 which = linux_to_bsd_limit(SCARG(uap, which));
1431 if (which < 0)
1432 return -which;
1433
1434 linux_to_bsd_rlimit(&rl, &orl);
1435 return dosetrlimit(l, l->l_proc, which, &rl);
1436 }
1437
1438 # if !defined(__mips__) && !defined(__amd64__)
1439 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1440 int
1441 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
1442 {
1443 return linux_sys_getrlimit(l, (const void *)uap, retval);
1444 }
1445 # endif
1446
1447 /*
1448 * This gets called for unsupported syscalls. The difference to sys_nosys()
1449 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1450 * This is the way Linux does it and glibc depends on this behaviour.
1451 */
1452 int
1453 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
1454 {
1455 return (ENOSYS);
1456 }
1457
1458 int
1459 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
1460 {
1461 /* {
1462 syscallarg(int) which;
1463 syscallarg(int) who;
1464 } */
1465 struct sys_getpriority_args bsa;
1466 int error;
1467
1468 SCARG(&bsa, which) = SCARG(uap, which);
1469 SCARG(&bsa, who) = SCARG(uap, who);
1470
1471 if ((error = sys_getpriority(l, &bsa, retval)))
1472 return error;
1473
1474 *retval = NZERO - *retval;
1475
1476 return 0;
1477 }
1478
1479 int
1480 linux_do_sys_utimensat(struct lwp *l, int fd, const char *path, struct timespec *tsp, int flags, register_t *retval)
1481 {
1482 int follow, error;
1483
1484 follow = (flags & LINUX_AT_SYMLINK_NOFOLLOW) ? NOFOLLOW : FOLLOW;
1485
1486 if (path == NULL && fd != AT_FDCWD) {
1487 file_t *fp;
1488
1489 /* fd_getvnode() will use the descriptor for us */
1490 if ((error = fd_getvnode(fd, &fp)) != 0)
1491 return error;
1492 error = do_sys_utimensat(l, AT_FDCWD, fp->f_data, NULL, 0,
1493 tsp, UIO_SYSSPACE);
1494 fd_putfile(fd);
1495 return error;
1496 }
1497
1498 return do_sys_utimensat(l, fd, NULL, path, follow, tsp, UIO_SYSSPACE);
1499 }
1500
1501 int
1502 linux_sys_utimensat(struct lwp *l, const struct linux_sys_utimensat_args *uap,
1503 register_t *retval)
1504 {
1505 /* {
1506 syscallarg(int) fd;
1507 syscallarg(const char *) path;
1508 syscallarg(const struct linux_timespec *) times;
1509 syscallarg(int) flag;
1510 } */
1511 int error;
1512 struct linux_timespec lts[2];
1513 struct timespec *tsp = NULL, ts[2];
1514
1515 if (SCARG(uap, times)) {
1516 error = copyin(SCARG(uap, times), <s, sizeof(lts));
1517 if (error != 0)
1518 return error;
1519 linux_to_native_timespec(&ts[0], <s[0]);
1520 linux_to_native_timespec(&ts[1], <s[1]);
1521 tsp = ts;
1522 }
1523
1524 return linux_do_sys_utimensat(l, SCARG(uap, fd), SCARG(uap, path),
1525 tsp, SCARG(uap, flag), retval);
1526 }
1527
1528 int
1529 linux_sys_futex(struct lwp *l, const struct linux_sys_futex_args *uap,
1530 register_t *retval)
1531 {
1532 /* {
1533 syscallarg(int *) uaddr;
1534 syscallarg(int) op;
1535 syscallarg(int) val;
1536 syscallarg(const struct linux_timespec *) timeout;
1537 syscallarg(int *) uaddr2;
1538 syscallarg(int) val3;
1539 } */
1540 struct linux_timespec lts;
1541 struct timespec ts, *tsp = NULL;
1542 int val2 = 0;
1543 int error;
1544
1545 /*
1546 * Linux overlays the "timeout" field and the "val2" field.
1547 * "timeout" is only valid for FUTEX_WAIT and FUTEX_WAIT_BITSET
1548 * on Linux.
1549 */
1550 const int op = (SCARG(uap, op) & FUTEX_CMD_MASK);
1551 if ((op == FUTEX_WAIT || op == FUTEX_WAIT_BITSET) &&
1552 SCARG(uap, timeout) != NULL) {
1553 if ((error = copyin(SCARG(uap, timeout),
1554 <s, sizeof(lts))) != 0) {
1555 return error;
1556 }
1557 linux_to_native_timespec(&ts, <s);
1558 tsp = &ts;
1559 } else {
1560 val2 = (int)(uintptr_t)SCARG(uap, timeout);
1561 }
1562
1563 return linux_do_futex(SCARG(uap, uaddr), SCARG(uap, op),
1564 SCARG(uap, val), tsp, SCARG(uap, uaddr2), val2,
1565 SCARG(uap, val3), retval);
1566 }
1567
1568 int
1569 linux_do_futex(int *uaddr, int op, int val, struct timespec *timeout,
1570 int *uaddr2, int val2, int val3, register_t *retval)
1571 {
1572 /*
1573 * Always clear FUTEX_PRIVATE_FLAG for Linux processes.
1574 * NetBSD-native futexes exist in different namespace
1575 * depending on FUTEX_PRIVATE_FLAG. This appears not
1576 * to be the case in Linux, and some futex users will
1577 * mix private and non-private ops on the same futex
1578 * object.
1579 */
1580 return do_futex(uaddr, op & ~FUTEX_PRIVATE_FLAG,
1581 val, timeout, uaddr2, val2, val3, retval);
1582 }
1583