linux_misc.c revision 1.254 1 /* $NetBSD: linux_misc.c,v 1.254 2021/09/23 06:56:27 ryo Exp $ */
2
3 /*-
4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Linux compatibility module. Try to deal with various Linux system calls.
35 */
36
37 /*
38 * These functions have been moved to multiarch to allow
39 * selection of which machines include them to be
40 * determined by the individual files.linux_<arch> files.
41 *
42 * Function in multiarch:
43 * linux_sys_break : linux_break.c
44 * linux_sys_alarm : linux_misc_notalpha.c
45 * linux_sys_getresgid : linux_misc_notalpha.c
46 * linux_sys_nice : linux_misc_notalpha.c
47 * linux_sys_readdir : linux_misc_notalpha.c
48 * linux_sys_setresgid : linux_misc_notalpha.c
49 * linux_sys_time : linux_misc_notalpha.c
50 * linux_sys_utime : linux_misc_notalpha.c
51 * linux_sys_waitpid : linux_misc_notalpha.c
52 * linux_sys_old_mmap : linux_oldmmap.c
53 * linux_sys_oldolduname : linux_oldolduname.c
54 * linux_sys_oldselect : linux_oldselect.c
55 * linux_sys_olduname : linux_olduname.c
56 * linux_sys_pipe : linux_pipe.c
57 */
58
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.254 2021/09/23 06:56:27 ryo Exp $");
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/dirent.h>
67 #include <sys/eventfd.h>
68 #include <sys/file.h>
69 #include <sys/stat.h>
70 #include <sys/filedesc.h>
71 #include <sys/ioctl.h>
72 #include <sys/kernel.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/mman.h>
76 #include <sys/mount.h>
77 #include <sys/poll.h>
78 #include <sys/prot.h>
79 #include <sys/reboot.h>
80 #include <sys/resource.h>
81 #include <sys/resourcevar.h>
82 #include <sys/select.h>
83 #include <sys/signal.h>
84 #include <sys/signalvar.h>
85 #include <sys/socket.h>
86 #include <sys/time.h>
87 #include <sys/times.h>
88 #include <sys/vnode.h>
89 #include <sys/uio.h>
90 #include <sys/wait.h>
91 #include <sys/utsname.h>
92 #include <sys/unistd.h>
93 #include <sys/vfs_syscalls.h>
94 #include <sys/swap.h> /* for SWAP_ON */
95 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
96 #include <sys/kauth.h>
97 #include <sys/futex.h>
98
99 #include <sys/ptrace.h>
100 #include <machine/ptrace.h>
101
102 #include <sys/syscall.h>
103 #include <sys/syscallargs.h>
104
105 #include <compat/sys/resource.h>
106
107 #include <compat/linux/common/linux_machdep.h>
108 #include <compat/linux/common/linux_types.h>
109 #include <compat/linux/common/linux_signal.h>
110 #include <compat/linux/common/linux_ipc.h>
111 #include <compat/linux/common/linux_sem.h>
112
113 #include <compat/linux/common/linux_fcntl.h>
114 #include <compat/linux/common/linux_mmap.h>
115 #include <compat/linux/common/linux_dirent.h>
116 #include <compat/linux/common/linux_util.h>
117 #include <compat/linux/common/linux_misc.h>
118 #include <compat/linux/common/linux_statfs.h>
119 #include <compat/linux/common/linux_limit.h>
120 #include <compat/linux/common/linux_ptrace.h>
121 #include <compat/linux/common/linux_reboot.h>
122 #include <compat/linux/common/linux_emuldata.h>
123 #include <compat/linux/common/linux_sched.h>
124
125 #include <compat/linux/linux_syscallargs.h>
126
127 const int linux_ptrace_request_map[] = {
128 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
129 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
130 LINUX_PTRACE_PEEKDATA, PT_READ_D,
131 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
132 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
133 LINUX_PTRACE_CONT, PT_CONTINUE,
134 LINUX_PTRACE_KILL, PT_KILL,
135 LINUX_PTRACE_ATTACH, PT_ATTACH,
136 LINUX_PTRACE_DETACH, PT_DETACH,
137 # ifdef PT_STEP
138 LINUX_PTRACE_SINGLESTEP, PT_STEP,
139 # endif
140 LINUX_PTRACE_SYSCALL, PT_SYSCALL,
141 -1
142 };
143
144 const struct linux_mnttypes linux_fstypes[] = {
145 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
146 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
147 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
148 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
149 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
150 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
153 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
155 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
156 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
157 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
158 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
159 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
160 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
161 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
162 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
163 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
164 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
165 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
166 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
167 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC }
168 };
169 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
170
171 # ifdef DEBUG_LINUX
172 #define DPRINTF(a) uprintf a
173 # else
174 #define DPRINTF(a)
175 # endif
176
177 /* Local linux_misc.c functions: */
178 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
179 const struct linux_sys_mmap_args *);
180 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
181 register_t *, off_t);
182
183
184 /*
185 * The information on a terminated (or stopped) process needs
186 * to be converted in order for Linux binaries to get a valid signal
187 * number out of it.
188 */
189 int
190 bsd_to_linux_wstat(int st)
191 {
192
193 int sig;
194
195 if (WIFSIGNALED(st)) {
196 sig = WTERMSIG(st);
197 if (sig >= 0 && sig < NSIG)
198 st= (st & ~0177) | native_to_linux_signo[sig];
199 } else if (WIFSTOPPED(st)) {
200 sig = WSTOPSIG(st);
201 if (sig >= 0 && sig < NSIG)
202 st = (st & ~0xff00) |
203 (native_to_linux_signo[sig] << 8);
204 }
205 return st;
206 }
207
208 /*
209 * wait4(2). Passed on to the NetBSD call, surrounded by code to
210 * reserve some space for a NetBSD-style wait status, and converting
211 * it to what Linux wants.
212 */
213 int
214 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
215 {
216 /* {
217 syscallarg(int) pid;
218 syscallarg(int *) status;
219 syscallarg(int) options;
220 syscallarg(struct rusage50 *) rusage;
221 } */
222 int error, status, options, linux_options, pid = SCARG(uap, pid);
223 struct rusage50 ru50;
224 struct rusage ru;
225 proc_t *p;
226
227 linux_options = SCARG(uap, options);
228 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
229 return (EINVAL);
230
231 options = 0;
232 if (linux_options & LINUX_WAIT4_WNOHANG)
233 options |= WNOHANG;
234 if (linux_options & LINUX_WAIT4_WUNTRACED)
235 options |= WUNTRACED;
236 if (linux_options & LINUX_WAIT4_WCONTINUED)
237 options |= WCONTINUED;
238 if (linux_options & LINUX_WAIT4_WALL)
239 options |= WALLSIG;
240 if (linux_options & LINUX_WAIT4_WCLONE)
241 options |= WALTSIG;
242 # ifdef DIAGNOSTIC
243 if (linux_options & LINUX_WAIT4_WNOTHREAD)
244 printf("WARNING: %s: linux process %d.%d called "
245 "waitpid with __WNOTHREAD set!\n",
246 __FILE__, l->l_proc->p_pid, l->l_lid);
247
248 # endif
249
250 error = do_sys_wait(&pid, &status, options,
251 SCARG(uap, rusage) != NULL ? &ru : NULL);
252
253 retval[0] = pid;
254 if (pid == 0)
255 return error;
256
257 p = curproc;
258 mutex_enter(p->p_lock);
259 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
260 mutex_exit(p->p_lock);
261
262 if (SCARG(uap, rusage) != NULL) {
263 rusage_to_rusage50(&ru, &ru50);
264 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
265 }
266
267 if (error == 0 && SCARG(uap, status) != NULL) {
268 status = bsd_to_linux_wstat(status);
269 error = copyout(&status, SCARG(uap, status), sizeof status);
270 }
271
272 return error;
273 }
274
275 /*
276 * Linux brk(2). Like native, but always return the new break value.
277 */
278 int
279 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
280 {
281 /* {
282 syscallarg(char *) nsize;
283 } */
284 struct proc *p = l->l_proc;
285 struct vmspace *vm = p->p_vmspace;
286 struct sys_obreak_args oba;
287
288 SCARG(&oba, nsize) = SCARG(uap, nsize);
289
290 (void) sys_obreak(l, &oba, retval);
291 retval[0] = (register_t)((char *)vm->vm_daddr + ptoa(vm->vm_dsize));
292 return 0;
293 }
294
295 /*
296 * Implement the fs stat functions. Straightforward.
297 */
298 int
299 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
300 {
301 /* {
302 syscallarg(const char *) path;
303 syscallarg(struct linux_statfs *) sp;
304 } */
305 struct statvfs *sb;
306 struct linux_statfs ltmp;
307 int error;
308
309 sb = STATVFSBUF_GET();
310 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
311 if (error == 0) {
312 bsd_to_linux_statfs(sb, <mp);
313 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
314 }
315 STATVFSBUF_PUT(sb);
316
317 return error;
318 }
319
320 int
321 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
322 {
323 /* {
324 syscallarg(int) fd;
325 syscallarg(struct linux_statfs *) sp;
326 } */
327 struct statvfs *sb;
328 struct linux_statfs ltmp;
329 int error;
330
331 sb = STATVFSBUF_GET();
332 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
333 if (error == 0) {
334 bsd_to_linux_statfs(sb, <mp);
335 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
336 }
337 STATVFSBUF_PUT(sb);
338
339 return error;
340 }
341
342 /*
343 * uname(). Just copy the info from the various strings stored in the
344 * kernel, and put it in the Linux utsname structure. That structure
345 * is almost the same as the NetBSD one, only it has fields 65 characters
346 * long, and an extra domainname field.
347 */
348 int
349 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
350 {
351 /* {
352 syscallarg(struct linux_utsname *) up;
353 } */
354 struct linux_utsname luts;
355
356 memset(&luts, 0, sizeof(luts));
357 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
358 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
359 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
360 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
361 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
362 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
363
364 return copyout(&luts, SCARG(uap, up), sizeof(luts));
365 }
366
367 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
368 /* Used indirectly on: arm, i386, m68k */
369
370 /*
371 * New type Linux mmap call.
372 * Only called directly on machines with >= 6 free regs.
373 */
374 int
375 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
376 {
377 /* {
378 syscallarg(unsigned long) addr;
379 syscallarg(size_t) len;
380 syscallarg(int) prot;
381 syscallarg(int) flags;
382 syscallarg(int) fd;
383 syscallarg(linux_off_t) offset;
384 } */
385
386 if (SCARG(uap, offset) & PAGE_MASK)
387 return EINVAL;
388
389 return linux_mmap(l, uap, retval, SCARG(uap, offset));
390 }
391
392 /*
393 * Guts of most architectures' mmap64() implementations. This shares
394 * its list of arguments with linux_sys_mmap().
395 *
396 * The difference in linux_sys_mmap2() is that "offset" is actually
397 * (offset / pagesize), not an absolute byte count. This translation
398 * to pagesize offsets is done inside glibc between the mmap64() call
399 * point, and the actual syscall.
400 */
401 int
402 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
403 {
404 /* {
405 syscallarg(unsigned long) addr;
406 syscallarg(size_t) len;
407 syscallarg(int) prot;
408 syscallarg(int) flags;
409 syscallarg(int) fd;
410 syscallarg(linux_off_t) offset;
411 } */
412
413 return linux_mmap(l, uap, retval,
414 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
415 }
416
417 /*
418 * Massage arguments and call system mmap(2).
419 */
420 static int
421 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
422 {
423 struct sys_mmap_args cma;
424 int error;
425 size_t mmoff=0;
426
427 linux_to_bsd_mmap_args(&cma, uap);
428 SCARG(&cma, pos) = offset;
429
430 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
431 /*
432 * Request for stack-like memory segment. On linux, this
433 * works by mmap()ping (small) segment, which is automatically
434 * extended when page fault happens below the currently
435 * allocated area. We emulate this by allocating (typically
436 * bigger) segment sized at current stack size limit, and
437 * offsetting the requested and returned address accordingly.
438 * Since physical pages are only allocated on-demand, this
439 * is effectively identical.
440 */
441 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
442
443 if (SCARG(&cma, len) < ssl) {
444 /* Compute the address offset */
445 mmoff = round_page(ssl) - SCARG(uap, len);
446
447 if (SCARG(&cma, addr))
448 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
449
450 SCARG(&cma, len) = (size_t) ssl;
451 }
452 }
453
454 error = sys_mmap(l, &cma, retval);
455 if (error)
456 return (error);
457
458 /* Shift the returned address for stack-like segment if necessary */
459 retval[0] += mmoff;
460
461 return (0);
462 }
463
464 static void
465 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
466 {
467 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
468
469 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
470 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
471 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
472 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
473 flags |= cvtto_bsd_mask(fl, LINUX_MAP_LOCKED, MAP_WIRED);
474 /* XXX XAX ERH: Any other flags here? There are more defined... */
475
476 SCARG(cma, addr) = (void *)SCARG(uap, addr);
477 SCARG(cma, len) = SCARG(uap, len);
478 SCARG(cma, prot) = SCARG(uap, prot);
479 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
480 SCARG(cma, prot) |= VM_PROT_READ;
481 SCARG(cma, flags) = flags;
482 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
483 SCARG(cma, PAD) = 0;
484 }
485
486 #define LINUX_MREMAP_MAYMOVE 1
487 #define LINUX_MREMAP_FIXED 2
488
489 int
490 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
491 {
492 /* {
493 syscallarg(void *) old_address;
494 syscallarg(size_t) old_size;
495 syscallarg(size_t) new_size;
496 syscallarg(u_long) flags;
497 } */
498
499 struct proc *p;
500 struct vm_map *map;
501 vaddr_t oldva;
502 vaddr_t newva;
503 size_t oldsize;
504 size_t newsize;
505 int flags;
506 int uvmflags;
507 int error;
508
509 flags = SCARG(uap, flags);
510 oldva = (vaddr_t)SCARG(uap, old_address);
511 oldsize = round_page(SCARG(uap, old_size));
512 newsize = round_page(SCARG(uap, new_size));
513 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
514 error = EINVAL;
515 goto done;
516 }
517 if ((flags & LINUX_MREMAP_FIXED) != 0) {
518 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
519 error = EINVAL;
520 goto done;
521 }
522 #if 0 /* notyet */
523 newva = SCARG(uap, new_address);
524 uvmflags = MAP_FIXED;
525 #else /* notyet */
526 error = EOPNOTSUPP;
527 goto done;
528 #endif /* notyet */
529 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
530 uvmflags = 0;
531 } else {
532 newva = oldva;
533 uvmflags = MAP_FIXED;
534 }
535 p = l->l_proc;
536 map = &p->p_vmspace->vm_map;
537 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
538 uvmflags);
539
540 done:
541 *retval = (error != 0) ? 0 : (register_t)newva;
542 return error;
543 }
544
545 #ifdef USRSTACK
546 int
547 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
548 {
549 /* {
550 syscallarg(const void *) start;
551 syscallarg(unsigned long) len;
552 syscallarg(int) prot;
553 } */
554 struct vm_map_entry *entry;
555 struct vm_map *map;
556 struct proc *p;
557 vaddr_t end, start, len, stacklim;
558 int prot, grows;
559
560 start = (vaddr_t)SCARG(uap, start);
561 len = round_page(SCARG(uap, len));
562 prot = SCARG(uap, prot);
563 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
564 prot &= ~grows;
565 end = start + len;
566
567 if (start & PAGE_MASK)
568 return EINVAL;
569 if (end < start)
570 return EINVAL;
571 if (end == start)
572 return 0;
573
574 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
575 return EINVAL;
576 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
577 return EINVAL;
578
579 p = l->l_proc;
580 map = &p->p_vmspace->vm_map;
581 vm_map_lock(map);
582 # ifdef notdef
583 VM_MAP_RANGE_CHECK(map, start, end);
584 # endif
585 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
586 vm_map_unlock(map);
587 return ENOMEM;
588 }
589
590 /*
591 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
592 */
593
594 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
595 if (grows & LINUX_PROT_GROWSDOWN) {
596 if (USRSTACK - stacklim <= start && start < USRSTACK) {
597 start = USRSTACK - stacklim;
598 } else {
599 start = entry->start;
600 }
601 } else if (grows & LINUX_PROT_GROWSUP) {
602 if (USRSTACK <= end && end < USRSTACK + stacklim) {
603 end = USRSTACK + stacklim;
604 } else {
605 end = entry->end;
606 }
607 }
608 vm_map_unlock(map);
609 return uvm_map_protect_user(l, start, end, prot);
610 }
611 #endif /* USRSTACK */
612
613 /*
614 * This code is partly stolen from src/lib/libc/compat-43/times.c
615 */
616
617 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
618
619 int
620 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
621 {
622 /* {
623 syscallarg(struct times *) tms;
624 } */
625 struct proc *p = l->l_proc;
626 struct timeval t;
627 int error;
628
629 if (SCARG(uap, tms)) {
630 struct linux_tms ltms;
631 struct rusage ru;
632
633 memset(<ms, 0, sizeof(ltms));
634
635 mutex_enter(p->p_lock);
636 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
637 ltms.ltms_utime = CONVTCK(ru.ru_utime);
638 ltms.ltms_stime = CONVTCK(ru.ru_stime);
639 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
640 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
641 mutex_exit(p->p_lock);
642
643 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
644 return error;
645 }
646
647 getmicrouptime(&t);
648
649 retval[0] = ((linux_clock_t)(CONVTCK(t)));
650 return 0;
651 }
652
653 #undef CONVTCK
654
655 #if !defined(__aarch64__)
656 /*
657 * Linux 'readdir' call. This code is mostly taken from the
658 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
659 * an attempt has been made to keep it a little cleaner (failing
660 * miserably, because of the cruft needed if count 1 is passed).
661 *
662 * The d_off field should contain the offset of the next valid entry,
663 * but in Linux it has the offset of the entry itself. We emulate
664 * that bug here.
665 *
666 * Read in BSD-style entries, convert them, and copy them out.
667 *
668 * Note that this doesn't handle union-mounted filesystems.
669 */
670 int
671 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
672 {
673 /* {
674 syscallarg(int) fd;
675 syscallarg(struct linux_dirent *) dent;
676 syscallarg(unsigned int) count;
677 } */
678 struct dirent *bdp;
679 struct vnode *vp;
680 char *inp, *tbuf; /* BSD-format */
681 int len, reclen; /* BSD-format */
682 char *outp; /* Linux-format */
683 int resid, linux_reclen = 0; /* Linux-format */
684 struct file *fp;
685 struct uio auio;
686 struct iovec aiov;
687 struct linux_dirent idb;
688 off_t off; /* true file offset */
689 int buflen, error, eofflag, nbytes, oldcall;
690 struct vattr va;
691 off_t *cookiebuf = NULL, *cookie;
692 int ncookies;
693
694 /* fd_getvnode() will use the descriptor for us */
695 if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0)
696 return (error);
697
698 if ((fp->f_flag & FREAD) == 0) {
699 error = EBADF;
700 goto out1;
701 }
702
703 vp = (struct vnode *)fp->f_data;
704 if (vp->v_type != VDIR) {
705 error = ENOTDIR;
706 goto out1;
707 }
708
709 vn_lock(vp, LK_SHARED | LK_RETRY);
710 error = VOP_GETATTR(vp, &va, l->l_cred);
711 VOP_UNLOCK(vp);
712 if (error)
713 goto out1;
714
715 nbytes = SCARG(uap, count);
716 if (nbytes == 1) { /* emulating old, broken behaviour */
717 nbytes = sizeof (idb);
718 buflen = uimax(va.va_blocksize, nbytes);
719 oldcall = 1;
720 } else {
721 buflen = uimin(MAXBSIZE, nbytes);
722 if (buflen < va.va_blocksize)
723 buflen = va.va_blocksize;
724 oldcall = 0;
725 }
726 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
727
728 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
729 off = fp->f_offset;
730 again:
731 aiov.iov_base = tbuf;
732 aiov.iov_len = buflen;
733 auio.uio_iov = &aiov;
734 auio.uio_iovcnt = 1;
735 auio.uio_rw = UIO_READ;
736 auio.uio_resid = buflen;
737 auio.uio_offset = off;
738 UIO_SETUP_SYSSPACE(&auio);
739 /*
740 * First we read into the malloc'ed buffer, then
741 * we massage it into user space, one record at a time.
742 */
743 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
744 &ncookies);
745 if (error)
746 goto out;
747
748 inp = tbuf;
749 outp = (void *)SCARG(uap, dent);
750 resid = nbytes;
751 if ((len = buflen - auio.uio_resid) == 0)
752 goto eof;
753
754 for (cookie = cookiebuf; len > 0; len -= reclen) {
755 bdp = (struct dirent *)inp;
756 reclen = bdp->d_reclen;
757 if (reclen & 3) {
758 error = EIO;
759 goto out;
760 }
761 if (bdp->d_fileno == 0) {
762 inp += reclen; /* it is a hole; squish it out */
763 if (cookie)
764 off = *cookie++;
765 else
766 off += reclen;
767 continue;
768 }
769 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
770 if (reclen > len || resid < linux_reclen) {
771 /* entry too big for buffer, so just stop */
772 outp++;
773 break;
774 }
775 /*
776 * Massage in place to make a Linux-shaped dirent (otherwise
777 * we have to worry about touching user memory outside of
778 * the copyout() call).
779 */
780 memset(&idb, 0, sizeof(idb));
781 idb.d_ino = bdp->d_fileno;
782 /*
783 * The old readdir() call misuses the offset and reclen fields.
784 */
785 if (oldcall) {
786 idb.d_off = (linux_off_t)linux_reclen;
787 idb.d_reclen = (u_short)bdp->d_namlen;
788 } else {
789 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
790 compat_offseterr(vp, "linux_getdents");
791 error = EINVAL;
792 goto out;
793 }
794 idb.d_off = (linux_off_t)off;
795 idb.d_reclen = (u_short)linux_reclen;
796 /* Linux puts d_type at the end of each record */
797 *((char *)&idb + idb.d_reclen - 1) = bdp->d_type;
798 }
799 memcpy(idb.d_name, bdp->d_name,
800 MIN(sizeof(idb.d_name), bdp->d_namlen + 1));
801 if ((error = copyout((void *)&idb, outp, linux_reclen)))
802 goto out;
803 /* advance past this real entry */
804 inp += reclen;
805 if (cookie)
806 off = *cookie++; /* each entry points to itself */
807 else
808 off += reclen;
809 /* advance output past Linux-shaped entry */
810 outp += linux_reclen;
811 resid -= linux_reclen;
812 if (oldcall)
813 break;
814 }
815
816 /* if we squished out the whole block, try again */
817 if (outp == (void *)SCARG(uap, dent)) {
818 if (cookiebuf)
819 free(cookiebuf, M_TEMP);
820 cookiebuf = NULL;
821 goto again;
822 }
823 fp->f_offset = off; /* update the vnode offset */
824
825 if (oldcall)
826 nbytes = resid + linux_reclen;
827
828 eof:
829 *retval = nbytes - resid;
830 out:
831 VOP_UNLOCK(vp);
832 if (cookiebuf)
833 free(cookiebuf, M_TEMP);
834 free(tbuf, M_TEMP);
835 out1:
836 fd_putfile(SCARG(uap, fd));
837 return error;
838 }
839 #endif
840
841 #if !defined(__aarch64__)
842 /*
843 * Even when just using registers to pass arguments to syscalls you can
844 * have 5 of them on the i386. So this newer version of select() does
845 * this.
846 */
847 int
848 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
849 {
850 /* {
851 syscallarg(int) nfds;
852 syscallarg(fd_set *) readfds;
853 syscallarg(fd_set *) writefds;
854 syscallarg(fd_set *) exceptfds;
855 syscallarg(struct timeval50 *) timeout;
856 } */
857
858 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
859 SCARG(uap, writefds), SCARG(uap, exceptfds),
860 (struct linux_timeval *)SCARG(uap, timeout));
861 }
862
863 /*
864 * Common code for the old and new versions of select(). A couple of
865 * things are important:
866 * 1) return the amount of time left in the 'timeout' parameter
867 * 2) select never returns ERESTART on Linux, always return EINTR
868 */
869 int
870 linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds,
871 fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout)
872 {
873 struct timespec ts0, ts1, uts, *ts = NULL;
874 struct linux_timeval ltv;
875 int error;
876
877 /*
878 * Store current time for computation of the amount of
879 * time left.
880 */
881 if (timeout) {
882 if ((error = copyin(timeout, <v, sizeof(ltv))))
883 return error;
884 uts.tv_sec = ltv.tv_sec;
885 uts.tv_nsec = (long)((unsigned long)ltv.tv_usec * 1000);
886 if (itimespecfix(&uts)) {
887 /*
888 * The timeval was invalid. Convert it to something
889 * valid that will act as it does under Linux.
890 */
891 uts.tv_sec += uts.tv_nsec / 1000000000;
892 uts.tv_nsec %= 1000000000;
893 if (uts.tv_nsec < 0) {
894 uts.tv_sec -= 1;
895 uts.tv_nsec += 1000000000;
896 }
897 if (uts.tv_sec < 0)
898 timespecclear(&uts);
899 }
900 ts = &uts;
901 nanotime(&ts0);
902 }
903
904 error = selcommon(retval, nfds, readfds, writefds, exceptfds, ts, NULL);
905
906 if (error) {
907 /*
908 * See fs/select.c in the Linux kernel. Without this,
909 * Maelstrom doesn't work.
910 */
911 if (error == ERESTART)
912 error = EINTR;
913 return error;
914 }
915
916 if (timeout) {
917 if (*retval) {
918 /*
919 * Compute how much time was left of the timeout,
920 * by subtracting the current time and the time
921 * before we started the call, and subtracting
922 * that result from the user-supplied value.
923 */
924 nanotime(&ts1);
925 timespecsub(&ts1, &ts0, &ts1);
926 timespecsub(&uts, &ts1, &uts);
927 if (uts.tv_sec < 0)
928 timespecclear(&uts);
929 } else
930 timespecclear(&uts);
931 ltv.tv_sec = uts.tv_sec;
932 ltv.tv_usec = uts.tv_nsec / 1000;
933 if ((error = copyout(<v, timeout, sizeof(ltv))))
934 return error;
935 }
936
937 return 0;
938 }
939 #endif
940
941 /*
942 * Derived from FreeBSD's sys/compat/linux/linux_misc.c:linux_pselect6()
943 * which was contributed by Dmitry Chagin
944 * https://svnweb.freebsd.org/base?view=revision&revision=283403
945 */
946 int
947 linux_sys_pselect6(struct lwp *l,
948 const struct linux_sys_pselect6_args *uap, register_t *retval)
949 {
950 /* {
951 syscallarg(int) nfds;
952 syscallarg(fd_set *) readfds;
953 syscallarg(fd_set *) writefds;
954 syscallarg(fd_set *) exceptfds;
955 syscallarg(struct timespec *) timeout;
956 syscallarg(linux_sized_sigset_t *) ss;
957 } */
958 struct timespec uts, ts0, ts1, *tsp;
959 linux_sized_sigset_t lsss;
960 struct linux_timespec lts;
961 linux_sigset_t lss;
962 sigset_t *ssp;
963 sigset_t ss;
964 int error;
965
966 ssp = NULL;
967 if (SCARG(uap, ss) != NULL) {
968 if ((error = copyin(SCARG(uap, ss), &lsss, sizeof(lsss))) != 0)
969 return (error);
970 if (lsss.ss_len != sizeof(lss))
971 return (EINVAL);
972 if (lsss.ss != NULL) {
973 if ((error = copyin(lsss.ss, &lss, sizeof(lss))) != 0)
974 return (error);
975 linux_to_native_sigset(&ss, &lss);
976 ssp = &ss;
977 }
978 }
979
980 if (SCARG(uap, timeout) != NULL) {
981 error = copyin(SCARG(uap, timeout), <s, sizeof(lts));
982 if (error != 0)
983 return (error);
984 linux_to_native_timespec(&uts, <s);
985
986 if (itimespecfix(&uts))
987 return (EINVAL);
988
989 nanotime(&ts0);
990 tsp = &uts;
991 } else {
992 tsp = NULL;
993 }
994
995 error = selcommon(retval, SCARG(uap, nfds), SCARG(uap, readfds),
996 SCARG(uap, writefds), SCARG(uap, exceptfds), tsp, ssp);
997
998 if (error == 0 && tsp != NULL) {
999 if (retval != 0) {
1000 /*
1001 * Compute how much time was left of the timeout,
1002 * by subtracting the current time and the time
1003 * before we started the call, and subtracting
1004 * that result from the user-supplied value.
1005 */
1006 nanotime(&ts1);
1007 timespecsub(&ts1, &ts0, &ts1);
1008 timespecsub(&uts, &ts1, &uts);
1009 if (uts.tv_sec < 0)
1010 timespecclear(&uts);
1011 } else {
1012 timespecclear(&uts);
1013 }
1014
1015 native_to_linux_timespec(<s, &uts);
1016 error = copyout(<s, SCARG(uap, timeout), sizeof(lts));
1017 }
1018
1019 return (error);
1020 }
1021
1022 int
1023 linux_sys_ppoll(struct lwp *l,
1024 const struct linux_sys_ppoll_args *uap, register_t *retval)
1025 {
1026 /* {
1027 syscallarg(struct pollfd *) fds;
1028 syscallarg(u_int) nfds;
1029 syscallarg(struct linux_timespec *) timeout;
1030 syscallarg(linux_sigset_t *) sigset;
1031 } */
1032 struct linux_timespec lts0, *lts;
1033 struct timespec ts0, *ts = NULL;
1034 linux_sigset_t lsigmask0, *lsigmask;
1035 sigset_t sigmask0, *sigmask = NULL;
1036 int error;
1037
1038 lts = SCARG(uap, timeout);
1039 if (lts) {
1040 if ((error = copyin(lts, <s0, sizeof(lts0))) != 0)
1041 return error;
1042 linux_to_native_timespec(&ts0, <s0);
1043 ts = &ts0;
1044 }
1045
1046 lsigmask = SCARG(uap, sigset);
1047 if (lsigmask) {
1048 if ((error = copyin(lsigmask, &lsigmask0, sizeof(lsigmask0))))
1049 return error;
1050 linux_to_native_sigset(&sigmask0, &lsigmask0);
1051 sigmask = &sigmask0;
1052 }
1053
1054 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds),
1055 ts, sigmask);
1056 }
1057
1058 /*
1059 * Set the 'personality' (emulation mode) for the current process. Only
1060 * accept the Linux personality here (0). This call is needed because
1061 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1062 * ELF binaries run in Linux mode, not SVR4 mode.
1063 */
1064 int
1065 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
1066 {
1067 /* {
1068 syscallarg(unsigned long) per;
1069 } */
1070 struct linux_emuldata *led;
1071 int per;
1072
1073 per = SCARG(uap, per);
1074 led = l->l_emuldata;
1075 if (per == LINUX_PER_QUERY) {
1076 retval[0] = led->led_personality;
1077 return 0;
1078 }
1079
1080 switch (per & LINUX_PER_MASK) {
1081 case LINUX_PER_LINUX:
1082 case LINUX_PER_LINUX32:
1083 led->led_personality = per;
1084 break;
1085
1086 default:
1087 return EINVAL;
1088 }
1089
1090 retval[0] = per;
1091 return 0;
1092 }
1093
1094 /*
1095 * We have nonexistent fsuid equal to uid.
1096 * If modification is requested, refuse.
1097 */
1098 int
1099 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
1100 {
1101 /* {
1102 syscallarg(uid_t) uid;
1103 } */
1104 uid_t uid;
1105
1106 uid = SCARG(uap, uid);
1107 if (kauth_cred_getuid(l->l_cred) != uid)
1108 return sys_nosys(l, uap, retval);
1109
1110 *retval = uid;
1111 return 0;
1112 }
1113
1114 int
1115 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
1116 {
1117 /* {
1118 syscallarg(gid_t) gid;
1119 } */
1120 gid_t gid;
1121
1122 gid = SCARG(uap, gid);
1123 if (kauth_cred_getgid(l->l_cred) != gid)
1124 return sys_nosys(l, uap, retval);
1125
1126 *retval = gid;
1127 return 0;
1128 }
1129
1130 int
1131 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
1132 {
1133 /* {
1134 syscallarg(uid_t) ruid;
1135 syscallarg(uid_t) euid;
1136 syscallarg(uid_t) suid;
1137 } */
1138
1139 /*
1140 * Note: These checks are a little different than the NetBSD
1141 * setreuid(2) call performs. This precisely follows the
1142 * behavior of the Linux kernel.
1143 */
1144
1145 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1146 SCARG(uap, suid),
1147 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1148 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1149 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1150 }
1151
1152 int
1153 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
1154 {
1155 /* {
1156 syscallarg(uid_t *) ruid;
1157 syscallarg(uid_t *) euid;
1158 syscallarg(uid_t *) suid;
1159 } */
1160 kauth_cred_t pc = l->l_cred;
1161 int error;
1162 uid_t uid;
1163
1164 /*
1165 * Linux copies these values out to userspace like so:
1166 *
1167 * 1. Copy out ruid.
1168 * 2. If that succeeds, copy out euid.
1169 * 3. If both of those succeed, copy out suid.
1170 */
1171 uid = kauth_cred_getuid(pc);
1172 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1173 return (error);
1174
1175 uid = kauth_cred_geteuid(pc);
1176 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1177 return (error);
1178
1179 uid = kauth_cred_getsvuid(pc);
1180
1181 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1182 }
1183
1184 int
1185 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
1186 {
1187 /* {
1188 i386, m68k, powerpc: T=int
1189 alpha, amd64: T=long
1190 syscallarg(T) request;
1191 syscallarg(T) pid;
1192 syscallarg(T) addr;
1193 syscallarg(T) data;
1194 } */
1195 const int *ptr;
1196 int request;
1197 int error;
1198
1199 ptr = linux_ptrace_request_map;
1200 request = SCARG(uap, request);
1201 while (*ptr != -1)
1202 if (*ptr++ == request) {
1203 struct sys_ptrace_args pta;
1204
1205 SCARG(&pta, req) = *ptr;
1206 SCARG(&pta, pid) = SCARG(uap, pid);
1207 SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1208 SCARG(&pta, data) = SCARG(uap, data);
1209
1210 /*
1211 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1212 * to continue where the process left off previously.
1213 * The same thing is achieved by addr == (void *) 1
1214 * on NetBSD, so rewrite 'addr' appropriately.
1215 */
1216 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1217 SCARG(&pta, addr) = (void *) 1;
1218
1219 error = sysent[SYS_ptrace].sy_call(l, &pta, retval);
1220 if (error)
1221 return error;
1222 switch (request) {
1223 case LINUX_PTRACE_PEEKTEXT:
1224 case LINUX_PTRACE_PEEKDATA:
1225 error = copyout (retval,
1226 (void *)SCARG(uap, data),
1227 sizeof *retval);
1228 *retval = SCARG(uap, data);
1229 break;
1230 default:
1231 break;
1232 }
1233 return error;
1234 }
1235 else
1236 ptr++;
1237
1238 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1239 }
1240
1241 int
1242 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
1243 {
1244 /* {
1245 syscallarg(int) magic1;
1246 syscallarg(int) magic2;
1247 syscallarg(int) cmd;
1248 syscallarg(void *) arg;
1249 } */
1250 struct sys_reboot_args /* {
1251 syscallarg(int) opt;
1252 syscallarg(char *) bootstr;
1253 } */ sra;
1254 int error;
1255
1256 if ((error = kauth_authorize_system(l->l_cred,
1257 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1258 return(error);
1259
1260 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1261 return(EINVAL);
1262 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1263 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1264 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1265 return(EINVAL);
1266
1267 switch ((unsigned long)SCARG(uap, cmd)) {
1268 case LINUX_REBOOT_CMD_RESTART:
1269 SCARG(&sra, opt) = RB_AUTOBOOT;
1270 break;
1271 case LINUX_REBOOT_CMD_HALT:
1272 SCARG(&sra, opt) = RB_HALT;
1273 break;
1274 case LINUX_REBOOT_CMD_POWER_OFF:
1275 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1276 break;
1277 case LINUX_REBOOT_CMD_RESTART2:
1278 /* Reboot with an argument. */
1279 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1280 SCARG(&sra, bootstr) = SCARG(uap, arg);
1281 break;
1282 case LINUX_REBOOT_CMD_CAD_ON:
1283 return(EINVAL); /* We don't implement ctrl-alt-delete */
1284 case LINUX_REBOOT_CMD_CAD_OFF:
1285 return(0);
1286 default:
1287 return(EINVAL);
1288 }
1289
1290 return(sys_reboot(l, &sra, retval));
1291 }
1292
1293 /*
1294 * Copy of compat_12_sys_swapon().
1295 */
1296 int
1297 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
1298 {
1299 /* {
1300 syscallarg(const char *) name;
1301 } */
1302 struct sys_swapctl_args ua;
1303
1304 SCARG(&ua, cmd) = SWAP_ON;
1305 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1306 SCARG(&ua, misc) = 0; /* priority */
1307 return (sys_swapctl(l, &ua, retval));
1308 }
1309
1310 /*
1311 * Stop swapping to the file or block device specified by path.
1312 */
1313 int
1314 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
1315 {
1316 /* {
1317 syscallarg(const char *) path;
1318 } */
1319 struct sys_swapctl_args ua;
1320
1321 SCARG(&ua, cmd) = SWAP_OFF;
1322 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1323 return (sys_swapctl(l, &ua, retval));
1324 }
1325
1326 /*
1327 * Copy of compat_09_sys_setdomainname()
1328 */
1329 /* ARGSUSED */
1330 int
1331 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
1332 {
1333 /* {
1334 syscallarg(char *) domainname;
1335 syscallarg(int) len;
1336 } */
1337 int name[2];
1338
1339 name[0] = CTL_KERN;
1340 name[1] = KERN_DOMAINNAME;
1341 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1342 SCARG(uap, len), l));
1343 }
1344
1345 /*
1346 * sysinfo()
1347 */
1348 /* ARGSUSED */
1349 int
1350 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
1351 {
1352 /* {
1353 syscallarg(struct linux_sysinfo *) arg;
1354 } */
1355 struct linux_sysinfo si;
1356 struct loadavg *la;
1357 int64_t filepg;
1358
1359 memset(&si, 0, sizeof(si));
1360 si.uptime = time_uptime;
1361 la = &averunnable;
1362 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1363 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1364 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1365 si.totalram = ctob((u_long)physmem);
1366 /* uvm_availmem() may sync the counters. */
1367 si.freeram = (u_long)uvm_availmem(true) * uvmexp.pagesize;
1368 filepg = cpu_count_get(CPU_COUNT_FILECLEAN) +
1369 cpu_count_get(CPU_COUNT_FILEDIRTY) +
1370 cpu_count_get(CPU_COUNT_FILEUNKNOWN) -
1371 cpu_count_get(CPU_COUNT_EXECPAGES);
1372 si.sharedram = 0; /* XXX */
1373 si.bufferram = (u_long)(filepg * uvmexp.pagesize);
1374 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1375 si.freeswap =
1376 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1377 si.procs = atomic_load_relaxed(&nprocs);
1378
1379 /* The following are only present in newer Linux kernels. */
1380 si.totalbig = 0;
1381 si.freebig = 0;
1382 si.mem_unit = 1;
1383
1384 return (copyout(&si, SCARG(uap, arg), sizeof si));
1385 }
1386
1387 int
1388 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
1389 {
1390 /* {
1391 syscallarg(int) which;
1392 # ifdef LINUX_LARGEFILE64
1393 syscallarg(struct rlimit *) rlp;
1394 # else
1395 syscallarg(struct orlimit *) rlp;
1396 # endif
1397 } */
1398 # ifdef LINUX_LARGEFILE64
1399 struct rlimit orl;
1400 # else
1401 struct orlimit orl;
1402 # endif
1403 int which;
1404
1405 which = linux_to_bsd_limit(SCARG(uap, which));
1406 if (which < 0)
1407 return -which;
1408
1409 memset(&orl, 0, sizeof(orl));
1410 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1411
1412 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1413 }
1414
1415 int
1416 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
1417 {
1418 /* {
1419 syscallarg(int) which;
1420 # ifdef LINUX_LARGEFILE64
1421 syscallarg(struct rlimit *) rlp;
1422 # else
1423 syscallarg(struct orlimit *) rlp;
1424 # endif
1425 } */
1426 struct rlimit rl;
1427 # ifdef LINUX_LARGEFILE64
1428 struct rlimit orl;
1429 # else
1430 struct orlimit orl;
1431 # endif
1432 int error;
1433 int which;
1434
1435 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1436 return error;
1437
1438 which = linux_to_bsd_limit(SCARG(uap, which));
1439 if (which < 0)
1440 return -which;
1441
1442 linux_to_bsd_rlimit(&rl, &orl);
1443 return dosetrlimit(l, l->l_proc, which, &rl);
1444 }
1445
1446 # if !defined(__aarch64__) && !defined(__mips__) && !defined(__amd64__)
1447 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1448 int
1449 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
1450 {
1451 return linux_sys_getrlimit(l, (const void *)uap, retval);
1452 }
1453 # endif
1454
1455 /*
1456 * This gets called for unsupported syscalls. The difference to sys_nosys()
1457 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1458 * This is the way Linux does it and glibc depends on this behaviour.
1459 */
1460 int
1461 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
1462 {
1463 return (ENOSYS);
1464 }
1465
1466 int
1467 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
1468 {
1469 /* {
1470 syscallarg(int) which;
1471 syscallarg(int) who;
1472 } */
1473 struct sys_getpriority_args bsa;
1474 int error;
1475
1476 SCARG(&bsa, which) = SCARG(uap, which);
1477 SCARG(&bsa, who) = SCARG(uap, who);
1478
1479 if ((error = sys_getpriority(l, &bsa, retval)))
1480 return error;
1481
1482 *retval = NZERO - *retval;
1483
1484 return 0;
1485 }
1486
1487 int
1488 linux_do_sys_utimensat(struct lwp *l, int fd, const char *path, struct timespec *tsp, int flags, register_t *retval)
1489 {
1490 int follow, error;
1491
1492 follow = (flags & LINUX_AT_SYMLINK_NOFOLLOW) ? NOFOLLOW : FOLLOW;
1493
1494 if (path == NULL && fd != AT_FDCWD) {
1495 file_t *fp;
1496
1497 /* fd_getvnode() will use the descriptor for us */
1498 if ((error = fd_getvnode(fd, &fp)) != 0)
1499 return error;
1500 error = do_sys_utimensat(l, AT_FDCWD, fp->f_data, NULL, 0,
1501 tsp, UIO_SYSSPACE);
1502 fd_putfile(fd);
1503 return error;
1504 }
1505
1506 return do_sys_utimensat(l, fd, NULL, path, follow, tsp, UIO_SYSSPACE);
1507 }
1508
1509 int
1510 linux_sys_utimensat(struct lwp *l, const struct linux_sys_utimensat_args *uap,
1511 register_t *retval)
1512 {
1513 /* {
1514 syscallarg(int) fd;
1515 syscallarg(const char *) path;
1516 syscallarg(const struct linux_timespec *) times;
1517 syscallarg(int) flag;
1518 } */
1519 int error;
1520 struct linux_timespec lts[2];
1521 struct timespec *tsp = NULL, ts[2];
1522
1523 if (SCARG(uap, times)) {
1524 error = copyin(SCARG(uap, times), <s, sizeof(lts));
1525 if (error != 0)
1526 return error;
1527 linux_to_native_timespec(&ts[0], <s[0]);
1528 linux_to_native_timespec(&ts[1], <s[1]);
1529 tsp = ts;
1530 }
1531
1532 return linux_do_sys_utimensat(l, SCARG(uap, fd), SCARG(uap, path),
1533 tsp, SCARG(uap, flag), retval);
1534 }
1535
1536 int
1537 linux_sys_futex(struct lwp *l, const struct linux_sys_futex_args *uap,
1538 register_t *retval)
1539 {
1540 /* {
1541 syscallarg(int *) uaddr;
1542 syscallarg(int) op;
1543 syscallarg(int) val;
1544 syscallarg(const struct linux_timespec *) timeout;
1545 syscallarg(int *) uaddr2;
1546 syscallarg(int) val3;
1547 } */
1548 struct linux_timespec lts;
1549 struct timespec ts, *tsp = NULL;
1550 int val2 = 0;
1551 int error;
1552
1553 /*
1554 * Linux overlays the "timeout" field and the "val2" field.
1555 * "timeout" is only valid for FUTEX_WAIT and FUTEX_WAIT_BITSET
1556 * on Linux.
1557 */
1558 const int op = (SCARG(uap, op) & FUTEX_CMD_MASK);
1559 if ((op == FUTEX_WAIT || op == FUTEX_WAIT_BITSET) &&
1560 SCARG(uap, timeout) != NULL) {
1561 if ((error = copyin(SCARG(uap, timeout),
1562 <s, sizeof(lts))) != 0) {
1563 return error;
1564 }
1565 linux_to_native_timespec(&ts, <s);
1566 tsp = &ts;
1567 } else {
1568 val2 = (int)(uintptr_t)SCARG(uap, timeout);
1569 }
1570
1571 return linux_do_futex(SCARG(uap, uaddr), SCARG(uap, op),
1572 SCARG(uap, val), tsp, SCARG(uap, uaddr2), val2,
1573 SCARG(uap, val3), retval);
1574 }
1575
1576 int
1577 linux_do_futex(int *uaddr, int op, int val, struct timespec *timeout,
1578 int *uaddr2, int val2, int val3, register_t *retval)
1579 {
1580 /*
1581 * Always clear FUTEX_PRIVATE_FLAG for Linux processes.
1582 * NetBSD-native futexes exist in different namespace
1583 * depending on FUTEX_PRIVATE_FLAG. This appears not
1584 * to be the case in Linux, and some futex users will
1585 * mix private and non-private ops on the same futex
1586 * object.
1587 */
1588 return do_futex(uaddr, op & ~FUTEX_PRIVATE_FLAG,
1589 val, timeout, uaddr2, val2, val3, retval);
1590 }
1591
1592 #define LINUX_EFD_SEMAPHORE 0x0001
1593 #define LINUX_EFD_CLOEXEC LINUX_O_CLOEXEC
1594 #define LINUX_EFD_NONBLOCK LINUX_O_NONBLOCK
1595
1596 static int
1597 linux_do_eventfd2(struct lwp *l, unsigned int initval, int flags,
1598 register_t *retval)
1599 {
1600 int nflags = 0;
1601
1602 if (flags & ~(LINUX_EFD_SEMAPHORE | LINUX_EFD_CLOEXEC |
1603 LINUX_EFD_NONBLOCK)) {
1604 return EINVAL;
1605 }
1606 if (flags & LINUX_EFD_SEMAPHORE) {
1607 nflags |= EFD_SEMAPHORE;
1608 }
1609 if (flags & LINUX_EFD_CLOEXEC) {
1610 nflags |= EFD_CLOEXEC;
1611 }
1612 if (flags & LINUX_EFD_NONBLOCK) {
1613 nflags |= EFD_NONBLOCK;
1614 }
1615
1616 return do_eventfd(l, initval, nflags, retval);
1617 }
1618
1619 #if !defined(__aarch64__)
1620 int
1621 linux_sys_eventfd(struct lwp *l, const struct linux_sys_eventfd_args *uap,
1622 register_t *retval)
1623 {
1624 /* {
1625 syscallarg(unsigned int) initval;
1626 } */
1627
1628 return linux_do_eventfd2(l, SCARG(uap, initval), 0, retval);
1629 }
1630 #endif
1631
1632 int
1633 linux_sys_eventfd2(struct lwp *l, const struct linux_sys_eventfd2_args *uap,
1634 register_t *retval)
1635 {
1636 /* {
1637 syscallarg(unsigned int) initval;
1638 syscallarg(int) flags;
1639 } */
1640
1641 return linux_do_eventfd2(l, SCARG(uap, initval), SCARG(uap, flags),
1642 retval);
1643 }
1644