linux_sched.c revision 1.65.12.1 1 /* $NetBSD: linux_sched.c,v 1.65.12.1 2014/08/20 00:03:32 tls Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center; by Matthias Scheler.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Linux compatibility module. Try to deal with scheduler related syscalls.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: linux_sched.c,v 1.65.12.1 2014/08/20 00:03:32 tls Exp $");
39
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/proc.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/malloc.h>
46 #include <sys/syscallargs.h>
47 #include <sys/wait.h>
48 #include <sys/kauth.h>
49 #include <sys/ptrace.h>
50 #include <sys/atomic.h>
51
52 #include <sys/cpu.h>
53
54 #include <compat/linux/common/linux_types.h>
55 #include <compat/linux/common/linux_signal.h>
56 #include <compat/linux/common/linux_emuldata.h>
57 #include <compat/linux/common/linux_ipc.h>
58 #include <compat/linux/common/linux_sem.h>
59 #include <compat/linux/common/linux_exec.h>
60 #include <compat/linux/common/linux_machdep.h>
61
62 #include <compat/linux/linux_syscallargs.h>
63
64 #include <compat/linux/common/linux_sched.h>
65
66 static int linux_clone_nptl(struct lwp *, const struct linux_sys_clone_args *,
67 register_t *);
68
69 #if DEBUG_LINUX
70 #define DPRINTF(x) uprintf x
71 #else
72 #define DPRINTF(x)
73 #endif
74
75 static void
76 linux_child_return(void *arg)
77 {
78 struct lwp *l = arg;
79 struct proc *p = l->l_proc;
80 struct linux_emuldata *led = l->l_emuldata;
81 void *ctp = led->led_child_tidptr;
82 int error;
83
84 if (ctp) {
85 if ((error = copyout(&p->p_pid, ctp, sizeof(p->p_pid))) != 0)
86 printf("%s: LINUX_CLONE_CHILD_SETTID "
87 "failed (child_tidptr = %p, tid = %d error =%d)\n",
88 __func__, ctp, p->p_pid, error);
89 }
90 child_return(arg);
91 }
92
93 int
94 linux_sys_clone(struct lwp *l, const struct linux_sys_clone_args *uap,
95 register_t *retval)
96 {
97 /* {
98 syscallarg(int) flags;
99 syscallarg(void *) stack;
100 syscallarg(void *) parent_tidptr;
101 syscallarg(void *) tls;
102 syscallarg(void *) child_tidptr;
103 } */
104 struct proc *p;
105 struct linux_emuldata *led;
106 int flags, sig, error;
107
108 /*
109 * We don't support the Linux CLONE_PID or CLONE_PTRACE flags.
110 */
111 if (SCARG(uap, flags) & (LINUX_CLONE_PID|LINUX_CLONE_PTRACE))
112 return EINVAL;
113
114 /*
115 * Thread group implies shared signals. Shared signals
116 * imply shared VM. This matches what Linux kernel does.
117 */
118 if (SCARG(uap, flags) & LINUX_CLONE_THREAD
119 && (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) == 0)
120 return EINVAL;
121 if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND
122 && (SCARG(uap, flags) & LINUX_CLONE_VM) == 0)
123 return EINVAL;
124
125 /*
126 * The thread group flavor is implemented totally differently.
127 */
128 if (SCARG(uap, flags) & LINUX_CLONE_THREAD)
129 return linux_clone_nptl(l, uap, retval);
130
131 flags = 0;
132 if (SCARG(uap, flags) & LINUX_CLONE_VM)
133 flags |= FORK_SHAREVM;
134 if (SCARG(uap, flags) & LINUX_CLONE_FS)
135 flags |= FORK_SHARECWD;
136 if (SCARG(uap, flags) & LINUX_CLONE_FILES)
137 flags |= FORK_SHAREFILES;
138 if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND)
139 flags |= FORK_SHARESIGS;
140 if (SCARG(uap, flags) & LINUX_CLONE_VFORK)
141 flags |= FORK_PPWAIT;
142
143 sig = SCARG(uap, flags) & LINUX_CLONE_CSIGNAL;
144 if (sig < 0 || sig >= LINUX__NSIG)
145 return EINVAL;
146 sig = linux_to_native_signo[sig];
147
148 if (SCARG(uap, flags) & LINUX_CLONE_CHILD_SETTID) {
149 led = l->l_emuldata;
150 led->led_child_tidptr = SCARG(uap, child_tidptr);
151 }
152
153 /*
154 * Note that Linux does not provide a portable way of specifying
155 * the stack area; the caller must know if the stack grows up
156 * or down. So, we pass a stack size of 0, so that the code
157 * that makes this adjustment is a noop.
158 */
159 if ((error = fork1(l, flags, sig, SCARG(uap, stack), 0,
160 linux_child_return, NULL, retval, &p)) != 0) {
161 DPRINTF(("%s: fork1: error %d\n", __func__, error));
162 return error;
163 }
164
165 return 0;
166 }
167
168 static int
169 linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
170 {
171 /* {
172 syscallarg(int) flags;
173 syscallarg(void *) stack;
174 syscallarg(void *) parent_tidptr;
175 syscallarg(void *) tls;
176 syscallarg(void *) child_tidptr;
177 } */
178 struct proc *p;
179 struct lwp *l2;
180 struct linux_emuldata *led;
181 void *parent_tidptr, *tls, *child_tidptr;
182 struct schedstate_percpu *spc;
183 vaddr_t uaddr;
184 lwpid_t lid;
185 int flags, tnprocs, error;
186
187 p = l->l_proc;
188 flags = SCARG(uap, flags);
189 parent_tidptr = SCARG(uap, parent_tidptr);
190 tls = SCARG(uap, tls);
191 child_tidptr = SCARG(uap, child_tidptr);
192
193 tnprocs = atomic_inc_uint_nv(&nprocs);
194 if (__predict_false(tnprocs >= maxproc) ||
195 kauth_authorize_process(l->l_cred, KAUTH_PROCESS_FORK, p,
196 KAUTH_ARG(tnprocs), NULL, NULL) != 0) {
197 atomic_dec_uint(&nprocs);
198 return EAGAIN;
199 }
200
201 uaddr = uvm_uarea_alloc();
202 if (__predict_false(uaddr == 0)) {
203 atomic_dec_uint(&nprocs);
204 return ENOMEM;
205 }
206
207 error = lwp_create(l, p, uaddr, LWP_DETACHED | LWP_PIDLID,
208 SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class);
209 if (__predict_false(error)) {
210 DPRINTF(("%s: lwp_create error=%d\n", __func__, error));
211 atomic_dec_uint(&nprocs);
212 uvm_uarea_free(uaddr);
213 return error;
214 }
215 lid = l2->l_lid;
216
217 /* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */
218 if (flags & LINUX_CLONE_CHILD_CLEARTID) {
219 led = l2->l_emuldata;
220 led->led_clear_tid = child_tidptr;
221 }
222
223 /* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */
224 if (flags & LINUX_CLONE_PARENT_SETTID) {
225 if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0)
226 printf("%s: LINUX_CLONE_PARENT_SETTID "
227 "failed (parent_tidptr = %p tid = %d error=%d)\n",
228 __func__, parent_tidptr, lid, error);
229 }
230
231 /* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory */
232 if (flags & LINUX_CLONE_CHILD_SETTID) {
233 if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0)
234 printf("%s: LINUX_CLONE_CHILD_SETTID "
235 "failed (child_tidptr = %p, tid = %d error=%d)\n",
236 __func__, child_tidptr, lid, error);
237 }
238
239 if (flags & LINUX_CLONE_SETTLS) {
240 error = LINUX_LWP_SETPRIVATE(l2, tls);
241 if (error) {
242 DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n", __func__,
243 error));
244 lwp_exit(l2);
245 return error;
246 }
247 }
248
249 /*
250 * Set the new LWP running, unless the process is stopping,
251 * then the LWP is created stopped.
252 */
253 mutex_enter(p->p_lock);
254 lwp_lock(l2);
255 spc = &l2->l_cpu->ci_schedstate;
256 if ((l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
257 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
258 KASSERT(l2->l_wchan == NULL);
259 l2->l_stat = LSSTOP;
260 p->p_nrlwps--;
261 lwp_unlock_to(l2, spc->spc_lwplock);
262 } else {
263 KASSERT(lwp_locked(l2, spc->spc_mutex));
264 l2->l_stat = LSRUN;
265 sched_enqueue(l2, false);
266 lwp_unlock(l2);
267 }
268 } else {
269 l2->l_stat = LSSUSPENDED;
270 p->p_nrlwps--;
271 lwp_unlock_to(l2, spc->spc_lwplock);
272 }
273 mutex_exit(p->p_lock);
274
275 retval[0] = lid;
276 retval[1] = 0;
277 return 0;
278 }
279
280 /*
281 * linux realtime priority
282 *
283 * - SCHED_RR and SCHED_FIFO tasks have priorities [1,99].
284 *
285 * - SCHED_OTHER tasks don't have realtime priorities.
286 * in particular, sched_param::sched_priority is always 0.
287 */
288
289 #define LINUX_SCHED_RTPRIO_MIN 1
290 #define LINUX_SCHED_RTPRIO_MAX 99
291
292 static int
293 sched_linux2native(int linux_policy, struct linux_sched_param *linux_params,
294 int *native_policy, struct sched_param *native_params)
295 {
296
297 switch (linux_policy) {
298 case LINUX_SCHED_OTHER:
299 if (native_policy != NULL) {
300 *native_policy = SCHED_OTHER;
301 }
302 break;
303
304 case LINUX_SCHED_FIFO:
305 if (native_policy != NULL) {
306 *native_policy = SCHED_FIFO;
307 }
308 break;
309
310 case LINUX_SCHED_RR:
311 if (native_policy != NULL) {
312 *native_policy = SCHED_RR;
313 }
314 break;
315
316 default:
317 return EINVAL;
318 }
319
320 if (linux_params != NULL) {
321 int prio = linux_params->sched_priority;
322
323 KASSERT(native_params != NULL);
324
325 if (linux_policy == LINUX_SCHED_OTHER) {
326 if (prio != 0) {
327 return EINVAL;
328 }
329 native_params->sched_priority = PRI_NONE; /* XXX */
330 } else {
331 if (prio < LINUX_SCHED_RTPRIO_MIN ||
332 prio > LINUX_SCHED_RTPRIO_MAX) {
333 return EINVAL;
334 }
335 native_params->sched_priority =
336 (prio - LINUX_SCHED_RTPRIO_MIN)
337 * (SCHED_PRI_MAX - SCHED_PRI_MIN)
338 / (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
339 + SCHED_PRI_MIN;
340 }
341 }
342
343 return 0;
344 }
345
346 static int
347 sched_native2linux(int native_policy, struct sched_param *native_params,
348 int *linux_policy, struct linux_sched_param *linux_params)
349 {
350
351 switch (native_policy) {
352 case SCHED_OTHER:
353 if (linux_policy != NULL) {
354 *linux_policy = LINUX_SCHED_OTHER;
355 }
356 break;
357
358 case SCHED_FIFO:
359 if (linux_policy != NULL) {
360 *linux_policy = LINUX_SCHED_FIFO;
361 }
362 break;
363
364 case SCHED_RR:
365 if (linux_policy != NULL) {
366 *linux_policy = LINUX_SCHED_RR;
367 }
368 break;
369
370 default:
371 panic("%s: unknown policy %d\n", __func__, native_policy);
372 }
373
374 if (native_params != NULL) {
375 int prio = native_params->sched_priority;
376
377 KASSERT(prio >= SCHED_PRI_MIN);
378 KASSERT(prio <= SCHED_PRI_MAX);
379 KASSERT(linux_params != NULL);
380
381 DPRINTF(("%s: native: policy %d, priority %d\n",
382 __func__, native_policy, prio));
383
384 if (native_policy == SCHED_OTHER) {
385 linux_params->sched_priority = 0;
386 } else {
387 linux_params->sched_priority =
388 (prio - SCHED_PRI_MIN)
389 * (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
390 / (SCHED_PRI_MAX - SCHED_PRI_MIN)
391 + LINUX_SCHED_RTPRIO_MIN;
392 }
393 DPRINTF(("%s: linux: policy %d, priority %d\n",
394 __func__, -1, linux_params->sched_priority));
395 }
396
397 return 0;
398 }
399
400 int
401 linux_sys_sched_setparam(struct lwp *l, const struct linux_sys_sched_setparam_args *uap, register_t *retval)
402 {
403 /* {
404 syscallarg(linux_pid_t) pid;
405 syscallarg(const struct linux_sched_param *) sp;
406 } */
407 int error, policy;
408 struct linux_sched_param lp;
409 struct sched_param sp;
410
411 if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
412 error = EINVAL;
413 goto out;
414 }
415
416 error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
417 if (error)
418 goto out;
419
420 /* We need the current policy in Linux terms. */
421 error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
422 if (error)
423 goto out;
424 error = sched_native2linux(policy, NULL, &policy, NULL);
425 if (error)
426 goto out;
427
428 error = sched_linux2native(policy, &lp, &policy, &sp);
429 if (error)
430 goto out;
431
432 error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
433 if (error)
434 goto out;
435
436 out:
437 return error;
438 }
439
440 int
441 linux_sys_sched_getparam(struct lwp *l, const struct linux_sys_sched_getparam_args *uap, register_t *retval)
442 {
443 /* {
444 syscallarg(linux_pid_t) pid;
445 syscallarg(struct linux_sched_param *) sp;
446 } */
447 struct linux_sched_param lp;
448 struct sched_param sp;
449 int error, policy;
450
451 if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
452 error = EINVAL;
453 goto out;
454 }
455
456 error = do_sched_getparam(SCARG(uap, pid), 0, &policy, &sp);
457 if (error)
458 goto out;
459 DPRINTF(("%s: native: policy %d, priority %d\n",
460 __func__, policy, sp.sched_priority));
461
462 error = sched_native2linux(policy, &sp, NULL, &lp);
463 if (error)
464 goto out;
465 DPRINTF(("%s: linux: policy %d, priority %d\n",
466 __func__, policy, lp.sched_priority));
467
468 error = copyout(&lp, SCARG(uap, sp), sizeof(lp));
469 if (error)
470 goto out;
471
472 out:
473 return error;
474 }
475
476 int
477 linux_sys_sched_setscheduler(struct lwp *l, const struct linux_sys_sched_setscheduler_args *uap, register_t *retval)
478 {
479 /* {
480 syscallarg(linux_pid_t) pid;
481 syscallarg(int) policy;
482 syscallarg(cont struct linux_sched_param *) sp;
483 } */
484 int error, policy;
485 struct linux_sched_param lp;
486 struct sched_param sp;
487
488 if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
489 error = EINVAL;
490 goto out;
491 }
492
493 error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
494 if (error)
495 goto out;
496 DPRINTF(("%s: linux: policy %d, priority %d\n",
497 __func__, SCARG(uap, policy), lp.sched_priority));
498
499 error = sched_linux2native(SCARG(uap, policy), &lp, &policy, &sp);
500 if (error)
501 goto out;
502 DPRINTF(("%s: native: policy %d, priority %d\n",
503 __func__, policy, sp.sched_priority));
504
505 error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
506 if (error)
507 goto out;
508
509 out:
510 return error;
511 }
512
513 int
514 linux_sys_sched_getscheduler(struct lwp *l, const struct linux_sys_sched_getscheduler_args *uap, register_t *retval)
515 {
516 /* {
517 syscallarg(linux_pid_t) pid;
518 } */
519 int error, policy;
520
521 *retval = -1;
522
523 error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
524 if (error)
525 goto out;
526
527 error = sched_native2linux(policy, NULL, &policy, NULL);
528 if (error)
529 goto out;
530
531 *retval = policy;
532
533 out:
534 return error;
535 }
536
537 int
538 linux_sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
539 {
540
541 yield();
542 return 0;
543 }
544
545 int
546 linux_sys_sched_get_priority_max(struct lwp *l, const struct linux_sys_sched_get_priority_max_args *uap, register_t *retval)
547 {
548 /* {
549 syscallarg(int) policy;
550 } */
551
552 switch (SCARG(uap, policy)) {
553 case LINUX_SCHED_OTHER:
554 *retval = 0;
555 break;
556 case LINUX_SCHED_FIFO:
557 case LINUX_SCHED_RR:
558 *retval = LINUX_SCHED_RTPRIO_MAX;
559 break;
560 default:
561 return EINVAL;
562 }
563
564 return 0;
565 }
566
567 int
568 linux_sys_sched_get_priority_min(struct lwp *l, const struct linux_sys_sched_get_priority_min_args *uap, register_t *retval)
569 {
570 /* {
571 syscallarg(int) policy;
572 } */
573
574 switch (SCARG(uap, policy)) {
575 case LINUX_SCHED_OTHER:
576 *retval = 0;
577 break;
578 case LINUX_SCHED_FIFO:
579 case LINUX_SCHED_RR:
580 *retval = LINUX_SCHED_RTPRIO_MIN;
581 break;
582 default:
583 return EINVAL;
584 }
585
586 return 0;
587 }
588
589 int
590 linux_sys_exit(struct lwp *l, const struct linux_sys_exit_args *uap, register_t *retval)
591 {
592
593 lwp_exit(l);
594 return 0;
595 }
596
597 #ifndef __m68k__
598 /* Present on everything but m68k */
599 int
600 linux_sys_exit_group(struct lwp *l, const struct linux_sys_exit_group_args *uap, register_t *retval)
601 {
602
603 return sys_exit(l, (const void *)uap, retval);
604 }
605 #endif /* !__m68k__ */
606
607 int
608 linux_sys_set_tid_address(struct lwp *l, const struct linux_sys_set_tid_address_args *uap, register_t *retval)
609 {
610 /* {
611 syscallarg(int *) tidptr;
612 } */
613 struct linux_emuldata *led;
614
615 led = (struct linux_emuldata *)l->l_emuldata;
616 led->led_clear_tid = SCARG(uap, tid);
617 *retval = l->l_lid;
618
619 return 0;
620 }
621
622 /* ARGUSED1 */
623 int
624 linux_sys_gettid(struct lwp *l, const void *v, register_t *retval)
625 {
626
627 *retval = l->l_lid;
628 return 0;
629 }
630
631 int
632 linux_sys_sched_getaffinity(struct lwp *l, const struct linux_sys_sched_getaffinity_args *uap, register_t *retval)
633 {
634 /* {
635 syscallarg(linux_pid_t) pid;
636 syscallarg(unsigned int) len;
637 syscallarg(unsigned long *) mask;
638 } */
639 proc_t *p;
640 unsigned long *lp, *data;
641 int error, size, nb = ncpu;
642
643 /* Unlike Linux, dynamically calculate cpu mask size */
644 size = sizeof(long) * ((ncpu + LONG_BIT - 1) / LONG_BIT);
645 if (SCARG(uap, len) < size)
646 return EINVAL;
647
648 /* XXX: Pointless check. TODO: Actually implement this. */
649 mutex_enter(proc_lock);
650 p = proc_find(SCARG(uap, pid));
651 mutex_exit(proc_lock);
652 if (p == NULL) {
653 return ESRCH;
654 }
655
656 /*
657 * return the actual number of CPU, tag all of them as available
658 * The result is a mask, the first CPU being in the least significant
659 * bit.
660 */
661 data = kmem_zalloc(size, KM_SLEEP);
662 lp = data;
663 while (nb > LONG_BIT) {
664 *lp++ = ~0UL;
665 nb -= LONG_BIT;
666 }
667 if (nb)
668 *lp = (1 << ncpu) - 1;
669
670 error = copyout(data, SCARG(uap, mask), size);
671 kmem_free(data, size);
672 *retval = size;
673 return error;
674 }
675
676 int
677 linux_sys_sched_setaffinity(struct lwp *l, const struct linux_sys_sched_setaffinity_args *uap, register_t *retval)
678 {
679 /* {
680 syscallarg(linux_pid_t) pid;
681 syscallarg(unsigned int) len;
682 syscallarg(unsigned long *) mask;
683 } */
684 proc_t *p;
685
686 /* XXX: Pointless check. TODO: Actually implement this. */
687 mutex_enter(proc_lock);
688 p = proc_find(SCARG(uap, pid));
689 mutex_exit(proc_lock);
690 if (p == NULL) {
691 return ESRCH;
692 }
693
694 /* Let's ignore it */
695 DPRINTF(("%s\n", __func__));
696 return 0;
697 }
698