linux_sched.c revision 1.71.6.1 1 /* $NetBSD: linux_sched.c,v 1.71.6.1 2022/08/03 11:11:32 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center; by Matthias Scheler.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Linux compatibility module. Try to deal with scheduler related syscalls.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: linux_sched.c,v 1.71.6.1 2022/08/03 11:11:32 martin Exp $");
39
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/proc.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/syscallargs.h>
46 #include <sys/wait.h>
47 #include <sys/kauth.h>
48 #include <sys/ptrace.h>
49 #include <sys/atomic.h>
50
51 #include <sys/cpu.h>
52
53 #include <compat/linux/common/linux_types.h>
54 #include <compat/linux/common/linux_signal.h>
55 #include <compat/linux/common/linux_emuldata.h>
56 #include <compat/linux/common/linux_ipc.h>
57 #include <compat/linux/common/linux_sem.h>
58 #include <compat/linux/common/linux_exec.h>
59 #include <compat/linux/common/linux_machdep.h>
60
61 #include <compat/linux/linux_syscallargs.h>
62
63 #include <compat/linux/common/linux_sched.h>
64
65 static int linux_clone_nptl(struct lwp *, const struct linux_sys_clone_args *,
66 register_t *);
67
68 /* Unlike Linux, dynamically calculate CPU mask size */
69 #define LINUX_CPU_MASK_SIZE (sizeof(long) * ((ncpu + LONG_BIT - 1) / LONG_BIT))
70
71 #if DEBUG_LINUX
72 #define DPRINTF(x) uprintf x
73 #else
74 #define DPRINTF(x)
75 #endif
76
77 static void
78 linux_child_return(void *arg)
79 {
80 struct lwp *l = arg;
81 struct proc *p = l->l_proc;
82 struct linux_emuldata *led = l->l_emuldata;
83 void *ctp = led->led_child_tidptr;
84 int error;
85
86 if (ctp) {
87 if ((error = copyout(&p->p_pid, ctp, sizeof(p->p_pid))) != 0)
88 printf("%s: LINUX_CLONE_CHILD_SETTID "
89 "failed (child_tidptr = %p, tid = %d error =%d)\n",
90 __func__, ctp, p->p_pid, error);
91 }
92 child_return(arg);
93 }
94
95 int
96 linux_sys_clone(struct lwp *l, const struct linux_sys_clone_args *uap,
97 register_t *retval)
98 {
99 /* {
100 syscallarg(int) flags;
101 syscallarg(void *) stack;
102 syscallarg(void *) parent_tidptr;
103 syscallarg(void *) tls;
104 syscallarg(void *) child_tidptr;
105 } */
106 struct linux_emuldata *led;
107 int flags, sig, error;
108
109 /*
110 * We don't support the Linux CLONE_PID or CLONE_PTRACE flags.
111 */
112 if (SCARG(uap, flags) & (LINUX_CLONE_PID|LINUX_CLONE_PTRACE))
113 return EINVAL;
114
115 /*
116 * Thread group implies shared signals. Shared signals
117 * imply shared VM. This matches what Linux kernel does.
118 */
119 if (SCARG(uap, flags) & LINUX_CLONE_THREAD
120 && (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) == 0)
121 return EINVAL;
122 if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND
123 && (SCARG(uap, flags) & LINUX_CLONE_VM) == 0)
124 return EINVAL;
125
126 /*
127 * The thread group flavor is implemented totally differently.
128 */
129 if (SCARG(uap, flags) & LINUX_CLONE_THREAD)
130 return linux_clone_nptl(l, uap, retval);
131
132 flags = 0;
133 if (SCARG(uap, flags) & LINUX_CLONE_VM)
134 flags |= FORK_SHAREVM;
135 if (SCARG(uap, flags) & LINUX_CLONE_FS)
136 flags |= FORK_SHARECWD;
137 if (SCARG(uap, flags) & LINUX_CLONE_FILES)
138 flags |= FORK_SHAREFILES;
139 if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND)
140 flags |= FORK_SHARESIGS;
141 if (SCARG(uap, flags) & LINUX_CLONE_VFORK)
142 flags |= FORK_PPWAIT;
143
144 sig = SCARG(uap, flags) & LINUX_CLONE_CSIGNAL;
145 if (sig < 0 || sig >= LINUX__NSIG)
146 return EINVAL;
147 sig = linux_to_native_signo[sig];
148
149 if (SCARG(uap, flags) & LINUX_CLONE_CHILD_SETTID) {
150 led = l->l_emuldata;
151 led->led_child_tidptr = SCARG(uap, child_tidptr);
152 }
153
154 /*
155 * Note that Linux does not provide a portable way of specifying
156 * the stack area; the caller must know if the stack grows up
157 * or down. So, we pass a stack size of 0, so that the code
158 * that makes this adjustment is a noop.
159 */
160 if ((error = fork1(l, flags, sig, SCARG(uap, stack), 0,
161 linux_child_return, NULL, retval)) != 0) {
162 DPRINTF(("%s: fork1: error %d\n", __func__, error));
163 return error;
164 }
165
166 return 0;
167 }
168
169 static int
170 linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
171 {
172 /* {
173 syscallarg(int) flags;
174 syscallarg(void *) stack;
175 syscallarg(void *) parent_tidptr;
176 syscallarg(void *) tls;
177 syscallarg(void *) child_tidptr;
178 } */
179 struct proc *p;
180 struct lwp *l2;
181 struct linux_emuldata *led;
182 void *parent_tidptr, *tls, *child_tidptr;
183 struct schedstate_percpu *spc;
184 vaddr_t uaddr;
185 lwpid_t lid;
186 int flags, tnprocs, error;
187
188 p = l->l_proc;
189 flags = SCARG(uap, flags);
190 parent_tidptr = SCARG(uap, parent_tidptr);
191 tls = SCARG(uap, tls);
192 child_tidptr = SCARG(uap, child_tidptr);
193
194 tnprocs = atomic_inc_uint_nv(&nprocs);
195 if (__predict_false(tnprocs >= maxproc) ||
196 kauth_authorize_process(l->l_cred, KAUTH_PROCESS_FORK, p,
197 KAUTH_ARG(tnprocs), NULL, NULL) != 0) {
198 atomic_dec_uint(&nprocs);
199 return EAGAIN;
200 }
201
202 uaddr = uvm_uarea_alloc();
203 if (__predict_false(uaddr == 0)) {
204 atomic_dec_uint(&nprocs);
205 return ENOMEM;
206 }
207
208 error = lwp_create(l, p, uaddr, LWP_DETACHED | LWP_PIDLID,
209 SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class,
210 &l->l_sigmask, &l->l_sigstk);
211 if (__predict_false(error)) {
212 DPRINTF(("%s: lwp_create error=%d\n", __func__, error));
213 atomic_dec_uint(&nprocs);
214 uvm_uarea_free(uaddr);
215 return error;
216 }
217 lid = l2->l_lid;
218
219 /* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */
220 if (flags & LINUX_CLONE_CHILD_CLEARTID) {
221 led = l2->l_emuldata;
222 led->led_clear_tid = child_tidptr;
223 }
224
225 /* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */
226 if (flags & LINUX_CLONE_PARENT_SETTID) {
227 if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0)
228 printf("%s: LINUX_CLONE_PARENT_SETTID "
229 "failed (parent_tidptr = %p tid = %d error=%d)\n",
230 __func__, parent_tidptr, lid, error);
231 }
232
233 /* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory */
234 if (flags & LINUX_CLONE_CHILD_SETTID) {
235 if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0)
236 printf("%s: LINUX_CLONE_CHILD_SETTID "
237 "failed (child_tidptr = %p, tid = %d error=%d)\n",
238 __func__, child_tidptr, lid, error);
239 }
240
241 if (flags & LINUX_CLONE_SETTLS) {
242 error = LINUX_LWP_SETPRIVATE(l2, tls);
243 if (error) {
244 DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n", __func__,
245 error));
246 lwp_exit(l2);
247 return error;
248 }
249 }
250
251 /*
252 * Set the new LWP running, unless the process is stopping,
253 * then the LWP is created stopped.
254 */
255 mutex_enter(p->p_lock);
256 lwp_lock(l2);
257 spc = &l2->l_cpu->ci_schedstate;
258 if ((l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
259 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
260 KASSERT(l2->l_wchan == NULL);
261 l2->l_stat = LSSTOP;
262 p->p_nrlwps--;
263 lwp_unlock_to(l2, spc->spc_lwplock);
264 } else {
265 KASSERT(lwp_locked(l2, spc->spc_mutex));
266 l2->l_stat = LSRUN;
267 sched_enqueue(l2, false);
268 lwp_unlock(l2);
269 }
270 } else {
271 l2->l_stat = LSSUSPENDED;
272 p->p_nrlwps--;
273 lwp_unlock_to(l2, spc->spc_lwplock);
274 }
275 mutex_exit(p->p_lock);
276
277 retval[0] = lid;
278 retval[1] = 0;
279 return 0;
280 }
281
282 /*
283 * linux realtime priority
284 *
285 * - SCHED_RR and SCHED_FIFO tasks have priorities [1,99].
286 *
287 * - SCHED_OTHER tasks don't have realtime priorities.
288 * in particular, sched_param::sched_priority is always 0.
289 */
290
291 #define LINUX_SCHED_RTPRIO_MIN 1
292 #define LINUX_SCHED_RTPRIO_MAX 99
293
294 static int
295 sched_linux2native(int linux_policy, struct linux_sched_param *linux_params,
296 int *native_policy, struct sched_param *native_params)
297 {
298
299 switch (linux_policy) {
300 case LINUX_SCHED_OTHER:
301 if (native_policy != NULL) {
302 *native_policy = SCHED_OTHER;
303 }
304 break;
305
306 case LINUX_SCHED_FIFO:
307 if (native_policy != NULL) {
308 *native_policy = SCHED_FIFO;
309 }
310 break;
311
312 case LINUX_SCHED_RR:
313 if (native_policy != NULL) {
314 *native_policy = SCHED_RR;
315 }
316 break;
317
318 default:
319 return EINVAL;
320 }
321
322 if (linux_params != NULL) {
323 int prio = linux_params->sched_priority;
324
325 KASSERT(native_params != NULL);
326
327 if (linux_policy == LINUX_SCHED_OTHER) {
328 if (prio != 0) {
329 return EINVAL;
330 }
331 native_params->sched_priority = PRI_NONE; /* XXX */
332 } else {
333 if (prio < LINUX_SCHED_RTPRIO_MIN ||
334 prio > LINUX_SCHED_RTPRIO_MAX) {
335 return EINVAL;
336 }
337 native_params->sched_priority =
338 (prio - LINUX_SCHED_RTPRIO_MIN)
339 * (SCHED_PRI_MAX - SCHED_PRI_MIN)
340 / (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
341 + SCHED_PRI_MIN;
342 }
343 }
344
345 return 0;
346 }
347
348 static int
349 sched_native2linux(int native_policy, struct sched_param *native_params,
350 int *linux_policy, struct linux_sched_param *linux_params)
351 {
352
353 switch (native_policy) {
354 case SCHED_OTHER:
355 if (linux_policy != NULL) {
356 *linux_policy = LINUX_SCHED_OTHER;
357 }
358 break;
359
360 case SCHED_FIFO:
361 if (linux_policy != NULL) {
362 *linux_policy = LINUX_SCHED_FIFO;
363 }
364 break;
365
366 case SCHED_RR:
367 if (linux_policy != NULL) {
368 *linux_policy = LINUX_SCHED_RR;
369 }
370 break;
371
372 default:
373 panic("%s: unknown policy %d\n", __func__, native_policy);
374 }
375
376 if (native_params != NULL) {
377 int prio = native_params->sched_priority;
378
379 KASSERT(prio >= SCHED_PRI_MIN);
380 KASSERT(prio <= SCHED_PRI_MAX);
381 KASSERT(linux_params != NULL);
382
383 memset(linux_params, 0, sizeof(*linux_params));
384
385 DPRINTF(("%s: native: policy %d, priority %d\n",
386 __func__, native_policy, prio));
387
388 if (native_policy == SCHED_OTHER) {
389 linux_params->sched_priority = 0;
390 } else {
391 linux_params->sched_priority =
392 (prio - SCHED_PRI_MIN)
393 * (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
394 / (SCHED_PRI_MAX - SCHED_PRI_MIN)
395 + LINUX_SCHED_RTPRIO_MIN;
396 }
397 DPRINTF(("%s: linux: policy %d, priority %d\n",
398 __func__, -1, linux_params->sched_priority));
399 }
400
401 return 0;
402 }
403
404 int
405 linux_sys_sched_setparam(struct lwp *l, const struct linux_sys_sched_setparam_args *uap, register_t *retval)
406 {
407 /* {
408 syscallarg(linux_pid_t) pid;
409 syscallarg(const struct linux_sched_param *) sp;
410 } */
411 int error, policy;
412 struct linux_sched_param lp;
413 struct sched_param sp;
414
415 if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
416 error = EINVAL;
417 goto out;
418 }
419
420 error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
421 if (error)
422 goto out;
423
424 /* We need the current policy in Linux terms. */
425 error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
426 if (error)
427 goto out;
428 error = sched_native2linux(policy, NULL, &policy, NULL);
429 if (error)
430 goto out;
431
432 error = sched_linux2native(policy, &lp, &policy, &sp);
433 if (error)
434 goto out;
435
436 error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
437 if (error)
438 goto out;
439
440 out:
441 return error;
442 }
443
444 int
445 linux_sys_sched_getparam(struct lwp *l, const struct linux_sys_sched_getparam_args *uap, register_t *retval)
446 {
447 /* {
448 syscallarg(linux_pid_t) pid;
449 syscallarg(struct linux_sched_param *) sp;
450 } */
451 struct linux_sched_param lp;
452 struct sched_param sp;
453 int error, policy;
454
455 if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
456 error = EINVAL;
457 goto out;
458 }
459
460 error = do_sched_getparam(SCARG(uap, pid), 0, &policy, &sp);
461 if (error)
462 goto out;
463 DPRINTF(("%s: native: policy %d, priority %d\n",
464 __func__, policy, sp.sched_priority));
465
466 error = sched_native2linux(policy, &sp, NULL, &lp);
467 if (error)
468 goto out;
469 DPRINTF(("%s: linux: policy %d, priority %d\n",
470 __func__, policy, lp.sched_priority));
471
472 error = copyout(&lp, SCARG(uap, sp), sizeof(lp));
473 if (error)
474 goto out;
475
476 out:
477 return error;
478 }
479
480 int
481 linux_sys_sched_setscheduler(struct lwp *l, const struct linux_sys_sched_setscheduler_args *uap, register_t *retval)
482 {
483 /* {
484 syscallarg(linux_pid_t) pid;
485 syscallarg(int) policy;
486 syscallarg(cont struct linux_sched_param *) sp;
487 } */
488 int error, policy;
489 struct linux_sched_param lp;
490 struct sched_param sp;
491
492 if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
493 error = EINVAL;
494 goto out;
495 }
496
497 error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
498 if (error)
499 goto out;
500 DPRINTF(("%s: linux: policy %d, priority %d\n",
501 __func__, SCARG(uap, policy), lp.sched_priority));
502
503 error = sched_linux2native(SCARG(uap, policy), &lp, &policy, &sp);
504 if (error)
505 goto out;
506 DPRINTF(("%s: native: policy %d, priority %d\n",
507 __func__, policy, sp.sched_priority));
508
509 error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
510 if (error)
511 goto out;
512
513 out:
514 return error;
515 }
516
517 int
518 linux_sys_sched_getscheduler(struct lwp *l, const struct linux_sys_sched_getscheduler_args *uap, register_t *retval)
519 {
520 /* {
521 syscallarg(linux_pid_t) pid;
522 } */
523 int error, policy;
524
525 *retval = -1;
526
527 error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
528 if (error)
529 goto out;
530
531 error = sched_native2linux(policy, NULL, &policy, NULL);
532 if (error)
533 goto out;
534
535 *retval = policy;
536
537 out:
538 return error;
539 }
540
541 int
542 linux_sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
543 {
544
545 yield();
546 return 0;
547 }
548
549 int
550 linux_sys_sched_get_priority_max(struct lwp *l, const struct linux_sys_sched_get_priority_max_args *uap, register_t *retval)
551 {
552 /* {
553 syscallarg(int) policy;
554 } */
555
556 switch (SCARG(uap, policy)) {
557 case LINUX_SCHED_OTHER:
558 *retval = 0;
559 break;
560 case LINUX_SCHED_FIFO:
561 case LINUX_SCHED_RR:
562 *retval = LINUX_SCHED_RTPRIO_MAX;
563 break;
564 default:
565 return EINVAL;
566 }
567
568 return 0;
569 }
570
571 int
572 linux_sys_sched_get_priority_min(struct lwp *l, const struct linux_sys_sched_get_priority_min_args *uap, register_t *retval)
573 {
574 /* {
575 syscallarg(int) policy;
576 } */
577
578 switch (SCARG(uap, policy)) {
579 case LINUX_SCHED_OTHER:
580 *retval = 0;
581 break;
582 case LINUX_SCHED_FIFO:
583 case LINUX_SCHED_RR:
584 *retval = LINUX_SCHED_RTPRIO_MIN;
585 break;
586 default:
587 return EINVAL;
588 }
589
590 return 0;
591 }
592
593 int
594 linux_sys_exit(struct lwp *l, const struct linux_sys_exit_args *uap, register_t *retval)
595 {
596
597 lwp_exit(l);
598 return 0;
599 }
600
601 #ifndef __m68k__
602 /* Present on everything but m68k */
603 int
604 linux_sys_exit_group(struct lwp *l, const struct linux_sys_exit_group_args *uap, register_t *retval)
605 {
606
607 return sys_exit(l, (const void *)uap, retval);
608 }
609 #endif /* !__m68k__ */
610
611 int
612 linux_sys_set_tid_address(struct lwp *l, const struct linux_sys_set_tid_address_args *uap, register_t *retval)
613 {
614 /* {
615 syscallarg(int *) tidptr;
616 } */
617 struct linux_emuldata *led;
618
619 led = (struct linux_emuldata *)l->l_emuldata;
620 led->led_clear_tid = SCARG(uap, tid);
621 *retval = l->l_lid;
622
623 return 0;
624 }
625
626 /* ARGUSED1 */
627 int
628 linux_sys_gettid(struct lwp *l, const void *v, register_t *retval)
629 {
630
631 *retval = l->l_lid;
632 return 0;
633 }
634
635 /*
636 * The affinity syscalls assume that the layout of our cpu kcpuset is
637 * the same as linux's: a linear bitmask.
638 */
639 int
640 linux_sys_sched_getaffinity(struct lwp *l, const struct linux_sys_sched_getaffinity_args *uap, register_t *retval)
641 {
642 /* {
643 syscallarg(linux_pid_t) pid;
644 syscallarg(unsigned int) len;
645 syscallarg(unsigned long *) mask;
646 } */
647 struct lwp *t;
648 kcpuset_t *kcset;
649 size_t size;
650 cpuid_t i;
651 int error;
652
653 size = LINUX_CPU_MASK_SIZE;
654 if (SCARG(uap, len) < size)
655 return EINVAL;
656
657 /* Lock the LWP */
658 t = lwp_find2(SCARG(uap, pid), l->l_lid);
659 if (t == NULL)
660 return ESRCH;
661
662 /* Check the permission */
663 if (kauth_authorize_process(l->l_cred,
664 KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
665 mutex_exit(t->l_proc->p_lock);
666 return EPERM;
667 }
668
669 kcpuset_create(&kcset, true);
670 lwp_lock(t);
671 if (t->l_affinity != NULL)
672 kcpuset_copy(kcset, t->l_affinity);
673 else {
674 /*
675 * All available CPUs should be masked when affinity has not
676 * been set.
677 */
678 kcpuset_zero(kcset);
679 for (i = 0; i < ncpu; i++)
680 kcpuset_set(kcset, i);
681 }
682 lwp_unlock(t);
683 mutex_exit(t->l_proc->p_lock);
684 error = kcpuset_copyout(kcset, (cpuset_t *)SCARG(uap, mask), size);
685 kcpuset_unuse(kcset, NULL);
686 *retval = size;
687 return error;
688 }
689
690 int
691 linux_sys_sched_setaffinity(struct lwp *l, const struct linux_sys_sched_setaffinity_args *uap, register_t *retval)
692 {
693 /* {
694 syscallarg(linux_pid_t) pid;
695 syscallarg(unsigned int) len;
696 syscallarg(unsigned long *) mask;
697 } */
698 struct sys__sched_setaffinity_args ssa;
699 size_t size;
700
701 size = LINUX_CPU_MASK_SIZE;
702 if (SCARG(uap, len) < size)
703 return EINVAL;
704
705 SCARG(&ssa, pid) = SCARG(uap, pid);
706 SCARG(&ssa, lid) = l->l_lid;
707 SCARG(&ssa, size) = size;
708 SCARG(&ssa, cpuset) = (cpuset_t *)SCARG(uap, mask);
709
710 return sys__sched_setaffinity(l, &ssa, retval);
711 }
712