netbsd32_netbsd.c revision 1.20 1 /* $NetBSD: netbsd32_netbsd.c,v 1.20 1999/12/30 15:40:45 eeh Exp $ */
2
3 /*
4 * Copyright (c) 1998 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include "opt_ktrace.h"
32 #include "opt_ntp.h"
33 #include "opt_compat_netbsd.h"
34 #include "opt_compat_freebsd.h"
35 #include "opt_compat_linux.h"
36 #include "opt_compat_sunos.h"
37 #include "opt_compat_43.h"
38 #include "opt_sysv.h"
39 #if defined(COMPAT_43) || defined(COMPAT_SUNOS) || defined(COMPAT_LINUX) || \
40 defined(COMPAT_FREEBSD)
41 #define COMPAT_OLDSOCK /* used by <sys/socket.h> */
42 #endif
43
44 #include "fs_lfs.h"
45 #include "fs_nfs.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/filedesc.h>
50 #include <sys/kernel.h>
51 #include <sys/ipc.h>
52 #include <sys/msg.h>
53 #define msg __msg /* Don't ask me! */
54 #include <sys/sem.h>
55 #include <sys/shm.h>
56 #include <sys/malloc.h>
57 #include <sys/mount.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/socketvar.h>
61 #include <sys/mbuf.h>
62 #include <sys/stat.h>
63 #include <sys/time.h>
64 #include <sys/timex.h>
65 #include <sys/signalvar.h>
66 #include <sys/wait.h>
67 #include <sys/ptrace.h>
68 #include <sys/ktrace.h>
69 #include <sys/trace.h>
70 #include <sys/resourcevar.h>
71 #include <sys/pool.h>
72 #include <sys/vnode.h>
73 #include <sys/file.h>
74 #include <sys/filedesc.h>
75 #include <sys/namei.h>
76
77 #include <vm/vm.h>
78 #include <vm/vm_kern.h>
79 #include <sys/syscallargs.h>
80 #include <sys/proc.h>
81 #include <sys/acct.h>
82 #include <sys/exec.h>
83 #include <sys/sysctl.h>
84
85 #include <net/if.h>
86
87 #include <compat/netbsd32/netbsd32.h>
88 #include <compat/netbsd32/netbsd32_syscallargs.h>
89
90 #include <machine/frame.h>
91
92 static __inline void netbsd32_from_timeval __P((struct timeval *, struct netbsd32_timeval *));
93 static __inline void netbsd32_to_timeval __P((struct netbsd32_timeval *, struct timeval *));
94 static __inline void netbsd32_from_itimerval __P((struct itimerval *, struct netbsd32_itimerval *));
95 static __inline void netbsd32_to_itimerval __P((struct netbsd32_itimerval *, struct itimerval *));
96 static __inline void netbsd32_to_timespec __P((struct netbsd32_timespec *, struct timespec *));
97 static __inline void netbsd32_from_timespec __P((struct timespec *, struct netbsd32_timespec *));
98 static __inline void netbsd32_from_rusage __P((struct rusage *, struct netbsd32_rusage *));
99 static __inline void netbsd32_to_rusage __P((struct netbsd32_rusage *, struct rusage *));
100 static __inline int netbsd32_to_iovecin __P((struct netbsd32_iovec *, struct iovec *, int));
101 static __inline void netbsd32_to_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
102 static __inline void netbsd32_from_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
103 static __inline void netbsd32_from_statfs __P((struct statfs *, struct netbsd32_statfs *));
104 static __inline void netbsd32_from_timex __P((struct timex *, struct netbsd32_timex *));
105 static __inline void netbsd32_to_timex __P((struct netbsd32_timex *, struct timex *));
106 static __inline void netbsd32_from___stat13 __P((struct stat *, struct netbsd32_stat *));
107 static __inline void netbsd32_to_ipc_perm __P((struct netbsd32_ipc_perm *, struct ipc_perm *));
108 static __inline void netbsd32_from_ipc_perm __P((struct ipc_perm *, struct netbsd32_ipc_perm *));
109 static __inline void netbsd32_to_msg __P((struct netbsd32_msg *, struct msg *));
110 static __inline void netbsd32_from_msg __P((struct msg *, struct netbsd32_msg *));
111 static __inline void netbsd32_to_msqid_ds __P((struct netbsd32_msqid_ds *, struct msqid_ds *));
112 static __inline void netbsd32_from_msqid_ds __P((struct msqid_ds *, struct netbsd32_msqid_ds *));
113 static __inline void netbsd32_to_shmid_ds __P((struct netbsd32_shmid_ds *, struct shmid_ds *));
114 static __inline void netbsd32_from_shmid_ds __P((struct shmid_ds *, struct netbsd32_shmid_ds *));
115 static __inline void netbsd32_to_semid_ds __P((struct netbsd32_semid_ds *, struct semid_ds *));
116 static __inline void netbsd32_from_semid_ds __P((struct semid_ds *, struct netbsd32_semid_ds *));
117
118
119 static int recvit32 __P((struct proc *, int, struct netbsd32_msghdr *, struct iovec *, caddr_t,
120 register_t *));
121 static int dofilereadv32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
122 int, off_t *, int, register_t *));
123 static int dofilewritev32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
124 int, off_t *, int, register_t *));
125 static int change_utimes32 __P((struct vnode *, struct timeval *, struct proc *));
126
127 /* converters for structures that we need */
128 static __inline void
129 netbsd32_from_timeval(tv, tv32)
130 struct timeval *tv;
131 struct netbsd32_timeval *tv32;
132 {
133
134 tv32->tv_sec = (netbsd32_long)tv->tv_sec;
135 tv32->tv_usec = (netbsd32_long)tv->tv_usec;
136 }
137
138 static __inline void
139 netbsd32_to_timeval(tv32, tv)
140 struct netbsd32_timeval *tv32;
141 struct timeval *tv;
142 {
143
144 tv->tv_sec = (long)tv32->tv_sec;
145 tv->tv_usec = (long)tv32->tv_usec;
146 }
147
148 static __inline void
149 netbsd32_from_itimerval(itv, itv32)
150 struct itimerval *itv;
151 struct netbsd32_itimerval *itv32;
152 {
153
154 netbsd32_from_timeval(&itv->it_interval,
155 &itv32->it_interval);
156 netbsd32_from_timeval(&itv->it_value,
157 &itv32->it_value);
158 }
159
160 static __inline void
161 netbsd32_to_itimerval(itv32, itv)
162 struct netbsd32_itimerval *itv32;
163 struct itimerval *itv;
164 {
165
166 netbsd32_to_timeval(&itv32->it_interval, &itv->it_interval);
167 netbsd32_to_timeval(&itv32->it_value, &itv->it_value);
168 }
169
170 static __inline void
171 netbsd32_to_timespec(s32p, p)
172 struct netbsd32_timespec *s32p;
173 struct timespec *p;
174 {
175
176 p->tv_sec = (time_t)s32p->tv_sec;
177 p->tv_nsec = (long)s32p->tv_nsec;
178 }
179
180 static __inline void
181 netbsd32_from_timespec(p, s32p)
182 struct timespec *p;
183 struct netbsd32_timespec *s32p;
184 {
185
186 s32p->tv_sec = (netbsd32_time_t)p->tv_sec;
187 s32p->tv_nsec = (netbsd32_long)p->tv_nsec;
188 }
189
190 static __inline void
191 netbsd32_from_rusage(rup, ru32p)
192 struct rusage *rup;
193 struct netbsd32_rusage *ru32p;
194 {
195
196 netbsd32_from_timeval(&rup->ru_utime, &ru32p->ru_utime);
197 netbsd32_from_timeval(&rup->ru_stime, &ru32p->ru_stime);
198 #define C(var) ru32p->var = (netbsd32_long)rup->var
199 C(ru_maxrss);
200 C(ru_ixrss);
201 C(ru_idrss);
202 C(ru_isrss);
203 C(ru_minflt);
204 C(ru_majflt);
205 C(ru_nswap);
206 C(ru_inblock);
207 C(ru_oublock);
208 C(ru_msgsnd);
209 C(ru_msgrcv);
210 C(ru_nsignals);
211 C(ru_nvcsw);
212 C(ru_nivcsw);
213 #undef C
214 }
215
216 static __inline void
217 netbsd32_to_rusage(ru32p, rup)
218 struct netbsd32_rusage *ru32p;
219 struct rusage *rup;
220 {
221
222 netbsd32_to_timeval(&ru32p->ru_utime, &rup->ru_utime);
223 netbsd32_to_timeval(&ru32p->ru_stime, &rup->ru_stime);
224 #define C(var) rup->var = (long)ru32p->var
225 C(ru_maxrss);
226 C(ru_ixrss);
227 C(ru_idrss);
228 C(ru_isrss);
229 C(ru_minflt);
230 C(ru_majflt);
231 C(ru_nswap);
232 C(ru_inblock);
233 C(ru_oublock);
234 C(ru_msgsnd);
235 C(ru_msgrcv);
236 C(ru_nsignals);
237 C(ru_nvcsw);
238 C(ru_nivcsw);
239 #undef C
240 }
241
242 static __inline int
243 netbsd32_to_iovecin(iov32p, iovp, len)
244 struct netbsd32_iovec *iov32p;
245 struct iovec *iovp;
246 int len;
247 {
248 int i, error=0;
249 u_int32_t iov_base;
250 u_int32_t iov_len;
251 /*
252 * We could allocate an iov32p, do a copyin, and translate
253 * each field and then free it all up, or we could copyin
254 * each field separately. I'm doing the latter to reduce
255 * the number of MALLOC()s.
256 */
257 for (i = 0; i < len; i++, iovp++, iov32p++) {
258 if ((error = copyin((caddr_t)&iov32p->iov_base, &iov_base, sizeof(iov_base))))
259 return (error);
260 if ((error = copyin((caddr_t)&iov32p->iov_len, &iov_len, sizeof(iov_len))))
261 return (error);
262 iovp->iov_base = (void *)(u_long)iov_base;
263 iovp->iov_len = (size_t)iov_len;
264 }
265 }
266
267 /* msg_iov must be done separately */
268 static __inline void
269 netbsd32_to_msghdr(mhp32, mhp)
270 struct netbsd32_msghdr *mhp32;
271 struct msghdr *mhp;
272 {
273
274 mhp->msg_name = (caddr_t)(u_long)mhp32->msg_name;
275 mhp->msg_namelen = mhp32->msg_namelen;
276 mhp->msg_iovlen = (size_t)mhp32->msg_iovlen;
277 mhp->msg_control = (caddr_t)(u_long)mhp32->msg_control;
278 mhp->msg_controllen = mhp32->msg_controllen;
279 mhp->msg_flags = mhp32->msg_flags;
280 }
281
282 /* msg_iov must be done separately */
283 static __inline void
284 netbsd32_from_msghdr(mhp32, mhp)
285 struct netbsd32_msghdr *mhp32;
286 struct msghdr *mhp;
287 {
288
289 mhp32->msg_name = mhp32->msg_name;
290 mhp32->msg_namelen = mhp32->msg_namelen;
291 mhp32->msg_iovlen = mhp32->msg_iovlen;
292 mhp32->msg_control = mhp32->msg_control;
293 mhp32->msg_controllen = mhp->msg_controllen;
294 mhp32->msg_flags = mhp->msg_flags;
295 }
296
297 static __inline void
298 netbsd32_from_statfs(sbp, sb32p)
299 struct statfs *sbp;
300 struct netbsd32_statfs *sb32p;
301 {
302 sb32p->f_type = sbp->f_type;
303 sb32p->f_flags = sbp->f_flags;
304 sb32p->f_bsize = (netbsd32_long)sbp->f_bsize;
305 sb32p->f_iosize = (netbsd32_long)sbp->f_iosize;
306 sb32p->f_blocks = (netbsd32_long)sbp->f_blocks;
307 sb32p->f_bfree = (netbsd32_long)sbp->f_bfree;
308 sb32p->f_bavail = (netbsd32_long)sbp->f_bavail;
309 sb32p->f_files = (netbsd32_long)sbp->f_files;
310 sb32p->f_ffree = (netbsd32_long)sbp->f_ffree;
311 sb32p->f_fsid = sbp->f_fsid;
312 sb32p->f_owner = sbp->f_owner;
313 sb32p->f_spare[0] = 0;
314 sb32p->f_spare[1] = 0;
315 sb32p->f_spare[2] = 0;
316 sb32p->f_spare[3] = 0;
317 #if 1
318 /* May as well do the whole batch in one go */
319 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN+MNAMELEN+MNAMELEN);
320 #else
321 /* If we want to be careful */
322 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN);
323 memcpy(sb32p->f_mntonname, sbp->f_mntonname, MNAMELEN);
324 memcpy(sb32p->f_mntfromname, sbp->f_mntfromname, MNAMELEN);
325 #endif
326 }
327
328 static __inline void
329 netbsd32_from_timex(txp, tx32p)
330 struct timex *txp;
331 struct netbsd32_timex *tx32p;
332 {
333
334 tx32p->modes = txp->modes;
335 tx32p->offset = (netbsd32_long)txp->offset;
336 tx32p->freq = (netbsd32_long)txp->freq;
337 tx32p->maxerror = (netbsd32_long)txp->maxerror;
338 tx32p->esterror = (netbsd32_long)txp->esterror;
339 tx32p->status = txp->status;
340 tx32p->constant = (netbsd32_long)txp->constant;
341 tx32p->precision = (netbsd32_long)txp->precision;
342 tx32p->tolerance = (netbsd32_long)txp->tolerance;
343 tx32p->ppsfreq = (netbsd32_long)txp->ppsfreq;
344 tx32p->jitter = (netbsd32_long)txp->jitter;
345 tx32p->shift = txp->shift;
346 tx32p->stabil = (netbsd32_long)txp->stabil;
347 tx32p->jitcnt = (netbsd32_long)txp->jitcnt;
348 tx32p->calcnt = (netbsd32_long)txp->calcnt;
349 tx32p->errcnt = (netbsd32_long)txp->errcnt;
350 tx32p->stbcnt = (netbsd32_long)txp->stbcnt;
351 }
352
353 static __inline void
354 netbsd32_to_timex(tx32p, txp)
355 struct netbsd32_timex *tx32p;
356 struct timex *txp;
357 {
358
359 txp->modes = tx32p->modes;
360 txp->offset = (long)tx32p->offset;
361 txp->freq = (long)tx32p->freq;
362 txp->maxerror = (long)tx32p->maxerror;
363 txp->esterror = (long)tx32p->esterror;
364 txp->status = tx32p->status;
365 txp->constant = (long)tx32p->constant;
366 txp->precision = (long)tx32p->precision;
367 txp->tolerance = (long)tx32p->tolerance;
368 txp->ppsfreq = (long)tx32p->ppsfreq;
369 txp->jitter = (long)tx32p->jitter;
370 txp->shift = tx32p->shift;
371 txp->stabil = (long)tx32p->stabil;
372 txp->jitcnt = (long)tx32p->jitcnt;
373 txp->calcnt = (long)tx32p->calcnt;
374 txp->errcnt = (long)tx32p->errcnt;
375 txp->stbcnt = (long)tx32p->stbcnt;
376 }
377
378 static __inline void
379 netbsd32_from___stat13(sbp, sb32p)
380 struct stat *sbp;
381 struct netbsd32_stat *sb32p;
382 {
383 sb32p->st_dev = sbp->st_dev;
384 sb32p->st_ino = sbp->st_ino;
385 sb32p->st_mode = sbp->st_mode;
386 sb32p->st_nlink = sbp->st_nlink;
387 sb32p->st_uid = sbp->st_uid;
388 sb32p->st_gid = sbp->st_gid;
389 sb32p->st_rdev = sbp->st_rdev;
390 if (sbp->st_size < (quad_t)1 << 32)
391 sb32p->st_size = sbp->st_size;
392 else
393 sb32p->st_size = -2;
394 sb32p->st_atimespec.tv_sec = (netbsd32_time_t)sbp->st_atimespec.tv_sec;
395 sb32p->st_atimespec.tv_nsec = (netbsd32_long)sbp->st_atimespec.tv_nsec;
396 sb32p->st_mtimespec.tv_sec = (netbsd32_time_t)sbp->st_mtimespec.tv_sec;
397 sb32p->st_mtimespec.tv_nsec = (netbsd32_long)sbp->st_mtimespec.tv_nsec;
398 sb32p->st_ctimespec.tv_sec = (netbsd32_time_t)sbp->st_ctimespec.tv_sec;
399 sb32p->st_ctimespec.tv_nsec = (netbsd32_long)sbp->st_ctimespec.tv_nsec;
400 sb32p->st_blksize = sbp->st_blksize;
401 sb32p->st_blocks = sbp->st_blocks;
402 sb32p->st_flags = sbp->st_flags;
403 sb32p->st_gen = sbp->st_gen;
404 }
405
406 static __inline void
407 netbsd32_to_ipc_perm(ip32p, ipp)
408 struct netbsd32_ipc_perm *ip32p;
409 struct ipc_perm *ipp;
410 {
411
412 ipp->cuid = ip32p->cuid;
413 ipp->cgid = ip32p->cgid;
414 ipp->uid = ip32p->uid;
415 ipp->gid = ip32p->gid;
416 ipp->mode = ip32p->mode;
417 ipp->_seq = ip32p->_seq;
418 ipp->_key = (key_t)ip32p->_key;
419 }
420
421 static __inline void
422 netbsd32_from_ipc_perm(ipp, ip32p)
423 struct ipc_perm *ipp;
424 struct netbsd32_ipc_perm *ip32p;
425 {
426
427 ip32p->cuid = ipp->cuid;
428 ip32p->cgid = ipp->cgid;
429 ip32p->uid = ipp->uid;
430 ip32p->gid = ipp->gid;
431 ip32p->mode = ipp->mode;
432 ip32p->_seq = ipp->_seq;
433 ip32p->_key = (netbsd32_key_t)ipp->_key;
434 }
435
436 static __inline void
437 netbsd32_to_msg(m32p, mp)
438 struct netbsd32_msg *m32p;
439 struct msg *mp;
440 {
441
442 mp->msg_next = (struct msg *)(u_long)m32p->msg_next;
443 mp->msg_type = (long)m32p->msg_type;
444 mp->msg_ts = m32p->msg_ts;
445 mp->msg_spot = m32p->msg_spot;
446 }
447
448 static __inline void
449 netbsd32_from_msg(mp, m32p)
450 struct msg *mp;
451 struct netbsd32_msg *m32p;
452 {
453
454 m32p->msg_next = (netbsd32_msgp_t)(u_long)mp->msg_next;
455 m32p->msg_type = (netbsd32_long)mp->msg_type;
456 m32p->msg_ts = mp->msg_ts;
457 m32p->msg_spot = mp->msg_spot;
458 }
459
460 static __inline void
461 netbsd32_to_msqid_ds(ds32p, dsp)
462 struct netbsd32_msqid_ds *ds32p;
463 struct msqid_ds *dsp;
464 {
465
466 netbsd32_to_ipc_perm(&ds32p->msg_perm, &dsp->msg_perm);
467 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_first, dsp->_msg_first);
468 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_last, dsp->_msg_last);
469 dsp->_msg_cbytes = (u_long)ds32p->_msg_cbytes;
470 dsp->msg_qnum = (u_long)ds32p->msg_qnum;
471 dsp->msg_qbytes = (u_long)ds32p->msg_qbytes;
472 dsp->msg_lspid = ds32p->msg_lspid;
473 dsp->msg_lrpid = ds32p->msg_lrpid;
474 dsp->msg_rtime = (time_t)ds32p->msg_rtime;
475 dsp->msg_stime = (time_t)ds32p->msg_stime;
476 dsp->msg_ctime = (time_t)ds32p->msg_ctime;
477 }
478
479 static __inline void
480 netbsd32_from_msqid_ds(dsp, ds32p)
481 struct msqid_ds *dsp;
482 struct netbsd32_msqid_ds *ds32p;
483 {
484
485 netbsd32_from_ipc_perm(&dsp->msg_perm, &ds32p->msg_perm);
486 netbsd32_from_msg(dsp->_msg_first, (struct netbsd32_msg *)(u_long)ds32p->_msg_first);
487 netbsd32_from_msg(dsp->_msg_last, (struct netbsd32_msg *)(u_long)ds32p->_msg_last);
488 ds32p->_msg_cbytes = (netbsd32_u_long)dsp->_msg_cbytes;
489 ds32p->msg_qnum = (netbsd32_u_long)dsp->msg_qnum;
490 ds32p->msg_qbytes = (netbsd32_u_long)dsp->msg_qbytes;
491 ds32p->msg_lspid = dsp->msg_lspid;
492 ds32p->msg_lrpid = dsp->msg_lrpid;
493 ds32p->msg_rtime = dsp->msg_rtime;
494 ds32p->msg_stime = dsp->msg_stime;
495 ds32p->msg_ctime = dsp->msg_ctime;
496 }
497
498 static __inline void
499 netbsd32_to_shmid_ds(ds32p, dsp)
500 struct netbsd32_shmid_ds *ds32p;
501 struct shmid_ds *dsp;
502 {
503
504 netbsd32_to_ipc_perm(&ds32p->shm_perm, &dsp->shm_perm);
505 dsp->shm_segsz = ds32p->shm_segsz;
506 dsp->shm_lpid = ds32p->shm_lpid;
507 dsp->shm_cpid = ds32p->shm_cpid;
508 dsp->shm_nattch = ds32p->shm_nattch;
509 dsp->shm_atime = (long)ds32p->shm_atime;
510 dsp->shm_dtime = (long)ds32p->shm_dtime;
511 dsp->shm_ctime = (long)ds32p->shm_ctime;
512 dsp->_shm_internal = (void *)(u_long)ds32p->_shm_internal;
513 }
514
515 static __inline void
516 netbsd32_from_shmid_ds(dsp, ds32p)
517 struct shmid_ds *dsp;
518 struct netbsd32_shmid_ds *ds32p;
519 {
520
521 netbsd32_from_ipc_perm(&dsp->shm_perm, &ds32p->shm_perm);
522 ds32p->shm_segsz = dsp->shm_segsz;
523 ds32p->shm_lpid = dsp->shm_lpid;
524 ds32p->shm_cpid = dsp->shm_cpid;
525 ds32p->shm_nattch = dsp->shm_nattch;
526 ds32p->shm_atime = (netbsd32_long)dsp->shm_atime;
527 ds32p->shm_dtime = (netbsd32_long)dsp->shm_dtime;
528 ds32p->shm_ctime = (netbsd32_long)dsp->shm_ctime;
529 ds32p->_shm_internal = (netbsd32_voidp)(u_long)dsp->_shm_internal;
530 }
531
532 static __inline void
533 netbsd32_to_semid_ds(s32dsp, dsp)
534 struct netbsd32_semid_ds *s32dsp;
535 struct semid_ds *dsp;
536 {
537
538 netbsd32_from_ipc_perm(&dsp->sem_perm, &s32dsp->sem_perm);
539 dsp->_sem_base = (struct __sem *)(u_long)s32dsp->_sem_base;
540 dsp->sem_nsems = s32dsp->sem_nsems;
541 dsp->sem_otime = s32dsp->sem_otime;
542 dsp->sem_ctime = s32dsp->sem_ctime;
543 }
544
545 static __inline void
546 netbsd32_from_semid_ds(dsp, s32dsp)
547 struct semid_ds *dsp;
548 struct netbsd32_semid_ds *s32dsp;
549 {
550
551 netbsd32_to_ipc_perm(&s32dsp->sem_perm, &dsp->sem_perm);
552 s32dsp->_sem_base = (netbsd32_semp_t)(u_long)dsp->_sem_base;
553 s32dsp->sem_nsems = dsp->sem_nsems;
554 s32dsp->sem_otime = dsp->sem_otime;
555 s32dsp->sem_ctime = dsp->sem_ctime;
556 }
557
558 /*
559 * below are all the standard NetBSD system calls, in the 32bit
560 * environment, witht he necessary conversions to 64bit before
561 * calling the real syscall.
562 */
563
564
565 int
566 netbsd32_exit(p, v, retval)
567 struct proc *p;
568 void *v;
569 register_t *retval;
570 {
571 struct netbsd32_exit_args /* {
572 syscallarg(int) rval;
573 } */ *uap = v;
574 struct sys_exit_args ua;
575
576 NETBSD32TO64_UAP(rval);
577 sys_exit(p, &ua, retval);
578 }
579
580 int
581 netbsd32_read(p, v, retval)
582 struct proc *p;
583 void *v;
584 register_t *retval;
585 {
586 struct netbsd32_read_args /* {
587 syscallarg(int) fd;
588 syscallarg(netbsd32_voidp) buf;
589 syscallarg(netbsd32_size_t) nbyte;
590 } */ *uap = v;
591 struct sys_read_args ua;
592
593 NETBSD32TO64_UAP(fd);
594 NETBSD32TOP_UAP(buf, void *);
595 NETBSD32TOX_UAP(nbyte, size_t);
596 return sys_read(p, &ua, retval);
597 }
598
599 int
600 netbsd32_write(p, v, retval)
601 struct proc *p;
602 void *v;
603 register_t *retval;
604 {
605 struct netbsd32_write_args /* {
606 syscallarg(int) fd;
607 syscallarg(const netbsd32_voidp) buf;
608 syscallarg(netbsd32_size_t) nbyte;
609 } */ *uap = v;
610 struct sys_write_args ua;
611
612 NETBSD32TO64_UAP(fd);
613 NETBSD32TOP_UAP(buf, void *);
614 NETBSD32TOX_UAP(nbyte, size_t);
615 return sys_write(p, &ua, retval);
616 }
617
618 int
619 netbsd32_close(p, v, retval)
620 struct proc *p;
621 void *v;
622 register_t *retval;
623 {
624 struct netbsd32_close_args /* {
625 syscallarg(int) fd;
626 } */ *uap = v;
627 struct sys_close_args ua;
628
629 NETBSD32TO64_UAP(fd);
630 return sys_write(p, &ua, retval);
631 }
632
633 int
634 netbsd32_open(p, v, retval)
635 struct proc *p;
636 void *v;
637 register_t *retval;
638 {
639 struct netbsd32_open_args /* {
640 syscallarg(const netbsd32_charp) path;
641 syscallarg(int) flags;
642 syscallarg(mode_t) mode;
643 } */ *uap = v;
644 struct sys_open_args ua;
645 caddr_t sg;
646
647 NETBSD32TOP_UAP(path, const char);
648 NETBSD32TO64_UAP(flags);
649 NETBSD32TO64_UAP(mode);
650 sg = stackgap_init(p->p_emul);
651 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
652
653 return (sys_open(p, &ua, retval));
654 }
655
656 int
657 netbsd32_wait4(q, v, retval)
658 struct proc *q;
659 void *v;
660 register_t *retval;
661 {
662 struct netbsd32_wait4_args /* {
663 syscallarg(int) pid;
664 syscallarg(netbsd32_intp) status;
665 syscallarg(int) options;
666 syscallarg(netbsd32_rusagep_t) rusage;
667 } */ *uap = v;
668 struct netbsd32_rusage ru32;
669 register int nfound;
670 register struct proc *p, *t;
671 int status, error;
672
673 if (SCARG(uap, pid) == 0)
674 SCARG(uap, pid) = -q->p_pgid;
675 if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG))
676 return (EINVAL);
677
678 loop:
679 nfound = 0;
680 for (p = q->p_children.lh_first; p != 0; p = p->p_sibling.le_next) {
681 if (SCARG(uap, pid) != WAIT_ANY &&
682 p->p_pid != SCARG(uap, pid) &&
683 p->p_pgid != -SCARG(uap, pid))
684 continue;
685 nfound++;
686 if (p->p_stat == SZOMB) {
687 retval[0] = p->p_pid;
688
689 if (SCARG(uap, status)) {
690 status = p->p_xstat; /* convert to int */
691 error = copyout((caddr_t)&status,
692 (caddr_t)(u_long)SCARG(uap, status),
693 sizeof(status));
694 if (error)
695 return (error);
696 }
697 if (SCARG(uap, rusage)) {
698 netbsd32_from_rusage(p->p_ru, &ru32);
699 if ((error = copyout((caddr_t)&ru32,
700 (caddr_t)(u_long)SCARG(uap, rusage),
701 sizeof(struct netbsd32_rusage))))
702 return (error);
703 }
704 /*
705 * If we got the child via ptrace(2) or procfs, and
706 * the parent is different (meaning the process was
707 * attached, rather than run as a child), then we need
708 * to give it back to the old parent, and send the
709 * parent a SIGCHLD. The rest of the cleanup will be
710 * done when the old parent waits on the child.
711 */
712 if ((p->p_flag & P_TRACED) &&
713 p->p_oppid != p->p_pptr->p_pid) {
714 t = pfind(p->p_oppid);
715 proc_reparent(p, t ? t : initproc);
716 p->p_oppid = 0;
717 p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
718 psignal(p->p_pptr, SIGCHLD);
719 wakeup((caddr_t)p->p_pptr);
720 return (0);
721 }
722 p->p_xstat = 0;
723 ruadd(&q->p_stats->p_cru, p->p_ru);
724 pool_put(&rusage_pool, p->p_ru);
725
726 /*
727 * Finally finished with old proc entry.
728 * Unlink it from its process group and free it.
729 */
730 leavepgrp(p);
731
732 LIST_REMOVE(p, p_list); /* off zombproc */
733
734 LIST_REMOVE(p, p_sibling);
735
736 /*
737 * Decrement the count of procs running with this uid.
738 */
739 (void)chgproccnt(p->p_cred->p_ruid, -1);
740
741 /*
742 * Free up credentials.
743 */
744 if (--p->p_cred->p_refcnt == 0) {
745 crfree(p->p_cred->pc_ucred);
746 pool_put(&pcred_pool, p->p_cred);
747 }
748
749 /*
750 * Release reference to text vnode
751 */
752 if (p->p_textvp)
753 vrele(p->p_textvp);
754
755 pool_put(&proc_pool, p);
756 nprocs--;
757 return (0);
758 }
759 if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
760 (p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
761 p->p_flag |= P_WAITED;
762 retval[0] = p->p_pid;
763
764 if (SCARG(uap, status)) {
765 status = W_STOPCODE(p->p_xstat);
766 error = copyout((caddr_t)&status,
767 (caddr_t)(u_long)SCARG(uap, status),
768 sizeof(status));
769 } else
770 error = 0;
771 return (error);
772 }
773 }
774 if (nfound == 0)
775 return (ECHILD);
776 if (SCARG(uap, options) & WNOHANG) {
777 retval[0] = 0;
778 return (0);
779 }
780 if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
781 return (error);
782 goto loop;
783 }
784
785 int
786 netbsd32_link(p, v, retval)
787 struct proc *p;
788 void *v;
789 register_t *retval;
790 {
791 struct netbsd32_link_args /* {
792 syscallarg(const netbsd32_charp) path;
793 syscallarg(const netbsd32_charp) link;
794 } */ *uap = v;
795 struct sys_link_args ua;
796
797 NETBSD32TOP_UAP(path, const char);
798 NETBSD32TOP_UAP(link, const char);
799 return (sys_link(p, &ua, retval));
800 }
801
802 int
803 netbsd32_unlink(p, v, retval)
804 struct proc *p;
805 void *v;
806 register_t *retval;
807 {
808 struct netbsd32_unlink_args /* {
809 syscallarg(const netbsd32_charp) path;
810 } */ *uap = v;
811 struct sys_unlink_args ua;
812
813 NETBSD32TOP_UAP(path, const char);
814
815 return (sys_unlink(p, &ua, retval));
816 }
817
818 int
819 netbsd32_chdir(p, v, retval)
820 struct proc *p;
821 void *v;
822 register_t *retval;
823 {
824 struct netbsd32_chdir_args /* {
825 syscallarg(const netbsd32_charp) path;
826 } */ *uap = v;
827 struct sys_chdir_args ua;
828
829 NETBSD32TOP_UAP(path, const char);
830
831 return (sys_chdir(p, &ua, retval));
832 }
833
834 int
835 netbsd32_fchdir(p, v, retval)
836 struct proc *p;
837 void *v;
838 register_t *retval;
839 {
840 struct netbsd32_fchdir_args /* {
841 syscallarg(int) fd;
842 } */ *uap = v;
843 struct sys_fchdir_args ua;
844
845 NETBSD32TO64_UAP(fd);
846
847 return (sys_fchdir(p, &ua, retval));
848 }
849
850 int
851 netbsd32_mknod(p, v, retval)
852 struct proc *p;
853 void *v;
854 register_t *retval;
855 {
856 struct netbsd32_mknod_args /* {
857 syscallarg(const netbsd32_charp) path;
858 syscallarg(mode_t) mode;
859 syscallarg(dev_t) dev;
860 } */ *uap = v;
861 struct sys_mknod_args ua;
862
863 NETBSD32TOP_UAP(path, const char);
864 NETBSD32TO64_UAP(dev);
865 NETBSD32TO64_UAP(mode);
866
867 return (sys_mknod(p, &ua, retval));
868 }
869
870 int
871 netbsd32_chmod(p, v, retval)
872 struct proc *p;
873 void *v;
874 register_t *retval;
875 {
876 struct netbsd32_chmod_args /* {
877 syscallarg(const netbsd32_charp) path;
878 syscallarg(mode_t) mode;
879 } */ *uap = v;
880 struct sys_chmod_args ua;
881
882 NETBSD32TOP_UAP(path, const char);
883 NETBSD32TO64_UAP(mode);
884
885 return (sys_chmod(p, &ua, retval));
886 }
887
888 int
889 netbsd32_chown(p, v, retval)
890 struct proc *p;
891 void *v;
892 register_t *retval;
893 {
894 struct netbsd32_chown_args /* {
895 syscallarg(const netbsd32_charp) path;
896 syscallarg(uid_t) uid;
897 syscallarg(gid_t) gid;
898 } */ *uap = v;
899 struct sys_chown_args ua;
900
901 NETBSD32TOP_UAP(path, const char);
902 NETBSD32TO64_UAP(uid);
903 NETBSD32TO64_UAP(gid);
904
905 return (sys_chown(p, &ua, retval));
906 }
907
908 int
909 netbsd32_break(p, v, retval)
910 struct proc *p;
911 void *v;
912 register_t *retval;
913 {
914 struct netbsd32_break_args /* {
915 syscallarg(netbsd32_charp) nsize;
916 } */ *uap = v;
917 struct sys_obreak_args ua;
918
919 SCARG(&ua, nsize) = (char *)(u_long)SCARG(uap, nsize);
920 NETBSD32TOP_UAP(nsize, char);
921 return (sys_obreak(p, &ua, retval));
922 }
923
924 int
925 netbsd32_getfsstat(p, v, retval)
926 struct proc *p;
927 void *v;
928 register_t *retval;
929 {
930 struct netbsd32_getfsstat_args /* {
931 syscallarg(netbsd32_statfsp_t) buf;
932 syscallarg(netbsd32_long) bufsize;
933 syscallarg(int) flags;
934 } */ *uap = v;
935 struct sys_getfsstat_args ua;
936 struct statfs sb;
937 struct netbsd32_statfs *sb32p;
938 int error;
939
940 sb32p = (struct netbsd32_statfs *)(u_long)SCARG(uap, buf);
941 if (sb32p)
942 SCARG(&ua, buf) = &sb;
943 else
944 SCARG(&ua, buf) = NULL;
945 NETBSD32TOX_UAP(bufsize, long);
946 NETBSD32TO64_UAP(flags);
947 error = sys_getfsstat(p, &ua, retval);
948 if (error)
949 return (error);
950
951 if (sb32p) {
952 struct netbsd32_statfs sb32;
953 netbsd32_from_statfs(&sb, &sb32);
954 if (copyout(&sb32, sb32p, sizeof(sb32)))
955 return EFAULT;
956 }
957 return (0);
958 }
959
960 int
961 netbsd32_mount(p, v, retval)
962 struct proc *p;
963 void *v;
964 register_t *retval;
965 {
966 struct netbsd32_mount_args /* {
967 syscallarg(const netbsd32_charp) type;
968 syscallarg(const netbsd32_charp) path;
969 syscallarg(int) flags;
970 syscallarg(netbsd32_voidp) data;
971 } */ *uap = v;
972 struct sys_mount_args ua;
973
974 NETBSD32TOP_UAP(type, const char);
975 NETBSD32TOP_UAP(path, const char);
976 NETBSD32TO64_UAP(flags);
977 NETBSD32TOP_UAP(data, void);
978 return (sys_mount(p, &ua, retval));
979 }
980
981 int
982 netbsd32_unmount(p, v, retval)
983 struct proc *p;
984 void *v;
985 register_t *retval;
986 {
987 struct netbsd32_unmount_args /* {
988 syscallarg(const netbsd32_charp) path;
989 syscallarg(int) flags;
990 } */ *uap = v;
991 struct sys_unmount_args ua;
992
993 NETBSD32TOP_UAP(path, const char);
994 NETBSD32TO64_UAP(flags);
995 return (sys_unmount(p, &ua, retval));
996 }
997
998 int
999 netbsd32_setuid(p, v, retval)
1000 struct proc *p;
1001 void *v;
1002 register_t *retval;
1003 {
1004 struct netbsd32_setuid_args /* {
1005 syscallarg(uid_t) uid;
1006 } */ *uap = v;
1007 struct sys_setuid_args ua;
1008
1009 NETBSD32TO64_UAP(uid);
1010 return (sys_setuid(p, &ua, retval));
1011 }
1012
1013 int
1014 netbsd32_ptrace(p, v, retval)
1015 struct proc *p;
1016 void *v;
1017 register_t *retval;
1018 {
1019 struct netbsd32_ptrace_args /* {
1020 syscallarg(int) req;
1021 syscallarg(pid_t) pid;
1022 syscallarg(netbsd32_caddr_t) addr;
1023 syscallarg(int) data;
1024 } */ *uap = v;
1025 struct sys_ptrace_args ua;
1026
1027 NETBSD32TO64_UAP(req);
1028 NETBSD32TO64_UAP(pid);
1029 NETBSD32TOX64_UAP(addr, caddr_t);
1030 NETBSD32TO64_UAP(data);
1031 return (sys_ptrace(p, &ua, retval));
1032 }
1033
1034 int
1035 netbsd32_recvmsg(p, v, retval)
1036 struct proc *p;
1037 void *v;
1038 register_t *retval;
1039 {
1040 struct netbsd32_recvmsg_args /* {
1041 syscallarg(int) s;
1042 syscallarg(netbsd32_msghdrp_t) msg;
1043 syscallarg(int) flags;
1044 } */ *uap = v;
1045 struct netbsd32_msghdr msg;
1046 struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
1047 register int error;
1048
1049 error = copyin((caddr_t)(u_long)SCARG(uap, msg), (caddr_t)&msg,
1050 sizeof(msg));
1051 /* netbsd32_msghdr needs the iov pre-allocated */
1052 if (error)
1053 return (error);
1054 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1055 if ((u_int)msg.msg_iovlen > IOV_MAX)
1056 return (EMSGSIZE);
1057 MALLOC(iov, struct iovec *,
1058 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1059 M_WAITOK);
1060 } else if ((u_int)msg.msg_iovlen > 0)
1061 iov = aiov;
1062 else
1063 return (EMSGSIZE);
1064 #ifdef COMPAT_OLDSOCK
1065 msg.msg_flags = SCARG(uap, flags) &~ MSG_COMPAT;
1066 #else
1067 msg.msg_flags = SCARG(uap, flags);
1068 #endif
1069 uiov = (struct iovec *)(u_long)msg.msg_iov;
1070 error = netbsd32_to_iovecin((struct netbsd32_iovec *)uiov,
1071 iov, msg.msg_iovlen);
1072 if (error)
1073 goto done;
1074 if ((error = recvit32(p, SCARG(uap, s), &msg, iov, (caddr_t)0, retval)) == 0) {
1075 error = copyout((caddr_t)&msg, (caddr_t)(u_long)SCARG(uap, msg),
1076 sizeof(msg));
1077 }
1078 done:
1079 if (iov != aiov)
1080 FREE(iov, M_IOV);
1081 return (error);
1082 }
1083
1084 int
1085 recvit32(p, s, mp, iov, namelenp, retsize)
1086 struct proc *p;
1087 int s;
1088 struct netbsd32_msghdr *mp;
1089 struct iovec *iov;
1090 caddr_t namelenp;
1091 register_t *retsize;
1092 {
1093 struct file *fp;
1094 struct uio auio;
1095 register int i;
1096 int len, error;
1097 struct mbuf *from = 0, *control = 0;
1098 struct socket *so;
1099 #ifdef KTRACE
1100 struct iovec *ktriov = NULL;
1101 #endif
1102
1103 /* getsock() will use the descriptor for us */
1104 if ((error = getsock(p->p_fd, s, &fp)) != 0)
1105 return (error);
1106 auio.uio_iov = (struct iovec *)(u_long)mp->msg_iov;
1107 auio.uio_iovcnt = mp->msg_iovlen;
1108 auio.uio_segflg = UIO_USERSPACE;
1109 auio.uio_rw = UIO_READ;
1110 auio.uio_procp = p;
1111 auio.uio_offset = 0; /* XXX */
1112 auio.uio_resid = 0;
1113 for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1114 #if 0
1115 /* cannot happen iov_len is unsigned */
1116 if (iov->iov_len < 0) {
1117 error = EINVAL;
1118 goto out1;
1119 }
1120 #endif
1121 /*
1122 * Reads return ssize_t because -1 is returned on error.
1123 * Therefore we must restrict the length to SSIZE_MAX to
1124 * avoid garbage return values.
1125 */
1126 auio.uio_resid += iov->iov_len;
1127 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
1128 error = EINVAL;
1129 goto out1;
1130 }
1131 }
1132 #ifdef KTRACE
1133 if (KTRPOINT(p, KTR_GENIO)) {
1134 int iovlen = auio.uio_iovcnt * sizeof(struct iovec);
1135
1136 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
1137 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
1138 }
1139 #endif
1140 len = auio.uio_resid;
1141 so = (struct socket *)fp->f_data;
1142 error = (*so->so_receive)(so, &from, &auio, NULL,
1143 mp->msg_control ? &control : NULL, &mp->msg_flags);
1144 if (error) {
1145 if (auio.uio_resid != len && (error == ERESTART ||
1146 error == EINTR || error == EWOULDBLOCK))
1147 error = 0;
1148 }
1149 #ifdef KTRACE
1150 if (ktriov != NULL) {
1151 if (error == 0)
1152 ktrgenio(p->p_tracep, s, UIO_READ,
1153 ktriov, len - auio.uio_resid, error);
1154 FREE(ktriov, M_TEMP);
1155 }
1156 #endif
1157 if (error)
1158 goto out;
1159 *retsize = len - auio.uio_resid;
1160 if (mp->msg_name) {
1161 len = mp->msg_namelen;
1162 if (len <= 0 || from == 0)
1163 len = 0;
1164 else {
1165 #ifdef COMPAT_OLDSOCK
1166 if (mp->msg_flags & MSG_COMPAT)
1167 mtod(from, struct osockaddr *)->sa_family =
1168 mtod(from, struct sockaddr *)->sa_family;
1169 #endif
1170 if (len > from->m_len)
1171 len = from->m_len;
1172 /* else if len < from->m_len ??? */
1173 error = copyout(mtod(from, caddr_t),
1174 (caddr_t)(u_long)mp->msg_name, (unsigned)len);
1175 if (error)
1176 goto out;
1177 }
1178 mp->msg_namelen = len;
1179 if (namelenp &&
1180 (error = copyout((caddr_t)&len, namelenp, sizeof(int)))) {
1181 #ifdef COMPAT_OLDSOCK
1182 if (mp->msg_flags & MSG_COMPAT)
1183 error = 0; /* old recvfrom didn't check */
1184 else
1185 #endif
1186 goto out;
1187 }
1188 }
1189 if (mp->msg_control) {
1190 #ifdef COMPAT_OLDSOCK
1191 /*
1192 * We assume that old recvmsg calls won't receive access
1193 * rights and other control info, esp. as control info
1194 * is always optional and those options didn't exist in 4.3.
1195 * If we receive rights, trim the cmsghdr; anything else
1196 * is tossed.
1197 */
1198 if (control && mp->msg_flags & MSG_COMPAT) {
1199 if (mtod(control, struct cmsghdr *)->cmsg_level !=
1200 SOL_SOCKET ||
1201 mtod(control, struct cmsghdr *)->cmsg_type !=
1202 SCM_RIGHTS) {
1203 mp->msg_controllen = 0;
1204 goto out;
1205 }
1206 control->m_len -= sizeof(struct cmsghdr);
1207 control->m_data += sizeof(struct cmsghdr);
1208 }
1209 #endif
1210 len = mp->msg_controllen;
1211 if (len <= 0 || control == 0)
1212 len = 0;
1213 else {
1214 struct mbuf *m = control;
1215 caddr_t p = (caddr_t)(u_long)mp->msg_control;
1216
1217 do {
1218 i = m->m_len;
1219 if (len < i) {
1220 mp->msg_flags |= MSG_CTRUNC;
1221 i = len;
1222 }
1223 error = copyout(mtod(m, caddr_t), p,
1224 (unsigned)i);
1225 if (m->m_next)
1226 i = ALIGN(i);
1227 p += i;
1228 len -= i;
1229 if (error != 0 || len <= 0)
1230 break;
1231 } while ((m = m->m_next) != NULL);
1232 len = p - (caddr_t)(u_long)mp->msg_control;
1233 }
1234 mp->msg_controllen = len;
1235 }
1236 out:
1237 if (from)
1238 m_freem(from);
1239 if (control)
1240 m_freem(control);
1241 out1:
1242 FILE_UNUSE(fp, p);
1243 return (error);
1244 }
1245
1246
1247 int
1248 netbsd32_sendmsg(p, v, retval)
1249 struct proc *p;
1250 void *v;
1251 register_t *retval;
1252 {
1253 struct netbsd32_sendmsg_args /* {
1254 syscallarg(int) s;
1255 syscallarg(const netbsd32_msghdrp_t) msg;
1256 syscallarg(int) flags;
1257 } */ *uap = v;
1258 struct msghdr msg;
1259 struct netbsd32_msghdr msg32;
1260 struct iovec aiov[UIO_SMALLIOV], *iov;
1261 int error;
1262
1263 error = copyin((caddr_t)(u_long)SCARG(uap, msg),
1264 (caddr_t)&msg32, sizeof(msg32));
1265 if (error)
1266 return (error);
1267 netbsd32_to_msghdr(&msg32, &msg);
1268 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1269 if ((u_int)msg.msg_iovlen > IOV_MAX)
1270 return (EMSGSIZE);
1271 MALLOC(iov, struct iovec *,
1272 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1273 M_WAITOK);
1274 } else if ((u_int)msg.msg_iovlen > 0)
1275 iov = aiov;
1276 else
1277 return (EMSGSIZE);
1278 error = netbsd32_to_iovecin((struct netbsd32_iovec *)msg.msg_iov,
1279 iov, msg.msg_iovlen);
1280 if (error)
1281 goto done;
1282 msg.msg_iov = iov;
1283 #ifdef COMPAT_OLDSOCK
1284 msg.msg_flags = 0;
1285 #endif
1286 /* Luckily we can use this directly */
1287 error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval);
1288 done:
1289 if (iov != aiov)
1290 FREE(iov, M_IOV);
1291 return (error);
1292 }
1293
1294 int
1295 netbsd32_recvfrom(p, v, retval)
1296 struct proc *p;
1297 void *v;
1298 register_t *retval;
1299 {
1300 struct netbsd32_recvfrom_args /* {
1301 syscallarg(int) s;
1302 syscallarg(netbsd32_voidp) buf;
1303 syscallarg(netbsd32_size_t) len;
1304 syscallarg(int) flags;
1305 syscallarg(netbsd32_sockaddrp_t) from;
1306 syscallarg(netbsd32_intp) fromlenaddr;
1307 } */ *uap = v;
1308 struct netbsd32_msghdr msg;
1309 struct iovec aiov;
1310 int error;
1311
1312 if (SCARG(uap, fromlenaddr)) {
1313 error = copyin((caddr_t)(u_long)SCARG(uap, fromlenaddr),
1314 (caddr_t)&msg.msg_namelen,
1315 sizeof(msg.msg_namelen));
1316 if (error)
1317 return (error);
1318 } else
1319 msg.msg_namelen = 0;
1320 msg.msg_name = SCARG(uap, from);
1321 msg.msg_iov = NULL; /* We can't store a real pointer here */
1322 msg.msg_iovlen = 1;
1323 aiov.iov_base = (caddr_t)(u_long)SCARG(uap, buf);
1324 aiov.iov_len = (u_long)SCARG(uap, len);
1325 msg.msg_control = 0;
1326 msg.msg_flags = SCARG(uap, flags);
1327 return (recvit32(p, SCARG(uap, s), &msg, &aiov,
1328 (caddr_t)(u_long)SCARG(uap, fromlenaddr), retval));
1329 }
1330
1331 int
1332 netbsd32_sendto(p, v, retval)
1333 struct proc *p;
1334 void *v;
1335 register_t *retval;
1336 {
1337 struct netbsd32_sendto_args /* {
1338 syscallarg(int) s;
1339 syscallarg(const netbsd32_voidp) buf;
1340 syscallarg(netbsd32_size_t) len;
1341 syscallarg(int) flags;
1342 syscallarg(const netbsd32_sockaddrp_t) to;
1343 syscallarg(int) tolen;
1344 } */ *uap = v;
1345 struct msghdr msg;
1346 struct iovec aiov;
1347
1348 msg.msg_name = (caddr_t)(u_long)SCARG(uap, to); /* XXX kills const */
1349 msg.msg_namelen = SCARG(uap, tolen);
1350 msg.msg_iov = &aiov;
1351 msg.msg_iovlen = 1;
1352 msg.msg_control = 0;
1353 #ifdef COMPAT_OLDSOCK
1354 msg.msg_flags = 0;
1355 #endif
1356 aiov.iov_base = (char *)(u_long)SCARG(uap, buf); /* XXX kills const */
1357 aiov.iov_len = SCARG(uap, len);
1358 return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval));
1359 }
1360
1361 int
1362 netbsd32_accept(p, v, retval)
1363 struct proc *p;
1364 void *v;
1365 register_t *retval;
1366 {
1367 struct netbsd32_accept_args /* {
1368 syscallarg(int) s;
1369 syscallarg(netbsd32_sockaddrp_t) name;
1370 syscallarg(netbsd32_intp) anamelen;
1371 } */ *uap = v;
1372 struct sys_accept_args ua;
1373
1374 NETBSD32TO64_UAP(s);
1375 NETBSD32TOP_UAP(name, struct sockaddr);
1376 NETBSD32TOP_UAP(anamelen, int);
1377 return (sys_accept(p, &ua, retval));
1378 }
1379
1380 int
1381 netbsd32_getpeername(p, v, retval)
1382 struct proc *p;
1383 void *v;
1384 register_t *retval;
1385 {
1386 struct netbsd32_getpeername_args /* {
1387 syscallarg(int) fdes;
1388 syscallarg(netbsd32_sockaddrp_t) asa;
1389 syscallarg(netbsd32_intp) alen;
1390 } */ *uap = v;
1391 struct sys_getpeername_args ua;
1392
1393 NETBSD32TO64_UAP(fdes);
1394 NETBSD32TOP_UAP(asa, struct sockaddr);
1395 NETBSD32TOP_UAP(alen, int);
1396 /* NB: do the protocol specific sockaddrs need to be converted? */
1397 return (sys_getpeername(p, &ua, retval));
1398 }
1399
1400 int
1401 netbsd32_getsockname(p, v, retval)
1402 struct proc *p;
1403 void *v;
1404 register_t *retval;
1405 {
1406 struct netbsd32_getsockname_args /* {
1407 syscallarg(int) fdes;
1408 syscallarg(netbsd32_sockaddrp_t) asa;
1409 syscallarg(netbsd32_intp) alen;
1410 } */ *uap = v;
1411 struct sys_getsockname_args ua;
1412
1413 NETBSD32TO64_UAP(fdes);
1414 NETBSD32TOP_UAP(asa, struct sockaddr);
1415 NETBSD32TOP_UAP(alen, int);
1416 return (sys_getsockname(p, &ua, retval));
1417 }
1418
1419 int
1420 netbsd32_access(p, v, retval)
1421 struct proc *p;
1422 void *v;
1423 register_t *retval;
1424 {
1425 struct netbsd32_access_args /* {
1426 syscallarg(const netbsd32_charp) path;
1427 syscallarg(int) flags;
1428 } */ *uap = v;
1429 struct sys_access_args ua;
1430 caddr_t sg;
1431
1432 NETBSD32TOP_UAP(path, const char);
1433 NETBSD32TO64_UAP(flags);
1434 sg = stackgap_init(p->p_emul);
1435 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1436
1437 return (sys_access(p, &ua, retval));
1438 }
1439
1440 int
1441 netbsd32_chflags(p, v, retval)
1442 struct proc *p;
1443 void *v;
1444 register_t *retval;
1445 {
1446 struct netbsd32_chflags_args /* {
1447 syscallarg(const netbsd32_charp) path;
1448 syscallarg(netbsd32_u_long) flags;
1449 } */ *uap = v;
1450 struct sys_chflags_args ua;
1451
1452 NETBSD32TOP_UAP(path, const char);
1453 NETBSD32TO64_UAP(flags);
1454
1455 return (sys_chflags(p, &ua, retval));
1456 }
1457
1458 int
1459 netbsd32_fchflags(p, v, retval)
1460 struct proc *p;
1461 void *v;
1462 register_t *retval;
1463 {
1464 struct netbsd32_fchflags_args /* {
1465 syscallarg(int) fd;
1466 syscallarg(netbsd32_u_long) flags;
1467 } */ *uap = v;
1468 struct sys_fchflags_args ua;
1469
1470 NETBSD32TO64_UAP(fd);
1471 NETBSD32TO64_UAP(flags);
1472
1473 return (sys_fchflags(p, &ua, retval));
1474 }
1475
1476 int
1477 netbsd32_kill(p, v, retval)
1478 struct proc *p;
1479 void *v;
1480 register_t *retval;
1481 {
1482 struct netbsd32_kill_args /* {
1483 syscallarg(int) pid;
1484 syscallarg(int) signum;
1485 } */ *uap = v;
1486 struct sys_kill_args ua;
1487
1488 NETBSD32TO64_UAP(pid);
1489 NETBSD32TO64_UAP(signum);
1490
1491 return (sys_kill(p, &ua, retval));
1492 }
1493
1494 int
1495 netbsd32_dup(p, v, retval)
1496 struct proc *p;
1497 void *v;
1498 register_t *retval;
1499 {
1500 struct netbsd32_dup_args /* {
1501 syscallarg(int) fd;
1502 } */ *uap = v;
1503 struct sys_dup_args ua;
1504
1505 NETBSD32TO64_UAP(fd);
1506
1507 return (sys_dup(p, &ua, retval));
1508 }
1509
1510 int
1511 netbsd32_profil(p, v, retval)
1512 struct proc *p;
1513 void *v;
1514 register_t *retval;
1515 {
1516 struct netbsd32_profil_args /* {
1517 syscallarg(netbsd32_caddr_t) samples;
1518 syscallarg(netbsd32_size_t) size;
1519 syscallarg(netbsd32_u_long) offset;
1520 syscallarg(u_int) scale;
1521 } */ *uap = v;
1522 struct sys_profil_args ua;
1523
1524 NETBSD32TOX64_UAP(samples, caddr_t);
1525 NETBSD32TOX_UAP(size, size_t);
1526 NETBSD32TOX_UAP(offset, u_long);
1527 NETBSD32TO64_UAP(scale);
1528 return (sys_profil(p, &ua, retval));
1529 }
1530
1531 int
1532 netbsd32_ktrace(p, v, retval)
1533 struct proc *p;
1534 void *v;
1535 register_t *retval;
1536 {
1537 struct netbsd32_ktrace_args /* {
1538 syscallarg(const netbsd32_charp) fname;
1539 syscallarg(int) ops;
1540 syscallarg(int) facs;
1541 syscallarg(int) pid;
1542 } */ *uap = v;
1543 struct sys_ktrace_args ua;
1544
1545 NETBSD32TOP_UAP(fname, const char);
1546 NETBSD32TO64_UAP(ops);
1547 NETBSD32TO64_UAP(facs);
1548 NETBSD32TO64_UAP(pid);
1549 return (sys_ktrace(p, &ua, retval));
1550 }
1551
1552 int
1553 netbsd32_sigaction(p, v, retval)
1554 struct proc *p;
1555 void *v;
1556 register_t *retval;
1557 {
1558 struct netbsd32_sigaction_args /* {
1559 syscallarg(int) signum;
1560 syscallarg(const netbsd32_sigactionp_t) nsa;
1561 syscallarg(netbsd32_sigactionp_t) osa;
1562 } */ *uap = v;
1563 struct sigaction nsa, osa;
1564 struct netbsd32_sigaction *sa32p, sa32;
1565 int error;
1566
1567 if (SCARG(uap, nsa)) {
1568 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, nsa);
1569 if (copyin(sa32p, &sa32, sizeof(sa32)))
1570 return EFAULT;
1571 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
1572 nsa.sa_mask = sa32.sa_mask;
1573 nsa.sa_flags = sa32.sa_flags;
1574 }
1575 error = sigaction1(p, SCARG(uap, signum),
1576 SCARG(uap, nsa) ? &nsa : 0,
1577 SCARG(uap, osa) ? &osa : 0);
1578
1579 if (error)
1580 return (error);
1581
1582 if (SCARG(uap, osa)) {
1583 sa32.sa_handler = (netbsd32_sigactionp_t)(u_long)osa.sa_handler;
1584 sa32.sa_mask = osa.sa_mask;
1585 sa32.sa_flags = osa.sa_flags;
1586 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, osa);
1587 if (copyout(&sa32, sa32p, sizeof(sa32)))
1588 return EFAULT;
1589 }
1590
1591 return (0);
1592 }
1593
1594 int
1595 netbsd32___getlogin(p, v, retval)
1596 struct proc *p;
1597 void *v;
1598 register_t *retval;
1599 {
1600 struct netbsd32___getlogin_args /* {
1601 syscallarg(netbsd32_charp) namebuf;
1602 syscallarg(u_int) namelen;
1603 } */ *uap = v;
1604 struct sys___getlogin_args ua;
1605
1606 NETBSD32TOP_UAP(namebuf, char);
1607 NETBSD32TO64_UAP(namelen);
1608 return (sys___getlogin(p, &ua, retval));
1609 }
1610
1611 int
1612 netbsd32_setlogin(p, v, retval)
1613 struct proc *p;
1614 void *v;
1615 register_t *retval;
1616 {
1617 struct netbsd32_setlogin_args /* {
1618 syscallarg(const netbsd32_charp) namebuf;
1619 } */ *uap = v;
1620 struct sys_setlogin_args ua;
1621
1622 NETBSD32TOP_UAP(namebuf, char);
1623 return (sys_setlogin(p, &ua, retval));
1624 }
1625
1626 int
1627 netbsd32_acct(p, v, retval)
1628 struct proc *p;
1629 void *v;
1630 register_t *retval;
1631 {
1632 struct netbsd32_acct_args /* {
1633 syscallarg(const netbsd32_charp) path;
1634 } */ *uap = v;
1635 struct sys_acct_args ua;
1636
1637 NETBSD32TOP_UAP(path, const char);
1638 return (sys_acct(p, &ua, retval));
1639 }
1640
1641 int
1642 netbsd32_revoke(p, v, retval)
1643 struct proc *p;
1644 void *v;
1645 register_t *retval;
1646 {
1647 struct netbsd32_revoke_args /* {
1648 syscallarg(const netbsd32_charp) path;
1649 } */ *uap = v;
1650 struct sys_revoke_args ua;
1651 caddr_t sg;
1652
1653 NETBSD32TOP_UAP(path, const char);
1654 sg = stackgap_init(p->p_emul);
1655 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1656
1657 return (sys_revoke(p, &ua, retval));
1658 }
1659
1660 int
1661 netbsd32_symlink(p, v, retval)
1662 struct proc *p;
1663 void *v;
1664 register_t *retval;
1665 {
1666 struct netbsd32_symlink_args /* {
1667 syscallarg(const netbsd32_charp) path;
1668 syscallarg(const netbsd32_charp) link;
1669 } */ *uap = v;
1670 struct sys_symlink_args ua;
1671
1672 NETBSD32TOP_UAP(path, const char);
1673 NETBSD32TOP_UAP(link, const char);
1674
1675 return (sys_symlink(p, &ua, retval));
1676 }
1677
1678 int
1679 netbsd32_readlink(p, v, retval)
1680 struct proc *p;
1681 void *v;
1682 register_t *retval;
1683 {
1684 struct netbsd32_readlink_args /* {
1685 syscallarg(const netbsd32_charp) path;
1686 syscallarg(netbsd32_charp) buf;
1687 syscallarg(netbsd32_size_t) count;
1688 } */ *uap = v;
1689 struct sys_readlink_args ua;
1690 caddr_t sg;
1691
1692 NETBSD32TOP_UAP(path, const char);
1693 NETBSD32TOP_UAP(buf, char);
1694 NETBSD32TOX_UAP(count, size_t);
1695 sg = stackgap_init(p->p_emul);
1696 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1697
1698 return (sys_readlink(p, &ua, retval));
1699 }
1700
1701 /*
1702 * Need to completly reimplement this syscall due to argument copying.
1703 */
1704 int
1705 netbsd32_execve(p, v, retval)
1706 struct proc *p;
1707 void *v;
1708 register_t *retval;
1709 {
1710 struct netbsd32_execve_args /* {
1711 syscallarg(const netbsd32_charp) path;
1712 syscallarg(netbsd32_charpp) argp;
1713 syscallarg(netbsd32_charpp) envp;
1714 } */ *uap = v;
1715 struct sys_execve_args ua;
1716 caddr_t sg;
1717 /* Function args */
1718 int error, i;
1719 struct exec_package pack;
1720 struct nameidata nid;
1721 struct vattr attr;
1722 struct ucred *cred = p->p_ucred;
1723 char *argp;
1724 netbsd32_charp const *cpp;
1725 char *dp;
1726 netbsd32_charp sp;
1727 long argc, envc;
1728 size_t len;
1729 char *stack;
1730 struct ps_strings arginfo;
1731 struct vmspace *vm;
1732 char **tmpfap;
1733 int szsigcode;
1734 extern struct emul emul_netbsd;
1735
1736
1737 NETBSD32TOP_UAP(path, const char);
1738 NETBSD32TOP_UAP(argp, char *);
1739 NETBSD32TOP_UAP(envp, char *);
1740 sg = stackgap_init(p->p_emul);
1741 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1742
1743 /*
1744 * figure out the maximum size of an exec header, if necessary.
1745 * XXX should be able to keep LKM code from modifying exec switch
1746 * when we're still using it, but...
1747 */
1748 if (exec_maxhdrsz == 0) {
1749 for (i = 0; i < nexecs; i++)
1750 if (execsw[i].es_check != NULL
1751 && execsw[i].es_hdrsz > exec_maxhdrsz)
1752 exec_maxhdrsz = execsw[i].es_hdrsz;
1753 }
1754
1755 /* init the namei data to point the file user's program name */
1756 /* XXX cgd 960926: why do this here? most will be clobbered. */
1757 NDINIT(&nid, LOOKUP, NOFOLLOW, UIO_USERSPACE, SCARG(&ua, path), p);
1758
1759 /*
1760 * initialize the fields of the exec package.
1761 */
1762 pack.ep_name = SCARG(&ua, path);
1763 MALLOC(pack.ep_hdr, void *, exec_maxhdrsz, M_EXEC, M_WAITOK);
1764 pack.ep_hdrlen = exec_maxhdrsz;
1765 pack.ep_hdrvalid = 0;
1766 pack.ep_ndp = &nid;
1767 pack.ep_emul_arg = NULL;
1768 pack.ep_vmcmds.evs_cnt = 0;
1769 pack.ep_vmcmds.evs_used = 0;
1770 pack.ep_vap = &attr;
1771 pack.ep_emul = &emul_netbsd;
1772 pack.ep_flags = 0;
1773
1774 /* see if we can run it. */
1775 if ((error = check_exec(p, &pack)) != 0)
1776 goto freehdr;
1777
1778 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
1779
1780 /* allocate an argument buffer */
1781 argp = (char *) uvm_km_valloc_wait(exec_map, NCARGS);
1782 #ifdef DIAGNOSTIC
1783 if (argp == (vaddr_t) 0)
1784 panic("execve: argp == NULL");
1785 #endif
1786 dp = argp;
1787 argc = 0;
1788
1789 /* copy the fake args list, if there's one, freeing it as we go */
1790 if (pack.ep_flags & EXEC_HASARGL) {
1791 tmpfap = pack.ep_fa;
1792 while (*tmpfap != NULL) {
1793 char *cp;
1794
1795 cp = *tmpfap;
1796 while (*cp)
1797 *dp++ = *cp++;
1798 dp++;
1799
1800 FREE(*tmpfap, M_EXEC);
1801 tmpfap++; argc++;
1802 }
1803 FREE(pack.ep_fa, M_EXEC);
1804 pack.ep_flags &= ~EXEC_HASARGL;
1805 }
1806
1807 /* Now get argv & environment */
1808 if (!(cpp = (netbsd32_charp *)SCARG(&ua, argp))) {
1809 error = EINVAL;
1810 goto bad;
1811 }
1812
1813 if (pack.ep_flags & EXEC_SKIPARG)
1814 cpp++;
1815
1816 while (1) {
1817 len = argp + ARG_MAX - dp;
1818 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1819 goto bad;
1820 if (!sp)
1821 break;
1822 if ((error = copyinstr((char *)(u_long)sp, dp,
1823 len, &len)) != 0) {
1824 if (error == ENAMETOOLONG)
1825 error = E2BIG;
1826 goto bad;
1827 }
1828 dp += len;
1829 cpp++;
1830 argc++;
1831 }
1832
1833 envc = 0;
1834 /* environment need not be there */
1835 if ((cpp = (netbsd32_charp *)SCARG(&ua, envp)) != NULL ) {
1836 while (1) {
1837 len = argp + ARG_MAX - dp;
1838 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1839 goto bad;
1840 if (!sp)
1841 break;
1842 if ((error = copyinstr((char *)(u_long)sp,
1843 dp, len, &len)) != 0) {
1844 if (error == ENAMETOOLONG)
1845 error = E2BIG;
1846 goto bad;
1847 }
1848 dp += len;
1849 cpp++;
1850 envc++;
1851 }
1852 }
1853
1854 dp = (char *) ALIGN(dp);
1855
1856 szsigcode = pack.ep_emul->e_esigcode - pack.ep_emul->e_sigcode;
1857
1858 /* Now check if args & environ fit into new stack */
1859 if (pack.ep_flags & EXEC_32)
1860 len = ((argc + envc + 2 + pack.ep_emul->e_arglen) * sizeof(char *) +
1861 sizeof(int) + dp + STACKGAPLEN + szsigcode +
1862 sizeof(struct ps_strings)) - argp;
1863 else
1864 len = ((argc + envc + 2 + pack.ep_emul->e_arglen) * sizeof(int) +
1865 sizeof(int) + dp + STACKGAPLEN + szsigcode +
1866 sizeof(struct ps_strings)) - argp;
1867
1868 len = ALIGN(len); /* make the stack "safely" aligned */
1869
1870 if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
1871 error = ENOMEM;
1872 goto bad;
1873 }
1874
1875 /* adjust "active stack depth" for process VSZ */
1876 pack.ep_ssize = len; /* maybe should go elsewhere, but... */
1877
1878 /*
1879 * Do whatever is necessary to prepare the address space
1880 * for remapping. Note that this might replace the current
1881 * vmspace with another!
1882 */
1883 uvmspace_exec(p);
1884
1885 /* Now map address space */
1886 vm = p->p_vmspace;
1887 vm->vm_taddr = (char *) pack.ep_taddr;
1888 vm->vm_tsize = btoc(pack.ep_tsize);
1889 vm->vm_daddr = (char *) pack.ep_daddr;
1890 vm->vm_dsize = btoc(pack.ep_dsize);
1891 vm->vm_ssize = btoc(pack.ep_ssize);
1892 vm->vm_maxsaddr = (char *) pack.ep_maxsaddr;
1893
1894 /* create the new process's VM space by running the vmcmds */
1895 #ifdef DIAGNOSTIC
1896 if (pack.ep_vmcmds.evs_used == 0)
1897 panic("execve: no vmcmds");
1898 #endif
1899 for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
1900 struct exec_vmcmd *vcp;
1901
1902 vcp = &pack.ep_vmcmds.evs_cmds[i];
1903 error = (*vcp->ev_proc)(p, vcp);
1904 }
1905
1906 /* free the vmspace-creation commands, and release their references */
1907 kill_vmcmds(&pack.ep_vmcmds);
1908
1909 /* if an error happened, deallocate and punt */
1910 if (error)
1911 goto exec_abort;
1912
1913 /* remember information about the process */
1914 arginfo.ps_nargvstr = argc;
1915 arginfo.ps_nenvstr = envc;
1916
1917 stack = (char *) (USRSTACK - len);
1918 /* Now copy argc, args & environ to new stack */
1919 if (!(*pack.ep_emul->e_copyargs)(&pack, &arginfo, stack, argp))
1920 goto exec_abort;
1921
1922 /* copy out the process's ps_strings structure */
1923 if (copyout(&arginfo, (char *) PS_STRINGS, sizeof(arginfo)))
1924 goto exec_abort;
1925
1926 /* copy out the process's signal trapoline code */
1927 if (szsigcode) {
1928 if (copyout((char *)pack.ep_emul->e_sigcode,
1929 p->p_sigacts->ps_sigcode = (char *)PS_STRINGS - szsigcode,
1930 szsigcode))
1931 goto exec_abort;
1932 #ifdef PMAP_NEED_PROCWR
1933 /* This is code. Let the pmap do what is needed. */
1934 pmap_procwr(p, (vaddr_t)p->p_sigacts->ps_sigcode, szsigcode);
1935 #endif
1936 }
1937
1938 stopprofclock(p); /* stop profiling */
1939 fdcloseexec(p); /* handle close on exec */
1940 execsigs(p); /* reset catched signals */
1941 p->p_ctxlink = NULL; /* reset ucontext link */
1942
1943 /* set command name & other accounting info */
1944 len = min(nid.ni_cnd.cn_namelen, MAXCOMLEN);
1945 memcpy(p->p_comm, nid.ni_cnd.cn_nameptr, len);
1946 p->p_comm[len] = 0;
1947 p->p_acflag &= ~AFORK;
1948
1949 /* record proc's vnode, for use by procfs and others */
1950 if (p->p_textvp)
1951 vrele(p->p_textvp);
1952 VREF(pack.ep_vp);
1953 p->p_textvp = pack.ep_vp;
1954
1955 p->p_flag |= P_EXEC;
1956 if (p->p_flag & P_PPWAIT) {
1957 p->p_flag &= ~P_PPWAIT;
1958 wakeup((caddr_t) p->p_pptr);
1959 }
1960
1961 /*
1962 * deal with set[ug]id.
1963 * MNT_NOSUID and P_TRACED have already been used to disable s[ug]id.
1964 */
1965 if (((attr.va_mode & S_ISUID) != 0 && p->p_ucred->cr_uid != attr.va_uid)
1966 || ((attr.va_mode & S_ISGID) != 0 && p->p_ucred->cr_gid != attr.va_gid)){
1967 p->p_ucred = crcopy(cred);
1968 #ifdef KTRACE
1969 /*
1970 * If process is being ktraced, turn off - unless
1971 * root set it.
1972 */
1973 if (p->p_tracep && !(p->p_traceflag & KTRFAC_ROOT))
1974 ktrderef(p);
1975 #endif
1976 if (attr.va_mode & S_ISUID)
1977 p->p_ucred->cr_uid = attr.va_uid;
1978 if (attr.va_mode & S_ISGID)
1979 p->p_ucred->cr_gid = attr.va_gid;
1980 p_sugid(p);
1981 } else
1982 p->p_flag &= ~P_SUGID;
1983 p->p_cred->p_svuid = p->p_ucred->cr_uid;
1984 p->p_cred->p_svgid = p->p_ucred->cr_gid;
1985
1986 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
1987
1988 FREE(nid.ni_cnd.cn_pnbuf, M_NAMEI);
1989 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
1990 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
1991 vput(pack.ep_vp);
1992
1993 /* setup new registers and do misc. setup. */
1994 (*pack.ep_emul->e_setregs)(p, &pack, (u_long) stack);
1995
1996 if (p->p_flag & P_TRACED)
1997 psignal(p, SIGTRAP);
1998
1999 p->p_emul = pack.ep_emul;
2000 FREE(pack.ep_hdr, M_EXEC);
2001
2002 #ifdef KTRACE
2003 if (KTRPOINT(p, KTR_EMUL))
2004 ktremul(p->p_tracep, p, p->p_emul->e_name);
2005 #endif
2006
2007 return (EJUSTRETURN);
2008
2009 bad:
2010 /* free the vmspace-creation commands, and release their references */
2011 kill_vmcmds(&pack.ep_vmcmds);
2012 /* kill any opened file descriptor, if necessary */
2013 if (pack.ep_flags & EXEC_HASFD) {
2014 pack.ep_flags &= ~EXEC_HASFD;
2015 (void) fdrelease(p, pack.ep_fd);
2016 }
2017 /* close and put the exec'd file */
2018 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2019 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2020 vput(pack.ep_vp);
2021 FREE(nid.ni_cnd.cn_pnbuf, M_NAMEI);
2022 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2023
2024 freehdr:
2025 FREE(pack.ep_hdr, M_EXEC);
2026 return error;
2027
2028 exec_abort:
2029 /*
2030 * the old process doesn't exist anymore. exit gracefully.
2031 * get rid of the (new) address space we have created, if any, get rid
2032 * of our namei data and vnode, and exit noting failure
2033 */
2034 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
2035 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
2036 if (pack.ep_emul_arg)
2037 FREE(pack.ep_emul_arg, M_TEMP);
2038 FREE(nid.ni_cnd.cn_pnbuf, M_NAMEI);
2039 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2040 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2041 vput(pack.ep_vp);
2042 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2043 FREE(pack.ep_hdr, M_EXEC);
2044 exit1(p, W_EXITCODE(0, SIGABRT));
2045 exit1(p, -1);
2046
2047 /* NOTREACHED */
2048 return 0;
2049 }
2050
2051 int
2052 netbsd32_umask(p, v, retval)
2053 struct proc *p;
2054 void *v;
2055 register_t *retval;
2056 {
2057 struct netbsd32_umask_args /* {
2058 syscallarg(mode_t) newmask;
2059 } */ *uap = v;
2060 struct sys_umask_args ua;
2061
2062 NETBSD32TO64_UAP(newmask);
2063 return (sys_umask(p, &ua, retval));
2064 }
2065
2066 int
2067 netbsd32_chroot(p, v, retval)
2068 struct proc *p;
2069 void *v;
2070 register_t *retval;
2071 {
2072 struct netbsd32_chroot_args /* {
2073 syscallarg(const netbsd32_charp) path;
2074 } */ *uap = v;
2075 struct sys_chroot_args ua;
2076
2077 NETBSD32TOP_UAP(path, const char);
2078 return (sys_chroot(p, &ua, retval));
2079 }
2080
2081 int
2082 netbsd32_sbrk(p, v, retval)
2083 struct proc *p;
2084 void *v;
2085 register_t *retval;
2086 {
2087 struct netbsd32_sbrk_args /* {
2088 syscallarg(int) incr;
2089 } */ *uap = v;
2090 struct sys_sbrk_args ua;
2091
2092 NETBSD32TO64_UAP(incr);
2093 return (sys_sbrk(p, &ua, retval));
2094 }
2095
2096 int
2097 netbsd32_sstk(p, v, retval)
2098 struct proc *p;
2099 void *v;
2100 register_t *retval;
2101 {
2102 struct netbsd32_sstk_args /* {
2103 syscallarg(int) incr;
2104 } */ *uap = v;
2105 struct sys_sstk_args ua;
2106
2107 NETBSD32TO64_UAP(incr);
2108 return (sys_sstk(p, &ua, retval));
2109 }
2110
2111 int
2112 netbsd32_munmap(p, v, retval)
2113 struct proc *p;
2114 void *v;
2115 register_t *retval;
2116 {
2117 struct netbsd32_munmap_args /* {
2118 syscallarg(netbsd32_voidp) addr;
2119 syscallarg(netbsd32_size_t) len;
2120 } */ *uap = v;
2121 struct sys_munmap_args ua;
2122
2123 NETBSD32TOP_UAP(addr, void);
2124 NETBSD32TOX_UAP(len, size_t);
2125 return (sys_munmap(p, &ua, retval));
2126 }
2127
2128 int
2129 netbsd32_mprotect(p, v, retval)
2130 struct proc *p;
2131 void *v;
2132 register_t *retval;
2133 {
2134 struct netbsd32_mprotect_args /* {
2135 syscallarg(netbsd32_voidp) addr;
2136 syscallarg(netbsd32_size_t) len;
2137 syscallarg(int) prot;
2138 } */ *uap = v;
2139 struct sys_mprotect_args ua;
2140
2141 NETBSD32TOP_UAP(addr, void);
2142 NETBSD32TOX_UAP(len, size_t);
2143 NETBSD32TO64_UAP(prot);
2144 return (sys_mprotect(p, &ua, retval));
2145 }
2146
2147 int
2148 netbsd32_madvise(p, v, retval)
2149 struct proc *p;
2150 void *v;
2151 register_t *retval;
2152 {
2153 struct netbsd32_madvise_args /* {
2154 syscallarg(netbsd32_voidp) addr;
2155 syscallarg(netbsd32_size_t) len;
2156 syscallarg(int) behav;
2157 } */ *uap = v;
2158 struct sys_madvise_args ua;
2159
2160 NETBSD32TOP_UAP(addr, void);
2161 NETBSD32TOX_UAP(len, size_t);
2162 NETBSD32TO64_UAP(behav);
2163 return (sys_madvise(p, &ua, retval));
2164 }
2165
2166 int
2167 netbsd32_mincore(p, v, retval)
2168 struct proc *p;
2169 void *v;
2170 register_t *retval;
2171 {
2172 struct netbsd32_mincore_args /* {
2173 syscallarg(netbsd32_caddr_t) addr;
2174 syscallarg(netbsd32_size_t) len;
2175 syscallarg(netbsd32_charp) vec;
2176 } */ *uap = v;
2177 struct sys_mincore_args ua;
2178
2179 NETBSD32TOX64_UAP(addr, caddr_t);
2180 NETBSD32TOX_UAP(len, size_t);
2181 NETBSD32TOP_UAP(vec, char);
2182 return (sys_mincore(p, &ua, retval));
2183 }
2184
2185 int
2186 netbsd32_getgroups(p, v, retval)
2187 struct proc *p;
2188 void *v;
2189 register_t *retval;
2190 {
2191 struct netbsd32_getgroups_args /* {
2192 syscallarg(int) gidsetsize;
2193 syscallarg(netbsd32_gid_tp) gidset;
2194 } */ *uap = v;
2195 register struct pcred *pc = p->p_cred;
2196 register int ngrp;
2197 int error;
2198
2199 ngrp = SCARG(uap, gidsetsize);
2200 if (ngrp == 0) {
2201 *retval = pc->pc_ucred->cr_ngroups;
2202 return (0);
2203 }
2204 if (ngrp < pc->pc_ucred->cr_ngroups)
2205 return (EINVAL);
2206 ngrp = pc->pc_ucred->cr_ngroups;
2207 /* Should convert gid_t to netbsd32_gid_t, but they're the same */
2208 error = copyout((caddr_t)pc->pc_ucred->cr_groups,
2209 (caddr_t)(u_long)SCARG(uap, gidset),
2210 ngrp * sizeof(gid_t));
2211 if (error)
2212 return (error);
2213 *retval = ngrp;
2214 return (0);
2215 }
2216
2217 int
2218 netbsd32_setgroups(p, v, retval)
2219 struct proc *p;
2220 void *v;
2221 register_t *retval;
2222 {
2223 struct netbsd32_setgroups_args /* {
2224 syscallarg(int) gidsetsize;
2225 syscallarg(const netbsd32_gid_tp) gidset;
2226 } */ *uap = v;
2227 struct sys_setgroups_args ua;
2228
2229 NETBSD32TO64_UAP(gidsetsize);
2230 NETBSD32TOP_UAP(gidset, gid_t);
2231 return (sys_setgroups(p, &ua, retval));
2232 }
2233
2234 int
2235 netbsd32_setpgid(p, v, retval)
2236 struct proc *p;
2237 void *v;
2238 register_t *retval;
2239 {
2240 struct netbsd32_setpgid_args /* {
2241 syscallarg(int) pid;
2242 syscallarg(int) pgid;
2243 } */ *uap = v;
2244 struct sys_setpgid_args ua;
2245
2246 NETBSD32TO64_UAP(pid);
2247 NETBSD32TO64_UAP(pgid);
2248 return (sys_setpgid(p, &ua, retval));
2249 }
2250
2251 int
2252 netbsd32_setitimer(p, v, retval)
2253 struct proc *p;
2254 void *v;
2255 register_t *retval;
2256 {
2257 struct netbsd32_setitimer_args /* {
2258 syscallarg(int) which;
2259 syscallarg(const netbsd32_itimervalp_t) itv;
2260 syscallarg(netbsd32_itimervalp_t) oitv;
2261 } */ *uap = v;
2262 struct netbsd32_itimerval s32it, *itvp;
2263 int which = SCARG(uap, which);
2264 struct netbsd32_getitimer_args getargs;
2265 struct itimerval aitv;
2266 int s, error;
2267
2268 if ((u_int)which > ITIMER_PROF)
2269 return (EINVAL);
2270 itvp = (struct netbsd32_itimerval *)(u_long)SCARG(uap, itv);
2271 if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
2272 return (error);
2273 netbsd32_to_itimerval(&s32it, &aitv);
2274 if (SCARG(uap, oitv) != NULL) {
2275 SCARG(&getargs, which) = which;
2276 SCARG(&getargs, itv) = SCARG(uap, oitv);
2277 if ((error = netbsd32_getitimer(p, &getargs, retval)) != 0)
2278 return (error);
2279 }
2280 if (itvp == 0)
2281 return (0);
2282 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
2283 return (EINVAL);
2284 s = splclock();
2285 if (which == ITIMER_REAL) {
2286 untimeout(realitexpire, p);
2287 if (timerisset(&aitv.it_value)) {
2288 timeradd(&aitv.it_value, &time, &aitv.it_value);
2289 timeout(realitexpire, p, hzto(&aitv.it_value));
2290 }
2291 p->p_realtimer = aitv;
2292 } else
2293 p->p_stats->p_timer[which] = aitv;
2294 splx(s);
2295 return (0);
2296 }
2297
2298 int
2299 netbsd32_getitimer(p, v, retval)
2300 struct proc *p;
2301 void *v;
2302 register_t *retval;
2303 {
2304 struct netbsd32_getitimer_args /* {
2305 syscallarg(int) which;
2306 syscallarg(netbsd32_itimervalp_t) itv;
2307 } */ *uap = v;
2308 int which = SCARG(uap, which);
2309 struct netbsd32_itimerval s32it;
2310 struct itimerval aitv;
2311 int s;
2312
2313 if ((u_int)which > ITIMER_PROF)
2314 return (EINVAL);
2315 s = splclock();
2316 if (which == ITIMER_REAL) {
2317 /*
2318 * Convert from absolute to relative time in .it_value
2319 * part of real time timer. If time for real time timer
2320 * has passed return 0, else return difference between
2321 * current time and time for the timer to go off.
2322 */
2323 aitv = p->p_realtimer;
2324 if (timerisset(&aitv.it_value)) {
2325 if (timercmp(&aitv.it_value, &time, <))
2326 timerclear(&aitv.it_value);
2327 else
2328 timersub(&aitv.it_value, &time, &aitv.it_value);
2329 }
2330 } else
2331 aitv = p->p_stats->p_timer[which];
2332 splx(s);
2333 netbsd32_from_itimerval(&aitv, &s32it);
2334 return (copyout(&s32it, (caddr_t)(u_long)SCARG(uap, itv), sizeof(s32it)));
2335 }
2336
2337 int
2338 netbsd32_fcntl(p, v, retval)
2339 struct proc *p;
2340 void *v;
2341 register_t *retval;
2342 {
2343 struct netbsd32_fcntl_args /* {
2344 syscallarg(int) fd;
2345 syscallarg(int) cmd;
2346 syscallarg(netbsd32_voidp) arg;
2347 } */ *uap = v;
2348 struct sys_fcntl_args ua;
2349
2350 NETBSD32TO64_UAP(fd);
2351 NETBSD32TO64_UAP(cmd);
2352 NETBSD32TOP_UAP(arg, void);
2353 /* XXXX we can do this 'cause flock doesn't change */
2354 return (sys_fcntl(p, &ua, retval));
2355 }
2356
2357 int
2358 netbsd32_dup2(p, v, retval)
2359 struct proc *p;
2360 void *v;
2361 register_t *retval;
2362 {
2363 struct netbsd32_dup2_args /* {
2364 syscallarg(int) from;
2365 syscallarg(int) to;
2366 } */ *uap = v;
2367 struct sys_dup2_args ua;
2368
2369 NETBSD32TO64_UAP(from);
2370 NETBSD32TO64_UAP(to);
2371 return (sys_dup2(p, &ua, retval));
2372 }
2373
2374 int
2375 netbsd32_select(p, v, retval)
2376 struct proc *p;
2377 void *v;
2378 register_t *retval;
2379 {
2380 struct netbsd32_select_args /* {
2381 syscallarg(int) nd;
2382 syscallarg(netbsd32_fd_setp_t) in;
2383 syscallarg(netbsd32_fd_setp_t) ou;
2384 syscallarg(netbsd32_fd_setp_t) ex;
2385 syscallarg(netbsd32_timevalp_t) tv;
2386 } */ *uap = v;
2387 /* This one must be done in-line 'cause of the timeval */
2388 struct netbsd32_timeval tv32;
2389 caddr_t bits;
2390 char smallbits[howmany(FD_SETSIZE, NFDBITS) * sizeof(fd_mask) * 6];
2391 struct timeval atv;
2392 int s, ncoll, error = 0, timo;
2393 size_t ni;
2394 extern int selwait, nselcoll;
2395 extern int selscan __P((struct proc *, fd_mask *, fd_mask *, int, register_t *));
2396
2397 if (SCARG(uap, nd) < 0)
2398 return (EINVAL);
2399 if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {
2400 /* forgiving; slightly wrong */
2401 SCARG(uap, nd) = p->p_fd->fd_nfiles;
2402 }
2403 ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);
2404 if (ni * 6 > sizeof(smallbits))
2405 bits = malloc(ni * 6, M_TEMP, M_WAITOK);
2406 else
2407 bits = smallbits;
2408
2409 #define getbits(name, x) \
2410 if (SCARG(uap, name)) { \
2411 error = copyin((caddr_t)(u_long)SCARG(uap, name), bits + ni * x, ni); \
2412 if (error) \
2413 goto done; \
2414 } else \
2415 memset(bits + ni * x, 0, ni);
2416 getbits(in, 0);
2417 getbits(ou, 1);
2418 getbits(ex, 2);
2419 #undef getbits
2420
2421 if (SCARG(uap, tv)) {
2422 error = copyin((caddr_t)(u_long)SCARG(uap, tv), (caddr_t)&tv32,
2423 sizeof(tv32));
2424 if (error)
2425 goto done;
2426 netbsd32_to_timeval(&tv32, &atv);
2427 if (itimerfix(&atv)) {
2428 error = EINVAL;
2429 goto done;
2430 }
2431 s = splclock();
2432 timeradd(&atv, &time, &atv);
2433 timo = hzto(&atv);
2434 /*
2435 * Avoid inadvertently sleeping forever.
2436 */
2437 if (timo == 0)
2438 timo = 1;
2439 splx(s);
2440 } else
2441 timo = 0;
2442 retry:
2443 ncoll = nselcoll;
2444 p->p_flag |= P_SELECT;
2445 error = selscan(p, (fd_mask *)(bits + ni * 0),
2446 (fd_mask *)(bits + ni * 3), SCARG(uap, nd), retval);
2447 if (error || *retval)
2448 goto done;
2449 s = splhigh();
2450 if (timo && timercmp(&time, &atv, >=)) {
2451 splx(s);
2452 goto done;
2453 }
2454 if ((p->p_flag & P_SELECT) == 0 || nselcoll != ncoll) {
2455 splx(s);
2456 goto retry;
2457 }
2458 p->p_flag &= ~P_SELECT;
2459 error = tsleep((caddr_t)&selwait, PSOCK | PCATCH, "select", timo);
2460 splx(s);
2461 if (error == 0)
2462 goto retry;
2463 done:
2464 p->p_flag &= ~P_SELECT;
2465 /* select is not restarted after signals... */
2466 if (error == ERESTART)
2467 error = EINTR;
2468 if (error == EWOULDBLOCK)
2469 error = 0;
2470 if (error == 0) {
2471 #define putbits(name, x) \
2472 if (SCARG(uap, name)) { \
2473 error = copyout(bits + ni * x, (caddr_t)(u_long)SCARG(uap, name), ni); \
2474 if (error) \
2475 goto out; \
2476 }
2477 putbits(in, 3);
2478 putbits(ou, 4);
2479 putbits(ex, 5);
2480 #undef putbits
2481 }
2482 out:
2483 if (ni * 6 > sizeof(smallbits))
2484 free(bits, M_TEMP);
2485 return (error);
2486 }
2487
2488 int
2489 netbsd32_fsync(p, v, retval)
2490 struct proc *p;
2491 void *v;
2492 register_t *retval;
2493 {
2494 struct netbsd32_fsync_args /* {
2495 syscallarg(int) fd;
2496 } */ *uap = v;
2497 struct sys_fsync_args ua;
2498
2499 NETBSD32TO64_UAP(fd);
2500 return (sys_fsync(p, &ua, retval));
2501 }
2502
2503 int
2504 netbsd32_setpriority(p, v, retval)
2505 struct proc *p;
2506 void *v;
2507 register_t *retval;
2508 {
2509 struct netbsd32_setpriority_args /* {
2510 syscallarg(int) which;
2511 syscallarg(int) who;
2512 syscallarg(int) prio;
2513 } */ *uap = v;
2514 struct sys_setpriority_args ua;
2515
2516 NETBSD32TO64_UAP(which);
2517 NETBSD32TO64_UAP(who);
2518 NETBSD32TO64_UAP(prio);
2519 return (sys_setpriority(p, &ua, retval));
2520 }
2521
2522 int
2523 netbsd32_socket(p, v, retval)
2524 struct proc *p;
2525 void *v;
2526 register_t *retval;
2527 {
2528 struct netbsd32_socket_args /* {
2529 syscallarg(int) domain;
2530 syscallarg(int) type;
2531 syscallarg(int) protocol;
2532 } */ *uap = v;
2533 struct sys_socket_args ua;
2534
2535 NETBSD32TO64_UAP(domain);
2536 NETBSD32TO64_UAP(type);
2537 NETBSD32TO64_UAP(protocol);
2538 return (sys_socket(p, &ua, retval));
2539 }
2540
2541 int
2542 netbsd32_connect(p, v, retval)
2543 struct proc *p;
2544 void *v;
2545 register_t *retval;
2546 {
2547 struct netbsd32_connect_args /* {
2548 syscallarg(int) s;
2549 syscallarg(const netbsd32_sockaddrp_t) name;
2550 syscallarg(int) namelen;
2551 } */ *uap = v;
2552 struct sys_connect_args ua;
2553
2554 NETBSD32TO64_UAP(s);
2555 NETBSD32TOP_UAP(name, struct sockaddr);
2556 NETBSD32TO64_UAP(namelen);
2557 return (sys_connect(p, &ua, retval));
2558 }
2559
2560 int
2561 netbsd32_getpriority(p, v, retval)
2562 struct proc *p;
2563 void *v;
2564 register_t *retval;
2565 {
2566 struct netbsd32_getpriority_args /* {
2567 syscallarg(int) which;
2568 syscallarg(int) who;
2569 } */ *uap = v;
2570 struct sys_getpriority_args ua;
2571
2572 NETBSD32TO64_UAP(which);
2573 NETBSD32TO64_UAP(who);
2574 return (sys_getpriority(p, &ua, retval));
2575 }
2576
2577 int
2578 netbsd32_bind(p, v, retval)
2579 struct proc *p;
2580 void *v;
2581 register_t *retval;
2582 {
2583 struct netbsd32_bind_args /* {
2584 syscallarg(int) s;
2585 syscallarg(const netbsd32_sockaddrp_t) name;
2586 syscallarg(int) namelen;
2587 } */ *uap = v;
2588 struct sys_bind_args ua;
2589
2590 NETBSD32TO64_UAP(s);
2591 NETBSD32TOP_UAP(name, struct sockaddr);
2592 NETBSD32TO64_UAP(namelen);
2593 return (sys_bind(p, &ua, retval));
2594 }
2595
2596 int
2597 netbsd32_setsockopt(p, v, retval)
2598 struct proc *p;
2599 void *v;
2600 register_t *retval;
2601 {
2602 struct netbsd32_setsockopt_args /* {
2603 syscallarg(int) s;
2604 syscallarg(int) level;
2605 syscallarg(int) name;
2606 syscallarg(const netbsd32_voidp) val;
2607 syscallarg(int) valsize;
2608 } */ *uap = v;
2609 struct sys_setsockopt_args ua;
2610
2611 NETBSD32TO64_UAP(s);
2612 NETBSD32TO64_UAP(level);
2613 NETBSD32TO64_UAP(name);
2614 NETBSD32TOP_UAP(val, void);
2615 NETBSD32TO64_UAP(valsize);
2616 /* may be more efficient to do this inline. */
2617 return (sys_setsockopt(p, &ua, retval));
2618 }
2619
2620 int
2621 netbsd32_listen(p, v, retval)
2622 struct proc *p;
2623 void *v;
2624 register_t *retval;
2625 {
2626 struct netbsd32_listen_args /* {
2627 syscallarg(int) s;
2628 syscallarg(int) backlog;
2629 } */ *uap = v;
2630 struct sys_listen_args ua;
2631
2632 NETBSD32TO64_UAP(s);
2633 NETBSD32TO64_UAP(backlog);
2634 return (sys_listen(p, &ua, retval));
2635 }
2636
2637 int
2638 netbsd32_gettimeofday(p, v, retval)
2639 struct proc *p;
2640 void *v;
2641 register_t *retval;
2642 {
2643 struct netbsd32_gettimeofday_args /* {
2644 syscallarg(netbsd32_timevalp_t) tp;
2645 syscallarg(netbsd32_timezonep_t) tzp;
2646 } */ *uap = v;
2647 struct timeval atv;
2648 struct netbsd32_timeval tv32;
2649 int error = 0;
2650 struct netbsd32_timezone tzfake;
2651
2652 if (SCARG(uap, tp)) {
2653 microtime(&atv);
2654 netbsd32_from_timeval(&atv, &tv32);
2655 error = copyout(&tv32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tv32));
2656 if (error)
2657 return (error);
2658 }
2659 if (SCARG(uap, tzp)) {
2660 /*
2661 * NetBSD has no kernel notion of time zone, so we just
2662 * fake up a timezone struct and return it if demanded.
2663 */
2664 tzfake.tz_minuteswest = 0;
2665 tzfake.tz_dsttime = 0;
2666 error = copyout(&tzfake, (caddr_t)(u_long)SCARG(uap, tzp), sizeof(tzfake));
2667 }
2668 return (error);
2669 }
2670
2671 #if 0
2672 static int settime32 __P((struct timeval *));
2673 /* This function is used by clock_settime and settimeofday */
2674 static int
2675 settime32(tv)
2676 struct timeval *tv;
2677 {
2678 struct timeval delta;
2679 int s;
2680
2681 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
2682 s = splclock();
2683 timersub(tv, &time, &delta);
2684 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
2685 return (EPERM);
2686 #ifdef notyet
2687 if ((delta.tv_sec < 86400) && securelevel > 0)
2688 return (EPERM);
2689 #endif
2690 time = *tv;
2691 (void) spllowersoftclock();
2692 timeradd(&boottime, &delta, &boottime);
2693 timeradd(&runtime, &delta, &runtime);
2694 # if defined(NFS) || defined(NFSSERVER)
2695 {
2696 extern void nqnfs_lease_updatetime __P((int));
2697
2698 nqnfs_lease_updatetime(delta.tv_sec);
2699 }
2700 # endif
2701 splx(s);
2702 resettodr();
2703 return (0);
2704 }
2705 #endif
2706
2707 int
2708 netbsd32_settimeofday(p, v, retval)
2709 struct proc *p;
2710 void *v;
2711 register_t *retval;
2712 {
2713 struct netbsd32_settimeofday_args /* {
2714 syscallarg(const netbsd32_timevalp_t) tv;
2715 syscallarg(const netbsd32_timezonep_t) tzp;
2716 } */ *uap = v;
2717 struct netbsd32_timeval atv32;
2718 struct timeval atv;
2719 struct netbsd32_timezone atz;
2720 int error;
2721
2722 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
2723 return (error);
2724 /* Verify all parameters before changing time. */
2725 if (SCARG(uap, tv) && (error = copyin((caddr_t)(u_long)SCARG(uap, tv),
2726 &atv32, sizeof(atv32))))
2727 return (error);
2728 netbsd32_to_timeval(&atv32, &atv);
2729 /* XXX since we don't use tz, probably no point in doing copyin. */
2730 if (SCARG(uap, tzp) && (error = copyin((caddr_t)(u_long)SCARG(uap, tzp),
2731 &atz, sizeof(atz))))
2732 return (error);
2733 if (SCARG(uap, tv))
2734 if ((error = settime(&atv)))
2735 return (error);
2736 /*
2737 * NetBSD has no kernel notion of time zone, and only an
2738 * obsolete program would try to set it, so we log a warning.
2739 */
2740 if (SCARG(uap, tzp))
2741 printf("pid %d attempted to set the "
2742 "(obsolete) kernel time zone\n", p->p_pid);
2743 return (0);
2744 }
2745
2746 int
2747 netbsd32_fchown(p, v, retval)
2748 struct proc *p;
2749 void *v;
2750 register_t *retval;
2751 {
2752 struct netbsd32_fchown_args /* {
2753 syscallarg(int) fd;
2754 syscallarg(uid_t) uid;
2755 syscallarg(gid_t) gid;
2756 } */ *uap = v;
2757 struct sys_fchown_args ua;
2758
2759 NETBSD32TO64_UAP(fd);
2760 NETBSD32TO64_UAP(uid);
2761 NETBSD32TO64_UAP(gid);
2762 return (sys_fchown(p, &ua, retval));
2763 }
2764
2765 int
2766 netbsd32_fchmod(p, v, retval)
2767 struct proc *p;
2768 void *v;
2769 register_t *retval;
2770 {
2771 struct netbsd32_fchmod_args /* {
2772 syscallarg(int) fd;
2773 syscallarg(mode_t) mode;
2774 } */ *uap = v;
2775 struct sys_fchmod_args ua;
2776
2777 NETBSD32TO64_UAP(fd);
2778 NETBSD32TO64_UAP(mode);
2779 return (sys_fchmod(p, &ua, retval));
2780 }
2781
2782 int
2783 netbsd32_setreuid(p, v, retval)
2784 struct proc *p;
2785 void *v;
2786 register_t *retval;
2787 {
2788 struct netbsd32_setreuid_args /* {
2789 syscallarg(uid_t) ruid;
2790 syscallarg(uid_t) euid;
2791 } */ *uap = v;
2792 struct sys_setreuid_args ua;
2793
2794 NETBSD32TO64_UAP(ruid);
2795 NETBSD32TO64_UAP(euid);
2796 return (sys_setreuid(p, &ua, retval));
2797 }
2798
2799 int
2800 netbsd32_setregid(p, v, retval)
2801 struct proc *p;
2802 void *v;
2803 register_t *retval;
2804 {
2805 struct netbsd32_setregid_args /* {
2806 syscallarg(gid_t) rgid;
2807 syscallarg(gid_t) egid;
2808 } */ *uap = v;
2809 struct sys_setregid_args ua;
2810
2811 NETBSD32TO64_UAP(rgid);
2812 NETBSD32TO64_UAP(egid);
2813 return (sys_setregid(p, &ua, retval));
2814 }
2815
2816 int
2817 netbsd32_getrusage(p, v, retval)
2818 struct proc *p;
2819 void *v;
2820 register_t *retval;
2821 {
2822 struct netbsd32_getrusage_args /* {
2823 syscallarg(int) who;
2824 syscallarg(netbsd32_rusagep_t) rusage;
2825 } */ *uap = v;
2826 struct rusage *rup;
2827 struct netbsd32_rusage ru;
2828
2829 switch (SCARG(uap, who)) {
2830
2831 case RUSAGE_SELF:
2832 rup = &p->p_stats->p_ru;
2833 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
2834 break;
2835
2836 case RUSAGE_CHILDREN:
2837 rup = &p->p_stats->p_cru;
2838 break;
2839
2840 default:
2841 return (EINVAL);
2842 }
2843 netbsd32_from_rusage(rup, &ru);
2844 return (copyout(&ru, (caddr_t)(u_long)SCARG(uap, rusage), sizeof(ru)));
2845 }
2846
2847 int
2848 netbsd32_getsockopt(p, v, retval)
2849 struct proc *p;
2850 void *v;
2851 register_t *retval;
2852 {
2853 struct netbsd32_getsockopt_args /* {
2854 syscallarg(int) s;
2855 syscallarg(int) level;
2856 syscallarg(int) name;
2857 syscallarg(netbsd32_voidp) val;
2858 syscallarg(netbsd32_intp) avalsize;
2859 } */ *uap = v;
2860 struct sys_getsockopt_args ua;
2861
2862 NETBSD32TO64_UAP(s);
2863 NETBSD32TO64_UAP(level);
2864 NETBSD32TO64_UAP(name);
2865 NETBSD32TOP_UAP(val, void);
2866 NETBSD32TOP_UAP(avalsize, int);
2867 return (sys_getsockopt(p, &ua, retval));
2868 }
2869
2870 int
2871 netbsd32_readv(p, v, retval)
2872 struct proc *p;
2873 void *v;
2874 register_t *retval;
2875 {
2876 struct netbsd32_readv_args /* {
2877 syscallarg(int) fd;
2878 syscallarg(const netbsd32_iovecp_t) iovp;
2879 syscallarg(int) iovcnt;
2880 } */ *uap = v;
2881 int fd = SCARG(uap, fd);
2882 register struct file *fp;
2883 register struct filedesc *fdp = p->p_fd;
2884
2885 if ((u_int)fd >= fdp->fd_nfiles ||
2886 (fp = fdp->fd_ofiles[fd]) == NULL ||
2887 (fp->f_flag & FREAD) == 0)
2888 return (EBADF);
2889
2890 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
2891 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
2892 }
2893
2894 /* Damn thing copies in the iovec! */
2895 int
2896 dofilereadv32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
2897 struct proc *p;
2898 int fd;
2899 struct file *fp;
2900 struct netbsd32_iovec *iovp;
2901 int iovcnt;
2902 off_t *offset;
2903 int flags;
2904 register_t *retval;
2905 {
2906 struct uio auio;
2907 register struct iovec *iov;
2908 struct iovec *needfree;
2909 struct iovec aiov[UIO_SMALLIOV];
2910 long i, cnt, error = 0;
2911 u_int iovlen;
2912 #ifdef KTRACE
2913 struct iovec *ktriov = NULL;
2914 #endif
2915
2916 /* note: can't use iovlen until iovcnt is validated */
2917 iovlen = iovcnt * sizeof(struct iovec);
2918 if ((u_int)iovcnt > UIO_SMALLIOV) {
2919 if ((u_int)iovcnt > IOV_MAX)
2920 return (EINVAL);
2921 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
2922 needfree = iov;
2923 } else if ((u_int)iovcnt > 0) {
2924 iov = aiov;
2925 needfree = NULL;
2926 } else
2927 return (EINVAL);
2928
2929 auio.uio_iov = iov;
2930 auio.uio_iovcnt = iovcnt;
2931 auio.uio_rw = UIO_READ;
2932 auio.uio_segflg = UIO_USERSPACE;
2933 auio.uio_procp = p;
2934 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
2935 if (error)
2936 goto done;
2937 auio.uio_resid = 0;
2938 for (i = 0; i < iovcnt; i++) {
2939 auio.uio_resid += iov->iov_len;
2940 /*
2941 * Reads return ssize_t because -1 is returned on error.
2942 * Therefore we must restrict the length to SSIZE_MAX to
2943 * avoid garbage return values.
2944 */
2945 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
2946 error = EINVAL;
2947 goto done;
2948 }
2949 iov++;
2950 }
2951 #ifdef KTRACE
2952 /*
2953 * if tracing, save a copy of iovec
2954 */
2955 if (KTRPOINT(p, KTR_GENIO)) {
2956 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
2957 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
2958 }
2959 #endif
2960 cnt = auio.uio_resid;
2961 error = (*fp->f_ops->fo_read)(fp, offset, &auio, fp->f_cred, flags);
2962 if (error)
2963 if (auio.uio_resid != cnt && (error == ERESTART ||
2964 error == EINTR || error == EWOULDBLOCK))
2965 error = 0;
2966 cnt -= auio.uio_resid;
2967 #ifdef KTRACE
2968 if (KTRPOINT(p, KTR_GENIO))
2969 if (error == 0) {
2970 ktrgenio(p->p_tracep, fd, UIO_READ, ktriov, cnt,
2971 error);
2972 FREE(ktriov, M_TEMP);
2973 }
2974 #endif
2975 *retval = cnt;
2976 done:
2977 if (needfree)
2978 FREE(needfree, M_IOV);
2979 return (error);
2980 }
2981
2982
2983 int
2984 netbsd32_writev(p, v, retval)
2985 struct proc *p;
2986 void *v;
2987 register_t *retval;
2988 {
2989 struct netbsd32_writev_args /* {
2990 syscallarg(int) fd;
2991 syscallarg(const netbsd32_iovecp_t) iovp;
2992 syscallarg(int) iovcnt;
2993 } */ *uap = v;
2994 int fd = SCARG(uap, fd);
2995 register struct file *fp;
2996 register struct filedesc *fdp = p->p_fd;
2997
2998 if ((u_int)fd >= fdp->fd_nfiles ||
2999 (fp = fdp->fd_ofiles[fd]) == NULL ||
3000 (fp->f_flag & FWRITE) == 0)
3001 return (EBADF);
3002
3003 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
3004 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
3005 }
3006
3007 int
3008 dofilewritev32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
3009 struct proc *p;
3010 int fd;
3011 struct file *fp;
3012 struct netbsd32_iovec *iovp;
3013 int iovcnt;
3014 off_t *offset;
3015 int flags;
3016 register_t *retval;
3017 {
3018 struct uio auio;
3019 register struct iovec *iov;
3020 struct iovec *needfree;
3021 struct iovec aiov[UIO_SMALLIOV];
3022 long i, cnt, error = 0;
3023 u_int iovlen;
3024 #ifdef KTRACE
3025 struct iovec *ktriov = NULL;
3026 #endif
3027
3028 /* note: can't use iovlen until iovcnt is validated */
3029 iovlen = iovcnt * sizeof(struct iovec);
3030 if ((u_int)iovcnt > UIO_SMALLIOV) {
3031 if ((u_int)iovcnt > IOV_MAX)
3032 return (EINVAL);
3033 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
3034 needfree = iov;
3035 } else if ((u_int)iovcnt > 0) {
3036 iov = aiov;
3037 needfree = NULL;
3038 } else
3039 return (EINVAL);
3040
3041 auio.uio_iov = iov;
3042 auio.uio_iovcnt = iovcnt;
3043 auio.uio_rw = UIO_WRITE;
3044 auio.uio_segflg = UIO_USERSPACE;
3045 auio.uio_procp = p;
3046 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
3047 if (error)
3048 goto done;
3049 auio.uio_resid = 0;
3050 for (i = 0; i < iovcnt; i++) {
3051 auio.uio_resid += iov->iov_len;
3052 /*
3053 * Writes return ssize_t because -1 is returned on error.
3054 * Therefore we must restrict the length to SSIZE_MAX to
3055 * avoid garbage return values.
3056 */
3057 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
3058 error = EINVAL;
3059 goto done;
3060 }
3061 iov++;
3062 }
3063 #ifdef KTRACE
3064 /*
3065 * if tracing, save a copy of iovec
3066 */
3067 if (KTRPOINT(p, KTR_GENIO)) {
3068 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
3069 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
3070 }
3071 #endif
3072 cnt = auio.uio_resid;
3073 error = (*fp->f_ops->fo_write)(fp, offset, &auio, fp->f_cred, flags);
3074 if (error) {
3075 if (auio.uio_resid != cnt && (error == ERESTART ||
3076 error == EINTR || error == EWOULDBLOCK))
3077 error = 0;
3078 if (error == EPIPE)
3079 psignal(p, SIGPIPE);
3080 }
3081 cnt -= auio.uio_resid;
3082 #ifdef KTRACE
3083 if (KTRPOINT(p, KTR_GENIO))
3084 if (error == 0) {
3085 ktrgenio(p->p_tracep, fd, UIO_WRITE, ktriov, cnt,
3086 error);
3087 FREE(ktriov, M_TEMP);
3088 }
3089 #endif
3090 *retval = cnt;
3091 done:
3092 if (needfree)
3093 FREE(needfree, M_IOV);
3094 return (error);
3095 }
3096
3097
3098 int
3099 netbsd32_rename(p, v, retval)
3100 struct proc *p;
3101 void *v;
3102 register_t *retval;
3103 {
3104 struct netbsd32_rename_args /* {
3105 syscallarg(const netbsd32_charp) from;
3106 syscallarg(const netbsd32_charp) to;
3107 } */ *uap = v;
3108 struct sys_rename_args ua;
3109
3110 NETBSD32TOP_UAP(from, const char);
3111 NETBSD32TOP_UAP(to, const char)
3112
3113 return (sys_rename(p, &ua, retval));
3114 }
3115
3116 int
3117 netbsd32_flock(p, v, retval)
3118 struct proc *p;
3119 void *v;
3120 register_t *retval;
3121 {
3122 struct netbsd32_flock_args /* {
3123 syscallarg(int) fd;
3124 syscallarg(int) how;
3125 } */ *uap = v;
3126 struct sys_flock_args ua;
3127
3128 NETBSD32TO64_UAP(fd);
3129 NETBSD32TO64_UAP(how)
3130
3131 return (sys_flock(p, &ua, retval));
3132 }
3133
3134 int
3135 netbsd32_mkfifo(p, v, retval)
3136 struct proc *p;
3137 void *v;
3138 register_t *retval;
3139 {
3140 struct netbsd32_mkfifo_args /* {
3141 syscallarg(const netbsd32_charp) path;
3142 syscallarg(mode_t) mode;
3143 } */ *uap = v;
3144 struct sys_mkfifo_args ua;
3145
3146 NETBSD32TOP_UAP(path, const char)
3147 NETBSD32TO64_UAP(mode);
3148 return (sys_mkfifo(p, &ua, retval));
3149 }
3150
3151 int
3152 netbsd32_shutdown(p, v, retval)
3153 struct proc *p;
3154 void *v;
3155 register_t *retval;
3156 {
3157 struct netbsd32_shutdown_args /* {
3158 syscallarg(int) s;
3159 syscallarg(int) how;
3160 } */ *uap = v;
3161 struct sys_shutdown_args ua;
3162
3163 NETBSD32TO64_UAP(s)
3164 NETBSD32TO64_UAP(how);
3165 return (sys_shutdown(p, &ua, retval));
3166 }
3167
3168 int
3169 netbsd32_socketpair(p, v, retval)
3170 struct proc *p;
3171 void *v;
3172 register_t *retval;
3173 {
3174 struct netbsd32_socketpair_args /* {
3175 syscallarg(int) domain;
3176 syscallarg(int) type;
3177 syscallarg(int) protocol;
3178 syscallarg(netbsd32_intp) rsv;
3179 } */ *uap = v;
3180 struct sys_socketpair_args ua;
3181
3182 NETBSD32TO64_UAP(domain);
3183 NETBSD32TO64_UAP(type);
3184 NETBSD32TO64_UAP(protocol);
3185 NETBSD32TOP_UAP(rsv, int);
3186 /* Since we're just copying out two `int's we can do this */
3187 return (sys_socketpair(p, &ua, retval));
3188 }
3189
3190 int
3191 netbsd32_mkdir(p, v, retval)
3192 struct proc *p;
3193 void *v;
3194 register_t *retval;
3195 {
3196 struct netbsd32_mkdir_args /* {
3197 syscallarg(const netbsd32_charp) path;
3198 syscallarg(mode_t) mode;
3199 } */ *uap = v;
3200 struct sys_mkdir_args ua;
3201
3202 NETBSD32TOP_UAP(path, const char)
3203 NETBSD32TO64_UAP(mode);
3204 return (sys_mkdir(p, &ua, retval));
3205 }
3206
3207 int
3208 netbsd32_rmdir(p, v, retval)
3209 struct proc *p;
3210 void *v;
3211 register_t *retval;
3212 {
3213 struct netbsd32_rmdir_args /* {
3214 syscallarg(const netbsd32_charp) path;
3215 } */ *uap = v;
3216 struct sys_rmdir_args ua;
3217
3218 NETBSD32TOP_UAP(path, const char);
3219 return (sys_rmdir(p, &ua, retval));
3220 }
3221
3222 int
3223 netbsd32_utimes(p, v, retval)
3224 struct proc *p;
3225 void *v;
3226 register_t *retval;
3227 {
3228 struct netbsd32_utimes_args /* {
3229 syscallarg(const netbsd32_charp) path;
3230 syscallarg(const netbsd32_timevalp_t) tptr;
3231 } */ *uap = v;
3232 int error;
3233 struct nameidata nd;
3234
3235 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3236 if ((error = namei(&nd)) != 0)
3237 return (error);
3238
3239 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
3240
3241 vrele(nd.ni_vp);
3242 return (error);
3243 }
3244
3245 /*
3246 * Common routine to set access and modification times given a vnode.
3247 */
3248 static int
3249 change_utimes32(vp, tptr, p)
3250 struct vnode *vp;
3251 struct timeval *tptr;
3252 struct proc *p;
3253 {
3254 struct netbsd32_timeval tv32[2];
3255 struct timeval tv[2];
3256 struct vattr vattr;
3257 int error;
3258
3259 VATTR_NULL(&vattr);
3260 if (tptr == NULL) {
3261 microtime(&tv[0]);
3262 tv[1] = tv[0];
3263 vattr.va_vaflags |= VA_UTIMES_NULL;
3264 } else {
3265 error = copyin(tptr, tv, sizeof(tv));
3266 if (error)
3267 return (error);
3268 }
3269 netbsd32_to_timeval(&tv32[0], &tv[0]);
3270 netbsd32_to_timeval(&tv32[1], &tv[1]);
3271 VOP_LEASE(vp, p, p->p_ucred, LEASE_WRITE);
3272 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3273 vattr.va_atime.tv_sec = tv[0].tv_sec;
3274 vattr.va_atime.tv_nsec = tv[0].tv_usec * 1000;
3275 vattr.va_mtime.tv_sec = tv[1].tv_sec;
3276 vattr.va_mtime.tv_nsec = tv[1].tv_usec * 1000;
3277 error = VOP_SETATTR(vp, &vattr, p->p_ucred, p);
3278 VOP_UNLOCK(vp, 0);
3279 return (error);
3280 }
3281
3282 int
3283 netbsd32_adjtime(p, v, retval)
3284 struct proc *p;
3285 void *v;
3286 register_t *retval;
3287 {
3288 struct netbsd32_adjtime_args /* {
3289 syscallarg(const netbsd32_timevalp_t) delta;
3290 syscallarg(netbsd32_timevalp_t) olddelta;
3291 } */ *uap = v;
3292 struct netbsd32_timeval atv;
3293 int32_t ndelta, ntickdelta, odelta;
3294 int s, error;
3295 extern long bigadj, timedelta;
3296 extern int tickdelta;
3297
3298 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
3299 return (error);
3300
3301 error = copyin((caddr_t)(u_long)SCARG(uap, delta), &atv, sizeof(struct timeval));
3302 if (error)
3303 return (error);
3304 /*
3305 * Compute the total correction and the rate at which to apply it.
3306 * Round the adjustment down to a whole multiple of the per-tick
3307 * delta, so that after some number of incremental changes in
3308 * hardclock(), tickdelta will become zero, lest the correction
3309 * overshoot and start taking us away from the desired final time.
3310 */
3311 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
3312 if (ndelta > bigadj)
3313 ntickdelta = 10 * tickadj;
3314 else
3315 ntickdelta = tickadj;
3316 if (ndelta % ntickdelta)
3317 ndelta = ndelta / ntickdelta * ntickdelta;
3318
3319 /*
3320 * To make hardclock()'s job easier, make the per-tick delta negative
3321 * if we want time to run slower; then hardclock can simply compute
3322 * tick + tickdelta, and subtract tickdelta from timedelta.
3323 */
3324 if (ndelta < 0)
3325 ntickdelta = -ntickdelta;
3326 s = splclock();
3327 odelta = timedelta;
3328 timedelta = ndelta;
3329 tickdelta = ntickdelta;
3330 splx(s);
3331
3332 if (SCARG(uap, olddelta)) {
3333 atv.tv_sec = odelta / 1000000;
3334 atv.tv_usec = odelta % 1000000;
3335 (void) copyout(&atv, (caddr_t)(u_long)SCARG(uap, olddelta),
3336 sizeof(struct timeval));
3337 }
3338 return (0);
3339 }
3340
3341 int
3342 netbsd32_quotactl(p, v, retval)
3343 struct proc *p;
3344 void *v;
3345 register_t *retval;
3346 {
3347 struct netbsd32_quotactl_args /* {
3348 syscallarg(const netbsd32_charp) path;
3349 syscallarg(int) cmd;
3350 syscallarg(int) uid;
3351 syscallarg(netbsd32_caddr_t) arg;
3352 } */ *uap = v;
3353 struct sys_quotactl_args ua;
3354
3355 NETBSD32TOP_UAP(path, const char);
3356 NETBSD32TO64_UAP(cmd);
3357 NETBSD32TO64_UAP(uid);
3358 NETBSD32TOX64_UAP(arg, caddr_t);
3359 return (sys_quotactl(p, &ua, retval));
3360 }
3361
3362 #if defined(NFS) || defined(NFSSERVER)
3363 int
3364 netbsd32_nfssvc(p, v, retval)
3365 struct proc *p;
3366 void *v;
3367 register_t *retval;
3368 {
3369 #if 0
3370 struct netbsd32_nfssvc_args /* {
3371 syscallarg(int) flag;
3372 syscallarg(netbsd32_voidp) argp;
3373 } */ *uap = v;
3374 struct sys_nfssvc_args ua;
3375
3376 NETBSD32TO64_UAP(flag);
3377 NETBSD32TOP_UAP(argp, void);
3378 return (sys_nfssvc(p, &ua, retval));
3379 #else
3380 /* Why would we want to support a 32-bit nfsd? */
3381 return (ENOSYS);
3382 #endif
3383 }
3384 #endif
3385
3386 int
3387 netbsd32_statfs(p, v, retval)
3388 struct proc *p;
3389 void *v;
3390 register_t *retval;
3391 {
3392 struct netbsd32_statfs_args /* {
3393 syscallarg(const netbsd32_charp) path;
3394 syscallarg(netbsd32_statfsp_t) buf;
3395 } */ *uap = v;
3396 register struct mount *mp;
3397 register struct statfs *sp;
3398 struct netbsd32_statfs s32;
3399 int error;
3400 struct nameidata nd;
3401
3402 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3403 if ((error = namei(&nd)) != 0)
3404 return (error);
3405 mp = nd.ni_vp->v_mount;
3406 sp = &mp->mnt_stat;
3407 vrele(nd.ni_vp);
3408 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3409 return (error);
3410 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3411 netbsd32_from_statfs(sp, &s32);
3412 return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3413 }
3414
3415 int
3416 netbsd32_fstatfs(p, v, retval)
3417 struct proc *p;
3418 void *v;
3419 register_t *retval;
3420 {
3421 struct netbsd32_fstatfs_args /* {
3422 syscallarg(int) fd;
3423 syscallarg(netbsd32_statfsp_t) buf;
3424 } */ *uap = v;
3425 struct file *fp;
3426 register struct mount *mp;
3427 register struct statfs *sp;
3428 struct netbsd32_statfs s32;
3429 int error;
3430
3431 /* getvnode() will use the descriptor for us */
3432 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3433 return (error);
3434 mp = ((struct vnode *)fp->f_data)->v_mount;
3435 sp = &mp->mnt_stat;
3436 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3437 goto out;
3438 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3439 netbsd32_from_statfs(sp, &s32);
3440 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32));
3441 out:
3442 FILE_UNUSE(fp, p);
3443 return (error);
3444 }
3445
3446 #if defined(NFS) || defined(NFSSERVER)
3447 int
3448 netbsd32_getfh(p, v, retval)
3449 struct proc *p;
3450 void *v;
3451 register_t *retval;
3452 {
3453 struct netbsd32_getfh_args /* {
3454 syscallarg(const netbsd32_charp) fname;
3455 syscallarg(netbsd32_fhandlep_t) fhp;
3456 } */ *uap = v;
3457 struct sys_getfh_args ua;
3458
3459 NETBSD32TOP_UAP(fname, const char);
3460 NETBSD32TOP_UAP(fhp, struct fhandle);
3461 /* Lucky for us a fhandlep_t doesn't change sizes */
3462 return (sys_getfh(p, &ua, retval));
3463 }
3464 #endif
3465
3466 int
3467 netbsd32_sysarch(p, v, retval)
3468 struct proc *p;
3469 void *v;
3470 register_t *retval;
3471 {
3472 struct netbsd32_sysarch_args /* {
3473 syscallarg(int) op;
3474 syscallarg(netbsd32_voidp) parms;
3475 } */ *uap = v;
3476
3477 switch (SCARG(uap, op)) {
3478 default:
3479 printf("(sparc64) netbsd32_sysarch(%d)\n", SCARG(uap, op));
3480 return EINVAL;
3481 }
3482 }
3483
3484 int
3485 netbsd32_pread(p, v, retval)
3486 struct proc *p;
3487 void *v;
3488 register_t *retval;
3489 {
3490 struct netbsd32_pread_args /* {
3491 syscallarg(int) fd;
3492 syscallarg(netbsd32_voidp) buf;
3493 syscallarg(netbsd32_size_t) nbyte;
3494 syscallarg(int) pad;
3495 syscallarg(off_t) offset;
3496 } */ *uap = v;
3497 struct sys_pread_args ua;
3498 ssize_t rt;
3499 int error;
3500
3501 NETBSD32TO64_UAP(fd);
3502 NETBSD32TOP_UAP(buf, void);
3503 NETBSD32TOX_UAP(nbyte, size_t);
3504 NETBSD32TO64_UAP(pad);
3505 NETBSD32TO64_UAP(offset);
3506 error = sys_pread(p, &ua, (register_t *)&rt);
3507 *(netbsd32_ssize_t *)retval = rt;
3508 return (error);
3509 }
3510
3511 int
3512 netbsd32_pwrite(p, v, retval)
3513 struct proc *p;
3514 void *v;
3515 register_t *retval;
3516 {
3517 struct netbsd32_pwrite_args /* {
3518 syscallarg(int) fd;
3519 syscallarg(const netbsd32_voidp) buf;
3520 syscallarg(netbsd32_size_t) nbyte;
3521 syscallarg(int) pad;
3522 syscallarg(off_t) offset;
3523 } */ *uap = v;
3524 struct sys_pwrite_args ua;
3525 ssize_t rt;
3526 int error;
3527
3528 NETBSD32TO64_UAP(fd);
3529 NETBSD32TOP_UAP(buf, void);
3530 NETBSD32TOX_UAP(nbyte, size_t);
3531 NETBSD32TO64_UAP(pad);
3532 NETBSD32TO64_UAP(offset);
3533 error = sys_pwrite(p, &ua, (register_t *)&rt);
3534 *(netbsd32_ssize_t *)retval = rt;
3535 return (error);
3536 }
3537
3538 #ifdef NTP
3539 int
3540 netbsd32_ntp_gettime(p, v, retval)
3541 struct proc *p;
3542 void *v;
3543 register_t *retval;
3544 {
3545 struct netbsd32_ntp_gettime_args /* {
3546 syscallarg(netbsd32_ntptimevalp_t) ntvp;
3547 } */ *uap = v;
3548 struct netbsd32_ntptimeval ntv32;
3549 struct timeval atv;
3550 struct ntptimeval ntv;
3551 int error = 0;
3552 int s;
3553
3554 /* The following are NTP variables */
3555 extern long time_maxerror;
3556 extern long time_esterror;
3557 extern int time_status;
3558 extern int time_state; /* clock state */
3559 extern int time_status; /* clock status bits */
3560
3561 if (SCARG(uap, ntvp)) {
3562 s = splclock();
3563 #ifdef EXT_CLOCK
3564 /*
3565 * The microtime() external clock routine returns a
3566 * status code. If less than zero, we declare an error
3567 * in the clock status word and return the kernel
3568 * (software) time variable. While there are other
3569 * places that call microtime(), this is the only place
3570 * that matters from an application point of view.
3571 */
3572 if (microtime(&atv) < 0) {
3573 time_status |= STA_CLOCKERR;
3574 ntv.time = time;
3575 } else
3576 time_status &= ~STA_CLOCKERR;
3577 #else /* EXT_CLOCK */
3578 microtime(&atv);
3579 #endif /* EXT_CLOCK */
3580 ntv.time = atv;
3581 ntv.maxerror = time_maxerror;
3582 ntv.esterror = time_esterror;
3583 (void) splx(s);
3584
3585 netbsd32_from_timeval(&ntv.time, &ntv32.time);
3586 ntv32.maxerror = (netbsd32_long)ntv.maxerror;
3587 ntv32.esterror = (netbsd32_long)ntv.esterror;
3588 error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, ntvp),
3589 sizeof(ntv32));
3590 }
3591 if (!error) {
3592
3593 /*
3594 * Status word error decode. If any of these conditions
3595 * occur, an error is returned, instead of the status
3596 * word. Most applications will care only about the fact
3597 * the system clock may not be trusted, not about the
3598 * details.
3599 *
3600 * Hardware or software error
3601 */
3602 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3603
3604 /*
3605 * PPS signal lost when either time or frequency
3606 * synchronization requested
3607 */
3608 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3609 !(time_status & STA_PPSSIGNAL)) ||
3610
3611 /*
3612 * PPS jitter exceeded when time synchronization
3613 * requested
3614 */
3615 (time_status & STA_PPSTIME &&
3616 time_status & STA_PPSJITTER) ||
3617
3618 /*
3619 * PPS wander exceeded or calibration error when
3620 * frequency synchronization requested
3621 */
3622 (time_status & STA_PPSFREQ &&
3623 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3624 *retval = TIME_ERROR;
3625 else
3626 *retval = (register_t)time_state;
3627 }
3628 return(error);
3629 }
3630
3631 int
3632 netbsd32_ntp_adjtime(p, v, retval)
3633 struct proc *p;
3634 void *v;
3635 register_t *retval;
3636 {
3637 struct netbsd32_ntp_adjtime_args /* {
3638 syscallarg(netbsd32_timexp_t) tp;
3639 } */ *uap = v;
3640 struct netbsd32_timex ntv32;
3641 struct timex ntv;
3642 int error = 0;
3643 int modes;
3644 int s;
3645 extern long time_freq; /* frequency offset (scaled ppm) */
3646 extern long time_maxerror;
3647 extern long time_esterror;
3648 extern int time_state; /* clock state */
3649 extern int time_status; /* clock status bits */
3650 extern long time_constant; /* pll time constant */
3651 extern long time_offset; /* time offset (us) */
3652 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
3653 extern long time_precision; /* clock precision (us) */
3654
3655 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), (caddr_t)&ntv32,
3656 sizeof(ntv32))))
3657 return (error);
3658 netbsd32_to_timex(&ntv32, &ntv);
3659
3660 /*
3661 * Update selected clock variables - only the superuser can
3662 * change anything. Note that there is no error checking here on
3663 * the assumption the superuser should know what it is doing.
3664 */
3665 modes = ntv.modes;
3666 if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
3667 return (error);
3668
3669 s = splclock();
3670 if (modes & MOD_FREQUENCY)
3671 #ifdef PPS_SYNC
3672 time_freq = ntv.freq - pps_freq;
3673 #else /* PPS_SYNC */
3674 time_freq = ntv.freq;
3675 #endif /* PPS_SYNC */
3676 if (modes & MOD_MAXERROR)
3677 time_maxerror = ntv.maxerror;
3678 if (modes & MOD_ESTERROR)
3679 time_esterror = ntv.esterror;
3680 if (modes & MOD_STATUS) {
3681 time_status &= STA_RONLY;
3682 time_status |= ntv.status & ~STA_RONLY;
3683 }
3684 if (modes & MOD_TIMECONST)
3685 time_constant = ntv.constant;
3686 if (modes & MOD_OFFSET)
3687 hardupdate(ntv.offset);
3688
3689 /*
3690 * Retrieve all clock variables
3691 */
3692 if (time_offset < 0)
3693 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
3694 else
3695 ntv.offset = time_offset >> SHIFT_UPDATE;
3696 #ifdef PPS_SYNC
3697 ntv.freq = time_freq + pps_freq;
3698 #else /* PPS_SYNC */
3699 ntv.freq = time_freq;
3700 #endif /* PPS_SYNC */
3701 ntv.maxerror = time_maxerror;
3702 ntv.esterror = time_esterror;
3703 ntv.status = time_status;
3704 ntv.constant = time_constant;
3705 ntv.precision = time_precision;
3706 ntv.tolerance = time_tolerance;
3707 #ifdef PPS_SYNC
3708 ntv.shift = pps_shift;
3709 ntv.ppsfreq = pps_freq;
3710 ntv.jitter = pps_jitter >> PPS_AVG;
3711 ntv.stabil = pps_stabil;
3712 ntv.calcnt = pps_calcnt;
3713 ntv.errcnt = pps_errcnt;
3714 ntv.jitcnt = pps_jitcnt;
3715 ntv.stbcnt = pps_stbcnt;
3716 #endif /* PPS_SYNC */
3717 (void)splx(s);
3718
3719 netbsd32_from_timeval(&ntv, &ntv32);
3720 error = copyout((caddr_t)&ntv32, (caddr_t)SCARG(uap, tp), sizeof(ntv32));
3721 if (!error) {
3722
3723 /*
3724 * Status word error decode. See comments in
3725 * ntp_gettime() routine.
3726 */
3727 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3728 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3729 !(time_status & STA_PPSSIGNAL)) ||
3730 (time_status & STA_PPSTIME &&
3731 time_status & STA_PPSJITTER) ||
3732 (time_status & STA_PPSFREQ &&
3733 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3734 *retval = TIME_ERROR;
3735 else
3736 *retval = (register_t)time_state;
3737 }
3738 return error;
3739 }
3740 #endif
3741
3742 int
3743 netbsd32_setgid(p, v, retval)
3744 struct proc *p;
3745 void *v;
3746 register_t *retval;
3747 {
3748 struct netbsd32_setgid_args /* {
3749 syscallarg(gid_t) gid;
3750 } */ *uap = v;
3751 struct sys_setgid_args ua;
3752
3753 NETBSD32TO64_UAP(gid);
3754 return (sys_setgid(p, v, retval));
3755 }
3756
3757 int
3758 netbsd32_setegid(p, v, retval)
3759 struct proc *p;
3760 void *v;
3761 register_t *retval;
3762 {
3763 struct netbsd32_setegid_args /* {
3764 syscallarg(gid_t) egid;
3765 } */ *uap = v;
3766 struct sys_setegid_args ua;
3767
3768 NETBSD32TO64_UAP(egid);
3769 return (sys_setegid(p, v, retval));
3770 }
3771
3772 int
3773 netbsd32_seteuid(p, v, retval)
3774 struct proc *p;
3775 void *v;
3776 register_t *retval;
3777 {
3778 struct netbsd32_seteuid_args /* {
3779 syscallarg(gid_t) euid;
3780 } */ *uap = v;
3781 struct sys_seteuid_args ua;
3782
3783 NETBSD32TO64_UAP(euid);
3784 return (sys_seteuid(p, v, retval));
3785 }
3786
3787 #ifdef LFS
3788 int
3789 netbsd32_sys_lfs_bmapv(p, v, retval)
3790 struct proc *p;
3791 void *v;
3792 register_t *retval;
3793 {
3794 #if 0
3795 struct netbsd32_lfs_bmapv_args /* {
3796 syscallarg(netbsd32_fsid_tp_t) fsidp;
3797 syscallarg(netbsd32_block_infop_t) blkiov;
3798 syscallarg(int) blkcnt;
3799 } */ *uap = v;
3800 struct sys_lfs_bmapv_args ua;
3801
3802 NETBSD32TOP_UAP(fdidp, struct fsid);
3803 NETBSD32TO64_UAP(blkcnt);
3804 /* XXX finish me */
3805 #else
3806
3807 return (ENOSYS); /* XXX */
3808 #endif
3809 }
3810
3811 int
3812 netbsd32_sys_lfs_markv(p, v, retval)
3813 struct proc *p;
3814 void *v;
3815 register_t *retval;
3816 {
3817 #if 0
3818 struct netbsd32_lfs_markv_args /* {
3819 syscallarg(netbsd32_fsid_tp_t) fsidp;
3820 syscallarg(netbsd32_block_infop_t) blkiov;
3821 syscallarg(int) blkcnt;
3822 } */ *uap = v;
3823 #endif
3824
3825 return (ENOSYS); /* XXX */
3826 }
3827
3828 int
3829 netbsd32_sys_lfs_segclean(p, v, retval)
3830 struct proc *p;
3831 void *v;
3832 register_t *retval;
3833 {
3834 #if 0
3835 struct netbsd32_lfs_segclean_args /* {
3836 syscallarg(netbsd32_fsid_tp_t) fsidp;
3837 syscallarg(netbsd32_u_long) segment;
3838 } */ *uap = v;
3839 #endif
3840
3841 return (ENOSYS); /* XXX */
3842 }
3843
3844 int
3845 netbsd32_sys_lfs_segwait(p, v, retval)
3846 struct proc *p;
3847 void *v;
3848 register_t *retval;
3849 {
3850 #if 0
3851 struct netbsd32_lfs_segwait_args /* {
3852 syscallarg(netbsd32_fsid_tp_t) fsidp;
3853 syscallarg(netbsd32_timevalp_t) tv;
3854 } */ *uap = v;
3855 #endif
3856
3857 return (ENOSYS); /* XXX */
3858 }
3859 #endif
3860
3861 int
3862 netbsd32_pathconf(p, v, retval)
3863 struct proc *p;
3864 void *v;
3865 register_t *retval;
3866 {
3867 struct netbsd32_pathconf_args /* {
3868 syscallarg(int) fd;
3869 syscallarg(int) name;
3870 } */ *uap = v;
3871 struct sys_pathconf_args ua;
3872 long rt;
3873 int error;
3874
3875 NETBSD32TOP_UAP(path, const char);
3876 NETBSD32TO64_UAP(name);
3877 error = sys_pathconf(p, &ua, (register_t *)&rt);
3878 *(netbsd32_long *)retval = (netbsd32_long)rt;
3879 return (error);
3880 }
3881
3882 int
3883 netbsd32_fpathconf(p, v, retval)
3884 struct proc *p;
3885 void *v;
3886 register_t *retval;
3887 {
3888 struct netbsd32_fpathconf_args /* {
3889 syscallarg(int) fd;
3890 syscallarg(int) name;
3891 } */ *uap = v;
3892 struct sys_fpathconf_args ua;
3893 long rt;
3894 int error;
3895
3896 NETBSD32TO64_UAP(fd);
3897 NETBSD32TO64_UAP(name);
3898 error = sys_fpathconf(p, &ua, (register_t *)&rt);
3899 *(netbsd32_long *)retval = (netbsd32_long)rt;
3900 return (error);
3901 }
3902
3903 int
3904 netbsd32_getrlimit(p, v, retval)
3905 struct proc *p;
3906 void *v;
3907 register_t *retval;
3908 {
3909 struct netbsd32_getrlimit_args /* {
3910 syscallarg(int) which;
3911 syscallarg(netbsd32_rlimitp_t) rlp;
3912 } */ *uap = v;
3913 int which = SCARG(uap, which);
3914
3915 if ((u_int)which >= RLIM_NLIMITS)
3916 return (EINVAL);
3917 return (copyout(&p->p_rlimit[which], (caddr_t)(u_long)SCARG(uap, rlp),
3918 sizeof(struct rlimit)));
3919 }
3920
3921 int
3922 netbsd32_setrlimit(p, v, retval)
3923 struct proc *p;
3924 void *v;
3925 register_t *retval;
3926 {
3927 struct netbsd32_setrlimit_args /* {
3928 syscallarg(int) which;
3929 syscallarg(const netbsd32_rlimitp_t) rlp;
3930 } */ *uap = v;
3931 int which = SCARG(uap, which);
3932 struct rlimit alim;
3933 int error;
3934
3935 error = copyin((caddr_t)(u_long)SCARG(uap, rlp), &alim, sizeof(struct rlimit));
3936 if (error)
3937 return (error);
3938 return (dosetrlimit(p, p->p_cred, which, &alim));
3939 }
3940
3941 int
3942 netbsd32_mmap(p, v, retval)
3943 struct proc *p;
3944 void *v;
3945 register_t *retval;
3946 {
3947 struct netbsd32_mmap_args /* {
3948 syscallarg(netbsd32_voidp) addr;
3949 syscallarg(netbsd32_size_t) len;
3950 syscallarg(int) prot;
3951 syscallarg(int) flags;
3952 syscallarg(int) fd;
3953 syscallarg(netbsd32_long) pad;
3954 syscallarg(off_t) pos;
3955 } */ *uap = v;
3956 struct sys_mmap_args ua;
3957 void *rt;
3958 int error;
3959
3960 NETBSD32TOP_UAP(addr, void);
3961 NETBSD32TOX_UAP(len, size_t);
3962 NETBSD32TO64_UAP(prot);
3963 NETBSD32TO64_UAP(flags);
3964 NETBSD32TO64_UAP(fd);
3965 NETBSD32TOX_UAP(pad, long);
3966 NETBSD32TOX_UAP(pos, off_t);
3967 error = sys_mmap(p, &ua, (register_t *)&rt);
3968 if ((long)rt > (long)UINT_MAX)
3969 printf("netbsd32_mmap: retval out of range: 0x%qx",
3970 rt);
3971 *retval = (netbsd32_voidp)(u_long)rt;
3972 return (error);
3973 }
3974
3975 int
3976 netbsd32_lseek(p, v, retval)
3977 struct proc *p;
3978 void *v;
3979 register_t *retval;
3980 {
3981 struct netbsd32_lseek_args /* {
3982 syscallarg(int) fd;
3983 syscallarg(int) pad;
3984 syscallarg(off_t) offset;
3985 syscallarg(int) whence;
3986 } */ *uap = v;
3987 struct sys_lseek_args ua;
3988
3989 NETBSD32TO64_UAP(fd);
3990 NETBSD32TO64_UAP(pad);
3991 NETBSD32TO64_UAP(offset);
3992 NETBSD32TO64_UAP(whence);
3993 return (sys_lseek(p, &ua, retval));
3994 }
3995
3996 int
3997 netbsd32_truncate(p, v, retval)
3998 struct proc *p;
3999 void *v;
4000 register_t *retval;
4001 {
4002 struct netbsd32_truncate_args /* {
4003 syscallarg(const netbsd32_charp) path;
4004 syscallarg(int) pad;
4005 syscallarg(off_t) length;
4006 } */ *uap = v;
4007 struct sys_truncate_args ua;
4008
4009 NETBSD32TOP_UAP(path, const char);
4010 NETBSD32TO64_UAP(pad);
4011 NETBSD32TO64_UAP(length);
4012 return (sys_truncate(p, &ua, retval));
4013 }
4014
4015 int
4016 netbsd32_ftruncate(p, v, retval)
4017 struct proc *p;
4018 void *v;
4019 register_t *retval;
4020 {
4021 struct netbsd32_ftruncate_args /* {
4022 syscallarg(int) fd;
4023 syscallarg(int) pad;
4024 syscallarg(off_t) length;
4025 } */ *uap = v;
4026 struct sys_ftruncate_args ua;
4027
4028 NETBSD32TO64_UAP(fd);
4029 NETBSD32TO64_UAP(pad);
4030 NETBSD32TO64_UAP(length);
4031 return (sys_ftruncate(p, &ua, retval));
4032 }
4033
4034 int
4035 netbsd32___sysctl(p, v, retval)
4036 struct proc *p;
4037 void *v;
4038 register_t *retval;
4039 {
4040 struct netbsd32___sysctl_args /* {
4041 syscallarg(netbsd32_intp) name;
4042 syscallarg(u_int) namelen;
4043 syscallarg(netbsd32_voidp) old;
4044 syscallarg(netbsd32_size_tp) oldlenp;
4045 syscallarg(netbsd32_voidp) new;
4046 syscallarg(netbsd32_size_t) newlen;
4047 } */ *uap = v;
4048 int error, dolock = 1;
4049 netbsd32_size_t savelen = 0;
4050 size_t oldlen = 0;
4051 sysctlfn *fn;
4052 int name[CTL_MAXNAME];
4053
4054 /*
4055 * Some of these sysctl functions do their own copyin/copyout.
4056 * We need to disable or emulate the ones that need their
4057 * arguments converted.
4058 */
4059
4060 if (SCARG(uap, new) != NULL &&
4061 (error = suser(p->p_ucred, &p->p_acflag)))
4062 return (error);
4063 /*
4064 * all top-level sysctl names are non-terminal
4065 */
4066 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
4067 return (EINVAL);
4068 error = copyin((caddr_t)(u_long)SCARG(uap, name), &name,
4069 SCARG(uap, namelen) * sizeof(int));
4070 if (error)
4071 return (error);
4072
4073 switch (name[0]) {
4074 case CTL_KERN:
4075 fn = kern_sysctl;
4076 if (name[2] != KERN_VNODE) /* XXX */
4077 dolock = 0;
4078 break;
4079 case CTL_HW:
4080 fn = hw_sysctl;
4081 break;
4082 case CTL_VM:
4083 fn = uvm_sysctl;
4084 break;
4085 case CTL_NET:
4086 fn = net_sysctl;
4087 break;
4088 case CTL_VFS:
4089 fn = vfs_sysctl;
4090 break;
4091 case CTL_MACHDEP:
4092 fn = cpu_sysctl;
4093 break;
4094 #ifdef DEBUG
4095 case CTL_DEBUG:
4096 fn = debug_sysctl;
4097 break;
4098 #endif
4099 #ifdef DDB
4100 case CTL_DDB:
4101 fn = ddb_sysctl;
4102 break;
4103 #endif
4104 default:
4105 return (EOPNOTSUPP);
4106 }
4107
4108 if (SCARG(uap, oldlenp) &&
4109 (error = copyin((caddr_t)(u_long)SCARG(uap, oldlenp), &savelen, sizeof(savelen))))
4110 return (error);
4111 if (SCARG(uap, old) != NULL) {
4112 if (!uvm_useracc((caddr_t)(u_long)SCARG(uap, old), savelen, B_WRITE))
4113 return (EFAULT);
4114 #if 0 /* XXXXXXXX */
4115 while (memlock.sl_lock) {
4116 memlock.sl_want = 1;
4117 sleep((caddr_t)&memlock, PRIBIO+1);
4118 memlock.sl_locked++;
4119 }
4120 memlock.sl_lock = 1;
4121 #endif /* XXXXXXXX */
4122 if (dolock) {
4123 /*
4124 * XXX Um, this is kind of evil. What should
4125 * XXX we be passing here?
4126 */
4127 if (uvm_vslock(p, (void *)(u_long)SCARG(uap, old), savelen,
4128 VM_PROT_NONE) != KERN_SUCCESS) {
4129 #if 0 /* XXXXXXXX */
4130 memlock.sl_lock = 0;
4131 if (memlock.sl_want) {
4132 memlock.sl_want = 0;
4133 wakeup((caddr_t)&memlock);
4134 }
4135 #endif /* XXXXXXXX */
4136 return (EFAULT);
4137 }
4138 }
4139 oldlen = savelen;
4140 }
4141 error = (*fn)(name + 1, SCARG(uap, namelen) - 1,
4142 (void *)(u_long)SCARG(uap, old), &oldlen,
4143 (void *)(u_long)SCARG(uap, new), SCARG(uap, newlen), p);
4144 if (SCARG(uap, old) != NULL) {
4145 if (dolock)
4146 uvm_vsunlock(p, (void *)(u_long)SCARG(uap, old), savelen);
4147 #if 0 /* XXXXXXXXXXX */
4148 memlock.sl_lock = 0;
4149 if (memlock.sl_want) {
4150 memlock.sl_want = 0;
4151 wakeup((caddr_t)&memlock);
4152 }
4153 #endif /* XXXXXXXXX */
4154 }
4155 savelen = oldlen;
4156 if (error)
4157 return (error);
4158 if (SCARG(uap, oldlenp))
4159 error = copyout(&savelen, (caddr_t)(u_long)SCARG(uap, oldlenp), sizeof(savelen));
4160 return (error);
4161 }
4162
4163 int
4164 netbsd32_mlock(p, v, retval)
4165 struct proc *p;
4166 void *v;
4167 register_t *retval;
4168 {
4169 struct netbsd32_mlock_args /* {
4170 syscallarg(const netbsd32_voidp) addr;
4171 syscallarg(netbsd32_size_t) len;
4172 } */ *uap = v;
4173 struct sys_mlock_args ua;
4174
4175 NETBSD32TOP_UAP(addr, const void);
4176 NETBSD32TO64_UAP(len);
4177 return (sys_mlock(p, &ua, retval));
4178 }
4179
4180 int
4181 netbsd32_munlock(p, v, retval)
4182 struct proc *p;
4183 void *v;
4184 register_t *retval;
4185 {
4186 struct netbsd32_munlock_args /* {
4187 syscallarg(const netbsd32_voidp) addr;
4188 syscallarg(netbsd32_size_t) len;
4189 } */ *uap = v;
4190 struct sys_munlock_args ua;
4191
4192 NETBSD32TOP_UAP(addr, const void);
4193 NETBSD32TO64_UAP(len);
4194 return (sys_munlock(p, &ua, retval));
4195 }
4196
4197 int
4198 netbsd32_undelete(p, v, retval)
4199 struct proc *p;
4200 void *v;
4201 register_t *retval;
4202 {
4203 struct netbsd32_undelete_args /* {
4204 syscallarg(const netbsd32_charp) path;
4205 } */ *uap = v;
4206 struct sys_undelete_args ua;
4207
4208 NETBSD32TOP_UAP(path, const char);
4209 return (sys_undelete(p, &ua, retval));
4210 }
4211
4212 int
4213 netbsd32_futimes(p, v, retval)
4214 struct proc *p;
4215 void *v;
4216 register_t *retval;
4217 {
4218 struct netbsd32_futimes_args /* {
4219 syscallarg(int) fd;
4220 syscallarg(const netbsd32_timevalp_t) tptr;
4221 } */ *uap = v;
4222 int error;
4223 struct file *fp;
4224
4225 /* getvnode() will use the descriptor for us */
4226 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
4227 return (error);
4228
4229 error = change_utimes32((struct vnode *)fp->f_data,
4230 (struct timeval *)(u_long)SCARG(uap, tptr), p);
4231 FILE_UNUSE(fp, p);
4232 return (error);
4233 }
4234
4235 int
4236 netbsd32_getpgid(p, v, retval)
4237 struct proc *p;
4238 void *v;
4239 register_t *retval;
4240 {
4241 struct netbsd32_getpgid_args /* {
4242 syscallarg(pid_t) pid;
4243 } */ *uap = v;
4244 struct sys_getpgid_args ua;
4245
4246 NETBSD32TO64_UAP(pid);
4247 return (sys_getpgid(p, &ua, retval));
4248 }
4249
4250 int
4251 netbsd32_reboot(p, v, retval)
4252 struct proc *p;
4253 void *v;
4254 register_t *retval;
4255 {
4256 struct netbsd32_reboot_args /* {
4257 syscallarg(int) opt;
4258 syscallarg(netbsd32_charp) bootstr;
4259 } */ *uap = v;
4260 struct sys_reboot_args ua;
4261
4262 NETBSD32TO64_UAP(opt);
4263 NETBSD32TOP_UAP(bootstr, char);
4264 return (sys_reboot(p, &ua, retval));
4265 }
4266
4267 int
4268 netbsd32_poll(p, v, retval)
4269 struct proc *p;
4270 void *v;
4271 register_t *retval;
4272 {
4273 struct netbsd32_poll_args /* {
4274 syscallarg(netbsd32_pollfdp_t) fds;
4275 syscallarg(u_int) nfds;
4276 syscallarg(int) timeout;
4277 } */ *uap = v;
4278 struct sys_poll_args ua;
4279
4280 NETBSD32TOP_UAP(fds, struct pollfd);
4281 NETBSD32TO64_UAP(nfds);
4282 NETBSD32TO64_UAP(timeout);
4283 return (sys_poll(p, &ua, retval));
4284 }
4285
4286 #if defined(SYSVSEM)
4287 /*
4288 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4289 *
4290 * This is BSD. We won't support System V IPC.
4291 * Too much work.
4292 *
4293 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4294 */
4295 int
4296 netbsd32___semctl13(p, v, retval)
4297 struct proc *p;
4298 void *v;
4299 register_t *retval;
4300 {
4301 #if 0
4302 struct netbsd32___semctl_args /* {
4303 syscallarg(int) semid;
4304 syscallarg(int) semnum;
4305 syscallarg(int) cmd;
4306 syscallarg(netbsd32_semunu_t) arg;
4307 } */ *uap = v;
4308 union netbsd32_semun sem32;
4309 int semid = SCARG(uap, semid);
4310 int semnum = SCARG(uap, semnum);
4311 int cmd = SCARG(uap, cmd);
4312 union netbsd32_semun *arg = (void*)(u_long)SCARG(uap, arg);
4313 union netbsd32_semun real_arg;
4314 struct ucred *cred = p->p_ucred;
4315 int i, rval, eval;
4316 struct netbsd32_semid_ds sbuf;
4317 register struct semid_ds *semaptr;
4318
4319 semlock(p);
4320
4321 semid = IPCID_TO_IX(semid);
4322 if (semid < 0 || semid >= seminfo.semmsl)
4323 return(EINVAL);
4324
4325 semaptr = &sema[semid];
4326 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
4327 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
4328 return(EINVAL);
4329
4330 eval = 0;
4331 rval = 0;
4332
4333 switch (cmd) {
4334 case IPC_RMID:
4335 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
4336 return(eval);
4337 semaptr->sem_perm.cuid = cred->cr_uid;
4338 semaptr->sem_perm.uid = cred->cr_uid;
4339 semtot -= semaptr->sem_nsems;
4340 for (i = semaptr->_sem_base - sem; i < semtot; i++)
4341 sem[i] = sem[i + semaptr->sem_nsems];
4342 for (i = 0; i < seminfo.semmni; i++) {
4343 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
4344 sema[i]._sem_base > semaptr->_sem_base)
4345 sema[i]._sem_base -= semaptr->sem_nsems;
4346 }
4347 semaptr->sem_perm.mode = 0;
4348 semundo_clear(semid, -1);
4349 wakeup((caddr_t)semaptr);
4350 break;
4351
4352 case IPC_SET:
4353 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
4354 return(eval);
4355 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4356 return(eval);
4357 if ((eval = copyin((caddr_t)(u_long)real_arg.buf, (caddr_t)&sbuf,
4358 sizeof(sbuf))) != 0)
4359 return(eval);
4360 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
4361 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
4362 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
4363 (sbuf.sem_perm.mode & 0777);
4364 semaptr->sem_ctime = time.tv_sec;
4365 break;
4366
4367 case IPC_STAT:
4368 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4369 return(eval);
4370 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4371 return(eval);
4372 eval = copyout((caddr_t)semaptr, (caddr_t)(u_long)real_arg.buf,
4373 sizeof(struct semid_ds));
4374 break;
4375
4376 case GETNCNT:
4377 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4378 return(eval);
4379 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4380 return(EINVAL);
4381 rval = semaptr->_sem_base[semnum].semncnt;
4382 break;
4383
4384 case GETPID:
4385 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4386 return(eval);
4387 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4388 return(EINVAL);
4389 rval = semaptr->_sem_base[semnum].sempid;
4390 break;
4391
4392 case GETVAL:
4393 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4394 return(eval);
4395 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4396 return(EINVAL);
4397 rval = semaptr->_sem_base[semnum].semval;
4398 break;
4399
4400 case GETALL:
4401 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4402 return(eval);
4403 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4404 return(eval);
4405 for (i = 0; i < semaptr->sem_nsems; i++) {
4406 eval = copyout((caddr_t)&semaptr->_sem_base[i].semval,
4407 &real_arg.array[i], sizeof(real_arg.array[0]));
4408 if (eval != 0)
4409 break;
4410 }
4411 break;
4412
4413 case GETZCNT:
4414 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4415 return(eval);
4416 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4417 return(EINVAL);
4418 rval = semaptr->_sem_base[semnum].semzcnt;
4419 break;
4420
4421 case SETVAL:
4422 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4423 return(eval);
4424 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4425 return(EINVAL);
4426 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4427 return(eval);
4428 semaptr->_sem_base[semnum].semval = real_arg.val;
4429 semundo_clear(semid, semnum);
4430 wakeup((caddr_t)semaptr);
4431 break;
4432
4433 case SETALL:
4434 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4435 return(eval);
4436 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4437 return(eval);
4438 for (i = 0; i < semaptr->sem_nsems; i++) {
4439 eval = copyin(&real_arg.array[i],
4440 (caddr_t)&semaptr->_sem_base[i].semval,
4441 sizeof(real_arg.array[0]));
4442 if (eval != 0)
4443 break;
4444 }
4445 semundo_clear(semid, -1);
4446 wakeup((caddr_t)semaptr);
4447 break;
4448
4449 default:
4450 return(EINVAL);
4451 }
4452
4453 if (eval == 0)
4454 *retval = rval;
4455 return(eval);
4456 #else
4457 return (ENOSYS);
4458 #endif
4459 }
4460
4461 int
4462 netbsd32_semget(p, v, retval)
4463 struct proc *p;
4464 void *v;
4465 register_t *retval;
4466 {
4467 struct netbsd32_semget_args /* {
4468 syscallarg(netbsd32_key_t) key;
4469 syscallarg(int) nsems;
4470 syscallarg(int) semflg;
4471 } */ *uap = v;
4472 struct sys_semget_args ua;
4473
4474 NETBSD32TOX_UAP(key, key_t);
4475 NETBSD32TO64_UAP(nsems);
4476 NETBSD32TO64_UAP(semflg);
4477 return (sys_semget(p, &ua, retval));
4478 }
4479
4480 int
4481 netbsd32_semop(p, v, retval)
4482 struct proc *p;
4483 void *v;
4484 register_t *retval;
4485 {
4486 struct netbsd32_semop_args /* {
4487 syscallarg(int) semid;
4488 syscallarg(netbsd32_sembufp_t) sops;
4489 syscallarg(netbsd32_size_t) nsops;
4490 } */ *uap = v;
4491 struct sys_semop_args ua;
4492
4493 NETBSD32TO64_UAP(semid);
4494 NETBSD32TOP_UAP(sops, struct sembuf);
4495 NETBSD32TOX_UAP(nsops, size_t);
4496 return (sys_semop(p, &ua, retval));
4497 }
4498
4499 int
4500 netbsd32_semconfig(p, v, retval)
4501 struct proc *p;
4502 void *v;
4503 register_t *retval;
4504 {
4505 struct netbsd32_semconfig_args /* {
4506 syscallarg(int) flag;
4507 } */ *uap = v;
4508 struct sys_semconfig_args ua;
4509
4510 NETBSD32TO64_UAP(flag);
4511 return (sys_semconfig(p, &ua, retval));
4512 }
4513 #endif /* SYSVSEM */
4514
4515 #if defined(SYSVMSG)
4516
4517 int
4518 netbsd32___msgctl13(p, v, retval)
4519 struct proc *p;
4520 void *v;
4521 register_t *retval;
4522 {
4523 #if 0
4524 struct netbsd32_msgctl_args /* {
4525 syscallarg(int) msqid;
4526 syscallarg(int) cmd;
4527 syscallarg(netbsd32_msqid_dsp_t) buf;
4528 } */ *uap = v;
4529 struct sys_msgctl_args ua;
4530 struct msqid_ds ds;
4531 struct netbsd32_msqid_ds *ds32p;
4532 int error;
4533
4534 NETBSD32TO64_UAP(msqid);
4535 NETBSD32TO64_UAP(cmd);
4536 ds32p = (struct netbsd32_msqid_ds *)(u_long)SCARG(uap, buf);
4537 if (ds32p) {
4538 SCARG(&ua, buf) = NULL;
4539 netbsd32_to_msqid_ds(ds32p, &ds);
4540 } else
4541 SCARG(&ua, buf) = NULL;
4542 error = sys_msgctl(p, &ua, retval);
4543 if (error)
4544 return (error);
4545
4546 if (ds32p)
4547 netbsd32_from_msqid_ds(&ds, ds32p);
4548 return (0);
4549 #else
4550 return (ENOSYS);
4551 #endif
4552 }
4553
4554 int
4555 netbsd32_msgget(p, v, retval)
4556 struct proc *p;
4557 void *v;
4558 register_t *retval;
4559 {
4560 #if 0
4561 struct netbsd32_msgget_args /* {
4562 syscallarg(netbsd32_key_t) key;
4563 syscallarg(int) msgflg;
4564 } */ *uap = v;
4565 struct sys_msgget_args ua;
4566
4567 NETBSD32TOX_UAP(key, key_t);
4568 NETBSD32TO64_UAP(msgflg);
4569 return (sys_msgget(p, &ua, retval));
4570 #else
4571 return (ENOSYS);
4572 #endif
4573 }
4574
4575 int
4576 netbsd32_msgsnd(p, v, retval)
4577 struct proc *p;
4578 void *v;
4579 register_t *retval;
4580 {
4581 #if 0
4582 struct netbsd32_msgsnd_args /* {
4583 syscallarg(int) msqid;
4584 syscallarg(const netbsd32_voidp) msgp;
4585 syscallarg(netbsd32_size_t) msgsz;
4586 syscallarg(int) msgflg;
4587 } */ *uap = v;
4588 struct sys_msgsnd_args ua;
4589
4590 NETBSD32TO64_UAP(msqid);
4591 NETBSD32TOP_UAP(msgp, void);
4592 NETBSD32TOX_UAP(msgsz, size_t);
4593 NETBSD32TO64_UAP(msgflg);
4594 return (sys_msgsnd(p, &ua, retval));
4595 #else
4596 return (ENOSYS);
4597 #endif
4598 }
4599
4600 int
4601 netbsd32_msgrcv(p, v, retval)
4602 struct proc *p;
4603 void *v;
4604 register_t *retval;
4605 {
4606 #if 0
4607 struct netbsd32_msgrcv_args /* {
4608 syscallarg(int) msqid;
4609 syscallarg(netbsd32_voidp) msgp;
4610 syscallarg(netbsd32_size_t) msgsz;
4611 syscallarg(netbsd32_long) msgtyp;
4612 syscallarg(int) msgflg;
4613 } */ *uap = v;
4614 struct sys_msgrcv_args ua;
4615 ssize_t rt;
4616 int error;
4617
4618 NETBSD32TO64_UAP(msqid);
4619 NETBSD32TOP_UAP(msgp, void);
4620 NETBSD32TOX_UAP(msgsz, size_t);
4621 NETBSD32TOX_UAP(msgtyp, long);
4622 NETBSD32TO64_UAP(msgflg);
4623 error = sys_msgrcv(p, &ua, (register_t *)&rt);
4624 *(netbsd32_ssize_t *)retval = rt;
4625 return (error);
4626 #else
4627 return (ENOSYS);
4628 #endif
4629 }
4630 #endif /* SYSVMSG */
4631
4632 #if defined(SYSVSHM)
4633
4634 int
4635 netbsd32_shmat(p, v, retval)
4636 struct proc *p;
4637 void *v;
4638 register_t *retval;
4639 {
4640 #if 0
4641 struct netbsd32_shmat_args /* {
4642 syscallarg(int) shmid;
4643 syscallarg(const netbsd32_voidp) shmaddr;
4644 syscallarg(int) shmflg;
4645 } */ *uap = v;
4646 struct sys_shmat_args ua;
4647 void *rt;
4648 int error;
4649
4650 NETBSD32TO64_UAP(shmid);
4651 NETBSD32TOP_UAP(shmaddr, void);
4652 NETBSD32TO64_UAP(shmflg);
4653 error = sys_shmat(p, &ua, (register_t *)&rt);
4654 *retval = (netbsd32_voidp)(u_long)rt;
4655 return (error);
4656 #else
4657 return (ENOSYS);
4658 #endif
4659 }
4660
4661 int
4662 netbsd32___shmctl13(p, v, retval)
4663 struct proc *p;
4664 void *v;
4665 register_t *retval;
4666 {
4667 #if 0
4668 struct netbsd32_shmctl_args /* {
4669 syscallarg(int) shmid;
4670 syscallarg(int) cmd;
4671 syscallarg(netbsd32_shmid_dsp_t) buf;
4672 } */ *uap = v;
4673 struct sys_shmctl_args ua;
4674 struct shmid_ds ds;
4675 struct netbsd32_shmid_ds *ds32p;
4676 int error;
4677
4678 NETBSD32TO64_UAP(shmid);
4679 NETBSD32TO64_UAP(cmd);
4680 ds32p = (struct netbsd32_shmid_ds *)(u_long)SCARG(uap, buf);
4681 if (ds32p) {
4682 SCARG(&ua, buf) = NULL;
4683 netbsd32_to_shmid_ds(ds32p, &ds);
4684 } else
4685 SCARG(&ua, buf) = NULL;
4686 error = sys_shmctl(p, &ua, retval);
4687 if (error)
4688 return (error);
4689
4690 if (ds32p)
4691 netbsd32_from_shmid_ds(&ds, ds32p);
4692 return (0);
4693 #else
4694 return (ENOSYS);
4695 #endif
4696 }
4697
4698 int
4699 netbsd32_shmdt(p, v, retval)
4700 struct proc *p;
4701 void *v;
4702 register_t *retval;
4703 {
4704 #if 0
4705 struct netbsd32_shmdt_args /* {
4706 syscallarg(const netbsd32_voidp) shmaddr;
4707 } */ *uap = v;
4708 struct sys_shmdt_args ua;
4709
4710 NETBSD32TOP_UAP(shmaddr, const char);
4711 return (sys_shmdt(p, &ua, retval));
4712 #else
4713 return (ENOSYS);
4714 #endif
4715 }
4716
4717 int
4718 netbsd32_shmget(p, v, retval)
4719 struct proc *p;
4720 void *v;
4721 register_t *retval;
4722 {
4723 #if 0
4724 struct netbsd32_shmget_args /* {
4725 syscallarg(netbsd32_key_t) key;
4726 syscallarg(netbsd32_size_t) size;
4727 syscallarg(int) shmflg;
4728 } */ *uap = v;
4729 struct sys_shmget_args ua;
4730
4731 NETBSD32TOX_UAP(key, key_t)
4732 NETBSD32TOX_UAP(size, size_t)
4733 NETBSD32TO64_UAP(shmflg);
4734 return (sys_shmget(p, &ua, retval));
4735 #else
4736 return (ENOSYS);
4737 #endif
4738 }
4739 #endif /* SYSVSHM */
4740
4741 int
4742 netbsd32_clock_gettime(p, v, retval)
4743 struct proc *p;
4744 void *v;
4745 register_t *retval;
4746 {
4747 struct netbsd32_clock_gettime_args /* {
4748 syscallarg(netbsd32_clockid_t) clock_id;
4749 syscallarg(netbsd32_timespecp_t) tp;
4750 } */ *uap = v;
4751 clockid_t clock_id;
4752 struct timeval atv;
4753 struct timespec ats;
4754 struct netbsd32_timespec ts32;
4755
4756 clock_id = SCARG(uap, clock_id);
4757 if (clock_id != CLOCK_REALTIME)
4758 return (EINVAL);
4759
4760 microtime(&atv);
4761 TIMEVAL_TO_TIMESPEC(&atv,&ats);
4762 netbsd32_from_timespec(&ats, &ts32);
4763
4764 return copyout(&ts32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts32));
4765 }
4766
4767 int
4768 netbsd32_clock_settime(p, v, retval)
4769 struct proc *p;
4770 void *v;
4771 register_t *retval;
4772 {
4773 struct netbsd32_clock_settime_args /* {
4774 syscallarg(netbsd32_clockid_t) clock_id;
4775 syscallarg(const netbsd32_timespecp_t) tp;
4776 } */ *uap = v;
4777 struct netbsd32_timespec ts32;
4778 clockid_t clock_id;
4779 struct timeval atv;
4780 struct timespec ats;
4781 int error;
4782
4783 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
4784 return (error);
4785
4786 clock_id = SCARG(uap, clock_id);
4787 if (clock_id != CLOCK_REALTIME)
4788 return (EINVAL);
4789
4790 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), &ts32, sizeof(ts32))) != 0)
4791 return (error);
4792
4793 netbsd32_to_timespec(&ts32, &ats);
4794 TIMESPEC_TO_TIMEVAL(&atv,&ats);
4795 if ((error = settime(&atv)))
4796 return (error);
4797
4798 return 0;
4799 }
4800
4801 int
4802 netbsd32_clock_getres(p, v, retval)
4803 struct proc *p;
4804 void *v;
4805 register_t *retval;
4806 {
4807 struct netbsd32_clock_getres_args /* {
4808 syscallarg(netbsd32_clockid_t) clock_id;
4809 syscallarg(netbsd32_timespecp_t) tp;
4810 } */ *uap = v;
4811 struct netbsd32_timespec ts32;
4812 clockid_t clock_id;
4813 struct timespec ts;
4814 int error = 0;
4815
4816 clock_id = SCARG(uap, clock_id);
4817 if (clock_id != CLOCK_REALTIME)
4818 return (EINVAL);
4819
4820 if (SCARG(uap, tp)) {
4821 ts.tv_sec = 0;
4822 ts.tv_nsec = 1000000000 / hz;
4823
4824 netbsd32_from_timespec(&ts, &ts32);
4825 error = copyout(&ts, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts));
4826 }
4827
4828 return error;
4829 }
4830
4831 int
4832 netbsd32_nanosleep(p, v, retval)
4833 struct proc *p;
4834 void *v;
4835 register_t *retval;
4836 {
4837 struct netbsd32_nanosleep_args /* {
4838 syscallarg(const netbsd32_timespecp_t) rqtp;
4839 syscallarg(netbsd32_timespecp_t) rmtp;
4840 } */ *uap = v;
4841 static int nanowait;
4842 struct netbsd32_timespec ts32;
4843 struct timespec rqt;
4844 struct timespec rmt;
4845 struct timeval atv, utv;
4846 int error, s, timo;
4847
4848 error = copyin((caddr_t)(u_long)SCARG(uap, rqtp), (caddr_t)&ts32,
4849 sizeof(ts32));
4850 if (error)
4851 return (error);
4852
4853 netbsd32_to_timespec(&ts32, &rqt);
4854 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
4855 if (itimerfix(&atv))
4856 return (EINVAL);
4857
4858 s = splclock();
4859 timeradd(&atv,&time,&atv);
4860 timo = hzto(&atv);
4861 /*
4862 * Avoid inadvertantly sleeping forever
4863 */
4864 if (timo == 0)
4865 timo = 1;
4866 splx(s);
4867
4868 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
4869 if (error == ERESTART)
4870 error = EINTR;
4871 if (error == EWOULDBLOCK)
4872 error = 0;
4873
4874 if (SCARG(uap, rmtp)) {
4875 int error;
4876
4877 s = splclock();
4878 utv = time;
4879 splx(s);
4880
4881 timersub(&atv, &utv, &utv);
4882 if (utv.tv_sec < 0)
4883 timerclear(&utv);
4884
4885 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
4886 netbsd32_from_timespec(&rmt, &ts32);
4887 error = copyout((caddr_t)&ts32, (caddr_t)(u_long)SCARG(uap,rmtp),
4888 sizeof(ts32));
4889 if (error)
4890 return (error);
4891 }
4892
4893 return error;
4894 }
4895
4896 int
4897 netbsd32_fdatasync(p, v, retval)
4898 struct proc *p;
4899 void *v;
4900 register_t *retval;
4901 {
4902 struct netbsd32_fdatasync_args /* {
4903 syscallarg(int) fd;
4904 } */ *uap = v;
4905 struct sys_fdatasync_args ua;
4906
4907 NETBSD32TO64_UAP(fd);
4908
4909 return (sys_fdatasync(p, &ua, retval));
4910 }
4911
4912 int
4913 netbsd32___posix_rename(p, v, retval)
4914 struct proc *p;
4915 void *v;
4916 register_t *retval;
4917 {
4918 struct netbsd32___posix_rename_args /* {
4919 syscallarg(const netbsd32_charp) from;
4920 syscallarg(const netbsd32_charp) to;
4921 } */ *uap = v;
4922 struct sys___posix_rename_args ua;
4923
4924 NETBSD32TOP_UAP(from, const char);
4925 NETBSD32TOP_UAP(to, const char);
4926
4927 return (sys___posix_rename(p, &ua, retval));
4928 }
4929
4930 int
4931 netbsd32_swapctl(p, v, retval)
4932 struct proc *p;
4933 void *v;
4934 register_t *retval;
4935 {
4936 struct netbsd32_swapctl_args /* {
4937 syscallarg(int) cmd;
4938 syscallarg(const netbsd32_voidp) arg;
4939 syscallarg(int) misc;
4940 } */ *uap = v;
4941 struct sys_swapctl_args ua;
4942
4943 NETBSD32TO64_UAP(cmd);
4944 NETBSD32TOP_UAP(arg, const void);
4945 NETBSD32TO64_UAP(misc);
4946 return (sys_swapctl(p, &ua, retval));
4947 }
4948
4949 int
4950 netbsd32_getdents(p, v, retval)
4951 struct proc *p;
4952 void *v;
4953 register_t *retval;
4954 {
4955 struct netbsd32_getdents_args /* {
4956 syscallarg(int) fd;
4957 syscallarg(netbsd32_charp) buf;
4958 syscallarg(netbsd32_size_t) count;
4959 } */ *uap = v;
4960 struct file *fp;
4961 int error, done;
4962
4963 /* getvnode() will use the descriptor for us */
4964 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
4965 return (error);
4966 if ((fp->f_flag & FREAD) == 0) {
4967 error = EBADF;
4968 goto out;
4969 }
4970 error = vn_readdir(fp, (caddr_t)(u_long)SCARG(uap, buf), UIO_USERSPACE,
4971 SCARG(uap, count), &done, p, 0, 0);
4972 *retval = done;
4973 out:
4974 FILE_UNUSE(fp, p);
4975 return (error);
4976 }
4977
4978
4979 int
4980 netbsd32_minherit(p, v, retval)
4981 struct proc *p;
4982 void *v;
4983 register_t *retval;
4984 {
4985 struct netbsd32_minherit_args /* {
4986 syscallarg(netbsd32_voidp) addr;
4987 syscallarg(netbsd32_size_t) len;
4988 syscallarg(int) inherit;
4989 } */ *uap = v;
4990 struct sys_minherit_args ua;
4991
4992 NETBSD32TOP_UAP(addr, void);
4993 NETBSD32TOX_UAP(len, size_t);
4994 NETBSD32TO64_UAP(inherit);
4995 return (sys_minherit(p, &ua, retval));
4996 }
4997
4998 int
4999 netbsd32_lchmod(p, v, retval)
5000 struct proc *p;
5001 void *v;
5002 register_t *retval;
5003 {
5004 struct netbsd32_lchmod_args /* {
5005 syscallarg(const netbsd32_charp) path;
5006 syscallarg(mode_t) mode;
5007 } */ *uap = v;
5008 struct sys_lchmod_args ua;
5009
5010 NETBSD32TOP_UAP(path, const char);
5011 NETBSD32TO64_UAP(mode);
5012 return (sys_lchmod(p, &ua, retval));
5013 }
5014
5015 int
5016 netbsd32_lchown(p, v, retval)
5017 struct proc *p;
5018 void *v;
5019 register_t *retval;
5020 {
5021 struct netbsd32_lchown_args /* {
5022 syscallarg(const netbsd32_charp) path;
5023 syscallarg(uid_t) uid;
5024 syscallarg(gid_t) gid;
5025 } */ *uap = v;
5026 struct sys_lchown_args ua;
5027
5028 NETBSD32TOP_UAP(path, const char);
5029 NETBSD32TO64_UAP(uid);
5030 NETBSD32TO64_UAP(gid);
5031 return (sys_lchown(p, &ua, retval));
5032 }
5033
5034 int
5035 netbsd32_lutimes(p, v, retval)
5036 struct proc *p;
5037 void *v;
5038 register_t *retval;
5039 {
5040 struct netbsd32_lutimes_args /* {
5041 syscallarg(const netbsd32_charp) path;
5042 syscallarg(const netbsd32_timevalp_t) tptr;
5043 } */ *uap = v;
5044 int error;
5045 struct nameidata nd;
5046
5047 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, (caddr_t)(u_long)SCARG(uap, path), p);
5048 if ((error = namei(&nd)) != 0)
5049 return (error);
5050
5051 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
5052
5053 vrele(nd.ni_vp);
5054 return (error);
5055 }
5056
5057
5058 int
5059 netbsd32___msync13(p, v, retval)
5060 struct proc *p;
5061 void *v;
5062 register_t *retval;
5063 {
5064 struct netbsd32___msync13_args /* {
5065 syscallarg(netbsd32_voidp) addr;
5066 syscallarg(netbsd32_size_t) len;
5067 syscallarg(int) flags;
5068 } */ *uap = v;
5069 struct sys___msync13_args ua;
5070
5071 NETBSD32TOP_UAP(addr, void);
5072 NETBSD32TOX_UAP(len, size_t);
5073 NETBSD32TO64_UAP(flags);
5074 return (sys___msync13(p, &ua, retval));
5075 }
5076
5077 int
5078 netbsd32___stat13(p, v, retval)
5079 struct proc *p;
5080 void *v;
5081 register_t *retval;
5082 {
5083 struct netbsd32___stat13_args /* {
5084 syscallarg(const netbsd32_charp) path;
5085 syscallarg(netbsd32_statp_t) ub;
5086 } */ *uap = v;
5087 struct netbsd32_stat sb32;
5088 struct stat sb;
5089 int error;
5090 struct nameidata nd;
5091
5092 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE,
5093 (caddr_t)(u_long)SCARG(uap, path), p);
5094 if ((error = namei(&nd)) != 0)
5095 return (error);
5096 error = vn_stat(nd.ni_vp, &sb, p);
5097 vput(nd.ni_vp);
5098 if (error)
5099 return (error);
5100 netbsd32_from___stat13(&sb, &sb32);
5101 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5102 return (error);
5103 }
5104
5105 int
5106 netbsd32___fstat13(p, v, retval)
5107 struct proc *p;
5108 void *v;
5109 register_t *retval;
5110 {
5111 struct netbsd32___fstat13_args /* {
5112 syscallarg(int) fd;
5113 syscallarg(netbsd32_statp_t) sb;
5114 } */ *uap = v;
5115 int fd = SCARG(uap, fd);
5116 register struct filedesc *fdp = p->p_fd;
5117 register struct file *fp;
5118 struct netbsd32_stat sb32;
5119 struct stat ub;
5120 int error = 0;
5121
5122 if ((u_int)fd >= fdp->fd_nfiles ||
5123 (fp = fdp->fd_ofiles[fd]) == NULL)
5124 return (EBADF);
5125 switch (fp->f_type) {
5126
5127 case DTYPE_VNODE:
5128 error = vn_stat((struct vnode *)fp->f_data, &ub, p);
5129 break;
5130
5131 case DTYPE_SOCKET:
5132 error = soo_stat((struct socket *)fp->f_data, &ub);
5133 break;
5134
5135 default:
5136 panic("fstat");
5137 /*NOTREACHED*/
5138 }
5139 if (error == 0) {
5140 netbsd32_from___stat13(&ub, &sb32);
5141 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, sb), sizeof(sb32));
5142 }
5143 return (error);
5144 }
5145
5146 int
5147 netbsd32___lstat13(p, v, retval)
5148 struct proc *p;
5149 void *v;
5150 register_t *retval;
5151 {
5152 struct netbsd32___lstat13_args /* {
5153 syscallarg(const netbsd32_charp) path;
5154 syscallarg(netbsd32_statp_t) ub;
5155 } */ *uap = v;
5156 struct netbsd32_stat sb32;
5157 struct stat sb;
5158 int error;
5159 struct nameidata nd;
5160
5161 NDINIT(&nd, LOOKUP, NOFOLLOW | LOCKLEAF, UIO_USERSPACE,
5162 (caddr_t)(u_long)SCARG(uap, path), p);
5163 if ((error = namei(&nd)) != 0)
5164 return (error);
5165 error = vn_stat(nd.ni_vp, &sb, p);
5166 vput(nd.ni_vp);
5167 if (error)
5168 return (error);
5169 netbsd32_from___stat13(&sb, &sb32);
5170 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5171 return (error);
5172 }
5173
5174 int
5175 netbsd32___sigaltstack14(p, v, retval)
5176 struct proc *p;
5177 void *v;
5178 register_t *retval;
5179 {
5180 struct netbsd32___sigaltstack14_args /* {
5181 syscallarg(const netbsd32_sigaltstackp_t) nss;
5182 syscallarg(netbsd32_sigaltstackp_t) oss;
5183 } */ *uap = v;
5184 struct netbsd32_sigaltstack s32;
5185 struct sigaltstack nss, oss;
5186 int error;
5187
5188 if (SCARG(uap, nss)) {
5189 error = copyin((caddr_t)(u_long)SCARG(uap, nss), &s32, sizeof(s32));
5190 if (error)
5191 return (error);
5192 nss.ss_sp = (void *)(u_long)s32.ss_sp;
5193 nss.ss_size = (size_t)s32.ss_size;
5194 nss.ss_flags = s32.ss_flags;
5195 }
5196 error = sigaltstack1(p,
5197 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
5198 if (error)
5199 return (error);
5200 if (SCARG(uap, oss)) {
5201 s32.ss_sp = (netbsd32_voidp)(u_long)oss.ss_sp;
5202 s32.ss_size = (netbsd32_size_t)oss.ss_size;
5203 s32.ss_flags = oss.ss_flags;
5204 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, oss), sizeof(s32));
5205 if (error)
5206 return (error);
5207 }
5208 return (0);
5209 }
5210
5211 int
5212 netbsd32___posix_chown(p, v, retval)
5213 struct proc *p;
5214 void *v;
5215 register_t *retval;
5216 {
5217 struct netbsd32___posix_chown_args /* {
5218 syscallarg(const netbsd32_charp) path;
5219 syscallarg(uid_t) uid;
5220 syscallarg(gid_t) gid;
5221 } */ *uap = v;
5222 struct sys___posix_chown_args ua;
5223
5224 NETBSD32TOP_UAP(path, const char);
5225 NETBSD32TO64_UAP(uid);
5226 NETBSD32TO64_UAP(gid);
5227 return (sys___posix_chown(p, &ua, retval));
5228 }
5229
5230 int
5231 netbsd32___posix_fchown(p, v, retval)
5232 struct proc *p;
5233 void *v;
5234 register_t *retval;
5235 {
5236 struct netbsd32___posix_fchown_args /* {
5237 syscallarg(int) fd;
5238 syscallarg(uid_t) uid;
5239 syscallarg(gid_t) gid;
5240 } */ *uap = v;
5241 struct sys___posix_fchown_args ua;
5242
5243 NETBSD32TO64_UAP(fd);
5244 NETBSD32TO64_UAP(uid);
5245 NETBSD32TO64_UAP(gid);
5246 return (sys___posix_fchown(p, &ua, retval));
5247 }
5248
5249 int
5250 netbsd32___posix_lchown(p, v, retval)
5251 struct proc *p;
5252 void *v;
5253 register_t *retval;
5254 {
5255 struct netbsd32___posix_lchown_args /* {
5256 syscallarg(const netbsd32_charp) path;
5257 syscallarg(uid_t) uid;
5258 syscallarg(gid_t) gid;
5259 } */ *uap = v;
5260 struct sys___posix_lchown_args ua;
5261
5262 NETBSD32TOP_UAP(path, const char);
5263 NETBSD32TO64_UAP(uid);
5264 NETBSD32TO64_UAP(gid);
5265 return (sys___posix_lchown(p, &ua, retval));
5266 }
5267
5268 int
5269 netbsd32_getsid(p, v, retval)
5270 struct proc *p;
5271 void *v;
5272 register_t *retval;
5273 {
5274 struct netbsd32_getsid_args /* {
5275 syscallarg(pid_t) pid;
5276 } */ *uap = v;
5277 struct sys_getsid_args ua;
5278
5279 NETBSD32TO64_UAP(pid);
5280 return (sys_getsid(p, &ua, retval));
5281 }
5282
5283 int
5284 netbsd32_fktrace(p, v, retval)
5285 struct proc *p;
5286 void *v;
5287 register_t *retval;
5288 {
5289 struct netbsd32_fktrace_args /* {
5290 syscallarg(const int) fd;
5291 syscallarg(int) ops;
5292 syscallarg(int) facs;
5293 syscallarg(int) pid;
5294 } */ *uap = v;
5295 struct sys_fktrace_args ua;
5296
5297 NETBSD32TOX_UAP(fd, const int);
5298 NETBSD32TO64_UAP(ops);
5299 NETBSD32TO64_UAP(facs);
5300 NETBSD32TO64_UAP(pid);
5301 return (sys_fktrace(p, &ua, retval));
5302 }
5303
5304 int
5305 netbsd32_preadv(p, v, retval)
5306 struct proc *p;
5307 void *v;
5308 register_t *retval;
5309 {
5310 struct netbsd32_preadv_args /* {
5311 syscallarg(int) fd;
5312 syscallarg(const netbsd32_iovecp_t) iovp;
5313 syscallarg(int) iovcnt;
5314 syscallarg(int) pad;
5315 syscallarg(off_t) offset;
5316 } */ *uap = v;
5317 struct filedesc *fdp = p->p_fd;
5318 struct file *fp;
5319 struct vnode *vp;
5320 off_t offset;
5321 int error, fd = SCARG(uap, fd);
5322
5323 if ((u_int)fd >= fdp->fd_nfiles ||
5324 (fp = fdp->fd_ofiles[fd]) == NULL ||
5325 (fp->f_flag & FREAD) == 0)
5326 return (EBADF);
5327
5328 vp = (struct vnode *)fp->f_data;
5329 if (fp->f_type != DTYPE_VNODE
5330 || vp->v_type == VFIFO)
5331 return (ESPIPE);
5332
5333 offset = SCARG(uap, offset);
5334
5335 /*
5336 * XXX This works because no file systems actually
5337 * XXX take any action on the seek operation.
5338 */
5339 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5340 return (error);
5341
5342 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5343 &offset, 0, retval));
5344 }
5345
5346 int
5347 netbsd32_pwritev(p, v, retval)
5348 struct proc *p;
5349 void *v;
5350 register_t *retval;
5351 {
5352 struct netbsd32_pwritev_args /* {
5353 syscallarg(int) fd;
5354 syscallarg(const netbsd32_iovecp_t) iovp;
5355 syscallarg(int) iovcnt;
5356 syscallarg(int) pad;
5357 syscallarg(off_t) offset;
5358 } */ *uap = v;
5359 struct filedesc *fdp = p->p_fd;
5360 struct file *fp;
5361 struct vnode *vp;
5362 off_t offset;
5363 int error, fd = SCARG(uap, fd);
5364
5365 if ((u_int)fd >= fdp->fd_nfiles ||
5366 (fp = fdp->fd_ofiles[fd]) == NULL ||
5367 (fp->f_flag & FWRITE) == 0)
5368 return (EBADF);
5369
5370 vp = (struct vnode *)fp->f_data;
5371 if (fp->f_type != DTYPE_VNODE
5372 || vp->v_type == VFIFO)
5373 return (ESPIPE);
5374
5375 offset = SCARG(uap, offset);
5376
5377 /*
5378 * XXX This works because no file systems actually
5379 * XXX take any action on the seek operation.
5380 */
5381 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5382 return (error);
5383
5384 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5385 &offset, 0, retval));
5386 }
5387
5388 /* ARGSUSED */
5389 int
5390 netbsd32___sigaction14(p, v, retval)
5391 struct proc *p;
5392 void *v;
5393 register_t *retval;
5394 {
5395 register struct netbsd32___sigaction14_args /* {
5396 syscallarg(int) signum;
5397 syscallarg(const struct sigaction *) nsa;
5398 syscallarg(struct sigaction *) osa;
5399 } */ *uap = v;
5400 struct netbsd32_sigaction sa32;
5401 struct sigaction nsa, osa;
5402 int error;
5403
5404 if (SCARG(uap, nsa)) {
5405 error = copyin((caddr_t)(u_long)SCARG(uap, nsa),
5406 &sa32, sizeof(sa32));
5407 if (error)
5408 return (error);
5409 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
5410 nsa.sa_mask = sa32.sa_mask;
5411 nsa.sa_flags = sa32.sa_flags;
5412 }
5413 error = sigaction1(p, SCARG(uap, signum),
5414 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0);
5415 if (error)
5416 return (error);
5417 if (SCARG(uap, osa)) {
5418 sa32.sa_handler = (netbsd32_voidp)(u_long)osa.sa_handler;
5419 sa32.sa_mask = osa.sa_mask;
5420 sa32.sa_flags = osa.sa_flags;
5421 error = copyout(&sa32, (caddr_t)(u_long)SCARG(uap, osa), sizeof(sa32));
5422 if (error)
5423 return (error);
5424 }
5425 return (0);
5426 }
5427
5428 int netbsd32___sigpending14(p, v, retval)
5429 struct proc *p;
5430 void *v;
5431 register_t *retval;
5432 {
5433 register struct netbsd32___sigpending14_args /* {
5434 syscallarg(sigset_t *) set;
5435 } */ *uap = v;
5436 struct sys___sigpending14_args ua;
5437
5438 NETBSD32TOP_UAP(set, sigset_t);
5439 return (sys___sigpending14(p, &ua, retval));
5440 }
5441
5442 int netbsd32___sigprocmask14(p, v, retval)
5443 struct proc *p;
5444 void *v;
5445 register_t *retval;
5446 {
5447 register struct netbsd32___sigprocmask14_args /* {
5448 syscallarg(int) how;
5449 syscallarg(const sigset_t *) set;
5450 syscallarg(sigset_t *) oset;
5451 } */ *uap = v;
5452 struct sys___sigprocmask14_args ua;
5453
5454 NETBSD32TO64_UAP(how);
5455 NETBSD32TOP_UAP(set, sigset_t);
5456 NETBSD32TOP_UAP(oset, sigset_t);
5457 return (sys___sigprocmask14(p, &ua, retval));
5458 }
5459
5460 int netbsd32___sigsuspend14(p, v, retval)
5461 struct proc *p;
5462 void *v;
5463 register_t *retval;
5464 {
5465 struct netbsd32___sigsuspend14_args /* {
5466 syscallarg(const sigset_t *) set;
5467 } */ *uap = v;
5468 struct sys___sigsuspend14_args ua;
5469
5470 NETBSD32TOP_UAP(set, sigset_t);
5471 return (sys___sigsuspend14(p, &ua, retval));
5472 };
5473
5474
5475 /*
5476 * Find pathname of process's current directory.
5477 *
5478 * Use vfs vnode-to-name reverse cache; if that fails, fall back
5479 * to reading directory contents.
5480 */
5481 int
5482 getcwd_common __P((struct vnode *, struct vnode *,
5483 char **, char *, int, int, struct proc *));
5484
5485 int netbsd32___getcwd(p, v, retval)
5486 struct proc *p;
5487 void *v;
5488 register_t *retval;
5489 {
5490 register struct netbsd32___getcwd_args /* {
5491 syscallarg(char *) bufp;
5492 syscallarg(size_t) length;
5493 } */ *uap = v;
5494
5495 int error;
5496 char *path;
5497 char *bp, *bend;
5498 int len = (int)SCARG(uap, length);
5499 int lenused;
5500
5501 if (len > MAXPATHLEN*4)
5502 len = MAXPATHLEN*4;
5503 else if (len < 2)
5504 return ERANGE;
5505
5506 path = (char *)malloc(len, M_TEMP, M_WAITOK);
5507 if (!path)
5508 return ENOMEM;
5509
5510 bp = &path[len];
5511 bend = bp;
5512 *(--bp) = '\0';
5513
5514 /*
5515 * 5th argument here is "max number of vnodes to traverse".
5516 * Since each entry takes up at least 2 bytes in the output buffer,
5517 * limit it to N/2 vnodes for an N byte buffer.
5518 */
5519 #define GETCWD_CHECK_ACCESS 0x0001
5520 error = getcwd_common (p->p_cwdi->cwdi_cdir, NULL, &bp, path, len/2,
5521 GETCWD_CHECK_ACCESS, p);
5522
5523 if (error)
5524 goto out;
5525 lenused = bend - bp;
5526 *retval = lenused;
5527 /* put the result into user buffer */
5528 error = copyout(bp, (caddr_t)(u_long)SCARG(uap, bufp), lenused);
5529
5530 out:
5531 free(path, M_TEMP);
5532 return error;
5533 }
5534
5535 int netbsd32_fchroot(p, v, retval)
5536 struct proc *p;
5537 void *v;
5538 register_t *retval;
5539 {
5540 register struct netbsd32_fchroot_args /* {
5541 syscallarg(int) fd;
5542 } */ *uap = v;
5543 struct sys_fchroot_args ua;
5544
5545 NETBSD32TO64_UAP(fd);
5546 return (sys_fchroot(p, &ua, retval));
5547 }
5548
5549 /*
5550 * Open a file given a file handle.
5551 *
5552 * Check permissions, allocate an open file structure,
5553 * and call the device open routine if any.
5554 */
5555 int
5556 netbsd32_fhopen(p, v, retval)
5557 struct proc *p;
5558 void *v;
5559 register_t *retval;
5560 {
5561 register struct netbsd32_fhopen_args /* {
5562 syscallarg(const fhandle_t *) fhp;
5563 syscallarg(int) flags;
5564 } */ *uap = v;
5565 struct sys_fhopen_args ua;
5566
5567 NETBSD32TOP_UAP(fhp, fhandle_t);
5568 NETBSD32TO64_UAP(flags);
5569 return (sys_fhopen(p, &ua, retval));
5570 }
5571
5572 int netbsd32_fhstat(p, v, retval)
5573 struct proc *p;
5574 void *v;
5575 register_t *retval;
5576 {
5577 register struct netbsd32_fhstat_args /* {
5578 syscallarg(const netbsd32_fhandlep_t) fhp;
5579 syscallarg(struct stat *) sb;
5580 } */ *uap = v;
5581 struct sys_fhstat_args ua;
5582
5583 NETBSD32TOP_UAP(fhp, const fhandle_t);
5584 NETBSD32TOP_UAP(sb, struct stat);
5585 return (sys_fhstat(p, &ua, retval));
5586 }
5587
5588 int netbsd32_fhstatfs(p, v, retval)
5589 struct proc *p;
5590 void *v;
5591 register_t *retval;
5592 {
5593 register struct netbsd32_fhstatfs_args /* {
5594 syscallarg(const netbsd32_fhandlep_t) fhp;
5595 syscallarg(struct statfs *) buf;
5596 } */ *uap = v;
5597 struct sys_fhstatfs_args ua;
5598
5599 NETBSD32TOP_UAP(fhp, const fhandle_t);
5600 NETBSD32TOP_UAP(buf, struct statfs);
5601 return (sys_fhstatfs(p, &ua, retval));
5602 }
5603