netbsd32_netbsd.c revision 1.31 1 /* $NetBSD: netbsd32_netbsd.c,v 1.31 2000/07/09 03:03:35 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1998 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include "opt_ddb.h"
32 #include "opt_ktrace.h"
33 #include "opt_ntp.h"
34 #include "opt_compat_netbsd.h"
35 #include "opt_compat_freebsd.h"
36 #include "opt_compat_linux.h"
37 #include "opt_compat_sunos.h"
38 #include "opt_compat_43.h"
39 #include "opt_sysv.h"
40 #if defined(COMPAT_43) || defined(COMPAT_SUNOS) || defined(COMPAT_LINUX) || \
41 defined(COMPAT_FREEBSD)
42 #define COMPAT_OLDSOCK /* used by <sys/socket.h> */
43 #endif
44
45 #include "fs_lfs.h"
46 #include "fs_nfs.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/filedesc.h>
51 #include <sys/kernel.h>
52 #include <sys/ipc.h>
53 #include <sys/msg.h>
54 #define msg __msg /* Don't ask me! */
55 #include <sys/sem.h>
56 #include <sys/shm.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/socket.h>
60 #include <sys/sockio.h>
61 #include <sys/socketvar.h>
62 #include <sys/mbuf.h>
63 #include <sys/stat.h>
64 #include <sys/time.h>
65 #include <sys/timex.h>
66 #include <sys/signalvar.h>
67 #include <sys/wait.h>
68 #include <sys/ptrace.h>
69 #include <sys/ktrace.h>
70 #include <sys/trace.h>
71 #include <sys/resourcevar.h>
72 #include <sys/pool.h>
73 #include <sys/vnode.h>
74 #include <sys/file.h>
75 #include <sys/filedesc.h>
76 #include <sys/namei.h>
77
78 #include <uvm/uvm_extern.h>
79
80 #include <sys/syscallargs.h>
81 #include <sys/proc.h>
82 #include <sys/acct.h>
83 #include <sys/exec.h>
84 #include <sys/sysctl.h>
85
86 #include <net/if.h>
87
88 #include <compat/netbsd32/netbsd32.h>
89 #include <compat/netbsd32/netbsd32_syscallargs.h>
90
91 #include <machine/frame.h>
92
93 #if defined(DDB)
94 #include <ddb/ddbvar.h>
95 #endif
96
97 static __inline void netbsd32_from_timeval __P((struct timeval *, struct netbsd32_timeval *));
98 static __inline void netbsd32_to_timeval __P((struct netbsd32_timeval *, struct timeval *));
99 static __inline void netbsd32_from_itimerval __P((struct itimerval *, struct netbsd32_itimerval *));
100 static __inline void netbsd32_to_itimerval __P((struct netbsd32_itimerval *, struct itimerval *));
101 static __inline void netbsd32_to_timespec __P((struct netbsd32_timespec *, struct timespec *));
102 static __inline void netbsd32_from_timespec __P((struct timespec *, struct netbsd32_timespec *));
103 static __inline void netbsd32_from_rusage __P((struct rusage *, struct netbsd32_rusage *));
104 static __inline void netbsd32_to_rusage __P((struct netbsd32_rusage *, struct rusage *));
105 static __inline int netbsd32_to_iovecin __P((struct netbsd32_iovec *, struct iovec *, int));
106 static __inline void netbsd32_to_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
107 static __inline void netbsd32_from_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
108 static __inline void netbsd32_from_statfs __P((struct statfs *, struct netbsd32_statfs *));
109 static __inline void netbsd32_from_timex __P((struct timex *, struct netbsd32_timex *));
110 static __inline void netbsd32_to_timex __P((struct netbsd32_timex *, struct timex *));
111 static __inline void netbsd32_from___stat13 __P((struct stat *, struct netbsd32_stat *));
112 static __inline void netbsd32_to_ipc_perm __P((struct netbsd32_ipc_perm *, struct ipc_perm *));
113 static __inline void netbsd32_from_ipc_perm __P((struct ipc_perm *, struct netbsd32_ipc_perm *));
114 static __inline void netbsd32_to_msg __P((struct netbsd32_msg *, struct msg *));
115 static __inline void netbsd32_from_msg __P((struct msg *, struct netbsd32_msg *));
116 static __inline void netbsd32_to_msqid_ds __P((struct netbsd32_msqid_ds *, struct msqid_ds *));
117 static __inline void netbsd32_from_msqid_ds __P((struct msqid_ds *, struct netbsd32_msqid_ds *));
118 static __inline void netbsd32_to_shmid_ds __P((struct netbsd32_shmid_ds *, struct shmid_ds *));
119 static __inline void netbsd32_from_shmid_ds __P((struct shmid_ds *, struct netbsd32_shmid_ds *));
120 static __inline void netbsd32_to_semid_ds __P((struct netbsd32_semid_ds *, struct semid_ds *));
121 static __inline void netbsd32_from_semid_ds __P((struct semid_ds *, struct netbsd32_semid_ds *));
122
123
124 static int recvit32 __P((struct proc *, int, struct netbsd32_msghdr *, struct iovec *, caddr_t,
125 register_t *));
126 static int dofilereadv32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
127 int, off_t *, int, register_t *));
128 static int dofilewritev32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
129 int, off_t *, int, register_t *));
130 static int change_utimes32 __P((struct vnode *, struct timeval *, struct proc *));
131
132 /* converters for structures that we need */
133 static __inline void
134 netbsd32_from_timeval(tv, tv32)
135 struct timeval *tv;
136 struct netbsd32_timeval *tv32;
137 {
138
139 tv32->tv_sec = (netbsd32_long)tv->tv_sec;
140 tv32->tv_usec = (netbsd32_long)tv->tv_usec;
141 }
142
143 static __inline void
144 netbsd32_to_timeval(tv32, tv)
145 struct netbsd32_timeval *tv32;
146 struct timeval *tv;
147 {
148
149 tv->tv_sec = (long)tv32->tv_sec;
150 tv->tv_usec = (long)tv32->tv_usec;
151 }
152
153 static __inline void
154 netbsd32_from_itimerval(itv, itv32)
155 struct itimerval *itv;
156 struct netbsd32_itimerval *itv32;
157 {
158
159 netbsd32_from_timeval(&itv->it_interval,
160 &itv32->it_interval);
161 netbsd32_from_timeval(&itv->it_value,
162 &itv32->it_value);
163 }
164
165 static __inline void
166 netbsd32_to_itimerval(itv32, itv)
167 struct netbsd32_itimerval *itv32;
168 struct itimerval *itv;
169 {
170
171 netbsd32_to_timeval(&itv32->it_interval, &itv->it_interval);
172 netbsd32_to_timeval(&itv32->it_value, &itv->it_value);
173 }
174
175 static __inline void
176 netbsd32_to_timespec(s32p, p)
177 struct netbsd32_timespec *s32p;
178 struct timespec *p;
179 {
180
181 p->tv_sec = (time_t)s32p->tv_sec;
182 p->tv_nsec = (long)s32p->tv_nsec;
183 }
184
185 static __inline void
186 netbsd32_from_timespec(p, s32p)
187 struct timespec *p;
188 struct netbsd32_timespec *s32p;
189 {
190
191 s32p->tv_sec = (netbsd32_time_t)p->tv_sec;
192 s32p->tv_nsec = (netbsd32_long)p->tv_nsec;
193 }
194
195 static __inline void
196 netbsd32_from_rusage(rup, ru32p)
197 struct rusage *rup;
198 struct netbsd32_rusage *ru32p;
199 {
200
201 netbsd32_from_timeval(&rup->ru_utime, &ru32p->ru_utime);
202 netbsd32_from_timeval(&rup->ru_stime, &ru32p->ru_stime);
203 #define C(var) ru32p->var = (netbsd32_long)rup->var
204 C(ru_maxrss);
205 C(ru_ixrss);
206 C(ru_idrss);
207 C(ru_isrss);
208 C(ru_minflt);
209 C(ru_majflt);
210 C(ru_nswap);
211 C(ru_inblock);
212 C(ru_oublock);
213 C(ru_msgsnd);
214 C(ru_msgrcv);
215 C(ru_nsignals);
216 C(ru_nvcsw);
217 C(ru_nivcsw);
218 #undef C
219 }
220
221 static __inline void
222 netbsd32_to_rusage(ru32p, rup)
223 struct netbsd32_rusage *ru32p;
224 struct rusage *rup;
225 {
226
227 netbsd32_to_timeval(&ru32p->ru_utime, &rup->ru_utime);
228 netbsd32_to_timeval(&ru32p->ru_stime, &rup->ru_stime);
229 #define C(var) rup->var = (long)ru32p->var
230 C(ru_maxrss);
231 C(ru_ixrss);
232 C(ru_idrss);
233 C(ru_isrss);
234 C(ru_minflt);
235 C(ru_majflt);
236 C(ru_nswap);
237 C(ru_inblock);
238 C(ru_oublock);
239 C(ru_msgsnd);
240 C(ru_msgrcv);
241 C(ru_nsignals);
242 C(ru_nvcsw);
243 C(ru_nivcsw);
244 #undef C
245 }
246
247 static __inline int
248 netbsd32_to_iovecin(iov32p, iovp, len)
249 struct netbsd32_iovec *iov32p;
250 struct iovec *iovp;
251 int len;
252 {
253 int i, error=0;
254 u_int32_t iov_base;
255 u_int32_t iov_len;
256 /*
257 * We could allocate an iov32p, do a copyin, and translate
258 * each field and then free it all up, or we could copyin
259 * each field separately. I'm doing the latter to reduce
260 * the number of MALLOC()s.
261 */
262 for (i = 0; i < len; i++, iovp++, iov32p++) {
263 if ((error = copyin((caddr_t)&iov32p->iov_base, &iov_base, sizeof(iov_base))))
264 return (error);
265 if ((error = copyin((caddr_t)&iov32p->iov_len, &iov_len, sizeof(iov_len))))
266 return (error);
267 iovp->iov_base = (void *)(u_long)iov_base;
268 iovp->iov_len = (size_t)iov_len;
269 }
270 }
271
272 /* msg_iov must be done separately */
273 static __inline void
274 netbsd32_to_msghdr(mhp32, mhp)
275 struct netbsd32_msghdr *mhp32;
276 struct msghdr *mhp;
277 {
278
279 mhp->msg_name = (caddr_t)(u_long)mhp32->msg_name;
280 mhp->msg_namelen = mhp32->msg_namelen;
281 mhp->msg_iovlen = (size_t)mhp32->msg_iovlen;
282 mhp->msg_control = (caddr_t)(u_long)mhp32->msg_control;
283 mhp->msg_controllen = mhp32->msg_controllen;
284 mhp->msg_flags = mhp32->msg_flags;
285 }
286
287 /* msg_iov must be done separately */
288 static __inline void
289 netbsd32_from_msghdr(mhp32, mhp)
290 struct netbsd32_msghdr *mhp32;
291 struct msghdr *mhp;
292 {
293
294 mhp32->msg_name = mhp32->msg_name;
295 mhp32->msg_namelen = mhp32->msg_namelen;
296 mhp32->msg_iovlen = mhp32->msg_iovlen;
297 mhp32->msg_control = mhp32->msg_control;
298 mhp32->msg_controllen = mhp->msg_controllen;
299 mhp32->msg_flags = mhp->msg_flags;
300 }
301
302 static __inline void
303 netbsd32_from_statfs(sbp, sb32p)
304 struct statfs *sbp;
305 struct netbsd32_statfs *sb32p;
306 {
307 sb32p->f_type = sbp->f_type;
308 sb32p->f_flags = sbp->f_flags;
309 sb32p->f_bsize = (netbsd32_long)sbp->f_bsize;
310 sb32p->f_iosize = (netbsd32_long)sbp->f_iosize;
311 sb32p->f_blocks = (netbsd32_long)sbp->f_blocks;
312 sb32p->f_bfree = (netbsd32_long)sbp->f_bfree;
313 sb32p->f_bavail = (netbsd32_long)sbp->f_bavail;
314 sb32p->f_files = (netbsd32_long)sbp->f_files;
315 sb32p->f_ffree = (netbsd32_long)sbp->f_ffree;
316 sb32p->f_fsid = sbp->f_fsid;
317 sb32p->f_owner = sbp->f_owner;
318 sb32p->f_spare[0] = 0;
319 sb32p->f_spare[1] = 0;
320 sb32p->f_spare[2] = 0;
321 sb32p->f_spare[3] = 0;
322 #if 1
323 /* May as well do the whole batch in one go */
324 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN+MNAMELEN+MNAMELEN);
325 #else
326 /* If we want to be careful */
327 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN);
328 memcpy(sb32p->f_mntonname, sbp->f_mntonname, MNAMELEN);
329 memcpy(sb32p->f_mntfromname, sbp->f_mntfromname, MNAMELEN);
330 #endif
331 }
332
333 static __inline void
334 netbsd32_from_timex(txp, tx32p)
335 struct timex *txp;
336 struct netbsd32_timex *tx32p;
337 {
338
339 tx32p->modes = txp->modes;
340 tx32p->offset = (netbsd32_long)txp->offset;
341 tx32p->freq = (netbsd32_long)txp->freq;
342 tx32p->maxerror = (netbsd32_long)txp->maxerror;
343 tx32p->esterror = (netbsd32_long)txp->esterror;
344 tx32p->status = txp->status;
345 tx32p->constant = (netbsd32_long)txp->constant;
346 tx32p->precision = (netbsd32_long)txp->precision;
347 tx32p->tolerance = (netbsd32_long)txp->tolerance;
348 tx32p->ppsfreq = (netbsd32_long)txp->ppsfreq;
349 tx32p->jitter = (netbsd32_long)txp->jitter;
350 tx32p->shift = txp->shift;
351 tx32p->stabil = (netbsd32_long)txp->stabil;
352 tx32p->jitcnt = (netbsd32_long)txp->jitcnt;
353 tx32p->calcnt = (netbsd32_long)txp->calcnt;
354 tx32p->errcnt = (netbsd32_long)txp->errcnt;
355 tx32p->stbcnt = (netbsd32_long)txp->stbcnt;
356 }
357
358 static __inline void
359 netbsd32_to_timex(tx32p, txp)
360 struct netbsd32_timex *tx32p;
361 struct timex *txp;
362 {
363
364 txp->modes = tx32p->modes;
365 txp->offset = (long)tx32p->offset;
366 txp->freq = (long)tx32p->freq;
367 txp->maxerror = (long)tx32p->maxerror;
368 txp->esterror = (long)tx32p->esterror;
369 txp->status = tx32p->status;
370 txp->constant = (long)tx32p->constant;
371 txp->precision = (long)tx32p->precision;
372 txp->tolerance = (long)tx32p->tolerance;
373 txp->ppsfreq = (long)tx32p->ppsfreq;
374 txp->jitter = (long)tx32p->jitter;
375 txp->shift = tx32p->shift;
376 txp->stabil = (long)tx32p->stabil;
377 txp->jitcnt = (long)tx32p->jitcnt;
378 txp->calcnt = (long)tx32p->calcnt;
379 txp->errcnt = (long)tx32p->errcnt;
380 txp->stbcnt = (long)tx32p->stbcnt;
381 }
382
383 static __inline void
384 netbsd32_from___stat13(sbp, sb32p)
385 struct stat *sbp;
386 struct netbsd32_stat *sb32p;
387 {
388 sb32p->st_dev = sbp->st_dev;
389 sb32p->st_ino = sbp->st_ino;
390 sb32p->st_mode = sbp->st_mode;
391 sb32p->st_nlink = sbp->st_nlink;
392 sb32p->st_uid = sbp->st_uid;
393 sb32p->st_gid = sbp->st_gid;
394 sb32p->st_rdev = sbp->st_rdev;
395 if (sbp->st_size < (quad_t)1 << 32)
396 sb32p->st_size = sbp->st_size;
397 else
398 sb32p->st_size = -2;
399 sb32p->st_atimespec.tv_sec = (netbsd32_time_t)sbp->st_atimespec.tv_sec;
400 sb32p->st_atimespec.tv_nsec = (netbsd32_long)sbp->st_atimespec.tv_nsec;
401 sb32p->st_mtimespec.tv_sec = (netbsd32_time_t)sbp->st_mtimespec.tv_sec;
402 sb32p->st_mtimespec.tv_nsec = (netbsd32_long)sbp->st_mtimespec.tv_nsec;
403 sb32p->st_ctimespec.tv_sec = (netbsd32_time_t)sbp->st_ctimespec.tv_sec;
404 sb32p->st_ctimespec.tv_nsec = (netbsd32_long)sbp->st_ctimespec.tv_nsec;
405 sb32p->st_blksize = sbp->st_blksize;
406 sb32p->st_blocks = sbp->st_blocks;
407 sb32p->st_flags = sbp->st_flags;
408 sb32p->st_gen = sbp->st_gen;
409 }
410
411 static __inline void
412 netbsd32_to_ipc_perm(ip32p, ipp)
413 struct netbsd32_ipc_perm *ip32p;
414 struct ipc_perm *ipp;
415 {
416
417 ipp->cuid = ip32p->cuid;
418 ipp->cgid = ip32p->cgid;
419 ipp->uid = ip32p->uid;
420 ipp->gid = ip32p->gid;
421 ipp->mode = ip32p->mode;
422 ipp->_seq = ip32p->_seq;
423 ipp->_key = (key_t)ip32p->_key;
424 }
425
426 static __inline void
427 netbsd32_from_ipc_perm(ipp, ip32p)
428 struct ipc_perm *ipp;
429 struct netbsd32_ipc_perm *ip32p;
430 {
431
432 ip32p->cuid = ipp->cuid;
433 ip32p->cgid = ipp->cgid;
434 ip32p->uid = ipp->uid;
435 ip32p->gid = ipp->gid;
436 ip32p->mode = ipp->mode;
437 ip32p->_seq = ipp->_seq;
438 ip32p->_key = (netbsd32_key_t)ipp->_key;
439 }
440
441 static __inline void
442 netbsd32_to_msg(m32p, mp)
443 struct netbsd32_msg *m32p;
444 struct msg *mp;
445 {
446
447 mp->msg_next = (struct msg *)(u_long)m32p->msg_next;
448 mp->msg_type = (long)m32p->msg_type;
449 mp->msg_ts = m32p->msg_ts;
450 mp->msg_spot = m32p->msg_spot;
451 }
452
453 static __inline void
454 netbsd32_from_msg(mp, m32p)
455 struct msg *mp;
456 struct netbsd32_msg *m32p;
457 {
458
459 m32p->msg_next = (netbsd32_msgp_t)(u_long)mp->msg_next;
460 m32p->msg_type = (netbsd32_long)mp->msg_type;
461 m32p->msg_ts = mp->msg_ts;
462 m32p->msg_spot = mp->msg_spot;
463 }
464
465 static __inline void
466 netbsd32_to_msqid_ds(ds32p, dsp)
467 struct netbsd32_msqid_ds *ds32p;
468 struct msqid_ds *dsp;
469 {
470
471 netbsd32_to_ipc_perm(&ds32p->msg_perm, &dsp->msg_perm);
472 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_first, dsp->_msg_first);
473 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_last, dsp->_msg_last);
474 dsp->_msg_cbytes = (u_long)ds32p->_msg_cbytes;
475 dsp->msg_qnum = (u_long)ds32p->msg_qnum;
476 dsp->msg_qbytes = (u_long)ds32p->msg_qbytes;
477 dsp->msg_lspid = ds32p->msg_lspid;
478 dsp->msg_lrpid = ds32p->msg_lrpid;
479 dsp->msg_rtime = (time_t)ds32p->msg_rtime;
480 dsp->msg_stime = (time_t)ds32p->msg_stime;
481 dsp->msg_ctime = (time_t)ds32p->msg_ctime;
482 }
483
484 static __inline void
485 netbsd32_from_msqid_ds(dsp, ds32p)
486 struct msqid_ds *dsp;
487 struct netbsd32_msqid_ds *ds32p;
488 {
489
490 netbsd32_from_ipc_perm(&dsp->msg_perm, &ds32p->msg_perm);
491 netbsd32_from_msg(dsp->_msg_first, (struct netbsd32_msg *)(u_long)ds32p->_msg_first);
492 netbsd32_from_msg(dsp->_msg_last, (struct netbsd32_msg *)(u_long)ds32p->_msg_last);
493 ds32p->_msg_cbytes = (netbsd32_u_long)dsp->_msg_cbytes;
494 ds32p->msg_qnum = (netbsd32_u_long)dsp->msg_qnum;
495 ds32p->msg_qbytes = (netbsd32_u_long)dsp->msg_qbytes;
496 ds32p->msg_lspid = dsp->msg_lspid;
497 ds32p->msg_lrpid = dsp->msg_lrpid;
498 ds32p->msg_rtime = dsp->msg_rtime;
499 ds32p->msg_stime = dsp->msg_stime;
500 ds32p->msg_ctime = dsp->msg_ctime;
501 }
502
503 static __inline void
504 netbsd32_to_shmid_ds(ds32p, dsp)
505 struct netbsd32_shmid_ds *ds32p;
506 struct shmid_ds *dsp;
507 {
508
509 netbsd32_to_ipc_perm(&ds32p->shm_perm, &dsp->shm_perm);
510 dsp->shm_segsz = ds32p->shm_segsz;
511 dsp->shm_lpid = ds32p->shm_lpid;
512 dsp->shm_cpid = ds32p->shm_cpid;
513 dsp->shm_nattch = ds32p->shm_nattch;
514 dsp->shm_atime = (long)ds32p->shm_atime;
515 dsp->shm_dtime = (long)ds32p->shm_dtime;
516 dsp->shm_ctime = (long)ds32p->shm_ctime;
517 dsp->_shm_internal = (void *)(u_long)ds32p->_shm_internal;
518 }
519
520 static __inline void
521 netbsd32_from_shmid_ds(dsp, ds32p)
522 struct shmid_ds *dsp;
523 struct netbsd32_shmid_ds *ds32p;
524 {
525
526 netbsd32_from_ipc_perm(&dsp->shm_perm, &ds32p->shm_perm);
527 ds32p->shm_segsz = dsp->shm_segsz;
528 ds32p->shm_lpid = dsp->shm_lpid;
529 ds32p->shm_cpid = dsp->shm_cpid;
530 ds32p->shm_nattch = dsp->shm_nattch;
531 ds32p->shm_atime = (netbsd32_long)dsp->shm_atime;
532 ds32p->shm_dtime = (netbsd32_long)dsp->shm_dtime;
533 ds32p->shm_ctime = (netbsd32_long)dsp->shm_ctime;
534 ds32p->_shm_internal = (netbsd32_voidp)(u_long)dsp->_shm_internal;
535 }
536
537 static __inline void
538 netbsd32_to_semid_ds(s32dsp, dsp)
539 struct netbsd32_semid_ds *s32dsp;
540 struct semid_ds *dsp;
541 {
542
543 netbsd32_from_ipc_perm(&dsp->sem_perm, &s32dsp->sem_perm);
544 dsp->_sem_base = (struct __sem *)(u_long)s32dsp->_sem_base;
545 dsp->sem_nsems = s32dsp->sem_nsems;
546 dsp->sem_otime = s32dsp->sem_otime;
547 dsp->sem_ctime = s32dsp->sem_ctime;
548 }
549
550 static __inline void
551 netbsd32_from_semid_ds(dsp, s32dsp)
552 struct semid_ds *dsp;
553 struct netbsd32_semid_ds *s32dsp;
554 {
555
556 netbsd32_to_ipc_perm(&s32dsp->sem_perm, &dsp->sem_perm);
557 s32dsp->_sem_base = (netbsd32_semp_t)(u_long)dsp->_sem_base;
558 s32dsp->sem_nsems = dsp->sem_nsems;
559 s32dsp->sem_otime = dsp->sem_otime;
560 s32dsp->sem_ctime = dsp->sem_ctime;
561 }
562
563 /*
564 * below are all the standard NetBSD system calls, in the 32bit
565 * environment, witht he necessary conversions to 64bit before
566 * calling the real syscall.
567 */
568
569
570 int
571 netbsd32_exit(p, v, retval)
572 struct proc *p;
573 void *v;
574 register_t *retval;
575 {
576 struct netbsd32_exit_args /* {
577 syscallarg(int) rval;
578 } */ *uap = v;
579 struct sys_exit_args ua;
580
581 NETBSD32TO64_UAP(rval);
582 sys_exit(p, &ua, retval);
583 }
584
585 int
586 netbsd32_read(p, v, retval)
587 struct proc *p;
588 void *v;
589 register_t *retval;
590 {
591 struct netbsd32_read_args /* {
592 syscallarg(int) fd;
593 syscallarg(netbsd32_voidp) buf;
594 syscallarg(netbsd32_size_t) nbyte;
595 } */ *uap = v;
596 struct sys_read_args ua;
597
598 NETBSD32TO64_UAP(fd);
599 NETBSD32TOP_UAP(buf, void *);
600 NETBSD32TOX_UAP(nbyte, size_t);
601 return sys_read(p, &ua, retval);
602 }
603
604 int
605 netbsd32_write(p, v, retval)
606 struct proc *p;
607 void *v;
608 register_t *retval;
609 {
610 struct netbsd32_write_args /* {
611 syscallarg(int) fd;
612 syscallarg(const netbsd32_voidp) buf;
613 syscallarg(netbsd32_size_t) nbyte;
614 } */ *uap = v;
615 struct sys_write_args ua;
616
617 NETBSD32TO64_UAP(fd);
618 NETBSD32TOP_UAP(buf, void *);
619 NETBSD32TOX_UAP(nbyte, size_t);
620 return sys_write(p, &ua, retval);
621 }
622
623 int
624 netbsd32_close(p, v, retval)
625 struct proc *p;
626 void *v;
627 register_t *retval;
628 {
629 struct netbsd32_close_args /* {
630 syscallarg(int) fd;
631 } */ *uap = v;
632 struct sys_close_args ua;
633
634 NETBSD32TO64_UAP(fd);
635 return sys_close(p, &ua, retval);
636 }
637
638 int
639 netbsd32_open(p, v, retval)
640 struct proc *p;
641 void *v;
642 register_t *retval;
643 {
644 struct netbsd32_open_args /* {
645 syscallarg(const netbsd32_charp) path;
646 syscallarg(int) flags;
647 syscallarg(mode_t) mode;
648 } */ *uap = v;
649 struct sys_open_args ua;
650 caddr_t sg;
651
652 NETBSD32TOP_UAP(path, const char);
653 NETBSD32TO64_UAP(flags);
654 NETBSD32TO64_UAP(mode);
655 sg = stackgap_init(p->p_emul);
656 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
657
658 return (sys_open(p, &ua, retval));
659 }
660
661 int
662 netbsd32_wait4(q, v, retval)
663 struct proc *q;
664 void *v;
665 register_t *retval;
666 {
667 struct netbsd32_wait4_args /* {
668 syscallarg(int) pid;
669 syscallarg(netbsd32_intp) status;
670 syscallarg(int) options;
671 syscallarg(netbsd32_rusagep_t) rusage;
672 } */ *uap = v;
673 struct netbsd32_rusage ru32;
674 int nfound;
675 struct proc *p, *t;
676 int status, error;
677
678 if (SCARG(uap, pid) == 0)
679 SCARG(uap, pid) = -q->p_pgid;
680 if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG))
681 return (EINVAL);
682
683 loop:
684 nfound = 0;
685 for (p = q->p_children.lh_first; p != 0; p = p->p_sibling.le_next) {
686 if (SCARG(uap, pid) != WAIT_ANY &&
687 p->p_pid != SCARG(uap, pid) &&
688 p->p_pgid != -SCARG(uap, pid))
689 continue;
690 nfound++;
691 if (p->p_stat == SZOMB) {
692 retval[0] = p->p_pid;
693
694 if (SCARG(uap, status)) {
695 status = p->p_xstat; /* convert to int */
696 error = copyout((caddr_t)&status,
697 (caddr_t)(u_long)SCARG(uap, status),
698 sizeof(status));
699 if (error)
700 return (error);
701 }
702 if (SCARG(uap, rusage)) {
703 netbsd32_from_rusage(p->p_ru, &ru32);
704 if ((error = copyout((caddr_t)&ru32,
705 (caddr_t)(u_long)SCARG(uap, rusage),
706 sizeof(struct netbsd32_rusage))))
707 return (error);
708 }
709 /*
710 * If we got the child via ptrace(2) or procfs, and
711 * the parent is different (meaning the process was
712 * attached, rather than run as a child), then we need
713 * to give it back to the old parent, and send the
714 * parent a SIGCHLD. The rest of the cleanup will be
715 * done when the old parent waits on the child.
716 */
717 if ((p->p_flag & P_TRACED) &&
718 p->p_oppid != p->p_pptr->p_pid) {
719 t = pfind(p->p_oppid);
720 proc_reparent(p, t ? t : initproc);
721 p->p_oppid = 0;
722 p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
723 psignal(p->p_pptr, SIGCHLD);
724 wakeup((caddr_t)p->p_pptr);
725 return (0);
726 }
727 p->p_xstat = 0;
728 ruadd(&q->p_stats->p_cru, p->p_ru);
729 pool_put(&rusage_pool, p->p_ru);
730
731 /*
732 * Finally finished with old proc entry.
733 * Unlink it from its process group and free it.
734 */
735 leavepgrp(p);
736
737 LIST_REMOVE(p, p_list); /* off zombproc */
738
739 LIST_REMOVE(p, p_sibling);
740
741 /*
742 * Decrement the count of procs running with this uid.
743 */
744 (void)chgproccnt(p->p_cred->p_ruid, -1);
745
746 /*
747 * Free up credentials.
748 */
749 if (--p->p_cred->p_refcnt == 0) {
750 crfree(p->p_cred->pc_ucred);
751 pool_put(&pcred_pool, p->p_cred);
752 }
753
754 /*
755 * Release reference to text vnode
756 */
757 if (p->p_textvp)
758 vrele(p->p_textvp);
759
760 pool_put(&proc_pool, p);
761 nprocs--;
762 return (0);
763 }
764 if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
765 (p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
766 p->p_flag |= P_WAITED;
767 retval[0] = p->p_pid;
768
769 if (SCARG(uap, status)) {
770 status = W_STOPCODE(p->p_xstat);
771 error = copyout((caddr_t)&status,
772 (caddr_t)(u_long)SCARG(uap, status),
773 sizeof(status));
774 } else
775 error = 0;
776 return (error);
777 }
778 }
779 if (nfound == 0)
780 return (ECHILD);
781 if (SCARG(uap, options) & WNOHANG) {
782 retval[0] = 0;
783 return (0);
784 }
785 if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
786 return (error);
787 goto loop;
788 }
789
790 int
791 netbsd32_link(p, v, retval)
792 struct proc *p;
793 void *v;
794 register_t *retval;
795 {
796 struct netbsd32_link_args /* {
797 syscallarg(const netbsd32_charp) path;
798 syscallarg(const netbsd32_charp) link;
799 } */ *uap = v;
800 struct sys_link_args ua;
801
802 NETBSD32TOP_UAP(path, const char);
803 NETBSD32TOP_UAP(link, const char);
804 return (sys_link(p, &ua, retval));
805 }
806
807 int
808 netbsd32_unlink(p, v, retval)
809 struct proc *p;
810 void *v;
811 register_t *retval;
812 {
813 struct netbsd32_unlink_args /* {
814 syscallarg(const netbsd32_charp) path;
815 } */ *uap = v;
816 struct sys_unlink_args ua;
817
818 NETBSD32TOP_UAP(path, const char);
819
820 return (sys_unlink(p, &ua, retval));
821 }
822
823 int
824 netbsd32_chdir(p, v, retval)
825 struct proc *p;
826 void *v;
827 register_t *retval;
828 {
829 struct netbsd32_chdir_args /* {
830 syscallarg(const netbsd32_charp) path;
831 } */ *uap = v;
832 struct sys_chdir_args ua;
833
834 NETBSD32TOP_UAP(path, const char);
835
836 return (sys_chdir(p, &ua, retval));
837 }
838
839 int
840 netbsd32_fchdir(p, v, retval)
841 struct proc *p;
842 void *v;
843 register_t *retval;
844 {
845 struct netbsd32_fchdir_args /* {
846 syscallarg(int) fd;
847 } */ *uap = v;
848 struct sys_fchdir_args ua;
849
850 NETBSD32TO64_UAP(fd);
851
852 return (sys_fchdir(p, &ua, retval));
853 }
854
855 int
856 netbsd32_mknod(p, v, retval)
857 struct proc *p;
858 void *v;
859 register_t *retval;
860 {
861 struct netbsd32_mknod_args /* {
862 syscallarg(const netbsd32_charp) path;
863 syscallarg(mode_t) mode;
864 syscallarg(dev_t) dev;
865 } */ *uap = v;
866 struct sys_mknod_args ua;
867
868 NETBSD32TOP_UAP(path, const char);
869 NETBSD32TO64_UAP(dev);
870 NETBSD32TO64_UAP(mode);
871
872 return (sys_mknod(p, &ua, retval));
873 }
874
875 int
876 netbsd32_chmod(p, v, retval)
877 struct proc *p;
878 void *v;
879 register_t *retval;
880 {
881 struct netbsd32_chmod_args /* {
882 syscallarg(const netbsd32_charp) path;
883 syscallarg(mode_t) mode;
884 } */ *uap = v;
885 struct sys_chmod_args ua;
886
887 NETBSD32TOP_UAP(path, const char);
888 NETBSD32TO64_UAP(mode);
889
890 return (sys_chmod(p, &ua, retval));
891 }
892
893 int
894 netbsd32_chown(p, v, retval)
895 struct proc *p;
896 void *v;
897 register_t *retval;
898 {
899 struct netbsd32_chown_args /* {
900 syscallarg(const netbsd32_charp) path;
901 syscallarg(uid_t) uid;
902 syscallarg(gid_t) gid;
903 } */ *uap = v;
904 struct sys_chown_args ua;
905
906 NETBSD32TOP_UAP(path, const char);
907 NETBSD32TO64_UAP(uid);
908 NETBSD32TO64_UAP(gid);
909
910 return (sys_chown(p, &ua, retval));
911 }
912
913 int
914 netbsd32_break(p, v, retval)
915 struct proc *p;
916 void *v;
917 register_t *retval;
918 {
919 struct netbsd32_break_args /* {
920 syscallarg(netbsd32_charp) nsize;
921 } */ *uap = v;
922 struct sys_obreak_args ua;
923
924 SCARG(&ua, nsize) = (char *)(u_long)SCARG(uap, nsize);
925 NETBSD32TOP_UAP(nsize, char);
926 return (sys_obreak(p, &ua, retval));
927 }
928
929 int
930 netbsd32_getfsstat(p, v, retval)
931 struct proc *p;
932 void *v;
933 register_t *retval;
934 {
935 struct netbsd32_getfsstat_args /* {
936 syscallarg(netbsd32_statfsp_t) buf;
937 syscallarg(netbsd32_long) bufsize;
938 syscallarg(int) flags;
939 } */ *uap = v;
940 struct mount *mp, *nmp;
941 struct statfs *sp;
942 struct netbsd32_statfs sb32;
943 caddr_t sfsp;
944 long count, maxcount, error;
945
946 maxcount = SCARG(uap, bufsize) / sizeof(struct netbsd32_statfs);
947 sfsp = (caddr_t)SCARG(uap, buf);
948 simple_lock(&mountlist_slock);
949 count = 0;
950 for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
951 if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
952 nmp = mp->mnt_list.cqe_next;
953 continue;
954 }
955 if (sfsp && count < maxcount) {
956 sp = &mp->mnt_stat;
957 /*
958 * If MNT_NOWAIT or MNT_LAZY is specified, do not
959 * refresh the fsstat cache. MNT_WAIT or MNT_LAXY
960 * overrides MNT_NOWAIT.
961 */
962 if (SCARG(uap, flags) != MNT_NOWAIT &&
963 SCARG(uap, flags) != MNT_LAZY &&
964 (SCARG(uap, flags) == MNT_WAIT ||
965 SCARG(uap, flags) == 0) &&
966 (error = VFS_STATFS(mp, sp, p)) != 0) {
967 simple_lock(&mountlist_slock);
968 nmp = mp->mnt_list.cqe_next;
969 vfs_unbusy(mp);
970 continue;
971 }
972 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
973 sp->f_oflags = sp->f_flags & 0xffff;
974 netbsd32_from_statfs(sp, &sb32);
975 error = copyout(&sb32, sfsp, sizeof(sb32));
976 if (error) {
977 vfs_unbusy(mp);
978 return (error);
979 }
980 sfsp += sizeof(sb32);
981 }
982 count++;
983 simple_lock(&mountlist_slock);
984 nmp = mp->mnt_list.cqe_next;
985 vfs_unbusy(mp);
986 }
987 simple_unlock(&mountlist_slock);
988 if (sfsp && count > maxcount)
989 *retval = maxcount;
990 else
991 *retval = count;
992 return (0);
993 }
994
995 int
996 netbsd32_mount(p, v, retval)
997 struct proc *p;
998 void *v;
999 register_t *retval;
1000 {
1001 struct netbsd32_mount_args /* {
1002 syscallarg(const netbsd32_charp) type;
1003 syscallarg(const netbsd32_charp) path;
1004 syscallarg(int) flags;
1005 syscallarg(netbsd32_voidp) data;
1006 } */ *uap = v;
1007 struct sys_mount_args ua;
1008
1009 NETBSD32TOP_UAP(type, const char);
1010 NETBSD32TOP_UAP(path, const char);
1011 NETBSD32TO64_UAP(flags);
1012 NETBSD32TOP_UAP(data, void);
1013 return (sys_mount(p, &ua, retval));
1014 }
1015
1016 int
1017 netbsd32_unmount(p, v, retval)
1018 struct proc *p;
1019 void *v;
1020 register_t *retval;
1021 {
1022 struct netbsd32_unmount_args /* {
1023 syscallarg(const netbsd32_charp) path;
1024 syscallarg(int) flags;
1025 } */ *uap = v;
1026 struct sys_unmount_args ua;
1027
1028 NETBSD32TOP_UAP(path, const char);
1029 NETBSD32TO64_UAP(flags);
1030 return (sys_unmount(p, &ua, retval));
1031 }
1032
1033 int
1034 netbsd32_setuid(p, v, retval)
1035 struct proc *p;
1036 void *v;
1037 register_t *retval;
1038 {
1039 struct netbsd32_setuid_args /* {
1040 syscallarg(uid_t) uid;
1041 } */ *uap = v;
1042 struct sys_setuid_args ua;
1043
1044 NETBSD32TO64_UAP(uid);
1045 return (sys_setuid(p, &ua, retval));
1046 }
1047
1048 int
1049 netbsd32_ptrace(p, v, retval)
1050 struct proc *p;
1051 void *v;
1052 register_t *retval;
1053 {
1054 struct netbsd32_ptrace_args /* {
1055 syscallarg(int) req;
1056 syscallarg(pid_t) pid;
1057 syscallarg(netbsd32_caddr_t) addr;
1058 syscallarg(int) data;
1059 } */ *uap = v;
1060 struct sys_ptrace_args ua;
1061
1062 NETBSD32TO64_UAP(req);
1063 NETBSD32TO64_UAP(pid);
1064 NETBSD32TOX64_UAP(addr, caddr_t);
1065 NETBSD32TO64_UAP(data);
1066 return (sys_ptrace(p, &ua, retval));
1067 }
1068
1069 int
1070 netbsd32_recvmsg(p, v, retval)
1071 struct proc *p;
1072 void *v;
1073 register_t *retval;
1074 {
1075 struct netbsd32_recvmsg_args /* {
1076 syscallarg(int) s;
1077 syscallarg(netbsd32_msghdrp_t) msg;
1078 syscallarg(int) flags;
1079 } */ *uap = v;
1080 struct netbsd32_msghdr msg;
1081 struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
1082 int error;
1083
1084 error = copyin((caddr_t)(u_long)SCARG(uap, msg), (caddr_t)&msg,
1085 sizeof(msg));
1086 /* netbsd32_msghdr needs the iov pre-allocated */
1087 if (error)
1088 return (error);
1089 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1090 if ((u_int)msg.msg_iovlen > IOV_MAX)
1091 return (EMSGSIZE);
1092 MALLOC(iov, struct iovec *,
1093 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1094 M_WAITOK);
1095 } else if ((u_int)msg.msg_iovlen > 0)
1096 iov = aiov;
1097 else
1098 return (EMSGSIZE);
1099 #ifdef COMPAT_OLDSOCK
1100 msg.msg_flags = SCARG(uap, flags) &~ MSG_COMPAT;
1101 #else
1102 msg.msg_flags = SCARG(uap, flags);
1103 #endif
1104 uiov = (struct iovec *)(u_long)msg.msg_iov;
1105 error = netbsd32_to_iovecin((struct netbsd32_iovec *)uiov,
1106 iov, msg.msg_iovlen);
1107 if (error)
1108 goto done;
1109 if ((error = recvit32(p, SCARG(uap, s), &msg, iov, (caddr_t)0, retval)) == 0) {
1110 error = copyout((caddr_t)&msg, (caddr_t)(u_long)SCARG(uap, msg),
1111 sizeof(msg));
1112 }
1113 done:
1114 if (iov != aiov)
1115 FREE(iov, M_IOV);
1116 return (error);
1117 }
1118
1119 int
1120 recvit32(p, s, mp, iov, namelenp, retsize)
1121 struct proc *p;
1122 int s;
1123 struct netbsd32_msghdr *mp;
1124 struct iovec *iov;
1125 caddr_t namelenp;
1126 register_t *retsize;
1127 {
1128 struct file *fp;
1129 struct uio auio;
1130 int i;
1131 int len, error;
1132 struct mbuf *from = 0, *control = 0;
1133 struct socket *so;
1134 #ifdef KTRACE
1135 struct iovec *ktriov = NULL;
1136 #endif
1137
1138 /* getsock() will use the descriptor for us */
1139 if ((error = getsock(p->p_fd, s, &fp)) != 0)
1140 return (error);
1141 auio.uio_iov = (struct iovec *)(u_long)mp->msg_iov;
1142 auio.uio_iovcnt = mp->msg_iovlen;
1143 auio.uio_segflg = UIO_USERSPACE;
1144 auio.uio_rw = UIO_READ;
1145 auio.uio_procp = p;
1146 auio.uio_offset = 0; /* XXX */
1147 auio.uio_resid = 0;
1148 for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1149 #if 0
1150 /* cannot happen iov_len is unsigned */
1151 if (iov->iov_len < 0) {
1152 error = EINVAL;
1153 goto out1;
1154 }
1155 #endif
1156 /*
1157 * Reads return ssize_t because -1 is returned on error.
1158 * Therefore we must restrict the length to SSIZE_MAX to
1159 * avoid garbage return values.
1160 */
1161 auio.uio_resid += iov->iov_len;
1162 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
1163 error = EINVAL;
1164 goto out1;
1165 }
1166 }
1167 #ifdef KTRACE
1168 if (KTRPOINT(p, KTR_GENIO)) {
1169 int iovlen = auio.uio_iovcnt * sizeof(struct iovec);
1170
1171 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
1172 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
1173 }
1174 #endif
1175 len = auio.uio_resid;
1176 so = (struct socket *)fp->f_data;
1177 error = (*so->so_receive)(so, &from, &auio, NULL,
1178 mp->msg_control ? &control : NULL, &mp->msg_flags);
1179 if (error) {
1180 if (auio.uio_resid != len && (error == ERESTART ||
1181 error == EINTR || error == EWOULDBLOCK))
1182 error = 0;
1183 }
1184 #ifdef KTRACE
1185 if (ktriov != NULL) {
1186 if (error == 0)
1187 ktrgenio(p, s, UIO_READ, ktriov,
1188 len - auio.uio_resid, error);
1189 FREE(ktriov, M_TEMP);
1190 }
1191 #endif
1192 if (error)
1193 goto out;
1194 *retsize = len - auio.uio_resid;
1195 if (mp->msg_name) {
1196 len = mp->msg_namelen;
1197 if (len <= 0 || from == 0)
1198 len = 0;
1199 else {
1200 #ifdef COMPAT_OLDSOCK
1201 if (mp->msg_flags & MSG_COMPAT)
1202 mtod(from, struct osockaddr *)->sa_family =
1203 mtod(from, struct sockaddr *)->sa_family;
1204 #endif
1205 if (len > from->m_len)
1206 len = from->m_len;
1207 /* else if len < from->m_len ??? */
1208 error = copyout(mtod(from, caddr_t),
1209 (caddr_t)(u_long)mp->msg_name, (unsigned)len);
1210 if (error)
1211 goto out;
1212 }
1213 mp->msg_namelen = len;
1214 if (namelenp &&
1215 (error = copyout((caddr_t)&len, namelenp, sizeof(int)))) {
1216 #ifdef COMPAT_OLDSOCK
1217 if (mp->msg_flags & MSG_COMPAT)
1218 error = 0; /* old recvfrom didn't check */
1219 else
1220 #endif
1221 goto out;
1222 }
1223 }
1224 if (mp->msg_control) {
1225 #ifdef COMPAT_OLDSOCK
1226 /*
1227 * We assume that old recvmsg calls won't receive access
1228 * rights and other control info, esp. as control info
1229 * is always optional and those options didn't exist in 4.3.
1230 * If we receive rights, trim the cmsghdr; anything else
1231 * is tossed.
1232 */
1233 if (control && mp->msg_flags & MSG_COMPAT) {
1234 if (mtod(control, struct cmsghdr *)->cmsg_level !=
1235 SOL_SOCKET ||
1236 mtod(control, struct cmsghdr *)->cmsg_type !=
1237 SCM_RIGHTS) {
1238 mp->msg_controllen = 0;
1239 goto out;
1240 }
1241 control->m_len -= sizeof(struct cmsghdr);
1242 control->m_data += sizeof(struct cmsghdr);
1243 }
1244 #endif
1245 len = mp->msg_controllen;
1246 if (len <= 0 || control == 0)
1247 len = 0;
1248 else {
1249 struct mbuf *m = control;
1250 caddr_t p = (caddr_t)(u_long)mp->msg_control;
1251
1252 do {
1253 i = m->m_len;
1254 if (len < i) {
1255 mp->msg_flags |= MSG_CTRUNC;
1256 i = len;
1257 }
1258 error = copyout(mtod(m, caddr_t), p,
1259 (unsigned)i);
1260 if (m->m_next)
1261 i = ALIGN(i);
1262 p += i;
1263 len -= i;
1264 if (error != 0 || len <= 0)
1265 break;
1266 } while ((m = m->m_next) != NULL);
1267 len = p - (caddr_t)(u_long)mp->msg_control;
1268 }
1269 mp->msg_controllen = len;
1270 }
1271 out:
1272 if (from)
1273 m_freem(from);
1274 if (control)
1275 m_freem(control);
1276 out1:
1277 FILE_UNUSE(fp, p);
1278 return (error);
1279 }
1280
1281
1282 int
1283 netbsd32_sendmsg(p, v, retval)
1284 struct proc *p;
1285 void *v;
1286 register_t *retval;
1287 {
1288 struct netbsd32_sendmsg_args /* {
1289 syscallarg(int) s;
1290 syscallarg(const netbsd32_msghdrp_t) msg;
1291 syscallarg(int) flags;
1292 } */ *uap = v;
1293 struct msghdr msg;
1294 struct netbsd32_msghdr msg32;
1295 struct iovec aiov[UIO_SMALLIOV], *iov;
1296 int error;
1297
1298 error = copyin((caddr_t)(u_long)SCARG(uap, msg),
1299 (caddr_t)&msg32, sizeof(msg32));
1300 if (error)
1301 return (error);
1302 netbsd32_to_msghdr(&msg32, &msg);
1303 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1304 if ((u_int)msg.msg_iovlen > IOV_MAX)
1305 return (EMSGSIZE);
1306 MALLOC(iov, struct iovec *,
1307 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1308 M_WAITOK);
1309 } else if ((u_int)msg.msg_iovlen > 0)
1310 iov = aiov;
1311 else
1312 return (EMSGSIZE);
1313 error = netbsd32_to_iovecin((struct netbsd32_iovec *)msg.msg_iov,
1314 iov, msg.msg_iovlen);
1315 if (error)
1316 goto done;
1317 msg.msg_iov = iov;
1318 #ifdef COMPAT_OLDSOCK
1319 msg.msg_flags = 0;
1320 #endif
1321 /* Luckily we can use this directly */
1322 error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval);
1323 done:
1324 if (iov != aiov)
1325 FREE(iov, M_IOV);
1326 return (error);
1327 }
1328
1329 int
1330 netbsd32_recvfrom(p, v, retval)
1331 struct proc *p;
1332 void *v;
1333 register_t *retval;
1334 {
1335 struct netbsd32_recvfrom_args /* {
1336 syscallarg(int) s;
1337 syscallarg(netbsd32_voidp) buf;
1338 syscallarg(netbsd32_size_t) len;
1339 syscallarg(int) flags;
1340 syscallarg(netbsd32_sockaddrp_t) from;
1341 syscallarg(netbsd32_intp) fromlenaddr;
1342 } */ *uap = v;
1343 struct netbsd32_msghdr msg;
1344 struct iovec aiov;
1345 int error;
1346
1347 if (SCARG(uap, fromlenaddr)) {
1348 error = copyin((caddr_t)(u_long)SCARG(uap, fromlenaddr),
1349 (caddr_t)&msg.msg_namelen,
1350 sizeof(msg.msg_namelen));
1351 if (error)
1352 return (error);
1353 } else
1354 msg.msg_namelen = 0;
1355 msg.msg_name = SCARG(uap, from);
1356 msg.msg_iov = NULL; /* We can't store a real pointer here */
1357 msg.msg_iovlen = 1;
1358 aiov.iov_base = (caddr_t)(u_long)SCARG(uap, buf);
1359 aiov.iov_len = (u_long)SCARG(uap, len);
1360 msg.msg_control = 0;
1361 msg.msg_flags = SCARG(uap, flags);
1362 return (recvit32(p, SCARG(uap, s), &msg, &aiov,
1363 (caddr_t)(u_long)SCARG(uap, fromlenaddr), retval));
1364 }
1365
1366 int
1367 netbsd32_sendto(p, v, retval)
1368 struct proc *p;
1369 void *v;
1370 register_t *retval;
1371 {
1372 struct netbsd32_sendto_args /* {
1373 syscallarg(int) s;
1374 syscallarg(const netbsd32_voidp) buf;
1375 syscallarg(netbsd32_size_t) len;
1376 syscallarg(int) flags;
1377 syscallarg(const netbsd32_sockaddrp_t) to;
1378 syscallarg(int) tolen;
1379 } */ *uap = v;
1380 struct msghdr msg;
1381 struct iovec aiov;
1382
1383 msg.msg_name = (caddr_t)(u_long)SCARG(uap, to); /* XXX kills const */
1384 msg.msg_namelen = SCARG(uap, tolen);
1385 msg.msg_iov = &aiov;
1386 msg.msg_iovlen = 1;
1387 msg.msg_control = 0;
1388 #ifdef COMPAT_OLDSOCK
1389 msg.msg_flags = 0;
1390 #endif
1391 aiov.iov_base = (char *)(u_long)SCARG(uap, buf); /* XXX kills const */
1392 aiov.iov_len = SCARG(uap, len);
1393 return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval));
1394 }
1395
1396 int
1397 netbsd32_accept(p, v, retval)
1398 struct proc *p;
1399 void *v;
1400 register_t *retval;
1401 {
1402 struct netbsd32_accept_args /* {
1403 syscallarg(int) s;
1404 syscallarg(netbsd32_sockaddrp_t) name;
1405 syscallarg(netbsd32_intp) anamelen;
1406 } */ *uap = v;
1407 struct sys_accept_args ua;
1408
1409 NETBSD32TO64_UAP(s);
1410 NETBSD32TOP_UAP(name, struct sockaddr);
1411 NETBSD32TOP_UAP(anamelen, int);
1412 return (sys_accept(p, &ua, retval));
1413 }
1414
1415 int
1416 netbsd32_getpeername(p, v, retval)
1417 struct proc *p;
1418 void *v;
1419 register_t *retval;
1420 {
1421 struct netbsd32_getpeername_args /* {
1422 syscallarg(int) fdes;
1423 syscallarg(netbsd32_sockaddrp_t) asa;
1424 syscallarg(netbsd32_intp) alen;
1425 } */ *uap = v;
1426 struct sys_getpeername_args ua;
1427
1428 NETBSD32TO64_UAP(fdes);
1429 NETBSD32TOP_UAP(asa, struct sockaddr);
1430 NETBSD32TOP_UAP(alen, int);
1431 /* NB: do the protocol specific sockaddrs need to be converted? */
1432 return (sys_getpeername(p, &ua, retval));
1433 }
1434
1435 int
1436 netbsd32_getsockname(p, v, retval)
1437 struct proc *p;
1438 void *v;
1439 register_t *retval;
1440 {
1441 struct netbsd32_getsockname_args /* {
1442 syscallarg(int) fdes;
1443 syscallarg(netbsd32_sockaddrp_t) asa;
1444 syscallarg(netbsd32_intp) alen;
1445 } */ *uap = v;
1446 struct sys_getsockname_args ua;
1447
1448 NETBSD32TO64_UAP(fdes);
1449 NETBSD32TOP_UAP(asa, struct sockaddr);
1450 NETBSD32TOP_UAP(alen, int);
1451 return (sys_getsockname(p, &ua, retval));
1452 }
1453
1454 int
1455 netbsd32_access(p, v, retval)
1456 struct proc *p;
1457 void *v;
1458 register_t *retval;
1459 {
1460 struct netbsd32_access_args /* {
1461 syscallarg(const netbsd32_charp) path;
1462 syscallarg(int) flags;
1463 } */ *uap = v;
1464 struct sys_access_args ua;
1465 caddr_t sg;
1466
1467 NETBSD32TOP_UAP(path, const char);
1468 NETBSD32TO64_UAP(flags);
1469 sg = stackgap_init(p->p_emul);
1470 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1471
1472 return (sys_access(p, &ua, retval));
1473 }
1474
1475 int
1476 netbsd32_chflags(p, v, retval)
1477 struct proc *p;
1478 void *v;
1479 register_t *retval;
1480 {
1481 struct netbsd32_chflags_args /* {
1482 syscallarg(const netbsd32_charp) path;
1483 syscallarg(netbsd32_u_long) flags;
1484 } */ *uap = v;
1485 struct sys_chflags_args ua;
1486
1487 NETBSD32TOP_UAP(path, const char);
1488 NETBSD32TO64_UAP(flags);
1489
1490 return (sys_chflags(p, &ua, retval));
1491 }
1492
1493 int
1494 netbsd32_fchflags(p, v, retval)
1495 struct proc *p;
1496 void *v;
1497 register_t *retval;
1498 {
1499 struct netbsd32_fchflags_args /* {
1500 syscallarg(int) fd;
1501 syscallarg(netbsd32_u_long) flags;
1502 } */ *uap = v;
1503 struct sys_fchflags_args ua;
1504
1505 NETBSD32TO64_UAP(fd);
1506 NETBSD32TO64_UAP(flags);
1507
1508 return (sys_fchflags(p, &ua, retval));
1509 }
1510
1511 int
1512 netbsd32_kill(p, v, retval)
1513 struct proc *p;
1514 void *v;
1515 register_t *retval;
1516 {
1517 struct netbsd32_kill_args /* {
1518 syscallarg(int) pid;
1519 syscallarg(int) signum;
1520 } */ *uap = v;
1521 struct sys_kill_args ua;
1522
1523 NETBSD32TO64_UAP(pid);
1524 NETBSD32TO64_UAP(signum);
1525
1526 return (sys_kill(p, &ua, retval));
1527 }
1528
1529 int
1530 netbsd32_dup(p, v, retval)
1531 struct proc *p;
1532 void *v;
1533 register_t *retval;
1534 {
1535 struct netbsd32_dup_args /* {
1536 syscallarg(int) fd;
1537 } */ *uap = v;
1538 struct sys_dup_args ua;
1539
1540 NETBSD32TO64_UAP(fd);
1541
1542 return (sys_dup(p, &ua, retval));
1543 }
1544
1545 int
1546 netbsd32_profil(p, v, retval)
1547 struct proc *p;
1548 void *v;
1549 register_t *retval;
1550 {
1551 struct netbsd32_profil_args /* {
1552 syscallarg(netbsd32_caddr_t) samples;
1553 syscallarg(netbsd32_size_t) size;
1554 syscallarg(netbsd32_u_long) offset;
1555 syscallarg(u_int) scale;
1556 } */ *uap = v;
1557 struct sys_profil_args ua;
1558
1559 NETBSD32TOX64_UAP(samples, caddr_t);
1560 NETBSD32TOX_UAP(size, size_t);
1561 NETBSD32TOX_UAP(offset, u_long);
1562 NETBSD32TO64_UAP(scale);
1563 return (sys_profil(p, &ua, retval));
1564 }
1565
1566 int
1567 netbsd32_ktrace(p, v, retval)
1568 struct proc *p;
1569 void *v;
1570 register_t *retval;
1571 {
1572 struct netbsd32_ktrace_args /* {
1573 syscallarg(const netbsd32_charp) fname;
1574 syscallarg(int) ops;
1575 syscallarg(int) facs;
1576 syscallarg(int) pid;
1577 } */ *uap = v;
1578 struct sys_ktrace_args ua;
1579
1580 NETBSD32TOP_UAP(fname, const char);
1581 NETBSD32TO64_UAP(ops);
1582 NETBSD32TO64_UAP(facs);
1583 NETBSD32TO64_UAP(pid);
1584 return (sys_ktrace(p, &ua, retval));
1585 }
1586
1587 int
1588 netbsd32_sigaction(p, v, retval)
1589 struct proc *p;
1590 void *v;
1591 register_t *retval;
1592 {
1593 struct netbsd32_sigaction_args /* {
1594 syscallarg(int) signum;
1595 syscallarg(const netbsd32_sigactionp_t) nsa;
1596 syscallarg(netbsd32_sigactionp_t) osa;
1597 } */ *uap = v;
1598 struct sigaction nsa, osa;
1599 struct netbsd32_sigaction *sa32p, sa32;
1600 int error;
1601
1602 if (SCARG(uap, nsa)) {
1603 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, nsa);
1604 if (copyin(sa32p, &sa32, sizeof(sa32)))
1605 return EFAULT;
1606 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
1607 nsa.sa_mask = sa32.sa_mask;
1608 nsa.sa_flags = sa32.sa_flags;
1609 }
1610 error = sigaction1(p, SCARG(uap, signum),
1611 SCARG(uap, nsa) ? &nsa : 0,
1612 SCARG(uap, osa) ? &osa : 0);
1613
1614 if (error)
1615 return (error);
1616
1617 if (SCARG(uap, osa)) {
1618 sa32.sa_handler = (netbsd32_sigactionp_t)(u_long)osa.sa_handler;
1619 sa32.sa_mask = osa.sa_mask;
1620 sa32.sa_flags = osa.sa_flags;
1621 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, osa);
1622 if (copyout(&sa32, sa32p, sizeof(sa32)))
1623 return EFAULT;
1624 }
1625
1626 return (0);
1627 }
1628
1629 int
1630 netbsd32___getlogin(p, v, retval)
1631 struct proc *p;
1632 void *v;
1633 register_t *retval;
1634 {
1635 struct netbsd32___getlogin_args /* {
1636 syscallarg(netbsd32_charp) namebuf;
1637 syscallarg(u_int) namelen;
1638 } */ *uap = v;
1639 struct sys___getlogin_args ua;
1640
1641 NETBSD32TOP_UAP(namebuf, char);
1642 NETBSD32TO64_UAP(namelen);
1643 return (sys___getlogin(p, &ua, retval));
1644 }
1645
1646 int
1647 netbsd32_setlogin(p, v, retval)
1648 struct proc *p;
1649 void *v;
1650 register_t *retval;
1651 {
1652 struct netbsd32_setlogin_args /* {
1653 syscallarg(const netbsd32_charp) namebuf;
1654 } */ *uap = v;
1655 struct sys_setlogin_args ua;
1656
1657 NETBSD32TOP_UAP(namebuf, char);
1658 return (sys_setlogin(p, &ua, retval));
1659 }
1660
1661 int
1662 netbsd32_acct(p, v, retval)
1663 struct proc *p;
1664 void *v;
1665 register_t *retval;
1666 {
1667 struct netbsd32_acct_args /* {
1668 syscallarg(const netbsd32_charp) path;
1669 } */ *uap = v;
1670 struct sys_acct_args ua;
1671
1672 NETBSD32TOP_UAP(path, const char);
1673 return (sys_acct(p, &ua, retval));
1674 }
1675
1676 int
1677 netbsd32_revoke(p, v, retval)
1678 struct proc *p;
1679 void *v;
1680 register_t *retval;
1681 {
1682 struct netbsd32_revoke_args /* {
1683 syscallarg(const netbsd32_charp) path;
1684 } */ *uap = v;
1685 struct sys_revoke_args ua;
1686 caddr_t sg;
1687
1688 NETBSD32TOP_UAP(path, const char);
1689 sg = stackgap_init(p->p_emul);
1690 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1691
1692 return (sys_revoke(p, &ua, retval));
1693 }
1694
1695 int
1696 netbsd32_symlink(p, v, retval)
1697 struct proc *p;
1698 void *v;
1699 register_t *retval;
1700 {
1701 struct netbsd32_symlink_args /* {
1702 syscallarg(const netbsd32_charp) path;
1703 syscallarg(const netbsd32_charp) link;
1704 } */ *uap = v;
1705 struct sys_symlink_args ua;
1706
1707 NETBSD32TOP_UAP(path, const char);
1708 NETBSD32TOP_UAP(link, const char);
1709
1710 return (sys_symlink(p, &ua, retval));
1711 }
1712
1713 int
1714 netbsd32_readlink(p, v, retval)
1715 struct proc *p;
1716 void *v;
1717 register_t *retval;
1718 {
1719 struct netbsd32_readlink_args /* {
1720 syscallarg(const netbsd32_charp) path;
1721 syscallarg(netbsd32_charp) buf;
1722 syscallarg(netbsd32_size_t) count;
1723 } */ *uap = v;
1724 struct sys_readlink_args ua;
1725 caddr_t sg;
1726
1727 NETBSD32TOP_UAP(path, const char);
1728 NETBSD32TOP_UAP(buf, char);
1729 NETBSD32TOX_UAP(count, size_t);
1730 sg = stackgap_init(p->p_emul);
1731 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1732
1733 return (sys_readlink(p, &ua, retval));
1734 }
1735
1736 /*
1737 * Need to completly reimplement this syscall due to argument copying.
1738 */
1739 int
1740 netbsd32_execve(p, v, retval)
1741 struct proc *p;
1742 void *v;
1743 register_t *retval;
1744 {
1745 struct netbsd32_execve_args /* {
1746 syscallarg(const netbsd32_charp) path;
1747 syscallarg(netbsd32_charpp) argp;
1748 syscallarg(netbsd32_charpp) envp;
1749 } */ *uap = v;
1750 struct sys_execve_args ua;
1751 caddr_t sg;
1752 /* Function args */
1753 int error, i;
1754 struct exec_package pack;
1755 struct nameidata nid;
1756 struct vattr attr;
1757 struct ucred *cred = p->p_ucred;
1758 char *argp;
1759 netbsd32_charp const *cpp;
1760 char *dp;
1761 netbsd32_charp sp;
1762 long argc, envc;
1763 size_t len;
1764 char *stack;
1765 struct ps_strings arginfo;
1766 struct vmspace *vm;
1767 char **tmpfap;
1768 int szsigcode;
1769 extern struct emul emul_netbsd;
1770
1771
1772 NETBSD32TOP_UAP(path, const char);
1773 NETBSD32TOP_UAP(argp, char *);
1774 NETBSD32TOP_UAP(envp, char *);
1775 sg = stackgap_init(p->p_emul);
1776 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1777
1778 /*
1779 * figure out the maximum size of an exec header, if necessary.
1780 * XXX should be able to keep LKM code from modifying exec switch
1781 * when we're still using it, but...
1782 */
1783 if (exec_maxhdrsz == 0) {
1784 for (i = 0; i < nexecs; i++)
1785 if (execsw[i].es_check != NULL
1786 && execsw[i].es_hdrsz > exec_maxhdrsz)
1787 exec_maxhdrsz = execsw[i].es_hdrsz;
1788 }
1789
1790 /* init the namei data to point the file user's program name */
1791 /* XXX cgd 960926: why do this here? most will be clobbered. */
1792 NDINIT(&nid, LOOKUP, NOFOLLOW, UIO_USERSPACE, SCARG(&ua, path), p);
1793
1794 /*
1795 * initialize the fields of the exec package.
1796 */
1797 pack.ep_name = SCARG(&ua, path);
1798 MALLOC(pack.ep_hdr, void *, exec_maxhdrsz, M_EXEC, M_WAITOK);
1799 pack.ep_hdrlen = exec_maxhdrsz;
1800 pack.ep_hdrvalid = 0;
1801 pack.ep_ndp = &nid;
1802 pack.ep_emul_arg = NULL;
1803 pack.ep_vmcmds.evs_cnt = 0;
1804 pack.ep_vmcmds.evs_used = 0;
1805 pack.ep_vap = &attr;
1806 pack.ep_emul = &emul_netbsd;
1807 pack.ep_flags = 0;
1808
1809 /* see if we can run it. */
1810 if ((error = check_exec(p, &pack)) != 0)
1811 goto freehdr;
1812
1813 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
1814
1815 /* allocate an argument buffer */
1816 argp = (char *) uvm_km_valloc_wait(exec_map, NCARGS);
1817 #ifdef DIAGNOSTIC
1818 if (argp == (vaddr_t) 0)
1819 panic("execve: argp == NULL");
1820 #endif
1821 dp = argp;
1822 argc = 0;
1823
1824 /* copy the fake args list, if there's one, freeing it as we go */
1825 if (pack.ep_flags & EXEC_HASARGL) {
1826 tmpfap = pack.ep_fa;
1827 while (*tmpfap != NULL) {
1828 char *cp;
1829
1830 cp = *tmpfap;
1831 while (*cp)
1832 *dp++ = *cp++;
1833 dp++;
1834
1835 FREE(*tmpfap, M_EXEC);
1836 tmpfap++; argc++;
1837 }
1838 FREE(pack.ep_fa, M_EXEC);
1839 pack.ep_flags &= ~EXEC_HASARGL;
1840 }
1841
1842 /* Now get argv & environment */
1843 if (!(cpp = (netbsd32_charp *)SCARG(&ua, argp))) {
1844 error = EINVAL;
1845 goto bad;
1846 }
1847
1848 if (pack.ep_flags & EXEC_SKIPARG)
1849 cpp++;
1850
1851 while (1) {
1852 len = argp + ARG_MAX - dp;
1853 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1854 goto bad;
1855 if (!sp)
1856 break;
1857 if ((error = copyinstr((char *)(u_long)sp, dp,
1858 len, &len)) != 0) {
1859 if (error == ENAMETOOLONG)
1860 error = E2BIG;
1861 goto bad;
1862 }
1863 dp += len;
1864 cpp++;
1865 argc++;
1866 }
1867
1868 envc = 0;
1869 /* environment need not be there */
1870 if ((cpp = (netbsd32_charp *)SCARG(&ua, envp)) != NULL ) {
1871 while (1) {
1872 len = argp + ARG_MAX - dp;
1873 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1874 goto bad;
1875 if (!sp)
1876 break;
1877 if ((error = copyinstr((char *)(u_long)sp,
1878 dp, len, &len)) != 0) {
1879 if (error == ENAMETOOLONG)
1880 error = E2BIG;
1881 goto bad;
1882 }
1883 dp += len;
1884 cpp++;
1885 envc++;
1886 }
1887 }
1888
1889 dp = (char *) ALIGN(dp);
1890
1891 szsigcode = pack.ep_emul->e_esigcode - pack.ep_emul->e_sigcode;
1892
1893 /* Now check if args & environ fit into new stack */
1894 if (pack.ep_flags & EXEC_32)
1895 len = ((argc + envc + 2 + pack.ep_emul->e_arglen) * sizeof(int) +
1896 sizeof(int) + dp + STACKGAPLEN + szsigcode +
1897 sizeof(struct ps_strings)) - argp;
1898 else
1899 len = ((argc + envc + 2 + pack.ep_emul->e_arglen) * sizeof(char *) +
1900 sizeof(int) + dp + STACKGAPLEN + szsigcode +
1901 sizeof(struct ps_strings)) - argp;
1902
1903 len = ALIGN(len); /* make the stack "safely" aligned */
1904
1905 if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
1906 error = ENOMEM;
1907 goto bad;
1908 }
1909
1910 /* adjust "active stack depth" for process VSZ */
1911 pack.ep_ssize = len; /* maybe should go elsewhere, but... */
1912
1913 /*
1914 * Do whatever is necessary to prepare the address space
1915 * for remapping. Note that this might replace the current
1916 * vmspace with another!
1917 */
1918 uvmspace_exec(p);
1919
1920 /* Now map address space */
1921 vm = p->p_vmspace;
1922 vm->vm_taddr = (char *) pack.ep_taddr;
1923 vm->vm_tsize = btoc(pack.ep_tsize);
1924 vm->vm_daddr = (char *) pack.ep_daddr;
1925 vm->vm_dsize = btoc(pack.ep_dsize);
1926 vm->vm_ssize = btoc(pack.ep_ssize);
1927 vm->vm_maxsaddr = (char *) pack.ep_maxsaddr;
1928
1929 /* create the new process's VM space by running the vmcmds */
1930 #ifdef DIAGNOSTIC
1931 if (pack.ep_vmcmds.evs_used == 0)
1932 panic("execve: no vmcmds");
1933 #endif
1934 for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
1935 struct exec_vmcmd *vcp;
1936
1937 vcp = &pack.ep_vmcmds.evs_cmds[i];
1938 error = (*vcp->ev_proc)(p, vcp);
1939 }
1940
1941 /* free the vmspace-creation commands, and release their references */
1942 kill_vmcmds(&pack.ep_vmcmds);
1943
1944 /* if an error happened, deallocate and punt */
1945 if (error)
1946 goto exec_abort;
1947
1948 /* remember information about the process */
1949 arginfo.ps_nargvstr = argc;
1950 arginfo.ps_nenvstr = envc;
1951
1952 stack = (char *) (USRSTACK - len);
1953 /* Now copy argc, args & environ to new stack */
1954 if (!(*pack.ep_emul->e_copyargs)(&pack, &arginfo, stack, argp))
1955 goto exec_abort;
1956
1957 /* copy out the process's ps_strings structure */
1958 if (copyout(&arginfo, (char *) PS_STRINGS, sizeof(arginfo)))
1959 goto exec_abort;
1960
1961 /* copy out the process's signal trapoline code */
1962 if (szsigcode) {
1963 if (copyout((char *)pack.ep_emul->e_sigcode,
1964 p->p_sigacts->ps_sigcode = (char *)PS_STRINGS - szsigcode,
1965 szsigcode))
1966 goto exec_abort;
1967 #ifdef PMAP_NEED_PROCWR
1968 /* This is code. Let the pmap do what is needed. */
1969 pmap_procwr(p, (vaddr_t)p->p_sigacts->ps_sigcode, szsigcode);
1970 #endif
1971 }
1972
1973 stopprofclock(p); /* stop profiling */
1974 fdcloseexec(p); /* handle close on exec */
1975 execsigs(p); /* reset catched signals */
1976 p->p_ctxlink = NULL; /* reset ucontext link */
1977
1978 /* set command name & other accounting info */
1979 len = min(nid.ni_cnd.cn_namelen, MAXCOMLEN);
1980 memcpy(p->p_comm, nid.ni_cnd.cn_nameptr, len);
1981 p->p_comm[len] = 0;
1982 p->p_acflag &= ~AFORK;
1983
1984 /* record proc's vnode, for use by procfs and others */
1985 if (p->p_textvp)
1986 vrele(p->p_textvp);
1987 VREF(pack.ep_vp);
1988 p->p_textvp = pack.ep_vp;
1989
1990 p->p_flag |= P_EXEC;
1991 if (p->p_flag & P_PPWAIT) {
1992 p->p_flag &= ~P_PPWAIT;
1993 wakeup((caddr_t) p->p_pptr);
1994 }
1995
1996 /*
1997 * deal with set[ug]id.
1998 * MNT_NOSUID and P_TRACED have already been used to disable s[ug]id.
1999 */
2000 if (((attr.va_mode & S_ISUID) != 0 && p->p_ucred->cr_uid != attr.va_uid)
2001 || ((attr.va_mode & S_ISGID) != 0 && p->p_ucred->cr_gid != attr.va_gid)){
2002 p->p_ucred = crcopy(cred);
2003 #ifdef KTRACE
2004 /*
2005 * If process is being ktraced, turn off - unless
2006 * root set it.
2007 */
2008 if (p->p_tracep && !(p->p_traceflag & KTRFAC_ROOT))
2009 ktrderef(p);
2010 #endif
2011 if (attr.va_mode & S_ISUID)
2012 p->p_ucred->cr_uid = attr.va_uid;
2013 if (attr.va_mode & S_ISGID)
2014 p->p_ucred->cr_gid = attr.va_gid;
2015 p_sugid(p);
2016 } else
2017 p->p_flag &= ~P_SUGID;
2018 p->p_cred->p_svuid = p->p_ucred->cr_uid;
2019 p->p_cred->p_svgid = p->p_ucred->cr_gid;
2020
2021 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2022
2023 FREE(nid.ni_cnd.cn_pnbuf, M_NAMEI);
2024 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2025 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2026 vput(pack.ep_vp);
2027
2028 /* setup new registers and do misc. setup. */
2029 (*pack.ep_emul->e_setregs)(p, &pack, (u_long) stack);
2030
2031 if (p->p_flag & P_TRACED)
2032 psignal(p, SIGTRAP);
2033
2034 p->p_emul = pack.ep_emul;
2035 FREE(pack.ep_hdr, M_EXEC);
2036
2037 #ifdef KTRACE
2038 if (KTRPOINT(p, KTR_EMUL))
2039 ktremul(p);
2040 #endif
2041
2042 return (EJUSTRETURN);
2043
2044 bad:
2045 /* free the vmspace-creation commands, and release their references */
2046 kill_vmcmds(&pack.ep_vmcmds);
2047 /* kill any opened file descriptor, if necessary */
2048 if (pack.ep_flags & EXEC_HASFD) {
2049 pack.ep_flags &= ~EXEC_HASFD;
2050 (void) fdrelease(p, pack.ep_fd);
2051 }
2052 /* close and put the exec'd file */
2053 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2054 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2055 vput(pack.ep_vp);
2056 FREE(nid.ni_cnd.cn_pnbuf, M_NAMEI);
2057 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2058
2059 freehdr:
2060 FREE(pack.ep_hdr, M_EXEC);
2061 return error;
2062
2063 exec_abort:
2064 /*
2065 * the old process doesn't exist anymore. exit gracefully.
2066 * get rid of the (new) address space we have created, if any, get rid
2067 * of our namei data and vnode, and exit noting failure
2068 */
2069 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
2070 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
2071 if (pack.ep_emul_arg)
2072 FREE(pack.ep_emul_arg, M_TEMP);
2073 FREE(nid.ni_cnd.cn_pnbuf, M_NAMEI);
2074 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2075 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2076 vput(pack.ep_vp);
2077 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2078 FREE(pack.ep_hdr, M_EXEC);
2079 exit1(p, W_EXITCODE(0, SIGABRT));
2080 exit1(p, -1);
2081
2082 /* NOTREACHED */
2083 return 0;
2084 }
2085
2086 int
2087 netbsd32_umask(p, v, retval)
2088 struct proc *p;
2089 void *v;
2090 register_t *retval;
2091 {
2092 struct netbsd32_umask_args /* {
2093 syscallarg(mode_t) newmask;
2094 } */ *uap = v;
2095 struct sys_umask_args ua;
2096
2097 NETBSD32TO64_UAP(newmask);
2098 return (sys_umask(p, &ua, retval));
2099 }
2100
2101 int
2102 netbsd32_chroot(p, v, retval)
2103 struct proc *p;
2104 void *v;
2105 register_t *retval;
2106 {
2107 struct netbsd32_chroot_args /* {
2108 syscallarg(const netbsd32_charp) path;
2109 } */ *uap = v;
2110 struct sys_chroot_args ua;
2111
2112 NETBSD32TOP_UAP(path, const char);
2113 return (sys_chroot(p, &ua, retval));
2114 }
2115
2116 int
2117 netbsd32_sbrk(p, v, retval)
2118 struct proc *p;
2119 void *v;
2120 register_t *retval;
2121 {
2122 struct netbsd32_sbrk_args /* {
2123 syscallarg(int) incr;
2124 } */ *uap = v;
2125 struct sys_sbrk_args ua;
2126
2127 NETBSD32TO64_UAP(incr);
2128 return (sys_sbrk(p, &ua, retval));
2129 }
2130
2131 int
2132 netbsd32_sstk(p, v, retval)
2133 struct proc *p;
2134 void *v;
2135 register_t *retval;
2136 {
2137 struct netbsd32_sstk_args /* {
2138 syscallarg(int) incr;
2139 } */ *uap = v;
2140 struct sys_sstk_args ua;
2141
2142 NETBSD32TO64_UAP(incr);
2143 return (sys_sstk(p, &ua, retval));
2144 }
2145
2146 int
2147 netbsd32_munmap(p, v, retval)
2148 struct proc *p;
2149 void *v;
2150 register_t *retval;
2151 {
2152 struct netbsd32_munmap_args /* {
2153 syscallarg(netbsd32_voidp) addr;
2154 syscallarg(netbsd32_size_t) len;
2155 } */ *uap = v;
2156 struct sys_munmap_args ua;
2157
2158 NETBSD32TOP_UAP(addr, void);
2159 NETBSD32TOX_UAP(len, size_t);
2160 return (sys_munmap(p, &ua, retval));
2161 }
2162
2163 int
2164 netbsd32_mprotect(p, v, retval)
2165 struct proc *p;
2166 void *v;
2167 register_t *retval;
2168 {
2169 struct netbsd32_mprotect_args /* {
2170 syscallarg(netbsd32_voidp) addr;
2171 syscallarg(netbsd32_size_t) len;
2172 syscallarg(int) prot;
2173 } */ *uap = v;
2174 struct sys_mprotect_args ua;
2175
2176 NETBSD32TOP_UAP(addr, void);
2177 NETBSD32TOX_UAP(len, size_t);
2178 NETBSD32TO64_UAP(prot);
2179 return (sys_mprotect(p, &ua, retval));
2180 }
2181
2182 int
2183 netbsd32_madvise(p, v, retval)
2184 struct proc *p;
2185 void *v;
2186 register_t *retval;
2187 {
2188 struct netbsd32_madvise_args /* {
2189 syscallarg(netbsd32_voidp) addr;
2190 syscallarg(netbsd32_size_t) len;
2191 syscallarg(int) behav;
2192 } */ *uap = v;
2193 struct sys_madvise_args ua;
2194
2195 NETBSD32TOP_UAP(addr, void);
2196 NETBSD32TOX_UAP(len, size_t);
2197 NETBSD32TO64_UAP(behav);
2198 return (sys_madvise(p, &ua, retval));
2199 }
2200
2201 int
2202 netbsd32_mincore(p, v, retval)
2203 struct proc *p;
2204 void *v;
2205 register_t *retval;
2206 {
2207 struct netbsd32_mincore_args /* {
2208 syscallarg(netbsd32_caddr_t) addr;
2209 syscallarg(netbsd32_size_t) len;
2210 syscallarg(netbsd32_charp) vec;
2211 } */ *uap = v;
2212 struct sys_mincore_args ua;
2213
2214 NETBSD32TOX64_UAP(addr, caddr_t);
2215 NETBSD32TOX_UAP(len, size_t);
2216 NETBSD32TOP_UAP(vec, char);
2217 return (sys_mincore(p, &ua, retval));
2218 }
2219
2220 int
2221 netbsd32_getgroups(p, v, retval)
2222 struct proc *p;
2223 void *v;
2224 register_t *retval;
2225 {
2226 struct netbsd32_getgroups_args /* {
2227 syscallarg(int) gidsetsize;
2228 syscallarg(netbsd32_gid_tp) gidset;
2229 } */ *uap = v;
2230 struct pcred *pc = p->p_cred;
2231 int ngrp;
2232 int error;
2233
2234 ngrp = SCARG(uap, gidsetsize);
2235 if (ngrp == 0) {
2236 *retval = pc->pc_ucred->cr_ngroups;
2237 return (0);
2238 }
2239 if (ngrp < pc->pc_ucred->cr_ngroups)
2240 return (EINVAL);
2241 ngrp = pc->pc_ucred->cr_ngroups;
2242 /* Should convert gid_t to netbsd32_gid_t, but they're the same */
2243 error = copyout((caddr_t)pc->pc_ucred->cr_groups,
2244 (caddr_t)(u_long)SCARG(uap, gidset),
2245 ngrp * sizeof(gid_t));
2246 if (error)
2247 return (error);
2248 *retval = ngrp;
2249 return (0);
2250 }
2251
2252 int
2253 netbsd32_setgroups(p, v, retval)
2254 struct proc *p;
2255 void *v;
2256 register_t *retval;
2257 {
2258 struct netbsd32_setgroups_args /* {
2259 syscallarg(int) gidsetsize;
2260 syscallarg(const netbsd32_gid_tp) gidset;
2261 } */ *uap = v;
2262 struct sys_setgroups_args ua;
2263
2264 NETBSD32TO64_UAP(gidsetsize);
2265 NETBSD32TOP_UAP(gidset, gid_t);
2266 return (sys_setgroups(p, &ua, retval));
2267 }
2268
2269 int
2270 netbsd32_setpgid(p, v, retval)
2271 struct proc *p;
2272 void *v;
2273 register_t *retval;
2274 {
2275 struct netbsd32_setpgid_args /* {
2276 syscallarg(int) pid;
2277 syscallarg(int) pgid;
2278 } */ *uap = v;
2279 struct sys_setpgid_args ua;
2280
2281 NETBSD32TO64_UAP(pid);
2282 NETBSD32TO64_UAP(pgid);
2283 return (sys_setpgid(p, &ua, retval));
2284 }
2285
2286 int
2287 netbsd32_setitimer(p, v, retval)
2288 struct proc *p;
2289 void *v;
2290 register_t *retval;
2291 {
2292 struct netbsd32_setitimer_args /* {
2293 syscallarg(int) which;
2294 syscallarg(const netbsd32_itimervalp_t) itv;
2295 syscallarg(netbsd32_itimervalp_t) oitv;
2296 } */ *uap = v;
2297 struct netbsd32_itimerval s32it, *itvp;
2298 int which = SCARG(uap, which);
2299 struct netbsd32_getitimer_args getargs;
2300 struct itimerval aitv;
2301 int s, error;
2302
2303 if ((u_int)which > ITIMER_PROF)
2304 return (EINVAL);
2305 itvp = (struct netbsd32_itimerval *)(u_long)SCARG(uap, itv);
2306 if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
2307 return (error);
2308 netbsd32_to_itimerval(&s32it, &aitv);
2309 if (SCARG(uap, oitv) != NULL) {
2310 SCARG(&getargs, which) = which;
2311 SCARG(&getargs, itv) = SCARG(uap, oitv);
2312 if ((error = netbsd32_getitimer(p, &getargs, retval)) != 0)
2313 return (error);
2314 }
2315 if (itvp == 0)
2316 return (0);
2317 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
2318 return (EINVAL);
2319 s = splclock();
2320 if (which == ITIMER_REAL) {
2321 callout_stop(&p->p_realit_ch);
2322 if (timerisset(&aitv.it_value)) {
2323 timeradd(&aitv.it_value, &time, &aitv.it_value);
2324 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
2325 realitexpire, p);
2326 }
2327 p->p_realtimer = aitv;
2328 } else
2329 p->p_stats->p_timer[which] = aitv;
2330 splx(s);
2331 return (0);
2332 }
2333
2334 int
2335 netbsd32_getitimer(p, v, retval)
2336 struct proc *p;
2337 void *v;
2338 register_t *retval;
2339 {
2340 struct netbsd32_getitimer_args /* {
2341 syscallarg(int) which;
2342 syscallarg(netbsd32_itimervalp_t) itv;
2343 } */ *uap = v;
2344 int which = SCARG(uap, which);
2345 struct netbsd32_itimerval s32it;
2346 struct itimerval aitv;
2347 int s;
2348
2349 if ((u_int)which > ITIMER_PROF)
2350 return (EINVAL);
2351 s = splclock();
2352 if (which == ITIMER_REAL) {
2353 /*
2354 * Convert from absolute to relative time in .it_value
2355 * part of real time timer. If time for real time timer
2356 * has passed return 0, else return difference between
2357 * current time and time for the timer to go off.
2358 */
2359 aitv = p->p_realtimer;
2360 if (timerisset(&aitv.it_value)) {
2361 if (timercmp(&aitv.it_value, &time, <))
2362 timerclear(&aitv.it_value);
2363 else
2364 timersub(&aitv.it_value, &time, &aitv.it_value);
2365 }
2366 } else
2367 aitv = p->p_stats->p_timer[which];
2368 splx(s);
2369 netbsd32_from_itimerval(&aitv, &s32it);
2370 return (copyout(&s32it, (caddr_t)(u_long)SCARG(uap, itv), sizeof(s32it)));
2371 }
2372
2373 int
2374 netbsd32_fcntl(p, v, retval)
2375 struct proc *p;
2376 void *v;
2377 register_t *retval;
2378 {
2379 struct netbsd32_fcntl_args /* {
2380 syscallarg(int) fd;
2381 syscallarg(int) cmd;
2382 syscallarg(netbsd32_voidp) arg;
2383 } */ *uap = v;
2384 struct sys_fcntl_args ua;
2385
2386 NETBSD32TO64_UAP(fd);
2387 NETBSD32TO64_UAP(cmd);
2388 NETBSD32TOP_UAP(arg, void);
2389 /* XXXX we can do this 'cause flock doesn't change */
2390 return (sys_fcntl(p, &ua, retval));
2391 }
2392
2393 int
2394 netbsd32_dup2(p, v, retval)
2395 struct proc *p;
2396 void *v;
2397 register_t *retval;
2398 {
2399 struct netbsd32_dup2_args /* {
2400 syscallarg(int) from;
2401 syscallarg(int) to;
2402 } */ *uap = v;
2403 struct sys_dup2_args ua;
2404
2405 NETBSD32TO64_UAP(from);
2406 NETBSD32TO64_UAP(to);
2407 return (sys_dup2(p, &ua, retval));
2408 }
2409
2410 int
2411 netbsd32_select(p, v, retval)
2412 struct proc *p;
2413 void *v;
2414 register_t *retval;
2415 {
2416 struct netbsd32_select_args /* {
2417 syscallarg(int) nd;
2418 syscallarg(netbsd32_fd_setp_t) in;
2419 syscallarg(netbsd32_fd_setp_t) ou;
2420 syscallarg(netbsd32_fd_setp_t) ex;
2421 syscallarg(netbsd32_timevalp_t) tv;
2422 } */ *uap = v;
2423 /* This one must be done in-line 'cause of the timeval */
2424 struct netbsd32_timeval tv32;
2425 caddr_t bits;
2426 char smallbits[howmany(FD_SETSIZE, NFDBITS) * sizeof(fd_mask) * 6];
2427 struct timeval atv;
2428 int s, ncoll, error = 0, timo;
2429 size_t ni;
2430 extern int selwait, nselcoll;
2431 extern int selscan __P((struct proc *, fd_mask *, fd_mask *, int, register_t *));
2432
2433 if (SCARG(uap, nd) < 0)
2434 return (EINVAL);
2435 if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {
2436 /* forgiving; slightly wrong */
2437 SCARG(uap, nd) = p->p_fd->fd_nfiles;
2438 }
2439 ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);
2440 if (ni * 6 > sizeof(smallbits))
2441 bits = malloc(ni * 6, M_TEMP, M_WAITOK);
2442 else
2443 bits = smallbits;
2444
2445 #define getbits(name, x) \
2446 if (SCARG(uap, name)) { \
2447 error = copyin((caddr_t)(u_long)SCARG(uap, name), bits + ni * x, ni); \
2448 if (error) \
2449 goto done; \
2450 } else \
2451 memset(bits + ni * x, 0, ni);
2452 getbits(in, 0);
2453 getbits(ou, 1);
2454 getbits(ex, 2);
2455 #undef getbits
2456
2457 if (SCARG(uap, tv)) {
2458 error = copyin((caddr_t)(u_long)SCARG(uap, tv), (caddr_t)&tv32,
2459 sizeof(tv32));
2460 if (error)
2461 goto done;
2462 netbsd32_to_timeval(&tv32, &atv);
2463 if (itimerfix(&atv)) {
2464 error = EINVAL;
2465 goto done;
2466 }
2467 s = splclock();
2468 timeradd(&atv, &time, &atv);
2469 timo = hzto(&atv);
2470 /*
2471 * Avoid inadvertently sleeping forever.
2472 */
2473 if (timo == 0)
2474 timo = 1;
2475 splx(s);
2476 } else
2477 timo = 0;
2478 retry:
2479 ncoll = nselcoll;
2480 p->p_flag |= P_SELECT;
2481 error = selscan(p, (fd_mask *)(bits + ni * 0),
2482 (fd_mask *)(bits + ni * 3), SCARG(uap, nd), retval);
2483 if (error || *retval)
2484 goto done;
2485 s = splhigh();
2486 if (timo && timercmp(&time, &atv, >=)) {
2487 splx(s);
2488 goto done;
2489 }
2490 if ((p->p_flag & P_SELECT) == 0 || nselcoll != ncoll) {
2491 splx(s);
2492 goto retry;
2493 }
2494 p->p_flag &= ~P_SELECT;
2495 error = tsleep((caddr_t)&selwait, PSOCK | PCATCH, "select", timo);
2496 splx(s);
2497 if (error == 0)
2498 goto retry;
2499 done:
2500 p->p_flag &= ~P_SELECT;
2501 /* select is not restarted after signals... */
2502 if (error == ERESTART)
2503 error = EINTR;
2504 if (error == EWOULDBLOCK)
2505 error = 0;
2506 if (error == 0) {
2507 #define putbits(name, x) \
2508 if (SCARG(uap, name)) { \
2509 error = copyout(bits + ni * x, (caddr_t)(u_long)SCARG(uap, name), ni); \
2510 if (error) \
2511 goto out; \
2512 }
2513 putbits(in, 3);
2514 putbits(ou, 4);
2515 putbits(ex, 5);
2516 #undef putbits
2517 }
2518 out:
2519 if (ni * 6 > sizeof(smallbits))
2520 free(bits, M_TEMP);
2521 return (error);
2522 }
2523
2524 int
2525 netbsd32_fsync(p, v, retval)
2526 struct proc *p;
2527 void *v;
2528 register_t *retval;
2529 {
2530 struct netbsd32_fsync_args /* {
2531 syscallarg(int) fd;
2532 } */ *uap = v;
2533 struct sys_fsync_args ua;
2534
2535 NETBSD32TO64_UAP(fd);
2536 return (sys_fsync(p, &ua, retval));
2537 }
2538
2539 int
2540 netbsd32_setpriority(p, v, retval)
2541 struct proc *p;
2542 void *v;
2543 register_t *retval;
2544 {
2545 struct netbsd32_setpriority_args /* {
2546 syscallarg(int) which;
2547 syscallarg(int) who;
2548 syscallarg(int) prio;
2549 } */ *uap = v;
2550 struct sys_setpriority_args ua;
2551
2552 NETBSD32TO64_UAP(which);
2553 NETBSD32TO64_UAP(who);
2554 NETBSD32TO64_UAP(prio);
2555 return (sys_setpriority(p, &ua, retval));
2556 }
2557
2558 int
2559 netbsd32_socket(p, v, retval)
2560 struct proc *p;
2561 void *v;
2562 register_t *retval;
2563 {
2564 struct netbsd32_socket_args /* {
2565 syscallarg(int) domain;
2566 syscallarg(int) type;
2567 syscallarg(int) protocol;
2568 } */ *uap = v;
2569 struct sys_socket_args ua;
2570
2571 NETBSD32TO64_UAP(domain);
2572 NETBSD32TO64_UAP(type);
2573 NETBSD32TO64_UAP(protocol);
2574 return (sys_socket(p, &ua, retval));
2575 }
2576
2577 int
2578 netbsd32_connect(p, v, retval)
2579 struct proc *p;
2580 void *v;
2581 register_t *retval;
2582 {
2583 struct netbsd32_connect_args /* {
2584 syscallarg(int) s;
2585 syscallarg(const netbsd32_sockaddrp_t) name;
2586 syscallarg(int) namelen;
2587 } */ *uap = v;
2588 struct sys_connect_args ua;
2589
2590 NETBSD32TO64_UAP(s);
2591 NETBSD32TOP_UAP(name, struct sockaddr);
2592 NETBSD32TO64_UAP(namelen);
2593 return (sys_connect(p, &ua, retval));
2594 }
2595
2596 int
2597 netbsd32_getpriority(p, v, retval)
2598 struct proc *p;
2599 void *v;
2600 register_t *retval;
2601 {
2602 struct netbsd32_getpriority_args /* {
2603 syscallarg(int) which;
2604 syscallarg(int) who;
2605 } */ *uap = v;
2606 struct sys_getpriority_args ua;
2607
2608 NETBSD32TO64_UAP(which);
2609 NETBSD32TO64_UAP(who);
2610 return (sys_getpriority(p, &ua, retval));
2611 }
2612
2613 int
2614 netbsd32_bind(p, v, retval)
2615 struct proc *p;
2616 void *v;
2617 register_t *retval;
2618 {
2619 struct netbsd32_bind_args /* {
2620 syscallarg(int) s;
2621 syscallarg(const netbsd32_sockaddrp_t) name;
2622 syscallarg(int) namelen;
2623 } */ *uap = v;
2624 struct sys_bind_args ua;
2625
2626 NETBSD32TO64_UAP(s);
2627 NETBSD32TOP_UAP(name, struct sockaddr);
2628 NETBSD32TO64_UAP(namelen);
2629 return (sys_bind(p, &ua, retval));
2630 }
2631
2632 int
2633 netbsd32_setsockopt(p, v, retval)
2634 struct proc *p;
2635 void *v;
2636 register_t *retval;
2637 {
2638 struct netbsd32_setsockopt_args /* {
2639 syscallarg(int) s;
2640 syscallarg(int) level;
2641 syscallarg(int) name;
2642 syscallarg(const netbsd32_voidp) val;
2643 syscallarg(int) valsize;
2644 } */ *uap = v;
2645 struct sys_setsockopt_args ua;
2646
2647 NETBSD32TO64_UAP(s);
2648 NETBSD32TO64_UAP(level);
2649 NETBSD32TO64_UAP(name);
2650 NETBSD32TOP_UAP(val, void);
2651 NETBSD32TO64_UAP(valsize);
2652 /* may be more efficient to do this inline. */
2653 return (sys_setsockopt(p, &ua, retval));
2654 }
2655
2656 int
2657 netbsd32_listen(p, v, retval)
2658 struct proc *p;
2659 void *v;
2660 register_t *retval;
2661 {
2662 struct netbsd32_listen_args /* {
2663 syscallarg(int) s;
2664 syscallarg(int) backlog;
2665 } */ *uap = v;
2666 struct sys_listen_args ua;
2667
2668 NETBSD32TO64_UAP(s);
2669 NETBSD32TO64_UAP(backlog);
2670 return (sys_listen(p, &ua, retval));
2671 }
2672
2673 int
2674 netbsd32_gettimeofday(p, v, retval)
2675 struct proc *p;
2676 void *v;
2677 register_t *retval;
2678 {
2679 struct netbsd32_gettimeofday_args /* {
2680 syscallarg(netbsd32_timevalp_t) tp;
2681 syscallarg(netbsd32_timezonep_t) tzp;
2682 } */ *uap = v;
2683 struct timeval atv;
2684 struct netbsd32_timeval tv32;
2685 int error = 0;
2686 struct netbsd32_timezone tzfake;
2687
2688 if (SCARG(uap, tp)) {
2689 microtime(&atv);
2690 netbsd32_from_timeval(&atv, &tv32);
2691 error = copyout(&tv32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tv32));
2692 if (error)
2693 return (error);
2694 }
2695 if (SCARG(uap, tzp)) {
2696 /*
2697 * NetBSD has no kernel notion of time zone, so we just
2698 * fake up a timezone struct and return it if demanded.
2699 */
2700 tzfake.tz_minuteswest = 0;
2701 tzfake.tz_dsttime = 0;
2702 error = copyout(&tzfake, (caddr_t)(u_long)SCARG(uap, tzp), sizeof(tzfake));
2703 }
2704 return (error);
2705 }
2706
2707 #if 0
2708 static int settime32 __P((struct timeval *));
2709 /* This function is used by clock_settime and settimeofday */
2710 static int
2711 settime32(tv)
2712 struct timeval *tv;
2713 {
2714 struct timeval delta;
2715 int s;
2716
2717 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
2718 s = splclock();
2719 timersub(tv, &time, &delta);
2720 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
2721 return (EPERM);
2722 #ifdef notyet
2723 if ((delta.tv_sec < 86400) && securelevel > 0)
2724 return (EPERM);
2725 #endif
2726 time = *tv;
2727 (void) spllowersoftclock();
2728 timeradd(&boottime, &delta, &boottime);
2729 timeradd(&runtime, &delta, &runtime);
2730 # if defined(NFS) || defined(NFSSERVER)
2731 {
2732 extern void nqnfs_lease_updatetime __P((int));
2733
2734 nqnfs_lease_updatetime(delta.tv_sec);
2735 }
2736 # endif
2737 splx(s);
2738 resettodr();
2739 return (0);
2740 }
2741 #endif
2742
2743 int
2744 netbsd32_settimeofday(p, v, retval)
2745 struct proc *p;
2746 void *v;
2747 register_t *retval;
2748 {
2749 struct netbsd32_settimeofday_args /* {
2750 syscallarg(const netbsd32_timevalp_t) tv;
2751 syscallarg(const netbsd32_timezonep_t) tzp;
2752 } */ *uap = v;
2753 struct netbsd32_timeval atv32;
2754 struct timeval atv;
2755 struct netbsd32_timezone atz;
2756 int error;
2757
2758 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
2759 return (error);
2760 /* Verify all parameters before changing time. */
2761 if (SCARG(uap, tv) && (error = copyin((caddr_t)(u_long)SCARG(uap, tv),
2762 &atv32, sizeof(atv32))))
2763 return (error);
2764 netbsd32_to_timeval(&atv32, &atv);
2765 /* XXX since we don't use tz, probably no point in doing copyin. */
2766 if (SCARG(uap, tzp) && (error = copyin((caddr_t)(u_long)SCARG(uap, tzp),
2767 &atz, sizeof(atz))))
2768 return (error);
2769 if (SCARG(uap, tv))
2770 if ((error = settime(&atv)))
2771 return (error);
2772 /*
2773 * NetBSD has no kernel notion of time zone, and only an
2774 * obsolete program would try to set it, so we log a warning.
2775 */
2776 if (SCARG(uap, tzp))
2777 printf("pid %d attempted to set the "
2778 "(obsolete) kernel time zone\n", p->p_pid);
2779 return (0);
2780 }
2781
2782 int
2783 netbsd32_fchown(p, v, retval)
2784 struct proc *p;
2785 void *v;
2786 register_t *retval;
2787 {
2788 struct netbsd32_fchown_args /* {
2789 syscallarg(int) fd;
2790 syscallarg(uid_t) uid;
2791 syscallarg(gid_t) gid;
2792 } */ *uap = v;
2793 struct sys_fchown_args ua;
2794
2795 NETBSD32TO64_UAP(fd);
2796 NETBSD32TO64_UAP(uid);
2797 NETBSD32TO64_UAP(gid);
2798 return (sys_fchown(p, &ua, retval));
2799 }
2800
2801 int
2802 netbsd32_fchmod(p, v, retval)
2803 struct proc *p;
2804 void *v;
2805 register_t *retval;
2806 {
2807 struct netbsd32_fchmod_args /* {
2808 syscallarg(int) fd;
2809 syscallarg(mode_t) mode;
2810 } */ *uap = v;
2811 struct sys_fchmod_args ua;
2812
2813 NETBSD32TO64_UAP(fd);
2814 NETBSD32TO64_UAP(mode);
2815 return (sys_fchmod(p, &ua, retval));
2816 }
2817
2818 int
2819 netbsd32_setreuid(p, v, retval)
2820 struct proc *p;
2821 void *v;
2822 register_t *retval;
2823 {
2824 struct netbsd32_setreuid_args /* {
2825 syscallarg(uid_t) ruid;
2826 syscallarg(uid_t) euid;
2827 } */ *uap = v;
2828 struct sys_setreuid_args ua;
2829
2830 NETBSD32TO64_UAP(ruid);
2831 NETBSD32TO64_UAP(euid);
2832 return (sys_setreuid(p, &ua, retval));
2833 }
2834
2835 int
2836 netbsd32_setregid(p, v, retval)
2837 struct proc *p;
2838 void *v;
2839 register_t *retval;
2840 {
2841 struct netbsd32_setregid_args /* {
2842 syscallarg(gid_t) rgid;
2843 syscallarg(gid_t) egid;
2844 } */ *uap = v;
2845 struct sys_setregid_args ua;
2846
2847 NETBSD32TO64_UAP(rgid);
2848 NETBSD32TO64_UAP(egid);
2849 return (sys_setregid(p, &ua, retval));
2850 }
2851
2852 int
2853 netbsd32_getrusage(p, v, retval)
2854 struct proc *p;
2855 void *v;
2856 register_t *retval;
2857 {
2858 struct netbsd32_getrusage_args /* {
2859 syscallarg(int) who;
2860 syscallarg(netbsd32_rusagep_t) rusage;
2861 } */ *uap = v;
2862 struct rusage *rup;
2863 struct netbsd32_rusage ru;
2864
2865 switch (SCARG(uap, who)) {
2866
2867 case RUSAGE_SELF:
2868 rup = &p->p_stats->p_ru;
2869 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
2870 break;
2871
2872 case RUSAGE_CHILDREN:
2873 rup = &p->p_stats->p_cru;
2874 break;
2875
2876 default:
2877 return (EINVAL);
2878 }
2879 netbsd32_from_rusage(rup, &ru);
2880 return (copyout(&ru, (caddr_t)(u_long)SCARG(uap, rusage), sizeof(ru)));
2881 }
2882
2883 int
2884 netbsd32_getsockopt(p, v, retval)
2885 struct proc *p;
2886 void *v;
2887 register_t *retval;
2888 {
2889 struct netbsd32_getsockopt_args /* {
2890 syscallarg(int) s;
2891 syscallarg(int) level;
2892 syscallarg(int) name;
2893 syscallarg(netbsd32_voidp) val;
2894 syscallarg(netbsd32_intp) avalsize;
2895 } */ *uap = v;
2896 struct sys_getsockopt_args ua;
2897
2898 NETBSD32TO64_UAP(s);
2899 NETBSD32TO64_UAP(level);
2900 NETBSD32TO64_UAP(name);
2901 NETBSD32TOP_UAP(val, void);
2902 NETBSD32TOP_UAP(avalsize, int);
2903 return (sys_getsockopt(p, &ua, retval));
2904 }
2905
2906 int
2907 netbsd32_readv(p, v, retval)
2908 struct proc *p;
2909 void *v;
2910 register_t *retval;
2911 {
2912 struct netbsd32_readv_args /* {
2913 syscallarg(int) fd;
2914 syscallarg(const netbsd32_iovecp_t) iovp;
2915 syscallarg(int) iovcnt;
2916 } */ *uap = v;
2917 int fd = SCARG(uap, fd);
2918 struct file *fp;
2919 struct filedesc *fdp = p->p_fd;
2920
2921 if ((u_int)fd >= fdp->fd_nfiles ||
2922 (fp = fdp->fd_ofiles[fd]) == NULL ||
2923 (fp->f_flag & FREAD) == 0)
2924 return (EBADF);
2925
2926 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
2927 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
2928 }
2929
2930 /* Damn thing copies in the iovec! */
2931 int
2932 dofilereadv32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
2933 struct proc *p;
2934 int fd;
2935 struct file *fp;
2936 struct netbsd32_iovec *iovp;
2937 int iovcnt;
2938 off_t *offset;
2939 int flags;
2940 register_t *retval;
2941 {
2942 struct uio auio;
2943 struct iovec *iov;
2944 struct iovec *needfree;
2945 struct iovec aiov[UIO_SMALLIOV];
2946 long i, cnt, error = 0;
2947 u_int iovlen;
2948 #ifdef KTRACE
2949 struct iovec *ktriov = NULL;
2950 #endif
2951
2952 /* note: can't use iovlen until iovcnt is validated */
2953 iovlen = iovcnt * sizeof(struct iovec);
2954 if ((u_int)iovcnt > UIO_SMALLIOV) {
2955 if ((u_int)iovcnt > IOV_MAX)
2956 return (EINVAL);
2957 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
2958 needfree = iov;
2959 } else if ((u_int)iovcnt > 0) {
2960 iov = aiov;
2961 needfree = NULL;
2962 } else
2963 return (EINVAL);
2964
2965 auio.uio_iov = iov;
2966 auio.uio_iovcnt = iovcnt;
2967 auio.uio_rw = UIO_READ;
2968 auio.uio_segflg = UIO_USERSPACE;
2969 auio.uio_procp = p;
2970 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
2971 if (error)
2972 goto done;
2973 auio.uio_resid = 0;
2974 for (i = 0; i < iovcnt; i++) {
2975 auio.uio_resid += iov->iov_len;
2976 /*
2977 * Reads return ssize_t because -1 is returned on error.
2978 * Therefore we must restrict the length to SSIZE_MAX to
2979 * avoid garbage return values.
2980 */
2981 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
2982 error = EINVAL;
2983 goto done;
2984 }
2985 iov++;
2986 }
2987 #ifdef KTRACE
2988 /*
2989 * if tracing, save a copy of iovec
2990 */
2991 if (KTRPOINT(p, KTR_GENIO)) {
2992 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
2993 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
2994 }
2995 #endif
2996 cnt = auio.uio_resid;
2997 error = (*fp->f_ops->fo_read)(fp, offset, &auio, fp->f_cred, flags);
2998 if (error)
2999 if (auio.uio_resid != cnt && (error == ERESTART ||
3000 error == EINTR || error == EWOULDBLOCK))
3001 error = 0;
3002 cnt -= auio.uio_resid;
3003 #ifdef KTRACE
3004 if (KTRPOINT(p, KTR_GENIO))
3005 if (error == 0) {
3006 ktrgenio(p, fd, UIO_READ, ktriov, cnt,
3007 error);
3008 FREE(ktriov, M_TEMP);
3009 }
3010 #endif
3011 *retval = cnt;
3012 done:
3013 if (needfree)
3014 FREE(needfree, M_IOV);
3015 return (error);
3016 }
3017
3018
3019 int
3020 netbsd32_writev(p, v, retval)
3021 struct proc *p;
3022 void *v;
3023 register_t *retval;
3024 {
3025 struct netbsd32_writev_args /* {
3026 syscallarg(int) fd;
3027 syscallarg(const netbsd32_iovecp_t) iovp;
3028 syscallarg(int) iovcnt;
3029 } */ *uap = v;
3030 int fd = SCARG(uap, fd);
3031 struct file *fp;
3032 struct filedesc *fdp = p->p_fd;
3033
3034 if ((u_int)fd >= fdp->fd_nfiles ||
3035 (fp = fdp->fd_ofiles[fd]) == NULL ||
3036 (fp->f_flag & FWRITE) == 0)
3037 return (EBADF);
3038
3039 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
3040 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
3041 }
3042
3043 int
3044 dofilewritev32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
3045 struct proc *p;
3046 int fd;
3047 struct file *fp;
3048 struct netbsd32_iovec *iovp;
3049 int iovcnt;
3050 off_t *offset;
3051 int flags;
3052 register_t *retval;
3053 {
3054 struct uio auio;
3055 struct iovec *iov;
3056 struct iovec *needfree;
3057 struct iovec aiov[UIO_SMALLIOV];
3058 long i, cnt, error = 0;
3059 u_int iovlen;
3060 #ifdef KTRACE
3061 struct iovec *ktriov = NULL;
3062 #endif
3063
3064 /* note: can't use iovlen until iovcnt is validated */
3065 iovlen = iovcnt * sizeof(struct iovec);
3066 if ((u_int)iovcnt > UIO_SMALLIOV) {
3067 if ((u_int)iovcnt > IOV_MAX)
3068 return (EINVAL);
3069 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
3070 needfree = iov;
3071 } else if ((u_int)iovcnt > 0) {
3072 iov = aiov;
3073 needfree = NULL;
3074 } else
3075 return (EINVAL);
3076
3077 auio.uio_iov = iov;
3078 auio.uio_iovcnt = iovcnt;
3079 auio.uio_rw = UIO_WRITE;
3080 auio.uio_segflg = UIO_USERSPACE;
3081 auio.uio_procp = p;
3082 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
3083 if (error)
3084 goto done;
3085 auio.uio_resid = 0;
3086 for (i = 0; i < iovcnt; i++) {
3087 auio.uio_resid += iov->iov_len;
3088 /*
3089 * Writes return ssize_t because -1 is returned on error.
3090 * Therefore we must restrict the length to SSIZE_MAX to
3091 * avoid garbage return values.
3092 */
3093 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
3094 error = EINVAL;
3095 goto done;
3096 }
3097 iov++;
3098 }
3099 #ifdef KTRACE
3100 /*
3101 * if tracing, save a copy of iovec
3102 */
3103 if (KTRPOINT(p, KTR_GENIO)) {
3104 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
3105 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
3106 }
3107 #endif
3108 cnt = auio.uio_resid;
3109 error = (*fp->f_ops->fo_write)(fp, offset, &auio, fp->f_cred, flags);
3110 if (error) {
3111 if (auio.uio_resid != cnt && (error == ERESTART ||
3112 error == EINTR || error == EWOULDBLOCK))
3113 error = 0;
3114 if (error == EPIPE)
3115 psignal(p, SIGPIPE);
3116 }
3117 cnt -= auio.uio_resid;
3118 #ifdef KTRACE
3119 if (KTRPOINT(p, KTR_GENIO))
3120 if (error == 0) {
3121 ktrgenio(p, fd, UIO_WRITE, ktriov, cnt,
3122 error);
3123 FREE(ktriov, M_TEMP);
3124 }
3125 #endif
3126 *retval = cnt;
3127 done:
3128 if (needfree)
3129 FREE(needfree, M_IOV);
3130 return (error);
3131 }
3132
3133
3134 int
3135 netbsd32_rename(p, v, retval)
3136 struct proc *p;
3137 void *v;
3138 register_t *retval;
3139 {
3140 struct netbsd32_rename_args /* {
3141 syscallarg(const netbsd32_charp) from;
3142 syscallarg(const netbsd32_charp) to;
3143 } */ *uap = v;
3144 struct sys_rename_args ua;
3145
3146 NETBSD32TOP_UAP(from, const char);
3147 NETBSD32TOP_UAP(to, const char)
3148
3149 return (sys_rename(p, &ua, retval));
3150 }
3151
3152 int
3153 netbsd32_flock(p, v, retval)
3154 struct proc *p;
3155 void *v;
3156 register_t *retval;
3157 {
3158 struct netbsd32_flock_args /* {
3159 syscallarg(int) fd;
3160 syscallarg(int) how;
3161 } */ *uap = v;
3162 struct sys_flock_args ua;
3163
3164 NETBSD32TO64_UAP(fd);
3165 NETBSD32TO64_UAP(how)
3166
3167 return (sys_flock(p, &ua, retval));
3168 }
3169
3170 int
3171 netbsd32_mkfifo(p, v, retval)
3172 struct proc *p;
3173 void *v;
3174 register_t *retval;
3175 {
3176 struct netbsd32_mkfifo_args /* {
3177 syscallarg(const netbsd32_charp) path;
3178 syscallarg(mode_t) mode;
3179 } */ *uap = v;
3180 struct sys_mkfifo_args ua;
3181
3182 NETBSD32TOP_UAP(path, const char)
3183 NETBSD32TO64_UAP(mode);
3184 return (sys_mkfifo(p, &ua, retval));
3185 }
3186
3187 int
3188 netbsd32_shutdown(p, v, retval)
3189 struct proc *p;
3190 void *v;
3191 register_t *retval;
3192 {
3193 struct netbsd32_shutdown_args /* {
3194 syscallarg(int) s;
3195 syscallarg(int) how;
3196 } */ *uap = v;
3197 struct sys_shutdown_args ua;
3198
3199 NETBSD32TO64_UAP(s)
3200 NETBSD32TO64_UAP(how);
3201 return (sys_shutdown(p, &ua, retval));
3202 }
3203
3204 int
3205 netbsd32_socketpair(p, v, retval)
3206 struct proc *p;
3207 void *v;
3208 register_t *retval;
3209 {
3210 struct netbsd32_socketpair_args /* {
3211 syscallarg(int) domain;
3212 syscallarg(int) type;
3213 syscallarg(int) protocol;
3214 syscallarg(netbsd32_intp) rsv;
3215 } */ *uap = v;
3216 struct sys_socketpair_args ua;
3217
3218 NETBSD32TO64_UAP(domain);
3219 NETBSD32TO64_UAP(type);
3220 NETBSD32TO64_UAP(protocol);
3221 NETBSD32TOP_UAP(rsv, int);
3222 /* Since we're just copying out two `int's we can do this */
3223 return (sys_socketpair(p, &ua, retval));
3224 }
3225
3226 int
3227 netbsd32_mkdir(p, v, retval)
3228 struct proc *p;
3229 void *v;
3230 register_t *retval;
3231 {
3232 struct netbsd32_mkdir_args /* {
3233 syscallarg(const netbsd32_charp) path;
3234 syscallarg(mode_t) mode;
3235 } */ *uap = v;
3236 struct sys_mkdir_args ua;
3237
3238 NETBSD32TOP_UAP(path, const char)
3239 NETBSD32TO64_UAP(mode);
3240 return (sys_mkdir(p, &ua, retval));
3241 }
3242
3243 int
3244 netbsd32_rmdir(p, v, retval)
3245 struct proc *p;
3246 void *v;
3247 register_t *retval;
3248 {
3249 struct netbsd32_rmdir_args /* {
3250 syscallarg(const netbsd32_charp) path;
3251 } */ *uap = v;
3252 struct sys_rmdir_args ua;
3253
3254 NETBSD32TOP_UAP(path, const char);
3255 return (sys_rmdir(p, &ua, retval));
3256 }
3257
3258 int
3259 netbsd32_utimes(p, v, retval)
3260 struct proc *p;
3261 void *v;
3262 register_t *retval;
3263 {
3264 struct netbsd32_utimes_args /* {
3265 syscallarg(const netbsd32_charp) path;
3266 syscallarg(const netbsd32_timevalp_t) tptr;
3267 } */ *uap = v;
3268 int error;
3269 struct nameidata nd;
3270
3271 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3272 if ((error = namei(&nd)) != 0)
3273 return (error);
3274
3275 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
3276
3277 vrele(nd.ni_vp);
3278 return (error);
3279 }
3280
3281 /*
3282 * Common routine to set access and modification times given a vnode.
3283 */
3284 static int
3285 change_utimes32(vp, tptr, p)
3286 struct vnode *vp;
3287 struct timeval *tptr;
3288 struct proc *p;
3289 {
3290 struct netbsd32_timeval tv32[2];
3291 struct timeval tv[2];
3292 struct vattr vattr;
3293 int error;
3294
3295 VATTR_NULL(&vattr);
3296 if (tptr == NULL) {
3297 microtime(&tv[0]);
3298 tv[1] = tv[0];
3299 vattr.va_vaflags |= VA_UTIMES_NULL;
3300 } else {
3301 error = copyin(tptr, tv, sizeof(tv));
3302 if (error)
3303 return (error);
3304 }
3305 netbsd32_to_timeval(&tv32[0], &tv[0]);
3306 netbsd32_to_timeval(&tv32[1], &tv[1]);
3307 VOP_LEASE(vp, p, p->p_ucred, LEASE_WRITE);
3308 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3309 vattr.va_atime.tv_sec = tv[0].tv_sec;
3310 vattr.va_atime.tv_nsec = tv[0].tv_usec * 1000;
3311 vattr.va_mtime.tv_sec = tv[1].tv_sec;
3312 vattr.va_mtime.tv_nsec = tv[1].tv_usec * 1000;
3313 error = VOP_SETATTR(vp, &vattr, p->p_ucred, p);
3314 VOP_UNLOCK(vp, 0);
3315 return (error);
3316 }
3317
3318 int
3319 netbsd32_adjtime(p, v, retval)
3320 struct proc *p;
3321 void *v;
3322 register_t *retval;
3323 {
3324 struct netbsd32_adjtime_args /* {
3325 syscallarg(const netbsd32_timevalp_t) delta;
3326 syscallarg(netbsd32_timevalp_t) olddelta;
3327 } */ *uap = v;
3328 struct netbsd32_timeval atv;
3329 int32_t ndelta, ntickdelta, odelta;
3330 int s, error;
3331 extern long bigadj, timedelta;
3332 extern int tickdelta;
3333
3334 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
3335 return (error);
3336
3337 error = copyin((caddr_t)(u_long)SCARG(uap, delta), &atv, sizeof(struct timeval));
3338 if (error)
3339 return (error);
3340 /*
3341 * Compute the total correction and the rate at which to apply it.
3342 * Round the adjustment down to a whole multiple of the per-tick
3343 * delta, so that after some number of incremental changes in
3344 * hardclock(), tickdelta will become zero, lest the correction
3345 * overshoot and start taking us away from the desired final time.
3346 */
3347 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
3348 if (ndelta > bigadj)
3349 ntickdelta = 10 * tickadj;
3350 else
3351 ntickdelta = tickadj;
3352 if (ndelta % ntickdelta)
3353 ndelta = ndelta / ntickdelta * ntickdelta;
3354
3355 /*
3356 * To make hardclock()'s job easier, make the per-tick delta negative
3357 * if we want time to run slower; then hardclock can simply compute
3358 * tick + tickdelta, and subtract tickdelta from timedelta.
3359 */
3360 if (ndelta < 0)
3361 ntickdelta = -ntickdelta;
3362 s = splclock();
3363 odelta = timedelta;
3364 timedelta = ndelta;
3365 tickdelta = ntickdelta;
3366 splx(s);
3367
3368 if (SCARG(uap, olddelta)) {
3369 atv.tv_sec = odelta / 1000000;
3370 atv.tv_usec = odelta % 1000000;
3371 (void) copyout(&atv, (caddr_t)(u_long)SCARG(uap, olddelta),
3372 sizeof(struct timeval));
3373 }
3374 return (0);
3375 }
3376
3377 int
3378 netbsd32_quotactl(p, v, retval)
3379 struct proc *p;
3380 void *v;
3381 register_t *retval;
3382 {
3383 struct netbsd32_quotactl_args /* {
3384 syscallarg(const netbsd32_charp) path;
3385 syscallarg(int) cmd;
3386 syscallarg(int) uid;
3387 syscallarg(netbsd32_caddr_t) arg;
3388 } */ *uap = v;
3389 struct sys_quotactl_args ua;
3390
3391 NETBSD32TOP_UAP(path, const char);
3392 NETBSD32TO64_UAP(cmd);
3393 NETBSD32TO64_UAP(uid);
3394 NETBSD32TOX64_UAP(arg, caddr_t);
3395 return (sys_quotactl(p, &ua, retval));
3396 }
3397
3398 #if defined(NFS) || defined(NFSSERVER)
3399 int
3400 netbsd32_nfssvc(p, v, retval)
3401 struct proc *p;
3402 void *v;
3403 register_t *retval;
3404 {
3405 #if 0
3406 struct netbsd32_nfssvc_args /* {
3407 syscallarg(int) flag;
3408 syscallarg(netbsd32_voidp) argp;
3409 } */ *uap = v;
3410 struct sys_nfssvc_args ua;
3411
3412 NETBSD32TO64_UAP(flag);
3413 NETBSD32TOP_UAP(argp, void);
3414 return (sys_nfssvc(p, &ua, retval));
3415 #else
3416 /* Why would we want to support a 32-bit nfsd? */
3417 return (ENOSYS);
3418 #endif
3419 }
3420 #endif
3421
3422 int
3423 netbsd32_statfs(p, v, retval)
3424 struct proc *p;
3425 void *v;
3426 register_t *retval;
3427 {
3428 struct netbsd32_statfs_args /* {
3429 syscallarg(const netbsd32_charp) path;
3430 syscallarg(netbsd32_statfsp_t) buf;
3431 } */ *uap = v;
3432 struct mount *mp;
3433 struct statfs *sp;
3434 struct netbsd32_statfs s32;
3435 int error;
3436 struct nameidata nd;
3437
3438 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3439 if ((error = namei(&nd)) != 0)
3440 return (error);
3441 mp = nd.ni_vp->v_mount;
3442 sp = &mp->mnt_stat;
3443 vrele(nd.ni_vp);
3444 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3445 return (error);
3446 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3447 netbsd32_from_statfs(sp, &s32);
3448 return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3449 }
3450
3451 int
3452 netbsd32_fstatfs(p, v, retval)
3453 struct proc *p;
3454 void *v;
3455 register_t *retval;
3456 {
3457 struct netbsd32_fstatfs_args /* {
3458 syscallarg(int) fd;
3459 syscallarg(netbsd32_statfsp_t) buf;
3460 } */ *uap = v;
3461 struct file *fp;
3462 struct mount *mp;
3463 struct statfs *sp;
3464 struct netbsd32_statfs s32;
3465 int error;
3466
3467 /* getvnode() will use the descriptor for us */
3468 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3469 return (error);
3470 mp = ((struct vnode *)fp->f_data)->v_mount;
3471 sp = &mp->mnt_stat;
3472 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3473 goto out;
3474 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3475 netbsd32_from_statfs(sp, &s32);
3476 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32));
3477 out:
3478 FILE_UNUSE(fp, p);
3479 return (error);
3480 }
3481
3482 #if defined(NFS) || defined(NFSSERVER)
3483 int
3484 netbsd32_getfh(p, v, retval)
3485 struct proc *p;
3486 void *v;
3487 register_t *retval;
3488 {
3489 struct netbsd32_getfh_args /* {
3490 syscallarg(const netbsd32_charp) fname;
3491 syscallarg(netbsd32_fhandlep_t) fhp;
3492 } */ *uap = v;
3493 struct sys_getfh_args ua;
3494
3495 NETBSD32TOP_UAP(fname, const char);
3496 NETBSD32TOP_UAP(fhp, struct fhandle);
3497 /* Lucky for us a fhandlep_t doesn't change sizes */
3498 return (sys_getfh(p, &ua, retval));
3499 }
3500 #endif
3501
3502 int
3503 netbsd32_sysarch(p, v, retval)
3504 struct proc *p;
3505 void *v;
3506 register_t *retval;
3507 {
3508 struct netbsd32_sysarch_args /* {
3509 syscallarg(int) op;
3510 syscallarg(netbsd32_voidp) parms;
3511 } */ *uap = v;
3512
3513 switch (SCARG(uap, op)) {
3514 default:
3515 printf("(sparc64) netbsd32_sysarch(%d)\n", SCARG(uap, op));
3516 return EINVAL;
3517 }
3518 }
3519
3520 int
3521 netbsd32_pread(p, v, retval)
3522 struct proc *p;
3523 void *v;
3524 register_t *retval;
3525 {
3526 struct netbsd32_pread_args /* {
3527 syscallarg(int) fd;
3528 syscallarg(netbsd32_voidp) buf;
3529 syscallarg(netbsd32_size_t) nbyte;
3530 syscallarg(int) pad;
3531 syscallarg(off_t) offset;
3532 } */ *uap = v;
3533 struct sys_pread_args ua;
3534 ssize_t rt;
3535 int error;
3536
3537 NETBSD32TO64_UAP(fd);
3538 NETBSD32TOP_UAP(buf, void);
3539 NETBSD32TOX_UAP(nbyte, size_t);
3540 NETBSD32TO64_UAP(pad);
3541 NETBSD32TO64_UAP(offset);
3542 error = sys_pread(p, &ua, (register_t *)&rt);
3543 *(netbsd32_ssize_t *)retval = rt;
3544 return (error);
3545 }
3546
3547 int
3548 netbsd32_pwrite(p, v, retval)
3549 struct proc *p;
3550 void *v;
3551 register_t *retval;
3552 {
3553 struct netbsd32_pwrite_args /* {
3554 syscallarg(int) fd;
3555 syscallarg(const netbsd32_voidp) buf;
3556 syscallarg(netbsd32_size_t) nbyte;
3557 syscallarg(int) pad;
3558 syscallarg(off_t) offset;
3559 } */ *uap = v;
3560 struct sys_pwrite_args ua;
3561 ssize_t rt;
3562 int error;
3563
3564 NETBSD32TO64_UAP(fd);
3565 NETBSD32TOP_UAP(buf, void);
3566 NETBSD32TOX_UAP(nbyte, size_t);
3567 NETBSD32TO64_UAP(pad);
3568 NETBSD32TO64_UAP(offset);
3569 error = sys_pwrite(p, &ua, (register_t *)&rt);
3570 *(netbsd32_ssize_t *)retval = rt;
3571 return (error);
3572 }
3573
3574 #ifdef NTP
3575 int
3576 netbsd32_ntp_gettime(p, v, retval)
3577 struct proc *p;
3578 void *v;
3579 register_t *retval;
3580 {
3581 struct netbsd32_ntp_gettime_args /* {
3582 syscallarg(netbsd32_ntptimevalp_t) ntvp;
3583 } */ *uap = v;
3584 struct netbsd32_ntptimeval ntv32;
3585 struct timeval atv;
3586 struct ntptimeval ntv;
3587 int error = 0;
3588 int s;
3589
3590 /* The following are NTP variables */
3591 extern long time_maxerror;
3592 extern long time_esterror;
3593 extern int time_status;
3594 extern int time_state; /* clock state */
3595 extern int time_status; /* clock status bits */
3596
3597 if (SCARG(uap, ntvp)) {
3598 s = splclock();
3599 #ifdef EXT_CLOCK
3600 /*
3601 * The microtime() external clock routine returns a
3602 * status code. If less than zero, we declare an error
3603 * in the clock status word and return the kernel
3604 * (software) time variable. While there are other
3605 * places that call microtime(), this is the only place
3606 * that matters from an application point of view.
3607 */
3608 if (microtime(&atv) < 0) {
3609 time_status |= STA_CLOCKERR;
3610 ntv.time = time;
3611 } else
3612 time_status &= ~STA_CLOCKERR;
3613 #else /* EXT_CLOCK */
3614 microtime(&atv);
3615 #endif /* EXT_CLOCK */
3616 ntv.time = atv;
3617 ntv.maxerror = time_maxerror;
3618 ntv.esterror = time_esterror;
3619 (void) splx(s);
3620
3621 netbsd32_from_timeval(&ntv.time, &ntv32.time);
3622 ntv32.maxerror = (netbsd32_long)ntv.maxerror;
3623 ntv32.esterror = (netbsd32_long)ntv.esterror;
3624 error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, ntvp),
3625 sizeof(ntv32));
3626 }
3627 if (!error) {
3628
3629 /*
3630 * Status word error decode. If any of these conditions
3631 * occur, an error is returned, instead of the status
3632 * word. Most applications will care only about the fact
3633 * the system clock may not be trusted, not about the
3634 * details.
3635 *
3636 * Hardware or software error
3637 */
3638 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3639
3640 /*
3641 * PPS signal lost when either time or frequency
3642 * synchronization requested
3643 */
3644 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3645 !(time_status & STA_PPSSIGNAL)) ||
3646
3647 /*
3648 * PPS jitter exceeded when time synchronization
3649 * requested
3650 */
3651 (time_status & STA_PPSTIME &&
3652 time_status & STA_PPSJITTER) ||
3653
3654 /*
3655 * PPS wander exceeded or calibration error when
3656 * frequency synchronization requested
3657 */
3658 (time_status & STA_PPSFREQ &&
3659 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3660 *retval = TIME_ERROR;
3661 else
3662 *retval = (register_t)time_state;
3663 }
3664 return(error);
3665 }
3666
3667 int
3668 netbsd32_ntp_adjtime(p, v, retval)
3669 struct proc *p;
3670 void *v;
3671 register_t *retval;
3672 {
3673 struct netbsd32_ntp_adjtime_args /* {
3674 syscallarg(netbsd32_timexp_t) tp;
3675 } */ *uap = v;
3676 struct netbsd32_timex ntv32;
3677 struct timex ntv;
3678 int error = 0;
3679 int modes;
3680 int s;
3681 extern long time_freq; /* frequency offset (scaled ppm) */
3682 extern long time_maxerror;
3683 extern long time_esterror;
3684 extern int time_state; /* clock state */
3685 extern int time_status; /* clock status bits */
3686 extern long time_constant; /* pll time constant */
3687 extern long time_offset; /* time offset (us) */
3688 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
3689 extern long time_precision; /* clock precision (us) */
3690
3691 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), (caddr_t)&ntv32,
3692 sizeof(ntv32))))
3693 return (error);
3694 netbsd32_to_timex(&ntv32, &ntv);
3695
3696 /*
3697 * Update selected clock variables - only the superuser can
3698 * change anything. Note that there is no error checking here on
3699 * the assumption the superuser should know what it is doing.
3700 */
3701 modes = ntv.modes;
3702 if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
3703 return (error);
3704
3705 s = splclock();
3706 if (modes & MOD_FREQUENCY)
3707 #ifdef PPS_SYNC
3708 time_freq = ntv.freq - pps_freq;
3709 #else /* PPS_SYNC */
3710 time_freq = ntv.freq;
3711 #endif /* PPS_SYNC */
3712 if (modes & MOD_MAXERROR)
3713 time_maxerror = ntv.maxerror;
3714 if (modes & MOD_ESTERROR)
3715 time_esterror = ntv.esterror;
3716 if (modes & MOD_STATUS) {
3717 time_status &= STA_RONLY;
3718 time_status |= ntv.status & ~STA_RONLY;
3719 }
3720 if (modes & MOD_TIMECONST)
3721 time_constant = ntv.constant;
3722 if (modes & MOD_OFFSET)
3723 hardupdate(ntv.offset);
3724
3725 /*
3726 * Retrieve all clock variables
3727 */
3728 if (time_offset < 0)
3729 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
3730 else
3731 ntv.offset = time_offset >> SHIFT_UPDATE;
3732 #ifdef PPS_SYNC
3733 ntv.freq = time_freq + pps_freq;
3734 #else /* PPS_SYNC */
3735 ntv.freq = time_freq;
3736 #endif /* PPS_SYNC */
3737 ntv.maxerror = time_maxerror;
3738 ntv.esterror = time_esterror;
3739 ntv.status = time_status;
3740 ntv.constant = time_constant;
3741 ntv.precision = time_precision;
3742 ntv.tolerance = time_tolerance;
3743 #ifdef PPS_SYNC
3744 ntv.shift = pps_shift;
3745 ntv.ppsfreq = pps_freq;
3746 ntv.jitter = pps_jitter >> PPS_AVG;
3747 ntv.stabil = pps_stabil;
3748 ntv.calcnt = pps_calcnt;
3749 ntv.errcnt = pps_errcnt;
3750 ntv.jitcnt = pps_jitcnt;
3751 ntv.stbcnt = pps_stbcnt;
3752 #endif /* PPS_SYNC */
3753 (void)splx(s);
3754
3755 netbsd32_from_timeval(&ntv, &ntv32);
3756 error = copyout((caddr_t)&ntv32, (caddr_t)SCARG(uap, tp), sizeof(ntv32));
3757 if (!error) {
3758
3759 /*
3760 * Status word error decode. See comments in
3761 * ntp_gettime() routine.
3762 */
3763 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3764 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3765 !(time_status & STA_PPSSIGNAL)) ||
3766 (time_status & STA_PPSTIME &&
3767 time_status & STA_PPSJITTER) ||
3768 (time_status & STA_PPSFREQ &&
3769 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3770 *retval = TIME_ERROR;
3771 else
3772 *retval = (register_t)time_state;
3773 }
3774 return error;
3775 }
3776 #endif
3777
3778 int
3779 netbsd32_setgid(p, v, retval)
3780 struct proc *p;
3781 void *v;
3782 register_t *retval;
3783 {
3784 struct netbsd32_setgid_args /* {
3785 syscallarg(gid_t) gid;
3786 } */ *uap = v;
3787 struct sys_setgid_args ua;
3788
3789 NETBSD32TO64_UAP(gid);
3790 return (sys_setgid(p, v, retval));
3791 }
3792
3793 int
3794 netbsd32_setegid(p, v, retval)
3795 struct proc *p;
3796 void *v;
3797 register_t *retval;
3798 {
3799 struct netbsd32_setegid_args /* {
3800 syscallarg(gid_t) egid;
3801 } */ *uap = v;
3802 struct sys_setegid_args ua;
3803
3804 NETBSD32TO64_UAP(egid);
3805 return (sys_setegid(p, v, retval));
3806 }
3807
3808 int
3809 netbsd32_seteuid(p, v, retval)
3810 struct proc *p;
3811 void *v;
3812 register_t *retval;
3813 {
3814 struct netbsd32_seteuid_args /* {
3815 syscallarg(gid_t) euid;
3816 } */ *uap = v;
3817 struct sys_seteuid_args ua;
3818
3819 NETBSD32TO64_UAP(euid);
3820 return (sys_seteuid(p, v, retval));
3821 }
3822
3823 #ifdef LFS
3824 int
3825 netbsd32_sys_lfs_bmapv(p, v, retval)
3826 struct proc *p;
3827 void *v;
3828 register_t *retval;
3829 {
3830 #if 0
3831 struct netbsd32_lfs_bmapv_args /* {
3832 syscallarg(netbsd32_fsid_tp_t) fsidp;
3833 syscallarg(netbsd32_block_infop_t) blkiov;
3834 syscallarg(int) blkcnt;
3835 } */ *uap = v;
3836 struct sys_lfs_bmapv_args ua;
3837
3838 NETBSD32TOP_UAP(fdidp, struct fsid);
3839 NETBSD32TO64_UAP(blkcnt);
3840 /* XXX finish me */
3841 #else
3842
3843 return (ENOSYS); /* XXX */
3844 #endif
3845 }
3846
3847 int
3848 netbsd32_sys_lfs_markv(p, v, retval)
3849 struct proc *p;
3850 void *v;
3851 register_t *retval;
3852 {
3853 #if 0
3854 struct netbsd32_lfs_markv_args /* {
3855 syscallarg(netbsd32_fsid_tp_t) fsidp;
3856 syscallarg(netbsd32_block_infop_t) blkiov;
3857 syscallarg(int) blkcnt;
3858 } */ *uap = v;
3859 #endif
3860
3861 return (ENOSYS); /* XXX */
3862 }
3863
3864 int
3865 netbsd32_sys_lfs_segclean(p, v, retval)
3866 struct proc *p;
3867 void *v;
3868 register_t *retval;
3869 {
3870 #if 0
3871 struct netbsd32_lfs_segclean_args /* {
3872 syscallarg(netbsd32_fsid_tp_t) fsidp;
3873 syscallarg(netbsd32_u_long) segment;
3874 } */ *uap = v;
3875 #endif
3876
3877 return (ENOSYS); /* XXX */
3878 }
3879
3880 int
3881 netbsd32_sys_lfs_segwait(p, v, retval)
3882 struct proc *p;
3883 void *v;
3884 register_t *retval;
3885 {
3886 #if 0
3887 struct netbsd32_lfs_segwait_args /* {
3888 syscallarg(netbsd32_fsid_tp_t) fsidp;
3889 syscallarg(netbsd32_timevalp_t) tv;
3890 } */ *uap = v;
3891 #endif
3892
3893 return (ENOSYS); /* XXX */
3894 }
3895 #endif
3896
3897 int
3898 netbsd32_pathconf(p, v, retval)
3899 struct proc *p;
3900 void *v;
3901 register_t *retval;
3902 {
3903 struct netbsd32_pathconf_args /* {
3904 syscallarg(int) fd;
3905 syscallarg(int) name;
3906 } */ *uap = v;
3907 struct sys_pathconf_args ua;
3908 long rt;
3909 int error;
3910
3911 NETBSD32TOP_UAP(path, const char);
3912 NETBSD32TO64_UAP(name);
3913 error = sys_pathconf(p, &ua, (register_t *)&rt);
3914 *(netbsd32_long *)retval = (netbsd32_long)rt;
3915 return (error);
3916 }
3917
3918 int
3919 netbsd32_fpathconf(p, v, retval)
3920 struct proc *p;
3921 void *v;
3922 register_t *retval;
3923 {
3924 struct netbsd32_fpathconf_args /* {
3925 syscallarg(int) fd;
3926 syscallarg(int) name;
3927 } */ *uap = v;
3928 struct sys_fpathconf_args ua;
3929 long rt;
3930 int error;
3931
3932 NETBSD32TO64_UAP(fd);
3933 NETBSD32TO64_UAP(name);
3934 error = sys_fpathconf(p, &ua, (register_t *)&rt);
3935 *(netbsd32_long *)retval = (netbsd32_long)rt;
3936 return (error);
3937 }
3938
3939 int
3940 netbsd32_getrlimit(p, v, retval)
3941 struct proc *p;
3942 void *v;
3943 register_t *retval;
3944 {
3945 struct netbsd32_getrlimit_args /* {
3946 syscallarg(int) which;
3947 syscallarg(netbsd32_rlimitp_t) rlp;
3948 } */ *uap = v;
3949 int which = SCARG(uap, which);
3950
3951 if ((u_int)which >= RLIM_NLIMITS)
3952 return (EINVAL);
3953 return (copyout(&p->p_rlimit[which], (caddr_t)(u_long)SCARG(uap, rlp),
3954 sizeof(struct rlimit)));
3955 }
3956
3957 int
3958 netbsd32_setrlimit(p, v, retval)
3959 struct proc *p;
3960 void *v;
3961 register_t *retval;
3962 {
3963 struct netbsd32_setrlimit_args /* {
3964 syscallarg(int) which;
3965 syscallarg(const netbsd32_rlimitp_t) rlp;
3966 } */ *uap = v;
3967 int which = SCARG(uap, which);
3968 struct rlimit alim;
3969 int error;
3970
3971 error = copyin((caddr_t)(u_long)SCARG(uap, rlp), &alim, sizeof(struct rlimit));
3972 if (error)
3973 return (error);
3974 return (dosetrlimit(p, p->p_cred, which, &alim));
3975 }
3976
3977 int
3978 netbsd32_mmap(p, v, retval)
3979 struct proc *p;
3980 void *v;
3981 register_t *retval;
3982 {
3983 struct netbsd32_mmap_args /* {
3984 syscallarg(netbsd32_voidp) addr;
3985 syscallarg(netbsd32_size_t) len;
3986 syscallarg(int) prot;
3987 syscallarg(int) flags;
3988 syscallarg(int) fd;
3989 syscallarg(netbsd32_long) pad;
3990 syscallarg(off_t) pos;
3991 } */ *uap = v;
3992 struct sys_mmap_args ua;
3993 void *rt;
3994 int error;
3995
3996 NETBSD32TOP_UAP(addr, void);
3997 NETBSD32TOX_UAP(len, size_t);
3998 NETBSD32TO64_UAP(prot);
3999 NETBSD32TO64_UAP(flags);
4000 NETBSD32TO64_UAP(fd);
4001 NETBSD32TOX_UAP(pad, long);
4002 NETBSD32TOX_UAP(pos, off_t);
4003 error = sys_mmap(p, &ua, (register_t *)&rt);
4004 if ((long)rt > (long)UINT_MAX)
4005 printf("netbsd32_mmap: retval out of range: 0x%qx",
4006 rt);
4007 *retval = (netbsd32_voidp)(u_long)rt;
4008 return (error);
4009 }
4010
4011 int
4012 netbsd32_lseek(p, v, retval)
4013 struct proc *p;
4014 void *v;
4015 register_t *retval;
4016 {
4017 struct netbsd32_lseek_args /* {
4018 syscallarg(int) fd;
4019 syscallarg(int) pad;
4020 syscallarg(off_t) offset;
4021 syscallarg(int) whence;
4022 } */ *uap = v;
4023 struct sys_lseek_args ua;
4024
4025 NETBSD32TO64_UAP(fd);
4026 NETBSD32TO64_UAP(pad);
4027 NETBSD32TO64_UAP(offset);
4028 NETBSD32TO64_UAP(whence);
4029 return (sys_lseek(p, &ua, retval));
4030 }
4031
4032 int
4033 netbsd32_truncate(p, v, retval)
4034 struct proc *p;
4035 void *v;
4036 register_t *retval;
4037 {
4038 struct netbsd32_truncate_args /* {
4039 syscallarg(const netbsd32_charp) path;
4040 syscallarg(int) pad;
4041 syscallarg(off_t) length;
4042 } */ *uap = v;
4043 struct sys_truncate_args ua;
4044
4045 NETBSD32TOP_UAP(path, const char);
4046 NETBSD32TO64_UAP(pad);
4047 NETBSD32TO64_UAP(length);
4048 return (sys_truncate(p, &ua, retval));
4049 }
4050
4051 int
4052 netbsd32_ftruncate(p, v, retval)
4053 struct proc *p;
4054 void *v;
4055 register_t *retval;
4056 {
4057 struct netbsd32_ftruncate_args /* {
4058 syscallarg(int) fd;
4059 syscallarg(int) pad;
4060 syscallarg(off_t) length;
4061 } */ *uap = v;
4062 struct sys_ftruncate_args ua;
4063
4064 NETBSD32TO64_UAP(fd);
4065 NETBSD32TO64_UAP(pad);
4066 NETBSD32TO64_UAP(length);
4067 return (sys_ftruncate(p, &ua, retval));
4068 }
4069
4070 int
4071 netbsd32___sysctl(p, v, retval)
4072 struct proc *p;
4073 void *v;
4074 register_t *retval;
4075 {
4076 struct netbsd32___sysctl_args /* {
4077 syscallarg(netbsd32_intp) name;
4078 syscallarg(u_int) namelen;
4079 syscallarg(netbsd32_voidp) old;
4080 syscallarg(netbsd32_size_tp) oldlenp;
4081 syscallarg(netbsd32_voidp) new;
4082 syscallarg(netbsd32_size_t) newlen;
4083 } */ *uap = v;
4084 int error, dolock = 1;
4085 netbsd32_size_t savelen = 0;
4086 size_t oldlen = 0;
4087 sysctlfn *fn;
4088 int name[CTL_MAXNAME];
4089
4090 /*
4091 * Some of these sysctl functions do their own copyin/copyout.
4092 * We need to disable or emulate the ones that need their
4093 * arguments converted.
4094 */
4095
4096 if (SCARG(uap, new) != NULL &&
4097 (error = suser(p->p_ucred, &p->p_acflag)))
4098 return (error);
4099 /*
4100 * all top-level sysctl names are non-terminal
4101 */
4102 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
4103 return (EINVAL);
4104 error = copyin((caddr_t)(u_long)SCARG(uap, name), &name,
4105 SCARG(uap, namelen) * sizeof(int));
4106 if (error)
4107 return (error);
4108
4109 switch (name[0]) {
4110 case CTL_KERN:
4111 fn = kern_sysctl;
4112 if (name[2] != KERN_VNODE) /* XXX */
4113 dolock = 0;
4114 break;
4115 case CTL_HW:
4116 fn = hw_sysctl;
4117 break;
4118 case CTL_VM:
4119 fn = uvm_sysctl;
4120 break;
4121 case CTL_NET:
4122 fn = net_sysctl;
4123 break;
4124 case CTL_VFS:
4125 fn = vfs_sysctl;
4126 break;
4127 case CTL_MACHDEP:
4128 fn = cpu_sysctl;
4129 break;
4130 #ifdef DEBUG
4131 case CTL_DEBUG:
4132 fn = debug_sysctl;
4133 break;
4134 #endif
4135 #ifdef DDB
4136 case CTL_DDB:
4137 fn = ddb_sysctl;
4138 break;
4139 #endif
4140 default:
4141 return (EOPNOTSUPP);
4142 }
4143
4144 if (SCARG(uap, oldlenp) &&
4145 (error = copyin((caddr_t)(u_long)SCARG(uap, oldlenp), &savelen, sizeof(savelen))))
4146 return (error);
4147 if (SCARG(uap, old) != NULL) {
4148 if (!uvm_useracc((caddr_t)(u_long)SCARG(uap, old), savelen, B_WRITE))
4149 return (EFAULT);
4150 #if 0 /* XXXXXXXX */
4151 while (memlock.sl_lock) {
4152 memlock.sl_want = 1;
4153 (void) tsleep(&memlock, PRIBIO+1, "memlock", 0);
4154 memlock.sl_locked++;
4155 }
4156 memlock.sl_lock = 1;
4157 #endif /* XXXXXXXX */
4158 if (dolock) {
4159 /*
4160 * XXX Um, this is kind of evil. What should
4161 * XXX we be passing here?
4162 */
4163 if (uvm_vslock(p, (void *)(u_long)SCARG(uap, old), savelen,
4164 VM_PROT_NONE) != KERN_SUCCESS) {
4165 #if 0 /* XXXXXXXX */
4166 memlock.sl_lock = 0;
4167 if (memlock.sl_want) {
4168 memlock.sl_want = 0;
4169 wakeup((caddr_t)&memlock);
4170 }
4171 #endif /* XXXXXXXX */
4172 return (EFAULT);
4173 }
4174 }
4175 oldlen = savelen;
4176 }
4177 error = (*fn)(name + 1, SCARG(uap, namelen) - 1,
4178 (void *)(u_long)SCARG(uap, old), &oldlen,
4179 (void *)(u_long)SCARG(uap, new), SCARG(uap, newlen), p);
4180 if (SCARG(uap, old) != NULL) {
4181 if (dolock)
4182 uvm_vsunlock(p, (void *)(u_long)SCARG(uap, old), savelen);
4183 #if 0 /* XXXXXXXXXXX */
4184 memlock.sl_lock = 0;
4185 if (memlock.sl_want) {
4186 memlock.sl_want = 0;
4187 wakeup((caddr_t)&memlock);
4188 }
4189 #endif /* XXXXXXXXX */
4190 }
4191 savelen = oldlen;
4192 if (error)
4193 return (error);
4194 if (SCARG(uap, oldlenp))
4195 error = copyout(&savelen, (caddr_t)(u_long)SCARG(uap, oldlenp), sizeof(savelen));
4196 return (error);
4197 }
4198
4199 int
4200 netbsd32_mlock(p, v, retval)
4201 struct proc *p;
4202 void *v;
4203 register_t *retval;
4204 {
4205 struct netbsd32_mlock_args /* {
4206 syscallarg(const netbsd32_voidp) addr;
4207 syscallarg(netbsd32_size_t) len;
4208 } */ *uap = v;
4209 struct sys_mlock_args ua;
4210
4211 NETBSD32TOP_UAP(addr, const void);
4212 NETBSD32TO64_UAP(len);
4213 return (sys_mlock(p, &ua, retval));
4214 }
4215
4216 int
4217 netbsd32_munlock(p, v, retval)
4218 struct proc *p;
4219 void *v;
4220 register_t *retval;
4221 {
4222 struct netbsd32_munlock_args /* {
4223 syscallarg(const netbsd32_voidp) addr;
4224 syscallarg(netbsd32_size_t) len;
4225 } */ *uap = v;
4226 struct sys_munlock_args ua;
4227
4228 NETBSD32TOP_UAP(addr, const void);
4229 NETBSD32TO64_UAP(len);
4230 return (sys_munlock(p, &ua, retval));
4231 }
4232
4233 int
4234 netbsd32_undelete(p, v, retval)
4235 struct proc *p;
4236 void *v;
4237 register_t *retval;
4238 {
4239 struct netbsd32_undelete_args /* {
4240 syscallarg(const netbsd32_charp) path;
4241 } */ *uap = v;
4242 struct sys_undelete_args ua;
4243
4244 NETBSD32TOP_UAP(path, const char);
4245 return (sys_undelete(p, &ua, retval));
4246 }
4247
4248 int
4249 netbsd32_futimes(p, v, retval)
4250 struct proc *p;
4251 void *v;
4252 register_t *retval;
4253 {
4254 struct netbsd32_futimes_args /* {
4255 syscallarg(int) fd;
4256 syscallarg(const netbsd32_timevalp_t) tptr;
4257 } */ *uap = v;
4258 int error;
4259 struct file *fp;
4260
4261 /* getvnode() will use the descriptor for us */
4262 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
4263 return (error);
4264
4265 error = change_utimes32((struct vnode *)fp->f_data,
4266 (struct timeval *)(u_long)SCARG(uap, tptr), p);
4267 FILE_UNUSE(fp, p);
4268 return (error);
4269 }
4270
4271 int
4272 netbsd32_getpgid(p, v, retval)
4273 struct proc *p;
4274 void *v;
4275 register_t *retval;
4276 {
4277 struct netbsd32_getpgid_args /* {
4278 syscallarg(pid_t) pid;
4279 } */ *uap = v;
4280 struct sys_getpgid_args ua;
4281
4282 NETBSD32TO64_UAP(pid);
4283 return (sys_getpgid(p, &ua, retval));
4284 }
4285
4286 int
4287 netbsd32_reboot(p, v, retval)
4288 struct proc *p;
4289 void *v;
4290 register_t *retval;
4291 {
4292 struct netbsd32_reboot_args /* {
4293 syscallarg(int) opt;
4294 syscallarg(netbsd32_charp) bootstr;
4295 } */ *uap = v;
4296 struct sys_reboot_args ua;
4297
4298 NETBSD32TO64_UAP(opt);
4299 NETBSD32TOP_UAP(bootstr, char);
4300 return (sys_reboot(p, &ua, retval));
4301 }
4302
4303 int
4304 netbsd32_poll(p, v, retval)
4305 struct proc *p;
4306 void *v;
4307 register_t *retval;
4308 {
4309 struct netbsd32_poll_args /* {
4310 syscallarg(netbsd32_pollfdp_t) fds;
4311 syscallarg(u_int) nfds;
4312 syscallarg(int) timeout;
4313 } */ *uap = v;
4314 struct sys_poll_args ua;
4315
4316 NETBSD32TOP_UAP(fds, struct pollfd);
4317 NETBSD32TO64_UAP(nfds);
4318 NETBSD32TO64_UAP(timeout);
4319 return (sys_poll(p, &ua, retval));
4320 }
4321
4322 #if defined(SYSVSEM)
4323 /*
4324 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4325 *
4326 * This is BSD. We won't support System V IPC.
4327 * Too much work.
4328 *
4329 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4330 */
4331 int
4332 netbsd32___semctl14(p, v, retval)
4333 struct proc *p;
4334 void *v;
4335 register_t *retval;
4336 {
4337 #if 0
4338 struct netbsd32___semctl_args /* {
4339 syscallarg(int) semid;
4340 syscallarg(int) semnum;
4341 syscallarg(int) cmd;
4342 syscallarg(netbsd32_semunu_t *) arg;
4343 } */ *uap = v;
4344 union netbsd32_semun sem32;
4345 int semid = SCARG(uap, semid);
4346 int semnum = SCARG(uap, semnum);
4347 int cmd = SCARG(uap, cmd);
4348 union netbsd32_semun *arg = (void*)(u_long)SCARG(uap, arg);
4349 union netbsd32_semun real_arg;
4350 struct ucred *cred = p->p_ucred;
4351 int i, rval, eval;
4352 struct netbsd32_semid_ds sbuf;
4353 struct semid_ds *semaptr;
4354
4355 semlock(p);
4356
4357 semid = IPCID_TO_IX(semid);
4358 if (semid < 0 || semid >= seminfo.semmsl)
4359 return(EINVAL);
4360
4361 semaptr = &sema[semid];
4362 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
4363 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
4364 return(EINVAL);
4365
4366 eval = 0;
4367 rval = 0;
4368
4369 switch (cmd) {
4370 case IPC_RMID:
4371 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
4372 return(eval);
4373 semaptr->sem_perm.cuid = cred->cr_uid;
4374 semaptr->sem_perm.uid = cred->cr_uid;
4375 semtot -= semaptr->sem_nsems;
4376 for (i = semaptr->_sem_base - sem; i < semtot; i++)
4377 sem[i] = sem[i + semaptr->sem_nsems];
4378 for (i = 0; i < seminfo.semmni; i++) {
4379 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
4380 sema[i]._sem_base > semaptr->_sem_base)
4381 sema[i]._sem_base -= semaptr->sem_nsems;
4382 }
4383 semaptr->sem_perm.mode = 0;
4384 semundo_clear(semid, -1);
4385 wakeup((caddr_t)semaptr);
4386 break;
4387
4388 case IPC_SET:
4389 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
4390 return(eval);
4391 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4392 return(eval);
4393 if ((eval = copyin((caddr_t)(u_long)real_arg.buf, (caddr_t)&sbuf,
4394 sizeof(sbuf))) != 0)
4395 return(eval);
4396 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
4397 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
4398 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
4399 (sbuf.sem_perm.mode & 0777);
4400 semaptr->sem_ctime = time.tv_sec;
4401 break;
4402
4403 case IPC_STAT:
4404 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4405 return(eval);
4406 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4407 return(eval);
4408 eval = copyout((caddr_t)semaptr, (caddr_t)(u_long)real_arg.buf,
4409 sizeof(struct semid_ds));
4410 break;
4411
4412 case GETNCNT:
4413 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4414 return(eval);
4415 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4416 return(EINVAL);
4417 rval = semaptr->_sem_base[semnum].semncnt;
4418 break;
4419
4420 case GETPID:
4421 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4422 return(eval);
4423 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4424 return(EINVAL);
4425 rval = semaptr->_sem_base[semnum].sempid;
4426 break;
4427
4428 case GETVAL:
4429 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4430 return(eval);
4431 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4432 return(EINVAL);
4433 rval = semaptr->_sem_base[semnum].semval;
4434 break;
4435
4436 case GETALL:
4437 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4438 return(eval);
4439 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4440 return(eval);
4441 for (i = 0; i < semaptr->sem_nsems; i++) {
4442 eval = copyout((caddr_t)&semaptr->_sem_base[i].semval,
4443 &real_arg.array[i], sizeof(real_arg.array[0]));
4444 if (eval != 0)
4445 break;
4446 }
4447 break;
4448
4449 case GETZCNT:
4450 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4451 return(eval);
4452 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4453 return(EINVAL);
4454 rval = semaptr->_sem_base[semnum].semzcnt;
4455 break;
4456
4457 case SETVAL:
4458 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4459 return(eval);
4460 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4461 return(EINVAL);
4462 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4463 return(eval);
4464 semaptr->_sem_base[semnum].semval = real_arg.val;
4465 semundo_clear(semid, semnum);
4466 wakeup((caddr_t)semaptr);
4467 break;
4468
4469 case SETALL:
4470 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4471 return(eval);
4472 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4473 return(eval);
4474 for (i = 0; i < semaptr->sem_nsems; i++) {
4475 eval = copyin(&real_arg.array[i],
4476 (caddr_t)&semaptr->_sem_base[i].semval,
4477 sizeof(real_arg.array[0]));
4478 if (eval != 0)
4479 break;
4480 }
4481 semundo_clear(semid, -1);
4482 wakeup((caddr_t)semaptr);
4483 break;
4484
4485 default:
4486 return(EINVAL);
4487 }
4488
4489 if (eval == 0)
4490 *retval = rval;
4491 return(eval);
4492 #else
4493 return (ENOSYS);
4494 #endif
4495 }
4496
4497 int
4498 netbsd32_semget(p, v, retval)
4499 struct proc *p;
4500 void *v;
4501 register_t *retval;
4502 {
4503 struct netbsd32_semget_args /* {
4504 syscallarg(netbsd32_key_t) key;
4505 syscallarg(int) nsems;
4506 syscallarg(int) semflg;
4507 } */ *uap = v;
4508 struct sys_semget_args ua;
4509
4510 NETBSD32TOX_UAP(key, key_t);
4511 NETBSD32TO64_UAP(nsems);
4512 NETBSD32TO64_UAP(semflg);
4513 return (sys_semget(p, &ua, retval));
4514 }
4515
4516 int
4517 netbsd32_semop(p, v, retval)
4518 struct proc *p;
4519 void *v;
4520 register_t *retval;
4521 {
4522 struct netbsd32_semop_args /* {
4523 syscallarg(int) semid;
4524 syscallarg(netbsd32_sembufp_t) sops;
4525 syscallarg(netbsd32_size_t) nsops;
4526 } */ *uap = v;
4527 struct sys_semop_args ua;
4528
4529 NETBSD32TO64_UAP(semid);
4530 NETBSD32TOP_UAP(sops, struct sembuf);
4531 NETBSD32TOX_UAP(nsops, size_t);
4532 return (sys_semop(p, &ua, retval));
4533 }
4534
4535 int
4536 netbsd32_semconfig(p, v, retval)
4537 struct proc *p;
4538 void *v;
4539 register_t *retval;
4540 {
4541 struct netbsd32_semconfig_args /* {
4542 syscallarg(int) flag;
4543 } */ *uap = v;
4544 struct sys_semconfig_args ua;
4545
4546 NETBSD32TO64_UAP(flag);
4547 return (sys_semconfig(p, &ua, retval));
4548 }
4549 #endif /* SYSVSEM */
4550
4551 #if defined(SYSVMSG)
4552
4553 int
4554 netbsd32___msgctl13(p, v, retval)
4555 struct proc *p;
4556 void *v;
4557 register_t *retval;
4558 {
4559 #if 0
4560 struct netbsd32_msgctl_args /* {
4561 syscallarg(int) msqid;
4562 syscallarg(int) cmd;
4563 syscallarg(netbsd32_msqid_dsp_t) buf;
4564 } */ *uap = v;
4565 struct sys_msgctl_args ua;
4566 struct msqid_ds ds;
4567 struct netbsd32_msqid_ds *ds32p;
4568 int error;
4569
4570 NETBSD32TO64_UAP(msqid);
4571 NETBSD32TO64_UAP(cmd);
4572 ds32p = (struct netbsd32_msqid_ds *)(u_long)SCARG(uap, buf);
4573 if (ds32p) {
4574 SCARG(&ua, buf) = NULL;
4575 netbsd32_to_msqid_ds(ds32p, &ds);
4576 } else
4577 SCARG(&ua, buf) = NULL;
4578 error = sys_msgctl(p, &ua, retval);
4579 if (error)
4580 return (error);
4581
4582 if (ds32p)
4583 netbsd32_from_msqid_ds(&ds, ds32p);
4584 return (0);
4585 #else
4586 return (ENOSYS);
4587 #endif
4588 }
4589
4590 int
4591 netbsd32_msgget(p, v, retval)
4592 struct proc *p;
4593 void *v;
4594 register_t *retval;
4595 {
4596 #if 0
4597 struct netbsd32_msgget_args /* {
4598 syscallarg(netbsd32_key_t) key;
4599 syscallarg(int) msgflg;
4600 } */ *uap = v;
4601 struct sys_msgget_args ua;
4602
4603 NETBSD32TOX_UAP(key, key_t);
4604 NETBSD32TO64_UAP(msgflg);
4605 return (sys_msgget(p, &ua, retval));
4606 #else
4607 return (ENOSYS);
4608 #endif
4609 }
4610
4611 int
4612 netbsd32_msgsnd(p, v, retval)
4613 struct proc *p;
4614 void *v;
4615 register_t *retval;
4616 {
4617 #if 0
4618 struct netbsd32_msgsnd_args /* {
4619 syscallarg(int) msqid;
4620 syscallarg(const netbsd32_voidp) msgp;
4621 syscallarg(netbsd32_size_t) msgsz;
4622 syscallarg(int) msgflg;
4623 } */ *uap = v;
4624 struct sys_msgsnd_args ua;
4625
4626 NETBSD32TO64_UAP(msqid);
4627 NETBSD32TOP_UAP(msgp, void);
4628 NETBSD32TOX_UAP(msgsz, size_t);
4629 NETBSD32TO64_UAP(msgflg);
4630 return (sys_msgsnd(p, &ua, retval));
4631 #else
4632 return (ENOSYS);
4633 #endif
4634 }
4635
4636 int
4637 netbsd32_msgrcv(p, v, retval)
4638 struct proc *p;
4639 void *v;
4640 register_t *retval;
4641 {
4642 #if 0
4643 struct netbsd32_msgrcv_args /* {
4644 syscallarg(int) msqid;
4645 syscallarg(netbsd32_voidp) msgp;
4646 syscallarg(netbsd32_size_t) msgsz;
4647 syscallarg(netbsd32_long) msgtyp;
4648 syscallarg(int) msgflg;
4649 } */ *uap = v;
4650 struct sys_msgrcv_args ua;
4651 ssize_t rt;
4652 int error;
4653
4654 NETBSD32TO64_UAP(msqid);
4655 NETBSD32TOP_UAP(msgp, void);
4656 NETBSD32TOX_UAP(msgsz, size_t);
4657 NETBSD32TOX_UAP(msgtyp, long);
4658 NETBSD32TO64_UAP(msgflg);
4659 error = sys_msgrcv(p, &ua, (register_t *)&rt);
4660 *(netbsd32_ssize_t *)retval = rt;
4661 return (error);
4662 #else
4663 return (ENOSYS);
4664 #endif
4665 }
4666 #endif /* SYSVMSG */
4667
4668 #if defined(SYSVSHM)
4669
4670 int
4671 netbsd32_shmat(p, v, retval)
4672 struct proc *p;
4673 void *v;
4674 register_t *retval;
4675 {
4676 #if 0
4677 struct netbsd32_shmat_args /* {
4678 syscallarg(int) shmid;
4679 syscallarg(const netbsd32_voidp) shmaddr;
4680 syscallarg(int) shmflg;
4681 } */ *uap = v;
4682 struct sys_shmat_args ua;
4683 void *rt;
4684 int error;
4685
4686 NETBSD32TO64_UAP(shmid);
4687 NETBSD32TOP_UAP(shmaddr, void);
4688 NETBSD32TO64_UAP(shmflg);
4689 error = sys_shmat(p, &ua, (register_t *)&rt);
4690 *retval = (netbsd32_voidp)(u_long)rt;
4691 return (error);
4692 #else
4693 return (ENOSYS);
4694 #endif
4695 }
4696
4697 int
4698 netbsd32___shmctl13(p, v, retval)
4699 struct proc *p;
4700 void *v;
4701 register_t *retval;
4702 {
4703 #if 0
4704 struct netbsd32_shmctl_args /* {
4705 syscallarg(int) shmid;
4706 syscallarg(int) cmd;
4707 syscallarg(netbsd32_shmid_dsp_t) buf;
4708 } */ *uap = v;
4709 struct sys_shmctl_args ua;
4710 struct shmid_ds ds;
4711 struct netbsd32_shmid_ds *ds32p;
4712 int error;
4713
4714 NETBSD32TO64_UAP(shmid);
4715 NETBSD32TO64_UAP(cmd);
4716 ds32p = (struct netbsd32_shmid_ds *)(u_long)SCARG(uap, buf);
4717 if (ds32p) {
4718 SCARG(&ua, buf) = NULL;
4719 netbsd32_to_shmid_ds(ds32p, &ds);
4720 } else
4721 SCARG(&ua, buf) = NULL;
4722 error = sys_shmctl(p, &ua, retval);
4723 if (error)
4724 return (error);
4725
4726 if (ds32p)
4727 netbsd32_from_shmid_ds(&ds, ds32p);
4728 return (0);
4729 #else
4730 return (ENOSYS);
4731 #endif
4732 }
4733
4734 int
4735 netbsd32_shmdt(p, v, retval)
4736 struct proc *p;
4737 void *v;
4738 register_t *retval;
4739 {
4740 #if 0
4741 struct netbsd32_shmdt_args /* {
4742 syscallarg(const netbsd32_voidp) shmaddr;
4743 } */ *uap = v;
4744 struct sys_shmdt_args ua;
4745
4746 NETBSD32TOP_UAP(shmaddr, const char);
4747 return (sys_shmdt(p, &ua, retval));
4748 #else
4749 return (ENOSYS);
4750 #endif
4751 }
4752
4753 int
4754 netbsd32_shmget(p, v, retval)
4755 struct proc *p;
4756 void *v;
4757 register_t *retval;
4758 {
4759 #if 0
4760 struct netbsd32_shmget_args /* {
4761 syscallarg(netbsd32_key_t) key;
4762 syscallarg(netbsd32_size_t) size;
4763 syscallarg(int) shmflg;
4764 } */ *uap = v;
4765 struct sys_shmget_args ua;
4766
4767 NETBSD32TOX_UAP(key, key_t)
4768 NETBSD32TOX_UAP(size, size_t)
4769 NETBSD32TO64_UAP(shmflg);
4770 return (sys_shmget(p, &ua, retval));
4771 #else
4772 return (ENOSYS);
4773 #endif
4774 }
4775 #endif /* SYSVSHM */
4776
4777 int
4778 netbsd32_clock_gettime(p, v, retval)
4779 struct proc *p;
4780 void *v;
4781 register_t *retval;
4782 {
4783 struct netbsd32_clock_gettime_args /* {
4784 syscallarg(netbsd32_clockid_t) clock_id;
4785 syscallarg(netbsd32_timespecp_t) tp;
4786 } */ *uap = v;
4787 clockid_t clock_id;
4788 struct timeval atv;
4789 struct timespec ats;
4790 struct netbsd32_timespec ts32;
4791
4792 clock_id = SCARG(uap, clock_id);
4793 if (clock_id != CLOCK_REALTIME)
4794 return (EINVAL);
4795
4796 microtime(&atv);
4797 TIMEVAL_TO_TIMESPEC(&atv,&ats);
4798 netbsd32_from_timespec(&ats, &ts32);
4799
4800 return copyout(&ts32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts32));
4801 }
4802
4803 int
4804 netbsd32_clock_settime(p, v, retval)
4805 struct proc *p;
4806 void *v;
4807 register_t *retval;
4808 {
4809 struct netbsd32_clock_settime_args /* {
4810 syscallarg(netbsd32_clockid_t) clock_id;
4811 syscallarg(const netbsd32_timespecp_t) tp;
4812 } */ *uap = v;
4813 struct netbsd32_timespec ts32;
4814 clockid_t clock_id;
4815 struct timeval atv;
4816 struct timespec ats;
4817 int error;
4818
4819 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
4820 return (error);
4821
4822 clock_id = SCARG(uap, clock_id);
4823 if (clock_id != CLOCK_REALTIME)
4824 return (EINVAL);
4825
4826 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), &ts32, sizeof(ts32))) != 0)
4827 return (error);
4828
4829 netbsd32_to_timespec(&ts32, &ats);
4830 TIMESPEC_TO_TIMEVAL(&atv,&ats);
4831 if ((error = settime(&atv)))
4832 return (error);
4833
4834 return 0;
4835 }
4836
4837 int
4838 netbsd32_clock_getres(p, v, retval)
4839 struct proc *p;
4840 void *v;
4841 register_t *retval;
4842 {
4843 struct netbsd32_clock_getres_args /* {
4844 syscallarg(netbsd32_clockid_t) clock_id;
4845 syscallarg(netbsd32_timespecp_t) tp;
4846 } */ *uap = v;
4847 struct netbsd32_timespec ts32;
4848 clockid_t clock_id;
4849 struct timespec ts;
4850 int error = 0;
4851
4852 clock_id = SCARG(uap, clock_id);
4853 if (clock_id != CLOCK_REALTIME)
4854 return (EINVAL);
4855
4856 if (SCARG(uap, tp)) {
4857 ts.tv_sec = 0;
4858 ts.tv_nsec = 1000000000 / hz;
4859
4860 netbsd32_from_timespec(&ts, &ts32);
4861 error = copyout(&ts, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts));
4862 }
4863
4864 return error;
4865 }
4866
4867 int
4868 netbsd32_nanosleep(p, v, retval)
4869 struct proc *p;
4870 void *v;
4871 register_t *retval;
4872 {
4873 struct netbsd32_nanosleep_args /* {
4874 syscallarg(const netbsd32_timespecp_t) rqtp;
4875 syscallarg(netbsd32_timespecp_t) rmtp;
4876 } */ *uap = v;
4877 static int nanowait;
4878 struct netbsd32_timespec ts32;
4879 struct timespec rqt;
4880 struct timespec rmt;
4881 struct timeval atv, utv;
4882 int error, s, timo;
4883
4884 error = copyin((caddr_t)(u_long)SCARG(uap, rqtp), (caddr_t)&ts32,
4885 sizeof(ts32));
4886 if (error)
4887 return (error);
4888
4889 netbsd32_to_timespec(&ts32, &rqt);
4890 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
4891 if (itimerfix(&atv))
4892 return (EINVAL);
4893
4894 s = splclock();
4895 timeradd(&atv,&time,&atv);
4896 timo = hzto(&atv);
4897 /*
4898 * Avoid inadvertantly sleeping forever
4899 */
4900 if (timo == 0)
4901 timo = 1;
4902 splx(s);
4903
4904 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
4905 if (error == ERESTART)
4906 error = EINTR;
4907 if (error == EWOULDBLOCK)
4908 error = 0;
4909
4910 if (SCARG(uap, rmtp)) {
4911 int error;
4912
4913 s = splclock();
4914 utv = time;
4915 splx(s);
4916
4917 timersub(&atv, &utv, &utv);
4918 if (utv.tv_sec < 0)
4919 timerclear(&utv);
4920
4921 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
4922 netbsd32_from_timespec(&rmt, &ts32);
4923 error = copyout((caddr_t)&ts32, (caddr_t)(u_long)SCARG(uap,rmtp),
4924 sizeof(ts32));
4925 if (error)
4926 return (error);
4927 }
4928
4929 return error;
4930 }
4931
4932 int
4933 netbsd32_fdatasync(p, v, retval)
4934 struct proc *p;
4935 void *v;
4936 register_t *retval;
4937 {
4938 struct netbsd32_fdatasync_args /* {
4939 syscallarg(int) fd;
4940 } */ *uap = v;
4941 struct sys_fdatasync_args ua;
4942
4943 NETBSD32TO64_UAP(fd);
4944
4945 return (sys_fdatasync(p, &ua, retval));
4946 }
4947
4948 int
4949 netbsd32___posix_rename(p, v, retval)
4950 struct proc *p;
4951 void *v;
4952 register_t *retval;
4953 {
4954 struct netbsd32___posix_rename_args /* {
4955 syscallarg(const netbsd32_charp) from;
4956 syscallarg(const netbsd32_charp) to;
4957 } */ *uap = v;
4958 struct sys___posix_rename_args ua;
4959
4960 NETBSD32TOP_UAP(from, const char);
4961 NETBSD32TOP_UAP(to, const char);
4962
4963 return (sys___posix_rename(p, &ua, retval));
4964 }
4965
4966 int
4967 netbsd32_swapctl(p, v, retval)
4968 struct proc *p;
4969 void *v;
4970 register_t *retval;
4971 {
4972 struct netbsd32_swapctl_args /* {
4973 syscallarg(int) cmd;
4974 syscallarg(const netbsd32_voidp) arg;
4975 syscallarg(int) misc;
4976 } */ *uap = v;
4977 struct sys_swapctl_args ua;
4978
4979 NETBSD32TO64_UAP(cmd);
4980 NETBSD32TOP_UAP(arg, const void);
4981 NETBSD32TO64_UAP(misc);
4982 return (sys_swapctl(p, &ua, retval));
4983 }
4984
4985 int
4986 netbsd32_getdents(p, v, retval)
4987 struct proc *p;
4988 void *v;
4989 register_t *retval;
4990 {
4991 struct netbsd32_getdents_args /* {
4992 syscallarg(int) fd;
4993 syscallarg(netbsd32_charp) buf;
4994 syscallarg(netbsd32_size_t) count;
4995 } */ *uap = v;
4996 struct file *fp;
4997 int error, done;
4998
4999 /* getvnode() will use the descriptor for us */
5000 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
5001 return (error);
5002 if ((fp->f_flag & FREAD) == 0) {
5003 error = EBADF;
5004 goto out;
5005 }
5006 error = vn_readdir(fp, (caddr_t)(u_long)SCARG(uap, buf), UIO_USERSPACE,
5007 SCARG(uap, count), &done, p, 0, 0);
5008 *retval = done;
5009 out:
5010 FILE_UNUSE(fp, p);
5011 return (error);
5012 }
5013
5014
5015 int
5016 netbsd32_minherit(p, v, retval)
5017 struct proc *p;
5018 void *v;
5019 register_t *retval;
5020 {
5021 struct netbsd32_minherit_args /* {
5022 syscallarg(netbsd32_voidp) addr;
5023 syscallarg(netbsd32_size_t) len;
5024 syscallarg(int) inherit;
5025 } */ *uap = v;
5026 struct sys_minherit_args ua;
5027
5028 NETBSD32TOP_UAP(addr, void);
5029 NETBSD32TOX_UAP(len, size_t);
5030 NETBSD32TO64_UAP(inherit);
5031 return (sys_minherit(p, &ua, retval));
5032 }
5033
5034 int
5035 netbsd32_lchmod(p, v, retval)
5036 struct proc *p;
5037 void *v;
5038 register_t *retval;
5039 {
5040 struct netbsd32_lchmod_args /* {
5041 syscallarg(const netbsd32_charp) path;
5042 syscallarg(mode_t) mode;
5043 } */ *uap = v;
5044 struct sys_lchmod_args ua;
5045
5046 NETBSD32TOP_UAP(path, const char);
5047 NETBSD32TO64_UAP(mode);
5048 return (sys_lchmod(p, &ua, retval));
5049 }
5050
5051 int
5052 netbsd32_lchown(p, v, retval)
5053 struct proc *p;
5054 void *v;
5055 register_t *retval;
5056 {
5057 struct netbsd32_lchown_args /* {
5058 syscallarg(const netbsd32_charp) path;
5059 syscallarg(uid_t) uid;
5060 syscallarg(gid_t) gid;
5061 } */ *uap = v;
5062 struct sys_lchown_args ua;
5063
5064 NETBSD32TOP_UAP(path, const char);
5065 NETBSD32TO64_UAP(uid);
5066 NETBSD32TO64_UAP(gid);
5067 return (sys_lchown(p, &ua, retval));
5068 }
5069
5070 int
5071 netbsd32_lutimes(p, v, retval)
5072 struct proc *p;
5073 void *v;
5074 register_t *retval;
5075 {
5076 struct netbsd32_lutimes_args /* {
5077 syscallarg(const netbsd32_charp) path;
5078 syscallarg(const netbsd32_timevalp_t) tptr;
5079 } */ *uap = v;
5080 int error;
5081 struct nameidata nd;
5082
5083 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, (caddr_t)(u_long)SCARG(uap, path), p);
5084 if ((error = namei(&nd)) != 0)
5085 return (error);
5086
5087 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
5088
5089 vrele(nd.ni_vp);
5090 return (error);
5091 }
5092
5093
5094 int
5095 netbsd32___msync13(p, v, retval)
5096 struct proc *p;
5097 void *v;
5098 register_t *retval;
5099 {
5100 struct netbsd32___msync13_args /* {
5101 syscallarg(netbsd32_voidp) addr;
5102 syscallarg(netbsd32_size_t) len;
5103 syscallarg(int) flags;
5104 } */ *uap = v;
5105 struct sys___msync13_args ua;
5106
5107 NETBSD32TOP_UAP(addr, void);
5108 NETBSD32TOX_UAP(len, size_t);
5109 NETBSD32TO64_UAP(flags);
5110 return (sys___msync13(p, &ua, retval));
5111 }
5112
5113 int
5114 netbsd32___stat13(p, v, retval)
5115 struct proc *p;
5116 void *v;
5117 register_t *retval;
5118 {
5119 struct netbsd32___stat13_args /* {
5120 syscallarg(const netbsd32_charp) path;
5121 syscallarg(netbsd32_statp_t) ub;
5122 } */ *uap = v;
5123 struct netbsd32_stat sb32;
5124 struct stat sb;
5125 int error;
5126 struct nameidata nd;
5127 caddr_t sg;
5128 char *path;
5129
5130 path = (char *)(u_long)SCARG(uap, path);
5131 sg = stackgap_init(p->p_emul);
5132 NETBSD32_CHECK_ALT_EXIST(p, &sg, path);
5133
5134 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5135 if ((error = namei(&nd)) != 0)
5136 return (error);
5137 error = vn_stat(nd.ni_vp, &sb, p);
5138 vput(nd.ni_vp);
5139 if (error)
5140 return (error);
5141 netbsd32_from___stat13(&sb, &sb32);
5142 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5143 return (error);
5144 }
5145
5146 int
5147 netbsd32___fstat13(p, v, retval)
5148 struct proc *p;
5149 void *v;
5150 register_t *retval;
5151 {
5152 struct netbsd32___fstat13_args /* {
5153 syscallarg(int) fd;
5154 syscallarg(netbsd32_statp_t) sb;
5155 } */ *uap = v;
5156 int fd = SCARG(uap, fd);
5157 struct filedesc *fdp = p->p_fd;
5158 struct file *fp;
5159 struct netbsd32_stat sb32;
5160 struct stat ub;
5161 int error = 0;
5162
5163 if ((u_int)fd >= fdp->fd_nfiles ||
5164 (fp = fdp->fd_ofiles[fd]) == NULL)
5165 return (EBADF);
5166 switch (fp->f_type) {
5167
5168 case DTYPE_VNODE:
5169 error = vn_stat((struct vnode *)fp->f_data, &ub, p);
5170 break;
5171
5172 case DTYPE_SOCKET:
5173 error = soo_stat((struct socket *)fp->f_data, &ub);
5174 break;
5175
5176 default:
5177 panic("fstat");
5178 /*NOTREACHED*/
5179 }
5180 if (error == 0) {
5181 netbsd32_from___stat13(&ub, &sb32);
5182 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, sb), sizeof(sb32));
5183 }
5184 return (error);
5185 }
5186
5187 int
5188 netbsd32___lstat13(p, v, retval)
5189 struct proc *p;
5190 void *v;
5191 register_t *retval;
5192 {
5193 struct netbsd32___lstat13_args /* {
5194 syscallarg(const netbsd32_charp) path;
5195 syscallarg(netbsd32_statp_t) ub;
5196 } */ *uap = v;
5197 struct netbsd32_stat sb32;
5198 struct stat sb;
5199 int error;
5200 struct nameidata nd;
5201 caddr_t sg;
5202 char *path;
5203
5204 path = (char *)(u_long)SCARG(uap, path);
5205 sg = stackgap_init(p->p_emul);
5206 NETBSD32_CHECK_ALT_EXIST(p, &sg, path);
5207
5208 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5209 if ((error = namei(&nd)) != 0)
5210 return (error);
5211 error = vn_stat(nd.ni_vp, &sb, p);
5212 vput(nd.ni_vp);
5213 if (error)
5214 return (error);
5215 netbsd32_from___stat13(&sb, &sb32);
5216 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5217 return (error);
5218 }
5219
5220 int
5221 netbsd32___sigaltstack14(p, v, retval)
5222 struct proc *p;
5223 void *v;
5224 register_t *retval;
5225 {
5226 struct netbsd32___sigaltstack14_args /* {
5227 syscallarg(const netbsd32_sigaltstackp_t) nss;
5228 syscallarg(netbsd32_sigaltstackp_t) oss;
5229 } */ *uap = v;
5230 struct netbsd32_sigaltstack s32;
5231 struct sigaltstack nss, oss;
5232 int error;
5233
5234 if (SCARG(uap, nss)) {
5235 error = copyin((caddr_t)(u_long)SCARG(uap, nss), &s32, sizeof(s32));
5236 if (error)
5237 return (error);
5238 nss.ss_sp = (void *)(u_long)s32.ss_sp;
5239 nss.ss_size = (size_t)s32.ss_size;
5240 nss.ss_flags = s32.ss_flags;
5241 }
5242 error = sigaltstack1(p,
5243 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
5244 if (error)
5245 return (error);
5246 if (SCARG(uap, oss)) {
5247 s32.ss_sp = (netbsd32_voidp)(u_long)oss.ss_sp;
5248 s32.ss_size = (netbsd32_size_t)oss.ss_size;
5249 s32.ss_flags = oss.ss_flags;
5250 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, oss), sizeof(s32));
5251 if (error)
5252 return (error);
5253 }
5254 return (0);
5255 }
5256
5257 int
5258 netbsd32___posix_chown(p, v, retval)
5259 struct proc *p;
5260 void *v;
5261 register_t *retval;
5262 {
5263 struct netbsd32___posix_chown_args /* {
5264 syscallarg(const netbsd32_charp) path;
5265 syscallarg(uid_t) uid;
5266 syscallarg(gid_t) gid;
5267 } */ *uap = v;
5268 struct sys___posix_chown_args ua;
5269
5270 NETBSD32TOP_UAP(path, const char);
5271 NETBSD32TO64_UAP(uid);
5272 NETBSD32TO64_UAP(gid);
5273 return (sys___posix_chown(p, &ua, retval));
5274 }
5275
5276 int
5277 netbsd32___posix_fchown(p, v, retval)
5278 struct proc *p;
5279 void *v;
5280 register_t *retval;
5281 {
5282 struct netbsd32___posix_fchown_args /* {
5283 syscallarg(int) fd;
5284 syscallarg(uid_t) uid;
5285 syscallarg(gid_t) gid;
5286 } */ *uap = v;
5287 struct sys___posix_fchown_args ua;
5288
5289 NETBSD32TO64_UAP(fd);
5290 NETBSD32TO64_UAP(uid);
5291 NETBSD32TO64_UAP(gid);
5292 return (sys___posix_fchown(p, &ua, retval));
5293 }
5294
5295 int
5296 netbsd32___posix_lchown(p, v, retval)
5297 struct proc *p;
5298 void *v;
5299 register_t *retval;
5300 {
5301 struct netbsd32___posix_lchown_args /* {
5302 syscallarg(const netbsd32_charp) path;
5303 syscallarg(uid_t) uid;
5304 syscallarg(gid_t) gid;
5305 } */ *uap = v;
5306 struct sys___posix_lchown_args ua;
5307
5308 NETBSD32TOP_UAP(path, const char);
5309 NETBSD32TO64_UAP(uid);
5310 NETBSD32TO64_UAP(gid);
5311 return (sys___posix_lchown(p, &ua, retval));
5312 }
5313
5314 int
5315 netbsd32_getsid(p, v, retval)
5316 struct proc *p;
5317 void *v;
5318 register_t *retval;
5319 {
5320 struct netbsd32_getsid_args /* {
5321 syscallarg(pid_t) pid;
5322 } */ *uap = v;
5323 struct sys_getsid_args ua;
5324
5325 NETBSD32TO64_UAP(pid);
5326 return (sys_getsid(p, &ua, retval));
5327 }
5328
5329 int
5330 netbsd32_fktrace(p, v, retval)
5331 struct proc *p;
5332 void *v;
5333 register_t *retval;
5334 {
5335 struct netbsd32_fktrace_args /* {
5336 syscallarg(const int) fd;
5337 syscallarg(int) ops;
5338 syscallarg(int) facs;
5339 syscallarg(int) pid;
5340 } */ *uap = v;
5341 struct sys_fktrace_args ua;
5342
5343 NETBSD32TOX_UAP(fd, const int);
5344 NETBSD32TO64_UAP(ops);
5345 NETBSD32TO64_UAP(facs);
5346 NETBSD32TO64_UAP(pid);
5347 return (sys_fktrace(p, &ua, retval));
5348 }
5349
5350 int
5351 netbsd32_preadv(p, v, retval)
5352 struct proc *p;
5353 void *v;
5354 register_t *retval;
5355 {
5356 struct netbsd32_preadv_args /* {
5357 syscallarg(int) fd;
5358 syscallarg(const netbsd32_iovecp_t) iovp;
5359 syscallarg(int) iovcnt;
5360 syscallarg(int) pad;
5361 syscallarg(off_t) offset;
5362 } */ *uap = v;
5363 struct filedesc *fdp = p->p_fd;
5364 struct file *fp;
5365 struct vnode *vp;
5366 off_t offset;
5367 int error, fd = SCARG(uap, fd);
5368
5369 if ((u_int)fd >= fdp->fd_nfiles ||
5370 (fp = fdp->fd_ofiles[fd]) == NULL ||
5371 (fp->f_flag & FREAD) == 0)
5372 return (EBADF);
5373
5374 vp = (struct vnode *)fp->f_data;
5375 if (fp->f_type != DTYPE_VNODE
5376 || vp->v_type == VFIFO)
5377 return (ESPIPE);
5378
5379 offset = SCARG(uap, offset);
5380
5381 /*
5382 * XXX This works because no file systems actually
5383 * XXX take any action on the seek operation.
5384 */
5385 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5386 return (error);
5387
5388 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5389 &offset, 0, retval));
5390 }
5391
5392 int
5393 netbsd32_pwritev(p, v, retval)
5394 struct proc *p;
5395 void *v;
5396 register_t *retval;
5397 {
5398 struct netbsd32_pwritev_args /* {
5399 syscallarg(int) fd;
5400 syscallarg(const netbsd32_iovecp_t) iovp;
5401 syscallarg(int) iovcnt;
5402 syscallarg(int) pad;
5403 syscallarg(off_t) offset;
5404 } */ *uap = v;
5405 struct filedesc *fdp = p->p_fd;
5406 struct file *fp;
5407 struct vnode *vp;
5408 off_t offset;
5409 int error, fd = SCARG(uap, fd);
5410
5411 if ((u_int)fd >= fdp->fd_nfiles ||
5412 (fp = fdp->fd_ofiles[fd]) == NULL ||
5413 (fp->f_flag & FWRITE) == 0)
5414 return (EBADF);
5415
5416 vp = (struct vnode *)fp->f_data;
5417 if (fp->f_type != DTYPE_VNODE
5418 || vp->v_type == VFIFO)
5419 return (ESPIPE);
5420
5421 offset = SCARG(uap, offset);
5422
5423 /*
5424 * XXX This works because no file systems actually
5425 * XXX take any action on the seek operation.
5426 */
5427 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5428 return (error);
5429
5430 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5431 &offset, 0, retval));
5432 }
5433
5434 /* ARGSUSED */
5435 int
5436 netbsd32___sigaction14(p, v, retval)
5437 struct proc *p;
5438 void *v;
5439 register_t *retval;
5440 {
5441 struct netbsd32___sigaction14_args /* {
5442 syscallarg(int) signum;
5443 syscallarg(const struct sigaction *) nsa;
5444 syscallarg(struct sigaction *) osa;
5445 } */ *uap = v;
5446 struct netbsd32_sigaction sa32;
5447 struct sigaction nsa, osa;
5448 int error;
5449
5450 if (SCARG(uap, nsa)) {
5451 error = copyin((caddr_t)(u_long)SCARG(uap, nsa),
5452 &sa32, sizeof(sa32));
5453 if (error)
5454 return (error);
5455 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
5456 nsa.sa_mask = sa32.sa_mask;
5457 nsa.sa_flags = sa32.sa_flags;
5458 }
5459 error = sigaction1(p, SCARG(uap, signum),
5460 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0);
5461 if (error)
5462 return (error);
5463 if (SCARG(uap, osa)) {
5464 sa32.sa_handler = (netbsd32_voidp)(u_long)osa.sa_handler;
5465 sa32.sa_mask = osa.sa_mask;
5466 sa32.sa_flags = osa.sa_flags;
5467 error = copyout(&sa32, (caddr_t)(u_long)SCARG(uap, osa), sizeof(sa32));
5468 if (error)
5469 return (error);
5470 }
5471 return (0);
5472 }
5473
5474 int netbsd32___sigpending14(p, v, retval)
5475 struct proc *p;
5476 void *v;
5477 register_t *retval;
5478 {
5479 struct netbsd32___sigpending14_args /* {
5480 syscallarg(sigset_t *) set;
5481 } */ *uap = v;
5482 struct sys___sigpending14_args ua;
5483
5484 NETBSD32TOP_UAP(set, sigset_t);
5485 return (sys___sigpending14(p, &ua, retval));
5486 }
5487
5488 int netbsd32___sigprocmask14(p, v, retval)
5489 struct proc *p;
5490 void *v;
5491 register_t *retval;
5492 {
5493 struct netbsd32___sigprocmask14_args /* {
5494 syscallarg(int) how;
5495 syscallarg(const sigset_t *) set;
5496 syscallarg(sigset_t *) oset;
5497 } */ *uap = v;
5498 struct sys___sigprocmask14_args ua;
5499
5500 NETBSD32TO64_UAP(how);
5501 NETBSD32TOP_UAP(set, sigset_t);
5502 NETBSD32TOP_UAP(oset, sigset_t);
5503 return (sys___sigprocmask14(p, &ua, retval));
5504 }
5505
5506 int netbsd32___sigsuspend14(p, v, retval)
5507 struct proc *p;
5508 void *v;
5509 register_t *retval;
5510 {
5511 struct netbsd32___sigsuspend14_args /* {
5512 syscallarg(const sigset_t *) set;
5513 } */ *uap = v;
5514 struct sys___sigsuspend14_args ua;
5515
5516 NETBSD32TOP_UAP(set, sigset_t);
5517 return (sys___sigsuspend14(p, &ua, retval));
5518 };
5519
5520
5521 /*
5522 * Find pathname of process's current directory.
5523 *
5524 * Use vfs vnode-to-name reverse cache; if that fails, fall back
5525 * to reading directory contents.
5526 */
5527 int
5528 getcwd_common __P((struct vnode *, struct vnode *,
5529 char **, char *, int, int, struct proc *));
5530
5531 int netbsd32___getcwd(p, v, retval)
5532 struct proc *p;
5533 void *v;
5534 register_t *retval;
5535 {
5536 struct netbsd32___getcwd_args /* {
5537 syscallarg(char *) bufp;
5538 syscallarg(size_t) length;
5539 } */ *uap = v;
5540
5541 int error;
5542 char *path;
5543 char *bp, *bend;
5544 int len = (int)SCARG(uap, length);
5545 int lenused;
5546
5547 if (len > MAXPATHLEN*4)
5548 len = MAXPATHLEN*4;
5549 else if (len < 2)
5550 return ERANGE;
5551
5552 path = (char *)malloc(len, M_TEMP, M_WAITOK);
5553 if (!path)
5554 return ENOMEM;
5555
5556 bp = &path[len];
5557 bend = bp;
5558 *(--bp) = '\0';
5559
5560 /*
5561 * 5th argument here is "max number of vnodes to traverse".
5562 * Since each entry takes up at least 2 bytes in the output buffer,
5563 * limit it to N/2 vnodes for an N byte buffer.
5564 */
5565 #define GETCWD_CHECK_ACCESS 0x0001
5566 error = getcwd_common (p->p_cwdi->cwdi_cdir, NULL, &bp, path, len/2,
5567 GETCWD_CHECK_ACCESS, p);
5568
5569 if (error)
5570 goto out;
5571 lenused = bend - bp;
5572 *retval = lenused;
5573 /* put the result into user buffer */
5574 error = copyout(bp, (caddr_t)(u_long)SCARG(uap, bufp), lenused);
5575
5576 out:
5577 free(path, M_TEMP);
5578 return error;
5579 }
5580
5581 int netbsd32_fchroot(p, v, retval)
5582 struct proc *p;
5583 void *v;
5584 register_t *retval;
5585 {
5586 struct netbsd32_fchroot_args /* {
5587 syscallarg(int) fd;
5588 } */ *uap = v;
5589 struct sys_fchroot_args ua;
5590
5591 NETBSD32TO64_UAP(fd);
5592 return (sys_fchroot(p, &ua, retval));
5593 }
5594
5595 /*
5596 * Open a file given a file handle.
5597 *
5598 * Check permissions, allocate an open file structure,
5599 * and call the device open routine if any.
5600 */
5601 int
5602 netbsd32_fhopen(p, v, retval)
5603 struct proc *p;
5604 void *v;
5605 register_t *retval;
5606 {
5607 struct netbsd32_fhopen_args /* {
5608 syscallarg(const fhandle_t *) fhp;
5609 syscallarg(int) flags;
5610 } */ *uap = v;
5611 struct sys_fhopen_args ua;
5612
5613 NETBSD32TOP_UAP(fhp, fhandle_t);
5614 NETBSD32TO64_UAP(flags);
5615 return (sys_fhopen(p, &ua, retval));
5616 }
5617
5618 int netbsd32_fhstat(p, v, retval)
5619 struct proc *p;
5620 void *v;
5621 register_t *retval;
5622 {
5623 struct netbsd32_fhstat_args /* {
5624 syscallarg(const netbsd32_fhandlep_t) fhp;
5625 syscallarg(struct stat *) sb;
5626 } */ *uap = v;
5627 struct sys_fhstat_args ua;
5628
5629 NETBSD32TOP_UAP(fhp, const fhandle_t);
5630 NETBSD32TOP_UAP(sb, struct stat);
5631 return (sys_fhstat(p, &ua, retval));
5632 }
5633
5634 int netbsd32_fhstatfs(p, v, retval)
5635 struct proc *p;
5636 void *v;
5637 register_t *retval;
5638 {
5639 struct netbsd32_fhstatfs_args /* {
5640 syscallarg(const netbsd32_fhandlep_t) fhp;
5641 syscallarg(struct statfs *) buf;
5642 } */ *uap = v;
5643 struct sys_fhstatfs_args ua;
5644
5645 NETBSD32TOP_UAP(fhp, const fhandle_t);
5646 NETBSD32TOP_UAP(buf, struct statfs);
5647 return (sys_fhstatfs(p, &ua, retval));
5648 }
5649