netbsd32_netbsd.c revision 1.37 1 /* $NetBSD: netbsd32_netbsd.c,v 1.37 2000/09/24 13:09:31 martin Exp $ */
2
3 /*
4 * Copyright (c) 1998 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include "opt_ddb.h"
32 #include "opt_ktrace.h"
33 #include "opt_ntp.h"
34 #include "opt_compat_netbsd.h"
35 #include "opt_compat_freebsd.h"
36 #include "opt_compat_linux.h"
37 #include "opt_compat_sunos.h"
38 #include "opt_compat_43.h"
39 #include "opt_sysv.h"
40 #if defined(COMPAT_43) || defined(COMPAT_SUNOS) || defined(COMPAT_LINUX) || \
41 defined(COMPAT_FREEBSD)
42 #define COMPAT_OLDSOCK /* used by <sys/socket.h> */
43 #endif
44
45 #include "fs_lfs.h"
46 #include "fs_nfs.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/filedesc.h>
51 #include <sys/kernel.h>
52 #include <sys/ipc.h>
53 #include <sys/msg.h>
54 #define msg __msg /* Don't ask me! */
55 #include <sys/sem.h>
56 #include <sys/shm.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/socket.h>
60 #include <sys/sockio.h>
61 #include <sys/socketvar.h>
62 #include <sys/mbuf.h>
63 #include <sys/stat.h>
64 #include <sys/time.h>
65 #include <sys/timex.h>
66 #include <sys/signalvar.h>
67 #include <sys/wait.h>
68 #include <sys/ptrace.h>
69 #include <sys/ktrace.h>
70 #include <sys/trace.h>
71 #include <sys/resourcevar.h>
72 #include <sys/pool.h>
73 #include <sys/vnode.h>
74 #include <sys/file.h>
75 #include <sys/filedesc.h>
76 #include <sys/namei.h>
77
78 #include <uvm/uvm_extern.h>
79
80 #include <sys/syscallargs.h>
81 #include <sys/proc.h>
82 #include <sys/acct.h>
83 #include <sys/exec.h>
84 #define __SYSCTL_PRIVATE
85 #include <sys/sysctl.h>
86
87 #include <net/if.h>
88
89 #include <compat/netbsd32/netbsd32.h>
90 #include <compat/netbsd32/netbsd32_syscallargs.h>
91
92 #include <machine/frame.h>
93
94 #if defined(DDB)
95 #include <ddb/ddbvar.h>
96 #endif
97
98 static __inline void netbsd32_from_timeval __P((struct timeval *, struct netbsd32_timeval *));
99 static __inline void netbsd32_to_timeval __P((struct netbsd32_timeval *, struct timeval *));
100 static __inline void netbsd32_from_itimerval __P((struct itimerval *, struct netbsd32_itimerval *));
101 static __inline void netbsd32_to_itimerval __P((struct netbsd32_itimerval *, struct itimerval *));
102 static __inline void netbsd32_to_timespec __P((struct netbsd32_timespec *, struct timespec *));
103 static __inline void netbsd32_from_timespec __P((struct timespec *, struct netbsd32_timespec *));
104 static __inline void netbsd32_from_rusage __P((struct rusage *, struct netbsd32_rusage *));
105 static __inline void netbsd32_to_rusage __P((struct netbsd32_rusage *, struct rusage *));
106 static __inline int netbsd32_to_iovecin __P((struct netbsd32_iovec *, struct iovec *, int));
107 static __inline void netbsd32_to_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
108 static __inline void netbsd32_from_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
109 static __inline void netbsd32_from_statfs __P((struct statfs *, struct netbsd32_statfs *));
110 static __inline void netbsd32_from_timex __P((struct timex *, struct netbsd32_timex *));
111 static __inline void netbsd32_to_timex __P((struct netbsd32_timex *, struct timex *));
112 static __inline void netbsd32_from___stat13 __P((struct stat *, struct netbsd32_stat *));
113 static __inline void netbsd32_to_ipc_perm __P((struct netbsd32_ipc_perm *, struct ipc_perm *));
114 static __inline void netbsd32_from_ipc_perm __P((struct ipc_perm *, struct netbsd32_ipc_perm *));
115 static __inline void netbsd32_to_msg __P((struct netbsd32_msg *, struct msg *));
116 static __inline void netbsd32_from_msg __P((struct msg *, struct netbsd32_msg *));
117 static __inline void netbsd32_to_msqid_ds __P((struct netbsd32_msqid_ds *, struct msqid_ds *));
118 static __inline void netbsd32_from_msqid_ds __P((struct msqid_ds *, struct netbsd32_msqid_ds *));
119 static __inline void netbsd32_to_shmid_ds __P((struct netbsd32_shmid_ds *, struct shmid_ds *));
120 static __inline void netbsd32_from_shmid_ds __P((struct shmid_ds *, struct netbsd32_shmid_ds *));
121 static __inline void netbsd32_to_semid_ds __P((struct netbsd32_semid_ds *, struct semid_ds *));
122 static __inline void netbsd32_from_semid_ds __P((struct semid_ds *, struct netbsd32_semid_ds *));
123
124
125 static int recvit32 __P((struct proc *, int, struct netbsd32_msghdr *, struct iovec *, caddr_t,
126 register_t *));
127 static int dofilereadv32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
128 int, off_t *, int, register_t *));
129 static int dofilewritev32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
130 int, off_t *, int, register_t *));
131 static int change_utimes32 __P((struct vnode *, struct timeval *, struct proc *));
132
133 /* converters for structures that we need */
134 static __inline void
135 netbsd32_from_timeval(tv, tv32)
136 struct timeval *tv;
137 struct netbsd32_timeval *tv32;
138 {
139
140 tv32->tv_sec = (netbsd32_long)tv->tv_sec;
141 tv32->tv_usec = (netbsd32_long)tv->tv_usec;
142 }
143
144 static __inline void
145 netbsd32_to_timeval(tv32, tv)
146 struct netbsd32_timeval *tv32;
147 struct timeval *tv;
148 {
149
150 tv->tv_sec = (long)tv32->tv_sec;
151 tv->tv_usec = (long)tv32->tv_usec;
152 }
153
154 static __inline void
155 netbsd32_from_itimerval(itv, itv32)
156 struct itimerval *itv;
157 struct netbsd32_itimerval *itv32;
158 {
159
160 netbsd32_from_timeval(&itv->it_interval,
161 &itv32->it_interval);
162 netbsd32_from_timeval(&itv->it_value,
163 &itv32->it_value);
164 }
165
166 static __inline void
167 netbsd32_to_itimerval(itv32, itv)
168 struct netbsd32_itimerval *itv32;
169 struct itimerval *itv;
170 {
171
172 netbsd32_to_timeval(&itv32->it_interval, &itv->it_interval);
173 netbsd32_to_timeval(&itv32->it_value, &itv->it_value);
174 }
175
176 static __inline void
177 netbsd32_to_timespec(s32p, p)
178 struct netbsd32_timespec *s32p;
179 struct timespec *p;
180 {
181
182 p->tv_sec = (time_t)s32p->tv_sec;
183 p->tv_nsec = (long)s32p->tv_nsec;
184 }
185
186 static __inline void
187 netbsd32_from_timespec(p, s32p)
188 struct timespec *p;
189 struct netbsd32_timespec *s32p;
190 {
191
192 s32p->tv_sec = (netbsd32_time_t)p->tv_sec;
193 s32p->tv_nsec = (netbsd32_long)p->tv_nsec;
194 }
195
196 static __inline void
197 netbsd32_from_rusage(rup, ru32p)
198 struct rusage *rup;
199 struct netbsd32_rusage *ru32p;
200 {
201
202 netbsd32_from_timeval(&rup->ru_utime, &ru32p->ru_utime);
203 netbsd32_from_timeval(&rup->ru_stime, &ru32p->ru_stime);
204 #define C(var) ru32p->var = (netbsd32_long)rup->var
205 C(ru_maxrss);
206 C(ru_ixrss);
207 C(ru_idrss);
208 C(ru_isrss);
209 C(ru_minflt);
210 C(ru_majflt);
211 C(ru_nswap);
212 C(ru_inblock);
213 C(ru_oublock);
214 C(ru_msgsnd);
215 C(ru_msgrcv);
216 C(ru_nsignals);
217 C(ru_nvcsw);
218 C(ru_nivcsw);
219 #undef C
220 }
221
222 static __inline void
223 netbsd32_to_rusage(ru32p, rup)
224 struct netbsd32_rusage *ru32p;
225 struct rusage *rup;
226 {
227
228 netbsd32_to_timeval(&ru32p->ru_utime, &rup->ru_utime);
229 netbsd32_to_timeval(&ru32p->ru_stime, &rup->ru_stime);
230 #define C(var) rup->var = (long)ru32p->var
231 C(ru_maxrss);
232 C(ru_ixrss);
233 C(ru_idrss);
234 C(ru_isrss);
235 C(ru_minflt);
236 C(ru_majflt);
237 C(ru_nswap);
238 C(ru_inblock);
239 C(ru_oublock);
240 C(ru_msgsnd);
241 C(ru_msgrcv);
242 C(ru_nsignals);
243 C(ru_nvcsw);
244 C(ru_nivcsw);
245 #undef C
246 }
247
248 static __inline int
249 netbsd32_to_iovecin(iov32p, iovp, len)
250 struct netbsd32_iovec *iov32p;
251 struct iovec *iovp;
252 int len;
253 {
254 int i, error=0;
255 u_int32_t iov_base;
256 u_int32_t iov_len;
257 /*
258 * We could allocate an iov32p, do a copyin, and translate
259 * each field and then free it all up, or we could copyin
260 * each field separately. I'm doing the latter to reduce
261 * the number of MALLOC()s.
262 */
263 for (i = 0; i < len; i++, iovp++, iov32p++) {
264 if ((error = copyin((caddr_t)&iov32p->iov_base, &iov_base, sizeof(iov_base))))
265 return (error);
266 if ((error = copyin((caddr_t)&iov32p->iov_len, &iov_len, sizeof(iov_len))))
267 return (error);
268 iovp->iov_base = (void *)(u_long)iov_base;
269 iovp->iov_len = (size_t)iov_len;
270 }
271 }
272
273 /* msg_iov must be done separately */
274 static __inline void
275 netbsd32_to_msghdr(mhp32, mhp)
276 struct netbsd32_msghdr *mhp32;
277 struct msghdr *mhp;
278 {
279
280 mhp->msg_name = (caddr_t)(u_long)mhp32->msg_name;
281 mhp->msg_namelen = mhp32->msg_namelen;
282 mhp->msg_iovlen = (size_t)mhp32->msg_iovlen;
283 mhp->msg_control = (caddr_t)(u_long)mhp32->msg_control;
284 mhp->msg_controllen = mhp32->msg_controllen;
285 mhp->msg_flags = mhp32->msg_flags;
286 }
287
288 /* msg_iov must be done separately */
289 static __inline void
290 netbsd32_from_msghdr(mhp32, mhp)
291 struct netbsd32_msghdr *mhp32;
292 struct msghdr *mhp;
293 {
294
295 mhp32->msg_name = mhp32->msg_name;
296 mhp32->msg_namelen = mhp32->msg_namelen;
297 mhp32->msg_iovlen = mhp32->msg_iovlen;
298 mhp32->msg_control = mhp32->msg_control;
299 mhp32->msg_controllen = mhp->msg_controllen;
300 mhp32->msg_flags = mhp->msg_flags;
301 }
302
303 static __inline void
304 netbsd32_from_statfs(sbp, sb32p)
305 struct statfs *sbp;
306 struct netbsd32_statfs *sb32p;
307 {
308 sb32p->f_type = sbp->f_type;
309 sb32p->f_flags = sbp->f_flags;
310 sb32p->f_bsize = (netbsd32_long)sbp->f_bsize;
311 sb32p->f_iosize = (netbsd32_long)sbp->f_iosize;
312 sb32p->f_blocks = (netbsd32_long)sbp->f_blocks;
313 sb32p->f_bfree = (netbsd32_long)sbp->f_bfree;
314 sb32p->f_bavail = (netbsd32_long)sbp->f_bavail;
315 sb32p->f_files = (netbsd32_long)sbp->f_files;
316 sb32p->f_ffree = (netbsd32_long)sbp->f_ffree;
317 sb32p->f_fsid = sbp->f_fsid;
318 sb32p->f_owner = sbp->f_owner;
319 sb32p->f_spare[0] = 0;
320 sb32p->f_spare[1] = 0;
321 sb32p->f_spare[2] = 0;
322 sb32p->f_spare[3] = 0;
323 #if 1
324 /* May as well do the whole batch in one go */
325 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN+MNAMELEN+MNAMELEN);
326 #else
327 /* If we want to be careful */
328 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN);
329 memcpy(sb32p->f_mntonname, sbp->f_mntonname, MNAMELEN);
330 memcpy(sb32p->f_mntfromname, sbp->f_mntfromname, MNAMELEN);
331 #endif
332 }
333
334 static __inline void
335 netbsd32_from_timex(txp, tx32p)
336 struct timex *txp;
337 struct netbsd32_timex *tx32p;
338 {
339
340 tx32p->modes = txp->modes;
341 tx32p->offset = (netbsd32_long)txp->offset;
342 tx32p->freq = (netbsd32_long)txp->freq;
343 tx32p->maxerror = (netbsd32_long)txp->maxerror;
344 tx32p->esterror = (netbsd32_long)txp->esterror;
345 tx32p->status = txp->status;
346 tx32p->constant = (netbsd32_long)txp->constant;
347 tx32p->precision = (netbsd32_long)txp->precision;
348 tx32p->tolerance = (netbsd32_long)txp->tolerance;
349 tx32p->ppsfreq = (netbsd32_long)txp->ppsfreq;
350 tx32p->jitter = (netbsd32_long)txp->jitter;
351 tx32p->shift = txp->shift;
352 tx32p->stabil = (netbsd32_long)txp->stabil;
353 tx32p->jitcnt = (netbsd32_long)txp->jitcnt;
354 tx32p->calcnt = (netbsd32_long)txp->calcnt;
355 tx32p->errcnt = (netbsd32_long)txp->errcnt;
356 tx32p->stbcnt = (netbsd32_long)txp->stbcnt;
357 }
358
359 static __inline void
360 netbsd32_to_timex(tx32p, txp)
361 struct netbsd32_timex *tx32p;
362 struct timex *txp;
363 {
364
365 txp->modes = tx32p->modes;
366 txp->offset = (long)tx32p->offset;
367 txp->freq = (long)tx32p->freq;
368 txp->maxerror = (long)tx32p->maxerror;
369 txp->esterror = (long)tx32p->esterror;
370 txp->status = tx32p->status;
371 txp->constant = (long)tx32p->constant;
372 txp->precision = (long)tx32p->precision;
373 txp->tolerance = (long)tx32p->tolerance;
374 txp->ppsfreq = (long)tx32p->ppsfreq;
375 txp->jitter = (long)tx32p->jitter;
376 txp->shift = tx32p->shift;
377 txp->stabil = (long)tx32p->stabil;
378 txp->jitcnt = (long)tx32p->jitcnt;
379 txp->calcnt = (long)tx32p->calcnt;
380 txp->errcnt = (long)tx32p->errcnt;
381 txp->stbcnt = (long)tx32p->stbcnt;
382 }
383
384 static __inline void
385 netbsd32_from___stat13(sbp, sb32p)
386 struct stat *sbp;
387 struct netbsd32_stat *sb32p;
388 {
389 sb32p->st_dev = sbp->st_dev;
390 sb32p->st_ino = sbp->st_ino;
391 sb32p->st_mode = sbp->st_mode;
392 sb32p->st_nlink = sbp->st_nlink;
393 sb32p->st_uid = sbp->st_uid;
394 sb32p->st_gid = sbp->st_gid;
395 sb32p->st_rdev = sbp->st_rdev;
396 if (sbp->st_size < (quad_t)1 << 32)
397 sb32p->st_size = sbp->st_size;
398 else
399 sb32p->st_size = -2;
400 sb32p->st_atimespec.tv_sec = (netbsd32_time_t)sbp->st_atimespec.tv_sec;
401 sb32p->st_atimespec.tv_nsec = (netbsd32_long)sbp->st_atimespec.tv_nsec;
402 sb32p->st_mtimespec.tv_sec = (netbsd32_time_t)sbp->st_mtimespec.tv_sec;
403 sb32p->st_mtimespec.tv_nsec = (netbsd32_long)sbp->st_mtimespec.tv_nsec;
404 sb32p->st_ctimespec.tv_sec = (netbsd32_time_t)sbp->st_ctimespec.tv_sec;
405 sb32p->st_ctimespec.tv_nsec = (netbsd32_long)sbp->st_ctimespec.tv_nsec;
406 sb32p->st_blksize = sbp->st_blksize;
407 sb32p->st_blocks = sbp->st_blocks;
408 sb32p->st_flags = sbp->st_flags;
409 sb32p->st_gen = sbp->st_gen;
410 }
411
412 static __inline void
413 netbsd32_to_ipc_perm(ip32p, ipp)
414 struct netbsd32_ipc_perm *ip32p;
415 struct ipc_perm *ipp;
416 {
417
418 ipp->cuid = ip32p->cuid;
419 ipp->cgid = ip32p->cgid;
420 ipp->uid = ip32p->uid;
421 ipp->gid = ip32p->gid;
422 ipp->mode = ip32p->mode;
423 ipp->_seq = ip32p->_seq;
424 ipp->_key = (key_t)ip32p->_key;
425 }
426
427 static __inline void
428 netbsd32_from_ipc_perm(ipp, ip32p)
429 struct ipc_perm *ipp;
430 struct netbsd32_ipc_perm *ip32p;
431 {
432
433 ip32p->cuid = ipp->cuid;
434 ip32p->cgid = ipp->cgid;
435 ip32p->uid = ipp->uid;
436 ip32p->gid = ipp->gid;
437 ip32p->mode = ipp->mode;
438 ip32p->_seq = ipp->_seq;
439 ip32p->_key = (netbsd32_key_t)ipp->_key;
440 }
441
442 static __inline void
443 netbsd32_to_msg(m32p, mp)
444 struct netbsd32_msg *m32p;
445 struct msg *mp;
446 {
447
448 mp->msg_next = (struct msg *)(u_long)m32p->msg_next;
449 mp->msg_type = (long)m32p->msg_type;
450 mp->msg_ts = m32p->msg_ts;
451 mp->msg_spot = m32p->msg_spot;
452 }
453
454 static __inline void
455 netbsd32_from_msg(mp, m32p)
456 struct msg *mp;
457 struct netbsd32_msg *m32p;
458 {
459
460 m32p->msg_next = (netbsd32_msgp_t)(u_long)mp->msg_next;
461 m32p->msg_type = (netbsd32_long)mp->msg_type;
462 m32p->msg_ts = mp->msg_ts;
463 m32p->msg_spot = mp->msg_spot;
464 }
465
466 static __inline void
467 netbsd32_to_msqid_ds(ds32p, dsp)
468 struct netbsd32_msqid_ds *ds32p;
469 struct msqid_ds *dsp;
470 {
471
472 netbsd32_to_ipc_perm(&ds32p->msg_perm, &dsp->msg_perm);
473 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_first, dsp->_msg_first);
474 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_last, dsp->_msg_last);
475 dsp->_msg_cbytes = (u_long)ds32p->_msg_cbytes;
476 dsp->msg_qnum = (u_long)ds32p->msg_qnum;
477 dsp->msg_qbytes = (u_long)ds32p->msg_qbytes;
478 dsp->msg_lspid = ds32p->msg_lspid;
479 dsp->msg_lrpid = ds32p->msg_lrpid;
480 dsp->msg_rtime = (time_t)ds32p->msg_rtime;
481 dsp->msg_stime = (time_t)ds32p->msg_stime;
482 dsp->msg_ctime = (time_t)ds32p->msg_ctime;
483 }
484
485 static __inline void
486 netbsd32_from_msqid_ds(dsp, ds32p)
487 struct msqid_ds *dsp;
488 struct netbsd32_msqid_ds *ds32p;
489 {
490
491 netbsd32_from_ipc_perm(&dsp->msg_perm, &ds32p->msg_perm);
492 netbsd32_from_msg(dsp->_msg_first, (struct netbsd32_msg *)(u_long)ds32p->_msg_first);
493 netbsd32_from_msg(dsp->_msg_last, (struct netbsd32_msg *)(u_long)ds32p->_msg_last);
494 ds32p->_msg_cbytes = (netbsd32_u_long)dsp->_msg_cbytes;
495 ds32p->msg_qnum = (netbsd32_u_long)dsp->msg_qnum;
496 ds32p->msg_qbytes = (netbsd32_u_long)dsp->msg_qbytes;
497 ds32p->msg_lspid = dsp->msg_lspid;
498 ds32p->msg_lrpid = dsp->msg_lrpid;
499 ds32p->msg_rtime = dsp->msg_rtime;
500 ds32p->msg_stime = dsp->msg_stime;
501 ds32p->msg_ctime = dsp->msg_ctime;
502 }
503
504 static __inline void
505 netbsd32_to_shmid_ds(ds32p, dsp)
506 struct netbsd32_shmid_ds *ds32p;
507 struct shmid_ds *dsp;
508 {
509
510 netbsd32_to_ipc_perm(&ds32p->shm_perm, &dsp->shm_perm);
511 dsp->shm_segsz = ds32p->shm_segsz;
512 dsp->shm_lpid = ds32p->shm_lpid;
513 dsp->shm_cpid = ds32p->shm_cpid;
514 dsp->shm_nattch = ds32p->shm_nattch;
515 dsp->shm_atime = (long)ds32p->shm_atime;
516 dsp->shm_dtime = (long)ds32p->shm_dtime;
517 dsp->shm_ctime = (long)ds32p->shm_ctime;
518 dsp->_shm_internal = (void *)(u_long)ds32p->_shm_internal;
519 }
520
521 static __inline void
522 netbsd32_from_shmid_ds(dsp, ds32p)
523 struct shmid_ds *dsp;
524 struct netbsd32_shmid_ds *ds32p;
525 {
526
527 netbsd32_from_ipc_perm(&dsp->shm_perm, &ds32p->shm_perm);
528 ds32p->shm_segsz = dsp->shm_segsz;
529 ds32p->shm_lpid = dsp->shm_lpid;
530 ds32p->shm_cpid = dsp->shm_cpid;
531 ds32p->shm_nattch = dsp->shm_nattch;
532 ds32p->shm_atime = (netbsd32_long)dsp->shm_atime;
533 ds32p->shm_dtime = (netbsd32_long)dsp->shm_dtime;
534 ds32p->shm_ctime = (netbsd32_long)dsp->shm_ctime;
535 ds32p->_shm_internal = (netbsd32_voidp)(u_long)dsp->_shm_internal;
536 }
537
538 static __inline void
539 netbsd32_to_semid_ds(s32dsp, dsp)
540 struct netbsd32_semid_ds *s32dsp;
541 struct semid_ds *dsp;
542 {
543
544 netbsd32_from_ipc_perm(&dsp->sem_perm, &s32dsp->sem_perm);
545 dsp->_sem_base = (struct __sem *)(u_long)s32dsp->_sem_base;
546 dsp->sem_nsems = s32dsp->sem_nsems;
547 dsp->sem_otime = s32dsp->sem_otime;
548 dsp->sem_ctime = s32dsp->sem_ctime;
549 }
550
551 static __inline void
552 netbsd32_from_semid_ds(dsp, s32dsp)
553 struct semid_ds *dsp;
554 struct netbsd32_semid_ds *s32dsp;
555 {
556
557 netbsd32_to_ipc_perm(&s32dsp->sem_perm, &dsp->sem_perm);
558 s32dsp->_sem_base = (netbsd32_semp_t)(u_long)dsp->_sem_base;
559 s32dsp->sem_nsems = dsp->sem_nsems;
560 s32dsp->sem_otime = dsp->sem_otime;
561 s32dsp->sem_ctime = dsp->sem_ctime;
562 }
563
564 /*
565 * below are all the standard NetBSD system calls, in the 32bit
566 * environment, with the necessary conversions to 64bit before
567 * calling the real syscall, unless we need to inline the whole
568 * syscall here, sigh.
569 */
570
571 int
572 netbsd32_exit(p, v, retval)
573 struct proc *p;
574 void *v;
575 register_t *retval;
576 {
577 struct netbsd32_exit_args /* {
578 syscallarg(int) rval;
579 } */ *uap = v;
580 struct sys_exit_args ua;
581
582 NETBSD32TO64_UAP(rval);
583 sys_exit(p, &ua, retval);
584 }
585
586 int
587 netbsd32_read(p, v, retval)
588 struct proc *p;
589 void *v;
590 register_t *retval;
591 {
592 struct netbsd32_read_args /* {
593 syscallarg(int) fd;
594 syscallarg(netbsd32_voidp) buf;
595 syscallarg(netbsd32_size_t) nbyte;
596 } */ *uap = v;
597 struct sys_read_args ua;
598
599 NETBSD32TO64_UAP(fd);
600 NETBSD32TOP_UAP(buf, void *);
601 NETBSD32TOX_UAP(nbyte, size_t);
602 return sys_read(p, &ua, retval);
603 }
604
605 int
606 netbsd32_write(p, v, retval)
607 struct proc *p;
608 void *v;
609 register_t *retval;
610 {
611 struct netbsd32_write_args /* {
612 syscallarg(int) fd;
613 syscallarg(const netbsd32_voidp) buf;
614 syscallarg(netbsd32_size_t) nbyte;
615 } */ *uap = v;
616 struct sys_write_args ua;
617
618 NETBSD32TO64_UAP(fd);
619 NETBSD32TOP_UAP(buf, void *);
620 NETBSD32TOX_UAP(nbyte, size_t);
621 return sys_write(p, &ua, retval);
622 }
623
624 int
625 netbsd32_close(p, v, retval)
626 struct proc *p;
627 void *v;
628 register_t *retval;
629 {
630 struct netbsd32_close_args /* {
631 syscallarg(int) fd;
632 } */ *uap = v;
633 struct sys_close_args ua;
634
635 NETBSD32TO64_UAP(fd);
636 return sys_close(p, &ua, retval);
637 }
638
639 int
640 netbsd32_open(p, v, retval)
641 struct proc *p;
642 void *v;
643 register_t *retval;
644 {
645 struct netbsd32_open_args /* {
646 syscallarg(const netbsd32_charp) path;
647 syscallarg(int) flags;
648 syscallarg(mode_t) mode;
649 } */ *uap = v;
650 struct sys_open_args ua;
651 caddr_t sg;
652
653 NETBSD32TOP_UAP(path, const char);
654 NETBSD32TO64_UAP(flags);
655 NETBSD32TO64_UAP(mode);
656 sg = stackgap_init(p->p_emul);
657 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
658
659 return (sys_open(p, &ua, retval));
660 }
661
662 int
663 netbsd32_wait4(q, v, retval)
664 struct proc *q;
665 void *v;
666 register_t *retval;
667 {
668 struct netbsd32_wait4_args /* {
669 syscallarg(int) pid;
670 syscallarg(netbsd32_intp) status;
671 syscallarg(int) options;
672 syscallarg(netbsd32_rusagep_t) rusage;
673 } */ *uap = v;
674 struct netbsd32_rusage ru32;
675 int nfound;
676 struct proc *p, *t;
677 int status, error;
678
679 if (SCARG(uap, pid) == 0)
680 SCARG(uap, pid) = -q->p_pgid;
681 if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG))
682 return (EINVAL);
683
684 loop:
685 nfound = 0;
686 for (p = q->p_children.lh_first; p != 0; p = p->p_sibling.le_next) {
687 if (SCARG(uap, pid) != WAIT_ANY &&
688 p->p_pid != SCARG(uap, pid) &&
689 p->p_pgid != -SCARG(uap, pid))
690 continue;
691 nfound++;
692 if (p->p_stat == SZOMB) {
693 retval[0] = p->p_pid;
694
695 if (SCARG(uap, status)) {
696 status = p->p_xstat; /* convert to int */
697 error = copyout((caddr_t)&status,
698 (caddr_t)(u_long)SCARG(uap, status),
699 sizeof(status));
700 if (error)
701 return (error);
702 }
703 if (SCARG(uap, rusage)) {
704 netbsd32_from_rusage(p->p_ru, &ru32);
705 if ((error = copyout((caddr_t)&ru32,
706 (caddr_t)(u_long)SCARG(uap, rusage),
707 sizeof(struct netbsd32_rusage))))
708 return (error);
709 }
710 /*
711 * If we got the child via ptrace(2) or procfs, and
712 * the parent is different (meaning the process was
713 * attached, rather than run as a child), then we need
714 * to give it back to the old parent, and send the
715 * parent a SIGCHLD. The rest of the cleanup will be
716 * done when the old parent waits on the child.
717 */
718 if ((p->p_flag & P_TRACED) &&
719 p->p_oppid != p->p_pptr->p_pid) {
720 t = pfind(p->p_oppid);
721 proc_reparent(p, t ? t : initproc);
722 p->p_oppid = 0;
723 p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
724 psignal(p->p_pptr, SIGCHLD);
725 wakeup((caddr_t)p->p_pptr);
726 return (0);
727 }
728 p->p_xstat = 0;
729 ruadd(&q->p_stats->p_cru, p->p_ru);
730 pool_put(&rusage_pool, p->p_ru);
731
732 /*
733 * Finally finished with old proc entry.
734 * Unlink it from its process group and free it.
735 */
736 leavepgrp(p);
737
738 LIST_REMOVE(p, p_list); /* off zombproc */
739
740 LIST_REMOVE(p, p_sibling);
741
742 /*
743 * Decrement the count of procs running with this uid.
744 */
745 (void)chgproccnt(p->p_cred->p_ruid, -1);
746
747 /*
748 * Free up credentials.
749 */
750 if (--p->p_cred->p_refcnt == 0) {
751 crfree(p->p_cred->pc_ucred);
752 pool_put(&pcred_pool, p->p_cred);
753 }
754
755 /*
756 * Release reference to text vnode
757 */
758 if (p->p_textvp)
759 vrele(p->p_textvp);
760
761 pool_put(&proc_pool, p);
762 nprocs--;
763 return (0);
764 }
765 if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
766 (p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
767 p->p_flag |= P_WAITED;
768 retval[0] = p->p_pid;
769
770 if (SCARG(uap, status)) {
771 status = W_STOPCODE(p->p_xstat);
772 error = copyout((caddr_t)&status,
773 (caddr_t)(u_long)SCARG(uap, status),
774 sizeof(status));
775 } else
776 error = 0;
777 return (error);
778 }
779 }
780 if (nfound == 0)
781 return (ECHILD);
782 if (SCARG(uap, options) & WNOHANG) {
783 retval[0] = 0;
784 return (0);
785 }
786 if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
787 return (error);
788 goto loop;
789 }
790
791 int
792 netbsd32_link(p, v, retval)
793 struct proc *p;
794 void *v;
795 register_t *retval;
796 {
797 struct netbsd32_link_args /* {
798 syscallarg(const netbsd32_charp) path;
799 syscallarg(const netbsd32_charp) link;
800 } */ *uap = v;
801 struct sys_link_args ua;
802
803 NETBSD32TOP_UAP(path, const char);
804 NETBSD32TOP_UAP(link, const char);
805 return (sys_link(p, &ua, retval));
806 }
807
808 int
809 netbsd32_unlink(p, v, retval)
810 struct proc *p;
811 void *v;
812 register_t *retval;
813 {
814 struct netbsd32_unlink_args /* {
815 syscallarg(const netbsd32_charp) path;
816 } */ *uap = v;
817 struct sys_unlink_args ua;
818
819 NETBSD32TOP_UAP(path, const char);
820
821 return (sys_unlink(p, &ua, retval));
822 }
823
824 int
825 netbsd32_chdir(p, v, retval)
826 struct proc *p;
827 void *v;
828 register_t *retval;
829 {
830 struct netbsd32_chdir_args /* {
831 syscallarg(const netbsd32_charp) path;
832 } */ *uap = v;
833 struct sys_chdir_args ua;
834
835 NETBSD32TOP_UAP(path, const char);
836
837 return (sys_chdir(p, &ua, retval));
838 }
839
840 int
841 netbsd32_fchdir(p, v, retval)
842 struct proc *p;
843 void *v;
844 register_t *retval;
845 {
846 struct netbsd32_fchdir_args /* {
847 syscallarg(int) fd;
848 } */ *uap = v;
849 struct sys_fchdir_args ua;
850
851 NETBSD32TO64_UAP(fd);
852
853 return (sys_fchdir(p, &ua, retval));
854 }
855
856 int
857 netbsd32_mknod(p, v, retval)
858 struct proc *p;
859 void *v;
860 register_t *retval;
861 {
862 struct netbsd32_mknod_args /* {
863 syscallarg(const netbsd32_charp) path;
864 syscallarg(mode_t) mode;
865 syscallarg(dev_t) dev;
866 } */ *uap = v;
867 struct sys_mknod_args ua;
868
869 NETBSD32TOP_UAP(path, const char);
870 NETBSD32TO64_UAP(dev);
871 NETBSD32TO64_UAP(mode);
872
873 return (sys_mknod(p, &ua, retval));
874 }
875
876 int
877 netbsd32_chmod(p, v, retval)
878 struct proc *p;
879 void *v;
880 register_t *retval;
881 {
882 struct netbsd32_chmod_args /* {
883 syscallarg(const netbsd32_charp) path;
884 syscallarg(mode_t) mode;
885 } */ *uap = v;
886 struct sys_chmod_args ua;
887
888 NETBSD32TOP_UAP(path, const char);
889 NETBSD32TO64_UAP(mode);
890
891 return (sys_chmod(p, &ua, retval));
892 }
893
894 int
895 netbsd32_chown(p, v, retval)
896 struct proc *p;
897 void *v;
898 register_t *retval;
899 {
900 struct netbsd32_chown_args /* {
901 syscallarg(const netbsd32_charp) path;
902 syscallarg(uid_t) uid;
903 syscallarg(gid_t) gid;
904 } */ *uap = v;
905 struct sys_chown_args ua;
906
907 NETBSD32TOP_UAP(path, const char);
908 NETBSD32TO64_UAP(uid);
909 NETBSD32TO64_UAP(gid);
910
911 return (sys_chown(p, &ua, retval));
912 }
913
914 int
915 netbsd32_break(p, v, retval)
916 struct proc *p;
917 void *v;
918 register_t *retval;
919 {
920 struct netbsd32_break_args /* {
921 syscallarg(netbsd32_charp) nsize;
922 } */ *uap = v;
923 struct sys_obreak_args ua;
924
925 SCARG(&ua, nsize) = (char *)(u_long)SCARG(uap, nsize);
926 NETBSD32TOP_UAP(nsize, char);
927 return (sys_obreak(p, &ua, retval));
928 }
929
930 int
931 netbsd32_getfsstat(p, v, retval)
932 struct proc *p;
933 void *v;
934 register_t *retval;
935 {
936 struct netbsd32_getfsstat_args /* {
937 syscallarg(netbsd32_statfsp_t) buf;
938 syscallarg(netbsd32_long) bufsize;
939 syscallarg(int) flags;
940 } */ *uap = v;
941 struct mount *mp, *nmp;
942 struct statfs *sp;
943 struct netbsd32_statfs sb32;
944 caddr_t sfsp;
945 long count, maxcount, error;
946
947 maxcount = SCARG(uap, bufsize) / sizeof(struct netbsd32_statfs);
948 sfsp = (caddr_t)(u_long)SCARG(uap, buf);
949 simple_lock(&mountlist_slock);
950 count = 0;
951 for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
952 if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
953 nmp = mp->mnt_list.cqe_next;
954 continue;
955 }
956 if (sfsp && count < maxcount) {
957 sp = &mp->mnt_stat;
958 /*
959 * If MNT_NOWAIT or MNT_LAZY is specified, do not
960 * refresh the fsstat cache. MNT_WAIT or MNT_LAXY
961 * overrides MNT_NOWAIT.
962 */
963 if (SCARG(uap, flags) != MNT_NOWAIT &&
964 SCARG(uap, flags) != MNT_LAZY &&
965 (SCARG(uap, flags) == MNT_WAIT ||
966 SCARG(uap, flags) == 0) &&
967 (error = VFS_STATFS(mp, sp, p)) != 0) {
968 simple_lock(&mountlist_slock);
969 nmp = mp->mnt_list.cqe_next;
970 vfs_unbusy(mp);
971 continue;
972 }
973 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
974 sp->f_oflags = sp->f_flags & 0xffff;
975 netbsd32_from_statfs(sp, &sb32);
976 error = copyout(&sb32, sfsp, sizeof(sb32));
977 if (error) {
978 vfs_unbusy(mp);
979 return (error);
980 }
981 sfsp += sizeof(sb32);
982 }
983 count++;
984 simple_lock(&mountlist_slock);
985 nmp = mp->mnt_list.cqe_next;
986 vfs_unbusy(mp);
987 }
988 simple_unlock(&mountlist_slock);
989 if (sfsp && count > maxcount)
990 *retval = maxcount;
991 else
992 *retval = count;
993 return (0);
994 }
995
996 int
997 netbsd32_mount(p, v, retval)
998 struct proc *p;
999 void *v;
1000 register_t *retval;
1001 {
1002 struct netbsd32_mount_args /* {
1003 syscallarg(const netbsd32_charp) type;
1004 syscallarg(const netbsd32_charp) path;
1005 syscallarg(int) flags;
1006 syscallarg(netbsd32_voidp) data;
1007 } */ *uap = v;
1008 struct sys_mount_args ua;
1009
1010 NETBSD32TOP_UAP(type, const char);
1011 NETBSD32TOP_UAP(path, const char);
1012 NETBSD32TO64_UAP(flags);
1013 NETBSD32TOP_UAP(data, void);
1014 return (sys_mount(p, &ua, retval));
1015 }
1016
1017 int
1018 netbsd32_unmount(p, v, retval)
1019 struct proc *p;
1020 void *v;
1021 register_t *retval;
1022 {
1023 struct netbsd32_unmount_args /* {
1024 syscallarg(const netbsd32_charp) path;
1025 syscallarg(int) flags;
1026 } */ *uap = v;
1027 struct sys_unmount_args ua;
1028
1029 NETBSD32TOP_UAP(path, const char);
1030 NETBSD32TO64_UAP(flags);
1031 return (sys_unmount(p, &ua, retval));
1032 }
1033
1034 int
1035 netbsd32_setuid(p, v, retval)
1036 struct proc *p;
1037 void *v;
1038 register_t *retval;
1039 {
1040 struct netbsd32_setuid_args /* {
1041 syscallarg(uid_t) uid;
1042 } */ *uap = v;
1043 struct sys_setuid_args ua;
1044
1045 NETBSD32TO64_UAP(uid);
1046 return (sys_setuid(p, &ua, retval));
1047 }
1048
1049 int
1050 netbsd32_ptrace(p, v, retval)
1051 struct proc *p;
1052 void *v;
1053 register_t *retval;
1054 {
1055 struct netbsd32_ptrace_args /* {
1056 syscallarg(int) req;
1057 syscallarg(pid_t) pid;
1058 syscallarg(netbsd32_caddr_t) addr;
1059 syscallarg(int) data;
1060 } */ *uap = v;
1061 struct sys_ptrace_args ua;
1062
1063 NETBSD32TO64_UAP(req);
1064 NETBSD32TO64_UAP(pid);
1065 NETBSD32TOX64_UAP(addr, caddr_t);
1066 NETBSD32TO64_UAP(data);
1067 return (sys_ptrace(p, &ua, retval));
1068 }
1069
1070 int
1071 netbsd32_recvmsg(p, v, retval)
1072 struct proc *p;
1073 void *v;
1074 register_t *retval;
1075 {
1076 struct netbsd32_recvmsg_args /* {
1077 syscallarg(int) s;
1078 syscallarg(netbsd32_msghdrp_t) msg;
1079 syscallarg(int) flags;
1080 } */ *uap = v;
1081 struct netbsd32_msghdr msg;
1082 struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
1083 int error;
1084
1085 error = copyin((caddr_t)(u_long)SCARG(uap, msg), (caddr_t)&msg,
1086 sizeof(msg));
1087 /* netbsd32_msghdr needs the iov pre-allocated */
1088 if (error)
1089 return (error);
1090 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1091 if ((u_int)msg.msg_iovlen > IOV_MAX)
1092 return (EMSGSIZE);
1093 MALLOC(iov, struct iovec *,
1094 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1095 M_WAITOK);
1096 } else if ((u_int)msg.msg_iovlen > 0)
1097 iov = aiov;
1098 else
1099 return (EMSGSIZE);
1100 #ifdef COMPAT_OLDSOCK
1101 msg.msg_flags = SCARG(uap, flags) &~ MSG_COMPAT;
1102 #else
1103 msg.msg_flags = SCARG(uap, flags);
1104 #endif
1105 uiov = (struct iovec *)(u_long)msg.msg_iov;
1106 error = netbsd32_to_iovecin((struct netbsd32_iovec *)uiov,
1107 iov, msg.msg_iovlen);
1108 if (error)
1109 goto done;
1110 if ((error = recvit32(p, SCARG(uap, s), &msg, iov, (caddr_t)0, retval)) == 0) {
1111 error = copyout((caddr_t)&msg, (caddr_t)(u_long)SCARG(uap, msg),
1112 sizeof(msg));
1113 }
1114 done:
1115 if (iov != aiov)
1116 FREE(iov, M_IOV);
1117 return (error);
1118 }
1119
1120 int
1121 recvit32(p, s, mp, iov, namelenp, retsize)
1122 struct proc *p;
1123 int s;
1124 struct netbsd32_msghdr *mp;
1125 struct iovec *iov;
1126 caddr_t namelenp;
1127 register_t *retsize;
1128 {
1129 struct file *fp;
1130 struct uio auio;
1131 int i;
1132 int len, error;
1133 struct mbuf *from = 0, *control = 0;
1134 struct socket *so;
1135 #ifdef KTRACE
1136 struct iovec *ktriov = NULL;
1137 #endif
1138
1139 /* getsock() will use the descriptor for us */
1140 if ((error = getsock(p->p_fd, s, &fp)) != 0)
1141 return (error);
1142 auio.uio_iov = (struct iovec *)(u_long)mp->msg_iov;
1143 auio.uio_iovcnt = mp->msg_iovlen;
1144 auio.uio_segflg = UIO_USERSPACE;
1145 auio.uio_rw = UIO_READ;
1146 auio.uio_procp = p;
1147 auio.uio_offset = 0; /* XXX */
1148 auio.uio_resid = 0;
1149 for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1150 #if 0
1151 /* cannot happen iov_len is unsigned */
1152 if (iov->iov_len < 0) {
1153 error = EINVAL;
1154 goto out1;
1155 }
1156 #endif
1157 /*
1158 * Reads return ssize_t because -1 is returned on error.
1159 * Therefore we must restrict the length to SSIZE_MAX to
1160 * avoid garbage return values.
1161 */
1162 auio.uio_resid += iov->iov_len;
1163 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
1164 error = EINVAL;
1165 goto out1;
1166 }
1167 }
1168 #ifdef KTRACE
1169 if (KTRPOINT(p, KTR_GENIO)) {
1170 int iovlen = auio.uio_iovcnt * sizeof(struct iovec);
1171
1172 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
1173 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
1174 }
1175 #endif
1176 len = auio.uio_resid;
1177 so = (struct socket *)fp->f_data;
1178 error = (*so->so_receive)(so, &from, &auio, NULL,
1179 mp->msg_control ? &control : NULL, &mp->msg_flags);
1180 if (error) {
1181 if (auio.uio_resid != len && (error == ERESTART ||
1182 error == EINTR || error == EWOULDBLOCK))
1183 error = 0;
1184 }
1185 #ifdef KTRACE
1186 if (ktriov != NULL) {
1187 if (error == 0)
1188 ktrgenio(p, s, UIO_READ, ktriov,
1189 len - auio.uio_resid, error);
1190 FREE(ktriov, M_TEMP);
1191 }
1192 #endif
1193 if (error)
1194 goto out;
1195 *retsize = len - auio.uio_resid;
1196 if (mp->msg_name) {
1197 len = mp->msg_namelen;
1198 if (len <= 0 || from == 0)
1199 len = 0;
1200 else {
1201 #ifdef COMPAT_OLDSOCK
1202 if (mp->msg_flags & MSG_COMPAT)
1203 mtod(from, struct osockaddr *)->sa_family =
1204 mtod(from, struct sockaddr *)->sa_family;
1205 #endif
1206 if (len > from->m_len)
1207 len = from->m_len;
1208 /* else if len < from->m_len ??? */
1209 error = copyout(mtod(from, caddr_t),
1210 (caddr_t)(u_long)mp->msg_name, (unsigned)len);
1211 if (error)
1212 goto out;
1213 }
1214 mp->msg_namelen = len;
1215 if (namelenp &&
1216 (error = copyout((caddr_t)&len, namelenp, sizeof(int)))) {
1217 #ifdef COMPAT_OLDSOCK
1218 if (mp->msg_flags & MSG_COMPAT)
1219 error = 0; /* old recvfrom didn't check */
1220 else
1221 #endif
1222 goto out;
1223 }
1224 }
1225 if (mp->msg_control) {
1226 #ifdef COMPAT_OLDSOCK
1227 /*
1228 * We assume that old recvmsg calls won't receive access
1229 * rights and other control info, esp. as control info
1230 * is always optional and those options didn't exist in 4.3.
1231 * If we receive rights, trim the cmsghdr; anything else
1232 * is tossed.
1233 */
1234 if (control && mp->msg_flags & MSG_COMPAT) {
1235 if (mtod(control, struct cmsghdr *)->cmsg_level !=
1236 SOL_SOCKET ||
1237 mtod(control, struct cmsghdr *)->cmsg_type !=
1238 SCM_RIGHTS) {
1239 mp->msg_controllen = 0;
1240 goto out;
1241 }
1242 control->m_len -= sizeof(struct cmsghdr);
1243 control->m_data += sizeof(struct cmsghdr);
1244 }
1245 #endif
1246 len = mp->msg_controllen;
1247 if (len <= 0 || control == 0)
1248 len = 0;
1249 else {
1250 struct mbuf *m = control;
1251 caddr_t p = (caddr_t)(u_long)mp->msg_control;
1252
1253 do {
1254 i = m->m_len;
1255 if (len < i) {
1256 mp->msg_flags |= MSG_CTRUNC;
1257 i = len;
1258 }
1259 error = copyout(mtod(m, caddr_t), p,
1260 (unsigned)i);
1261 if (m->m_next)
1262 i = ALIGN(i);
1263 p += i;
1264 len -= i;
1265 if (error != 0 || len <= 0)
1266 break;
1267 } while ((m = m->m_next) != NULL);
1268 len = p - (caddr_t)(u_long)mp->msg_control;
1269 }
1270 mp->msg_controllen = len;
1271 }
1272 out:
1273 if (from)
1274 m_freem(from);
1275 if (control)
1276 m_freem(control);
1277 out1:
1278 FILE_UNUSE(fp, p);
1279 return (error);
1280 }
1281
1282
1283 int
1284 netbsd32_sendmsg(p, v, retval)
1285 struct proc *p;
1286 void *v;
1287 register_t *retval;
1288 {
1289 struct netbsd32_sendmsg_args /* {
1290 syscallarg(int) s;
1291 syscallarg(const netbsd32_msghdrp_t) msg;
1292 syscallarg(int) flags;
1293 } */ *uap = v;
1294 struct msghdr msg;
1295 struct netbsd32_msghdr msg32;
1296 struct iovec aiov[UIO_SMALLIOV], *iov;
1297 int error;
1298
1299 error = copyin((caddr_t)(u_long)SCARG(uap, msg),
1300 (caddr_t)&msg32, sizeof(msg32));
1301 if (error)
1302 return (error);
1303 netbsd32_to_msghdr(&msg32, &msg);
1304 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1305 if ((u_int)msg.msg_iovlen > IOV_MAX)
1306 return (EMSGSIZE);
1307 MALLOC(iov, struct iovec *,
1308 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1309 M_WAITOK);
1310 } else if ((u_int)msg.msg_iovlen > 0)
1311 iov = aiov;
1312 else
1313 return (EMSGSIZE);
1314 error = netbsd32_to_iovecin((struct netbsd32_iovec *)msg.msg_iov,
1315 iov, msg.msg_iovlen);
1316 if (error)
1317 goto done;
1318 msg.msg_iov = iov;
1319 #ifdef COMPAT_OLDSOCK
1320 msg.msg_flags = 0;
1321 #endif
1322 /* Luckily we can use this directly */
1323 error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval);
1324 done:
1325 if (iov != aiov)
1326 FREE(iov, M_IOV);
1327 return (error);
1328 }
1329
1330 int
1331 netbsd32_recvfrom(p, v, retval)
1332 struct proc *p;
1333 void *v;
1334 register_t *retval;
1335 {
1336 struct netbsd32_recvfrom_args /* {
1337 syscallarg(int) s;
1338 syscallarg(netbsd32_voidp) buf;
1339 syscallarg(netbsd32_size_t) len;
1340 syscallarg(int) flags;
1341 syscallarg(netbsd32_sockaddrp_t) from;
1342 syscallarg(netbsd32_intp) fromlenaddr;
1343 } */ *uap = v;
1344 struct netbsd32_msghdr msg;
1345 struct iovec aiov;
1346 int error;
1347
1348 if (SCARG(uap, fromlenaddr)) {
1349 error = copyin((caddr_t)(u_long)SCARG(uap, fromlenaddr),
1350 (caddr_t)&msg.msg_namelen,
1351 sizeof(msg.msg_namelen));
1352 if (error)
1353 return (error);
1354 } else
1355 msg.msg_namelen = 0;
1356 msg.msg_name = SCARG(uap, from);
1357 msg.msg_iov = NULL; /* We can't store a real pointer here */
1358 msg.msg_iovlen = 1;
1359 aiov.iov_base = (caddr_t)(u_long)SCARG(uap, buf);
1360 aiov.iov_len = (u_long)SCARG(uap, len);
1361 msg.msg_control = 0;
1362 msg.msg_flags = SCARG(uap, flags);
1363 return (recvit32(p, SCARG(uap, s), &msg, &aiov,
1364 (caddr_t)(u_long)SCARG(uap, fromlenaddr), retval));
1365 }
1366
1367 int
1368 netbsd32_sendto(p, v, retval)
1369 struct proc *p;
1370 void *v;
1371 register_t *retval;
1372 {
1373 struct netbsd32_sendto_args /* {
1374 syscallarg(int) s;
1375 syscallarg(const netbsd32_voidp) buf;
1376 syscallarg(netbsd32_size_t) len;
1377 syscallarg(int) flags;
1378 syscallarg(const netbsd32_sockaddrp_t) to;
1379 syscallarg(int) tolen;
1380 } */ *uap = v;
1381 struct msghdr msg;
1382 struct iovec aiov;
1383
1384 msg.msg_name = (caddr_t)(u_long)SCARG(uap, to); /* XXX kills const */
1385 msg.msg_namelen = SCARG(uap, tolen);
1386 msg.msg_iov = &aiov;
1387 msg.msg_iovlen = 1;
1388 msg.msg_control = 0;
1389 #ifdef COMPAT_OLDSOCK
1390 msg.msg_flags = 0;
1391 #endif
1392 aiov.iov_base = (char *)(u_long)SCARG(uap, buf); /* XXX kills const */
1393 aiov.iov_len = SCARG(uap, len);
1394 return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval));
1395 }
1396
1397 int
1398 netbsd32_accept(p, v, retval)
1399 struct proc *p;
1400 void *v;
1401 register_t *retval;
1402 {
1403 struct netbsd32_accept_args /* {
1404 syscallarg(int) s;
1405 syscallarg(netbsd32_sockaddrp_t) name;
1406 syscallarg(netbsd32_intp) anamelen;
1407 } */ *uap = v;
1408 struct sys_accept_args ua;
1409
1410 NETBSD32TO64_UAP(s);
1411 NETBSD32TOP_UAP(name, struct sockaddr);
1412 NETBSD32TOP_UAP(anamelen, int);
1413 return (sys_accept(p, &ua, retval));
1414 }
1415
1416 int
1417 netbsd32_getpeername(p, v, retval)
1418 struct proc *p;
1419 void *v;
1420 register_t *retval;
1421 {
1422 struct netbsd32_getpeername_args /* {
1423 syscallarg(int) fdes;
1424 syscallarg(netbsd32_sockaddrp_t) asa;
1425 syscallarg(netbsd32_intp) alen;
1426 } */ *uap = v;
1427 struct sys_getpeername_args ua;
1428
1429 NETBSD32TO64_UAP(fdes);
1430 NETBSD32TOP_UAP(asa, struct sockaddr);
1431 NETBSD32TOP_UAP(alen, int);
1432 /* NB: do the protocol specific sockaddrs need to be converted? */
1433 return (sys_getpeername(p, &ua, retval));
1434 }
1435
1436 int
1437 netbsd32_getsockname(p, v, retval)
1438 struct proc *p;
1439 void *v;
1440 register_t *retval;
1441 {
1442 struct netbsd32_getsockname_args /* {
1443 syscallarg(int) fdes;
1444 syscallarg(netbsd32_sockaddrp_t) asa;
1445 syscallarg(netbsd32_intp) alen;
1446 } */ *uap = v;
1447 struct sys_getsockname_args ua;
1448
1449 NETBSD32TO64_UAP(fdes);
1450 NETBSD32TOP_UAP(asa, struct sockaddr);
1451 NETBSD32TOP_UAP(alen, int);
1452 return (sys_getsockname(p, &ua, retval));
1453 }
1454
1455 int
1456 netbsd32_access(p, v, retval)
1457 struct proc *p;
1458 void *v;
1459 register_t *retval;
1460 {
1461 struct netbsd32_access_args /* {
1462 syscallarg(const netbsd32_charp) path;
1463 syscallarg(int) flags;
1464 } */ *uap = v;
1465 struct sys_access_args ua;
1466 caddr_t sg;
1467
1468 NETBSD32TOP_UAP(path, const char);
1469 NETBSD32TO64_UAP(flags);
1470 sg = stackgap_init(p->p_emul);
1471 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1472
1473 return (sys_access(p, &ua, retval));
1474 }
1475
1476 int
1477 netbsd32_chflags(p, v, retval)
1478 struct proc *p;
1479 void *v;
1480 register_t *retval;
1481 {
1482 struct netbsd32_chflags_args /* {
1483 syscallarg(const netbsd32_charp) path;
1484 syscallarg(netbsd32_u_long) flags;
1485 } */ *uap = v;
1486 struct sys_chflags_args ua;
1487
1488 NETBSD32TOP_UAP(path, const char);
1489 NETBSD32TO64_UAP(flags);
1490
1491 return (sys_chflags(p, &ua, retval));
1492 }
1493
1494 int
1495 netbsd32_fchflags(p, v, retval)
1496 struct proc *p;
1497 void *v;
1498 register_t *retval;
1499 {
1500 struct netbsd32_fchflags_args /* {
1501 syscallarg(int) fd;
1502 syscallarg(netbsd32_u_long) flags;
1503 } */ *uap = v;
1504 struct sys_fchflags_args ua;
1505
1506 NETBSD32TO64_UAP(fd);
1507 NETBSD32TO64_UAP(flags);
1508
1509 return (sys_fchflags(p, &ua, retval));
1510 }
1511
1512 int
1513 netbsd32_kill(p, v, retval)
1514 struct proc *p;
1515 void *v;
1516 register_t *retval;
1517 {
1518 struct netbsd32_kill_args /* {
1519 syscallarg(int) pid;
1520 syscallarg(int) signum;
1521 } */ *uap = v;
1522 struct sys_kill_args ua;
1523
1524 NETBSD32TO64_UAP(pid);
1525 NETBSD32TO64_UAP(signum);
1526
1527 return (sys_kill(p, &ua, retval));
1528 }
1529
1530 int
1531 netbsd32_dup(p, v, retval)
1532 struct proc *p;
1533 void *v;
1534 register_t *retval;
1535 {
1536 struct netbsd32_dup_args /* {
1537 syscallarg(int) fd;
1538 } */ *uap = v;
1539 struct sys_dup_args ua;
1540
1541 NETBSD32TO64_UAP(fd);
1542
1543 return (sys_dup(p, &ua, retval));
1544 }
1545
1546 int
1547 netbsd32_profil(p, v, retval)
1548 struct proc *p;
1549 void *v;
1550 register_t *retval;
1551 {
1552 struct netbsd32_profil_args /* {
1553 syscallarg(netbsd32_caddr_t) samples;
1554 syscallarg(netbsd32_size_t) size;
1555 syscallarg(netbsd32_u_long) offset;
1556 syscallarg(u_int) scale;
1557 } */ *uap = v;
1558 struct sys_profil_args ua;
1559
1560 NETBSD32TOX64_UAP(samples, caddr_t);
1561 NETBSD32TOX_UAP(size, size_t);
1562 NETBSD32TOX_UAP(offset, u_long);
1563 NETBSD32TO64_UAP(scale);
1564 return (sys_profil(p, &ua, retval));
1565 }
1566
1567 int
1568 netbsd32_ktrace(p, v, retval)
1569 struct proc *p;
1570 void *v;
1571 register_t *retval;
1572 {
1573 struct netbsd32_ktrace_args /* {
1574 syscallarg(const netbsd32_charp) fname;
1575 syscallarg(int) ops;
1576 syscallarg(int) facs;
1577 syscallarg(int) pid;
1578 } */ *uap = v;
1579 struct sys_ktrace_args ua;
1580
1581 NETBSD32TOP_UAP(fname, const char);
1582 NETBSD32TO64_UAP(ops);
1583 NETBSD32TO64_UAP(facs);
1584 NETBSD32TO64_UAP(pid);
1585 return (sys_ktrace(p, &ua, retval));
1586 }
1587
1588 int
1589 netbsd32_sigaction(p, v, retval)
1590 struct proc *p;
1591 void *v;
1592 register_t *retval;
1593 {
1594 struct netbsd32_sigaction_args /* {
1595 syscallarg(int) signum;
1596 syscallarg(const netbsd32_sigactionp_t) nsa;
1597 syscallarg(netbsd32_sigactionp_t) osa;
1598 } */ *uap = v;
1599 struct sigaction nsa, osa;
1600 struct netbsd32_sigaction *sa32p, sa32;
1601 int error;
1602
1603 if (SCARG(uap, nsa)) {
1604 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, nsa);
1605 if (copyin(sa32p, &sa32, sizeof(sa32)))
1606 return EFAULT;
1607 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
1608 nsa.sa_mask = sa32.sa_mask;
1609 nsa.sa_flags = sa32.sa_flags;
1610 }
1611 error = sigaction1(p, SCARG(uap, signum),
1612 SCARG(uap, nsa) ? &nsa : 0,
1613 SCARG(uap, osa) ? &osa : 0);
1614
1615 if (error)
1616 return (error);
1617
1618 if (SCARG(uap, osa)) {
1619 sa32.sa_handler = (netbsd32_sigactionp_t)(u_long)osa.sa_handler;
1620 sa32.sa_mask = osa.sa_mask;
1621 sa32.sa_flags = osa.sa_flags;
1622 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, osa);
1623 if (copyout(&sa32, sa32p, sizeof(sa32)))
1624 return EFAULT;
1625 }
1626
1627 return (0);
1628 }
1629
1630 int
1631 netbsd32___getlogin(p, v, retval)
1632 struct proc *p;
1633 void *v;
1634 register_t *retval;
1635 {
1636 struct netbsd32___getlogin_args /* {
1637 syscallarg(netbsd32_charp) namebuf;
1638 syscallarg(u_int) namelen;
1639 } */ *uap = v;
1640 struct sys___getlogin_args ua;
1641
1642 NETBSD32TOP_UAP(namebuf, char);
1643 NETBSD32TO64_UAP(namelen);
1644 return (sys___getlogin(p, &ua, retval));
1645 }
1646
1647 int
1648 netbsd32_setlogin(p, v, retval)
1649 struct proc *p;
1650 void *v;
1651 register_t *retval;
1652 {
1653 struct netbsd32_setlogin_args /* {
1654 syscallarg(const netbsd32_charp) namebuf;
1655 } */ *uap = v;
1656 struct sys_setlogin_args ua;
1657
1658 NETBSD32TOP_UAP(namebuf, char);
1659 return (sys_setlogin(p, &ua, retval));
1660 }
1661
1662 int
1663 netbsd32_acct(p, v, retval)
1664 struct proc *p;
1665 void *v;
1666 register_t *retval;
1667 {
1668 struct netbsd32_acct_args /* {
1669 syscallarg(const netbsd32_charp) path;
1670 } */ *uap = v;
1671 struct sys_acct_args ua;
1672
1673 NETBSD32TOP_UAP(path, const char);
1674 return (sys_acct(p, &ua, retval));
1675 }
1676
1677 int
1678 netbsd32_revoke(p, v, retval)
1679 struct proc *p;
1680 void *v;
1681 register_t *retval;
1682 {
1683 struct netbsd32_revoke_args /* {
1684 syscallarg(const netbsd32_charp) path;
1685 } */ *uap = v;
1686 struct sys_revoke_args ua;
1687 caddr_t sg;
1688
1689 NETBSD32TOP_UAP(path, const char);
1690 sg = stackgap_init(p->p_emul);
1691 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1692
1693 return (sys_revoke(p, &ua, retval));
1694 }
1695
1696 int
1697 netbsd32_symlink(p, v, retval)
1698 struct proc *p;
1699 void *v;
1700 register_t *retval;
1701 {
1702 struct netbsd32_symlink_args /* {
1703 syscallarg(const netbsd32_charp) path;
1704 syscallarg(const netbsd32_charp) link;
1705 } */ *uap = v;
1706 struct sys_symlink_args ua;
1707
1708 NETBSD32TOP_UAP(path, const char);
1709 NETBSD32TOP_UAP(link, const char);
1710
1711 return (sys_symlink(p, &ua, retval));
1712 }
1713
1714 int
1715 netbsd32_readlink(p, v, retval)
1716 struct proc *p;
1717 void *v;
1718 register_t *retval;
1719 {
1720 struct netbsd32_readlink_args /* {
1721 syscallarg(const netbsd32_charp) path;
1722 syscallarg(netbsd32_charp) buf;
1723 syscallarg(netbsd32_size_t) count;
1724 } */ *uap = v;
1725 struct sys_readlink_args ua;
1726 caddr_t sg;
1727
1728 NETBSD32TOP_UAP(path, const char);
1729 NETBSD32TOP_UAP(buf, char);
1730 NETBSD32TOX_UAP(count, size_t);
1731 sg = stackgap_init(p->p_emul);
1732 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1733
1734 return (sys_readlink(p, &ua, retval));
1735 }
1736
1737 /*
1738 * Need to completly reimplement this syscall due to argument copying.
1739 */
1740 int
1741 netbsd32_execve(p, v, retval)
1742 struct proc *p;
1743 void *v;
1744 register_t *retval;
1745 {
1746 struct netbsd32_execve_args /* {
1747 syscallarg(const netbsd32_charp) path;
1748 syscallarg(netbsd32_charpp) argp;
1749 syscallarg(netbsd32_charpp) envp;
1750 } */ *uap = v;
1751 struct sys_execve_args ua;
1752 caddr_t sg;
1753 /* Function args */
1754 int error, i;
1755 struct exec_package pack;
1756 struct nameidata nid;
1757 struct vattr attr;
1758 struct ucred *cred = p->p_ucred;
1759 char *argp;
1760 netbsd32_charp const *cpp;
1761 char *dp;
1762 netbsd32_charp sp;
1763 long argc, envc;
1764 size_t len;
1765 char *stack;
1766 struct ps_strings arginfo;
1767 struct vmspace *vm;
1768 char **tmpfap;
1769 int szsigcode;
1770 extern struct emul emul_netbsd;
1771
1772
1773 NETBSD32TOP_UAP(path, const char);
1774 NETBSD32TOP_UAP(argp, char *);
1775 NETBSD32TOP_UAP(envp, char *);
1776 sg = stackgap_init(p->p_emul);
1777 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1778
1779 /*
1780 * figure out the maximum size of an exec header, if necessary.
1781 * XXX should be able to keep LKM code from modifying exec switch
1782 * when we're still using it, but...
1783 */
1784 if (exec_maxhdrsz == 0) {
1785 for (i = 0; i < nexecs; i++)
1786 if (execsw[i].es_check != NULL
1787 && execsw[i].es_hdrsz > exec_maxhdrsz)
1788 exec_maxhdrsz = execsw[i].es_hdrsz;
1789 }
1790
1791 /* init the namei data to point the file user's program name */
1792 /* XXX cgd 960926: why do this here? most will be clobbered. */
1793 NDINIT(&nid, LOOKUP, NOFOLLOW, UIO_USERSPACE, SCARG(&ua, path), p);
1794
1795 /*
1796 * initialize the fields of the exec package.
1797 */
1798 pack.ep_name = SCARG(&ua, path);
1799 MALLOC(pack.ep_hdr, void *, exec_maxhdrsz, M_EXEC, M_WAITOK);
1800 pack.ep_hdrlen = exec_maxhdrsz;
1801 pack.ep_hdrvalid = 0;
1802 pack.ep_ndp = &nid;
1803 pack.ep_emul_arg = NULL;
1804 pack.ep_vmcmds.evs_cnt = 0;
1805 pack.ep_vmcmds.evs_used = 0;
1806 pack.ep_vap = &attr;
1807 pack.ep_emul = &emul_netbsd;
1808 pack.ep_flags = 0;
1809
1810 /* see if we can run it. */
1811 if ((error = check_exec(p, &pack)) != 0)
1812 goto freehdr;
1813
1814 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
1815
1816 /* allocate an argument buffer */
1817 argp = (char *) uvm_km_valloc_wait(exec_map, NCARGS);
1818 #ifdef DIAGNOSTIC
1819 if (argp == (vaddr_t) 0)
1820 panic("execve: argp == NULL");
1821 #endif
1822 dp = argp;
1823 argc = 0;
1824
1825 /* copy the fake args list, if there's one, freeing it as we go */
1826 if (pack.ep_flags & EXEC_HASARGL) {
1827 tmpfap = pack.ep_fa;
1828 while (*tmpfap != NULL) {
1829 char *cp;
1830
1831 cp = *tmpfap;
1832 while (*cp)
1833 *dp++ = *cp++;
1834 dp++;
1835
1836 FREE(*tmpfap, M_EXEC);
1837 tmpfap++; argc++;
1838 }
1839 FREE(pack.ep_fa, M_EXEC);
1840 pack.ep_flags &= ~EXEC_HASARGL;
1841 }
1842
1843 /* Now get argv & environment */
1844 if (!(cpp = (netbsd32_charp *)SCARG(&ua, argp))) {
1845 error = EINVAL;
1846 goto bad;
1847 }
1848
1849 if (pack.ep_flags & EXEC_SKIPARG)
1850 cpp++;
1851
1852 while (1) {
1853 len = argp + ARG_MAX - dp;
1854 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1855 goto bad;
1856 if (!sp)
1857 break;
1858 if ((error = copyinstr((char *)(u_long)sp, dp,
1859 len, &len)) != 0) {
1860 if (error == ENAMETOOLONG)
1861 error = E2BIG;
1862 goto bad;
1863 }
1864 dp += len;
1865 cpp++;
1866 argc++;
1867 }
1868
1869 envc = 0;
1870 /* environment need not be there */
1871 if ((cpp = (netbsd32_charp *)SCARG(&ua, envp)) != NULL ) {
1872 while (1) {
1873 len = argp + ARG_MAX - dp;
1874 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1875 goto bad;
1876 if (!sp)
1877 break;
1878 if ((error = copyinstr((char *)(u_long)sp,
1879 dp, len, &len)) != 0) {
1880 if (error == ENAMETOOLONG)
1881 error = E2BIG;
1882 goto bad;
1883 }
1884 dp += len;
1885 cpp++;
1886 envc++;
1887 }
1888 }
1889
1890 dp = (char *) ALIGN(dp);
1891
1892 szsigcode = pack.ep_emul->e_esigcode - pack.ep_emul->e_sigcode;
1893
1894 /* Now check if args & environ fit into new stack */
1895 if (pack.ep_flags & EXEC_32)
1896 len = ((argc + envc + 2 + pack.ep_emul->e_arglen) * sizeof(int) +
1897 sizeof(int) + dp + STACKGAPLEN + szsigcode +
1898 sizeof(struct ps_strings)) - argp;
1899 else
1900 len = ((argc + envc + 2 + pack.ep_emul->e_arglen) * sizeof(char *) +
1901 sizeof(int) + dp + STACKGAPLEN + szsigcode +
1902 sizeof(struct ps_strings)) - argp;
1903
1904 len = ALIGN(len); /* make the stack "safely" aligned */
1905
1906 if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
1907 error = ENOMEM;
1908 goto bad;
1909 }
1910
1911 /* adjust "active stack depth" for process VSZ */
1912 pack.ep_ssize = len; /* maybe should go elsewhere, but... */
1913
1914 /*
1915 * Do whatever is necessary to prepare the address space
1916 * for remapping. Note that this might replace the current
1917 * vmspace with another!
1918 */
1919 uvmspace_exec(p);
1920
1921 /* Now map address space */
1922 vm = p->p_vmspace;
1923 vm->vm_taddr = (char *) pack.ep_taddr;
1924 vm->vm_tsize = btoc(pack.ep_tsize);
1925 vm->vm_daddr = (char *) pack.ep_daddr;
1926 vm->vm_dsize = btoc(pack.ep_dsize);
1927 vm->vm_ssize = btoc(pack.ep_ssize);
1928 vm->vm_maxsaddr = (char *) pack.ep_maxsaddr;
1929
1930 /* create the new process's VM space by running the vmcmds */
1931 #ifdef DIAGNOSTIC
1932 if (pack.ep_vmcmds.evs_used == 0)
1933 panic("execve: no vmcmds");
1934 #endif
1935 for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
1936 struct exec_vmcmd *vcp;
1937
1938 vcp = &pack.ep_vmcmds.evs_cmds[i];
1939 error = (*vcp->ev_proc)(p, vcp);
1940 }
1941
1942 /* free the vmspace-creation commands, and release their references */
1943 kill_vmcmds(&pack.ep_vmcmds);
1944
1945 /* if an error happened, deallocate and punt */
1946 if (error)
1947 goto exec_abort;
1948
1949 /* remember information about the process */
1950 arginfo.ps_nargvstr = argc;
1951 arginfo.ps_nenvstr = envc;
1952
1953 stack = (char *) (USRSTACK - len);
1954 /* Now copy argc, args & environ to new stack */
1955 if (!(*pack.ep_emul->e_copyargs)(&pack, &arginfo, stack, argp))
1956 goto exec_abort;
1957
1958 /* copy out the process's ps_strings structure */
1959 if (copyout(&arginfo, (char *) PS_STRINGS, sizeof(arginfo)))
1960 goto exec_abort;
1961
1962 /* copy out the process's signal trapoline code */
1963 if (szsigcode) {
1964 if (copyout((char *)pack.ep_emul->e_sigcode,
1965 p->p_sigacts->ps_sigcode = (char *)PS_STRINGS - szsigcode,
1966 szsigcode))
1967 goto exec_abort;
1968 #ifdef PMAP_NEED_PROCWR
1969 /* This is code. Let the pmap do what is needed. */
1970 pmap_procwr(p, (vaddr_t)p->p_sigacts->ps_sigcode, szsigcode);
1971 #endif
1972 }
1973
1974 stopprofclock(p); /* stop profiling */
1975 fdcloseexec(p); /* handle close on exec */
1976 execsigs(p); /* reset catched signals */
1977 p->p_ctxlink = NULL; /* reset ucontext link */
1978
1979 /* set command name & other accounting info */
1980 len = min(nid.ni_cnd.cn_namelen, MAXCOMLEN);
1981 memcpy(p->p_comm, nid.ni_cnd.cn_nameptr, len);
1982 p->p_comm[len] = 0;
1983 p->p_acflag &= ~AFORK;
1984
1985 /* record proc's vnode, for use by procfs and others */
1986 if (p->p_textvp)
1987 vrele(p->p_textvp);
1988 VREF(pack.ep_vp);
1989 p->p_textvp = pack.ep_vp;
1990
1991 p->p_flag |= P_EXEC;
1992 if (p->p_flag & P_PPWAIT) {
1993 p->p_flag &= ~P_PPWAIT;
1994 wakeup((caddr_t) p->p_pptr);
1995 }
1996
1997 /*
1998 * deal with set[ug]id.
1999 * MNT_NOSUID and P_TRACED have already been used to disable s[ug]id.
2000 */
2001 if (((attr.va_mode & S_ISUID) != 0 && p->p_ucred->cr_uid != attr.va_uid)
2002 || ((attr.va_mode & S_ISGID) != 0 && p->p_ucred->cr_gid != attr.va_gid)){
2003 p->p_ucred = crcopy(cred);
2004 #ifdef KTRACE
2005 /*
2006 * If process is being ktraced, turn off - unless
2007 * root set it.
2008 */
2009 if (p->p_tracep && !(p->p_traceflag & KTRFAC_ROOT))
2010 ktrderef(p);
2011 #endif
2012 if (attr.va_mode & S_ISUID)
2013 p->p_ucred->cr_uid = attr.va_uid;
2014 if (attr.va_mode & S_ISGID)
2015 p->p_ucred->cr_gid = attr.va_gid;
2016 p_sugid(p);
2017 } else
2018 p->p_flag &= ~P_SUGID;
2019 p->p_cred->p_svuid = p->p_ucred->cr_uid;
2020 p->p_cred->p_svgid = p->p_ucred->cr_gid;
2021
2022 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2023
2024 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2025 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2026 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2027 vput(pack.ep_vp);
2028
2029 /* setup new registers and do misc. setup. */
2030 (*pack.ep_emul->e_setregs)(p, &pack, (u_long) stack);
2031
2032 if (p->p_flag & P_TRACED)
2033 psignal(p, SIGTRAP);
2034
2035 p->p_emul = pack.ep_emul;
2036 FREE(pack.ep_hdr, M_EXEC);
2037
2038 #ifdef KTRACE
2039 if (KTRPOINT(p, KTR_EMUL))
2040 ktremul(p);
2041 #endif
2042
2043 return (EJUSTRETURN);
2044
2045 bad:
2046 /* free the vmspace-creation commands, and release their references */
2047 kill_vmcmds(&pack.ep_vmcmds);
2048 /* kill any opened file descriptor, if necessary */
2049 if (pack.ep_flags & EXEC_HASFD) {
2050 pack.ep_flags &= ~EXEC_HASFD;
2051 (void) fdrelease(p, pack.ep_fd);
2052 }
2053 /* close and put the exec'd file */
2054 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2055 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2056 vput(pack.ep_vp);
2057 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2058 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2059
2060 freehdr:
2061 FREE(pack.ep_hdr, M_EXEC);
2062 return error;
2063
2064 exec_abort:
2065 /*
2066 * the old process doesn't exist anymore. exit gracefully.
2067 * get rid of the (new) address space we have created, if any, get rid
2068 * of our namei data and vnode, and exit noting failure
2069 */
2070 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
2071 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
2072 if (pack.ep_emul_arg)
2073 FREE(pack.ep_emul_arg, M_TEMP);
2074 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2075 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2076 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2077 vput(pack.ep_vp);
2078 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2079 FREE(pack.ep_hdr, M_EXEC);
2080 exit1(p, W_EXITCODE(0, SIGABRT));
2081 exit1(p, -1);
2082
2083 /* NOTREACHED */
2084 return 0;
2085 }
2086
2087 int
2088 netbsd32_umask(p, v, retval)
2089 struct proc *p;
2090 void *v;
2091 register_t *retval;
2092 {
2093 struct netbsd32_umask_args /* {
2094 syscallarg(mode_t) newmask;
2095 } */ *uap = v;
2096 struct sys_umask_args ua;
2097
2098 NETBSD32TO64_UAP(newmask);
2099 return (sys_umask(p, &ua, retval));
2100 }
2101
2102 int
2103 netbsd32_chroot(p, v, retval)
2104 struct proc *p;
2105 void *v;
2106 register_t *retval;
2107 {
2108 struct netbsd32_chroot_args /* {
2109 syscallarg(const netbsd32_charp) path;
2110 } */ *uap = v;
2111 struct sys_chroot_args ua;
2112
2113 NETBSD32TOP_UAP(path, const char);
2114 return (sys_chroot(p, &ua, retval));
2115 }
2116
2117 int
2118 netbsd32_sbrk(p, v, retval)
2119 struct proc *p;
2120 void *v;
2121 register_t *retval;
2122 {
2123 struct netbsd32_sbrk_args /* {
2124 syscallarg(int) incr;
2125 } */ *uap = v;
2126 struct sys_sbrk_args ua;
2127
2128 NETBSD32TO64_UAP(incr);
2129 return (sys_sbrk(p, &ua, retval));
2130 }
2131
2132 int
2133 netbsd32_sstk(p, v, retval)
2134 struct proc *p;
2135 void *v;
2136 register_t *retval;
2137 {
2138 struct netbsd32_sstk_args /* {
2139 syscallarg(int) incr;
2140 } */ *uap = v;
2141 struct sys_sstk_args ua;
2142
2143 NETBSD32TO64_UAP(incr);
2144 return (sys_sstk(p, &ua, retval));
2145 }
2146
2147 int
2148 netbsd32_munmap(p, v, retval)
2149 struct proc *p;
2150 void *v;
2151 register_t *retval;
2152 {
2153 struct netbsd32_munmap_args /* {
2154 syscallarg(netbsd32_voidp) addr;
2155 syscallarg(netbsd32_size_t) len;
2156 } */ *uap = v;
2157 struct sys_munmap_args ua;
2158
2159 NETBSD32TOP_UAP(addr, void);
2160 NETBSD32TOX_UAP(len, size_t);
2161 return (sys_munmap(p, &ua, retval));
2162 }
2163
2164 int
2165 netbsd32_mprotect(p, v, retval)
2166 struct proc *p;
2167 void *v;
2168 register_t *retval;
2169 {
2170 struct netbsd32_mprotect_args /* {
2171 syscallarg(netbsd32_voidp) addr;
2172 syscallarg(netbsd32_size_t) len;
2173 syscallarg(int) prot;
2174 } */ *uap = v;
2175 struct sys_mprotect_args ua;
2176
2177 NETBSD32TOP_UAP(addr, void);
2178 NETBSD32TOX_UAP(len, size_t);
2179 NETBSD32TO64_UAP(prot);
2180 return (sys_mprotect(p, &ua, retval));
2181 }
2182
2183 int
2184 netbsd32_madvise(p, v, retval)
2185 struct proc *p;
2186 void *v;
2187 register_t *retval;
2188 {
2189 struct netbsd32_madvise_args /* {
2190 syscallarg(netbsd32_voidp) addr;
2191 syscallarg(netbsd32_size_t) len;
2192 syscallarg(int) behav;
2193 } */ *uap = v;
2194 struct sys_madvise_args ua;
2195
2196 NETBSD32TOP_UAP(addr, void);
2197 NETBSD32TOX_UAP(len, size_t);
2198 NETBSD32TO64_UAP(behav);
2199 return (sys_madvise(p, &ua, retval));
2200 }
2201
2202 int
2203 netbsd32_mincore(p, v, retval)
2204 struct proc *p;
2205 void *v;
2206 register_t *retval;
2207 {
2208 struct netbsd32_mincore_args /* {
2209 syscallarg(netbsd32_caddr_t) addr;
2210 syscallarg(netbsd32_size_t) len;
2211 syscallarg(netbsd32_charp) vec;
2212 } */ *uap = v;
2213 struct sys_mincore_args ua;
2214
2215 NETBSD32TOX64_UAP(addr, caddr_t);
2216 NETBSD32TOX_UAP(len, size_t);
2217 NETBSD32TOP_UAP(vec, char);
2218 return (sys_mincore(p, &ua, retval));
2219 }
2220
2221 int
2222 netbsd32_getgroups(p, v, retval)
2223 struct proc *p;
2224 void *v;
2225 register_t *retval;
2226 {
2227 struct netbsd32_getgroups_args /* {
2228 syscallarg(int) gidsetsize;
2229 syscallarg(netbsd32_gid_tp) gidset;
2230 } */ *uap = v;
2231 struct pcred *pc = p->p_cred;
2232 int ngrp;
2233 int error;
2234
2235 ngrp = SCARG(uap, gidsetsize);
2236 if (ngrp == 0) {
2237 *retval = pc->pc_ucred->cr_ngroups;
2238 return (0);
2239 }
2240 if (ngrp < pc->pc_ucred->cr_ngroups)
2241 return (EINVAL);
2242 ngrp = pc->pc_ucred->cr_ngroups;
2243 /* Should convert gid_t to netbsd32_gid_t, but they're the same */
2244 error = copyout((caddr_t)pc->pc_ucred->cr_groups,
2245 (caddr_t)(u_long)SCARG(uap, gidset),
2246 ngrp * sizeof(gid_t));
2247 if (error)
2248 return (error);
2249 *retval = ngrp;
2250 return (0);
2251 }
2252
2253 int
2254 netbsd32_setgroups(p, v, retval)
2255 struct proc *p;
2256 void *v;
2257 register_t *retval;
2258 {
2259 struct netbsd32_setgroups_args /* {
2260 syscallarg(int) gidsetsize;
2261 syscallarg(const netbsd32_gid_tp) gidset;
2262 } */ *uap = v;
2263 struct sys_setgroups_args ua;
2264
2265 NETBSD32TO64_UAP(gidsetsize);
2266 NETBSD32TOP_UAP(gidset, gid_t);
2267 return (sys_setgroups(p, &ua, retval));
2268 }
2269
2270 int
2271 netbsd32_setpgid(p, v, retval)
2272 struct proc *p;
2273 void *v;
2274 register_t *retval;
2275 {
2276 struct netbsd32_setpgid_args /* {
2277 syscallarg(int) pid;
2278 syscallarg(int) pgid;
2279 } */ *uap = v;
2280 struct sys_setpgid_args ua;
2281
2282 NETBSD32TO64_UAP(pid);
2283 NETBSD32TO64_UAP(pgid);
2284 return (sys_setpgid(p, &ua, retval));
2285 }
2286
2287 int
2288 netbsd32_setitimer(p, v, retval)
2289 struct proc *p;
2290 void *v;
2291 register_t *retval;
2292 {
2293 struct netbsd32_setitimer_args /* {
2294 syscallarg(int) which;
2295 syscallarg(const netbsd32_itimervalp_t) itv;
2296 syscallarg(netbsd32_itimervalp_t) oitv;
2297 } */ *uap = v;
2298 struct netbsd32_itimerval s32it, *itvp;
2299 int which = SCARG(uap, which);
2300 struct netbsd32_getitimer_args getargs;
2301 struct itimerval aitv;
2302 int s, error;
2303
2304 if ((u_int)which > ITIMER_PROF)
2305 return (EINVAL);
2306 itvp = (struct netbsd32_itimerval *)(u_long)SCARG(uap, itv);
2307 if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
2308 return (error);
2309 netbsd32_to_itimerval(&s32it, &aitv);
2310 if (SCARG(uap, oitv) != NULL) {
2311 SCARG(&getargs, which) = which;
2312 SCARG(&getargs, itv) = SCARG(uap, oitv);
2313 if ((error = netbsd32_getitimer(p, &getargs, retval)) != 0)
2314 return (error);
2315 }
2316 if (itvp == 0)
2317 return (0);
2318 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
2319 return (EINVAL);
2320 s = splclock();
2321 if (which == ITIMER_REAL) {
2322 callout_stop(&p->p_realit_ch);
2323 if (timerisset(&aitv.it_value)) {
2324 /*
2325 * Don't need to check hzto() return value, here.
2326 * callout_reset() does it for us.
2327 */
2328 timeradd(&aitv.it_value, &time, &aitv.it_value);
2329 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
2330 realitexpire, p);
2331 }
2332 p->p_realtimer = aitv;
2333 } else
2334 p->p_stats->p_timer[which] = aitv;
2335 splx(s);
2336 return (0);
2337 }
2338
2339 int
2340 netbsd32_getitimer(p, v, retval)
2341 struct proc *p;
2342 void *v;
2343 register_t *retval;
2344 {
2345 struct netbsd32_getitimer_args /* {
2346 syscallarg(int) which;
2347 syscallarg(netbsd32_itimervalp_t) itv;
2348 } */ *uap = v;
2349 int which = SCARG(uap, which);
2350 struct netbsd32_itimerval s32it;
2351 struct itimerval aitv;
2352 int s;
2353
2354 if ((u_int)which > ITIMER_PROF)
2355 return (EINVAL);
2356 s = splclock();
2357 if (which == ITIMER_REAL) {
2358 /*
2359 * Convert from absolute to relative time in .it_value
2360 * part of real time timer. If time for real time timer
2361 * has passed return 0, else return difference between
2362 * current time and time for the timer to go off.
2363 */
2364 aitv = p->p_realtimer;
2365 if (timerisset(&aitv.it_value)) {
2366 if (timercmp(&aitv.it_value, &time, <))
2367 timerclear(&aitv.it_value);
2368 else
2369 timersub(&aitv.it_value, &time, &aitv.it_value);
2370 }
2371 } else
2372 aitv = p->p_stats->p_timer[which];
2373 splx(s);
2374 netbsd32_from_itimerval(&aitv, &s32it);
2375 return (copyout(&s32it, (caddr_t)(u_long)SCARG(uap, itv), sizeof(s32it)));
2376 }
2377
2378 int
2379 netbsd32_fcntl(p, v, retval)
2380 struct proc *p;
2381 void *v;
2382 register_t *retval;
2383 {
2384 struct netbsd32_fcntl_args /* {
2385 syscallarg(int) fd;
2386 syscallarg(int) cmd;
2387 syscallarg(netbsd32_voidp) arg;
2388 } */ *uap = v;
2389 struct sys_fcntl_args ua;
2390
2391 NETBSD32TO64_UAP(fd);
2392 NETBSD32TO64_UAP(cmd);
2393 NETBSD32TOP_UAP(arg, void);
2394 /* XXXX we can do this 'cause flock doesn't change */
2395 return (sys_fcntl(p, &ua, retval));
2396 }
2397
2398 int
2399 netbsd32_dup2(p, v, retval)
2400 struct proc *p;
2401 void *v;
2402 register_t *retval;
2403 {
2404 struct netbsd32_dup2_args /* {
2405 syscallarg(int) from;
2406 syscallarg(int) to;
2407 } */ *uap = v;
2408 struct sys_dup2_args ua;
2409
2410 NETBSD32TO64_UAP(from);
2411 NETBSD32TO64_UAP(to);
2412 return (sys_dup2(p, &ua, retval));
2413 }
2414
2415 int
2416 netbsd32_select(p, v, retval)
2417 struct proc *p;
2418 void *v;
2419 register_t *retval;
2420 {
2421 struct netbsd32_select_args /* {
2422 syscallarg(int) nd;
2423 syscallarg(netbsd32_fd_setp_t) in;
2424 syscallarg(netbsd32_fd_setp_t) ou;
2425 syscallarg(netbsd32_fd_setp_t) ex;
2426 syscallarg(netbsd32_timevalp_t) tv;
2427 } */ *uap = v;
2428 /* This one must be done in-line 'cause of the timeval */
2429 struct netbsd32_timeval tv32;
2430 caddr_t bits;
2431 char smallbits[howmany(FD_SETSIZE, NFDBITS) * sizeof(fd_mask) * 6];
2432 struct timeval atv;
2433 int s, ncoll, error = 0, timo;
2434 size_t ni;
2435 extern int selwait, nselcoll;
2436 extern int selscan __P((struct proc *, fd_mask *, fd_mask *, int, register_t *));
2437
2438 if (SCARG(uap, nd) < 0)
2439 return (EINVAL);
2440 if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {
2441 /* forgiving; slightly wrong */
2442 SCARG(uap, nd) = p->p_fd->fd_nfiles;
2443 }
2444 ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);
2445 if (ni * 6 > sizeof(smallbits))
2446 bits = malloc(ni * 6, M_TEMP, M_WAITOK);
2447 else
2448 bits = smallbits;
2449
2450 #define getbits(name, x) \
2451 if (SCARG(uap, name)) { \
2452 error = copyin((caddr_t)(u_long)SCARG(uap, name), bits + ni * x, ni); \
2453 if (error) \
2454 goto done; \
2455 } else \
2456 memset(bits + ni * x, 0, ni);
2457 getbits(in, 0);
2458 getbits(ou, 1);
2459 getbits(ex, 2);
2460 #undef getbits
2461
2462 if (SCARG(uap, tv)) {
2463 error = copyin((caddr_t)(u_long)SCARG(uap, tv), (caddr_t)&tv32,
2464 sizeof(tv32));
2465 if (error)
2466 goto done;
2467 netbsd32_to_timeval(&tv32, &atv);
2468 if (itimerfix(&atv)) {
2469 error = EINVAL;
2470 goto done;
2471 }
2472 s = splclock();
2473 timeradd(&atv, &time, &atv);
2474 splx(s);
2475 } else
2476 timo = 0;
2477 retry:
2478 ncoll = nselcoll;
2479 p->p_flag |= P_SELECT;
2480 error = selscan(p, (fd_mask *)(bits + ni * 0),
2481 (fd_mask *)(bits + ni * 3), SCARG(uap, nd), retval);
2482 if (error || *retval)
2483 goto done;
2484 if (SCARG(uap, tv)) {
2485 /*
2486 * We have to recalculate the timeout on every retry.
2487 */
2488 timo = hzto(&atv);
2489 if (timo <= 0)
2490 goto done;
2491 }
2492 s = splhigh();
2493 if ((p->p_flag & P_SELECT) == 0 || nselcoll != ncoll) {
2494 splx(s);
2495 goto retry;
2496 }
2497 p->p_flag &= ~P_SELECT;
2498 error = tsleep((caddr_t)&selwait, PSOCK | PCATCH, "select", timo);
2499 splx(s);
2500 if (error == 0)
2501 goto retry;
2502 done:
2503 p->p_flag &= ~P_SELECT;
2504 /* select is not restarted after signals... */
2505 if (error == ERESTART)
2506 error = EINTR;
2507 if (error == EWOULDBLOCK)
2508 error = 0;
2509 if (error == 0) {
2510 #define putbits(name, x) \
2511 if (SCARG(uap, name)) { \
2512 error = copyout(bits + ni * x, (caddr_t)(u_long)SCARG(uap, name), ni); \
2513 if (error) \
2514 goto out; \
2515 }
2516 putbits(in, 3);
2517 putbits(ou, 4);
2518 putbits(ex, 5);
2519 #undef putbits
2520 }
2521 out:
2522 if (ni * 6 > sizeof(smallbits))
2523 free(bits, M_TEMP);
2524 return (error);
2525 }
2526
2527 int
2528 netbsd32_fsync(p, v, retval)
2529 struct proc *p;
2530 void *v;
2531 register_t *retval;
2532 {
2533 struct netbsd32_fsync_args /* {
2534 syscallarg(int) fd;
2535 } */ *uap = v;
2536 struct sys_fsync_args ua;
2537
2538 NETBSD32TO64_UAP(fd);
2539 return (sys_fsync(p, &ua, retval));
2540 }
2541
2542 int
2543 netbsd32_setpriority(p, v, retval)
2544 struct proc *p;
2545 void *v;
2546 register_t *retval;
2547 {
2548 struct netbsd32_setpriority_args /* {
2549 syscallarg(int) which;
2550 syscallarg(int) who;
2551 syscallarg(int) prio;
2552 } */ *uap = v;
2553 struct sys_setpriority_args ua;
2554
2555 NETBSD32TO64_UAP(which);
2556 NETBSD32TO64_UAP(who);
2557 NETBSD32TO64_UAP(prio);
2558 return (sys_setpriority(p, &ua, retval));
2559 }
2560
2561 int
2562 netbsd32_socket(p, v, retval)
2563 struct proc *p;
2564 void *v;
2565 register_t *retval;
2566 {
2567 struct netbsd32_socket_args /* {
2568 syscallarg(int) domain;
2569 syscallarg(int) type;
2570 syscallarg(int) protocol;
2571 } */ *uap = v;
2572 struct sys_socket_args ua;
2573
2574 NETBSD32TO64_UAP(domain);
2575 NETBSD32TO64_UAP(type);
2576 NETBSD32TO64_UAP(protocol);
2577 return (sys_socket(p, &ua, retval));
2578 }
2579
2580 int
2581 netbsd32_connect(p, v, retval)
2582 struct proc *p;
2583 void *v;
2584 register_t *retval;
2585 {
2586 struct netbsd32_connect_args /* {
2587 syscallarg(int) s;
2588 syscallarg(const netbsd32_sockaddrp_t) name;
2589 syscallarg(int) namelen;
2590 } */ *uap = v;
2591 struct sys_connect_args ua;
2592
2593 NETBSD32TO64_UAP(s);
2594 NETBSD32TOP_UAP(name, struct sockaddr);
2595 NETBSD32TO64_UAP(namelen);
2596 return (sys_connect(p, &ua, retval));
2597 }
2598
2599 int
2600 netbsd32_getpriority(p, v, retval)
2601 struct proc *p;
2602 void *v;
2603 register_t *retval;
2604 {
2605 struct netbsd32_getpriority_args /* {
2606 syscallarg(int) which;
2607 syscallarg(int) who;
2608 } */ *uap = v;
2609 struct sys_getpriority_args ua;
2610
2611 NETBSD32TO64_UAP(which);
2612 NETBSD32TO64_UAP(who);
2613 return (sys_getpriority(p, &ua, retval));
2614 }
2615
2616 int
2617 netbsd32_bind(p, v, retval)
2618 struct proc *p;
2619 void *v;
2620 register_t *retval;
2621 {
2622 struct netbsd32_bind_args /* {
2623 syscallarg(int) s;
2624 syscallarg(const netbsd32_sockaddrp_t) name;
2625 syscallarg(int) namelen;
2626 } */ *uap = v;
2627 struct sys_bind_args ua;
2628
2629 NETBSD32TO64_UAP(s);
2630 NETBSD32TOP_UAP(name, struct sockaddr);
2631 NETBSD32TO64_UAP(namelen);
2632 return (sys_bind(p, &ua, retval));
2633 }
2634
2635 int
2636 netbsd32_setsockopt(p, v, retval)
2637 struct proc *p;
2638 void *v;
2639 register_t *retval;
2640 {
2641 struct netbsd32_setsockopt_args /* {
2642 syscallarg(int) s;
2643 syscallarg(int) level;
2644 syscallarg(int) name;
2645 syscallarg(const netbsd32_voidp) val;
2646 syscallarg(int) valsize;
2647 } */ *uap = v;
2648 struct sys_setsockopt_args ua;
2649
2650 NETBSD32TO64_UAP(s);
2651 NETBSD32TO64_UAP(level);
2652 NETBSD32TO64_UAP(name);
2653 NETBSD32TOP_UAP(val, void);
2654 NETBSD32TO64_UAP(valsize);
2655 /* may be more efficient to do this inline. */
2656 return (sys_setsockopt(p, &ua, retval));
2657 }
2658
2659 int
2660 netbsd32_listen(p, v, retval)
2661 struct proc *p;
2662 void *v;
2663 register_t *retval;
2664 {
2665 struct netbsd32_listen_args /* {
2666 syscallarg(int) s;
2667 syscallarg(int) backlog;
2668 } */ *uap = v;
2669 struct sys_listen_args ua;
2670
2671 NETBSD32TO64_UAP(s);
2672 NETBSD32TO64_UAP(backlog);
2673 return (sys_listen(p, &ua, retval));
2674 }
2675
2676 int
2677 netbsd32_gettimeofday(p, v, retval)
2678 struct proc *p;
2679 void *v;
2680 register_t *retval;
2681 {
2682 struct netbsd32_gettimeofday_args /* {
2683 syscallarg(netbsd32_timevalp_t) tp;
2684 syscallarg(netbsd32_timezonep_t) tzp;
2685 } */ *uap = v;
2686 struct timeval atv;
2687 struct netbsd32_timeval tv32;
2688 int error = 0;
2689 struct netbsd32_timezone tzfake;
2690
2691 if (SCARG(uap, tp)) {
2692 microtime(&atv);
2693 netbsd32_from_timeval(&atv, &tv32);
2694 error = copyout(&tv32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tv32));
2695 if (error)
2696 return (error);
2697 }
2698 if (SCARG(uap, tzp)) {
2699 /*
2700 * NetBSD has no kernel notion of time zone, so we just
2701 * fake up a timezone struct and return it if demanded.
2702 */
2703 tzfake.tz_minuteswest = 0;
2704 tzfake.tz_dsttime = 0;
2705 error = copyout(&tzfake, (caddr_t)(u_long)SCARG(uap, tzp), sizeof(tzfake));
2706 }
2707 return (error);
2708 }
2709
2710 #if 0
2711 static int settime32 __P((struct timeval *));
2712 /* This function is used by clock_settime and settimeofday */
2713 static int
2714 settime32(tv)
2715 struct timeval *tv;
2716 {
2717 struct timeval delta;
2718 int s;
2719
2720 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
2721 s = splclock();
2722 timersub(tv, &time, &delta);
2723 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
2724 return (EPERM);
2725 #ifdef notyet
2726 if ((delta.tv_sec < 86400) && securelevel > 0)
2727 return (EPERM);
2728 #endif
2729 time = *tv;
2730 (void) spllowersoftclock();
2731 timeradd(&boottime, &delta, &boottime);
2732 timeradd(&runtime, &delta, &runtime);
2733 # if defined(NFS) || defined(NFSSERVER)
2734 {
2735 extern void nqnfs_lease_updatetime __P((int));
2736
2737 nqnfs_lease_updatetime(delta.tv_sec);
2738 }
2739 # endif
2740 splx(s);
2741 resettodr();
2742 return (0);
2743 }
2744 #endif
2745
2746 int
2747 netbsd32_settimeofday(p, v, retval)
2748 struct proc *p;
2749 void *v;
2750 register_t *retval;
2751 {
2752 struct netbsd32_settimeofday_args /* {
2753 syscallarg(const netbsd32_timevalp_t) tv;
2754 syscallarg(const netbsd32_timezonep_t) tzp;
2755 } */ *uap = v;
2756 struct netbsd32_timeval atv32;
2757 struct timeval atv;
2758 struct netbsd32_timezone atz;
2759 int error;
2760
2761 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
2762 return (error);
2763 /* Verify all parameters before changing time. */
2764 if (SCARG(uap, tv) && (error = copyin((caddr_t)(u_long)SCARG(uap, tv),
2765 &atv32, sizeof(atv32))))
2766 return (error);
2767 netbsd32_to_timeval(&atv32, &atv);
2768 /* XXX since we don't use tz, probably no point in doing copyin. */
2769 if (SCARG(uap, tzp) && (error = copyin((caddr_t)(u_long)SCARG(uap, tzp),
2770 &atz, sizeof(atz))))
2771 return (error);
2772 if (SCARG(uap, tv))
2773 if ((error = settime(&atv)))
2774 return (error);
2775 /*
2776 * NetBSD has no kernel notion of time zone, and only an
2777 * obsolete program would try to set it, so we log a warning.
2778 */
2779 if (SCARG(uap, tzp))
2780 printf("pid %d attempted to set the "
2781 "(obsolete) kernel time zone\n", p->p_pid);
2782 return (0);
2783 }
2784
2785 int
2786 netbsd32_fchown(p, v, retval)
2787 struct proc *p;
2788 void *v;
2789 register_t *retval;
2790 {
2791 struct netbsd32_fchown_args /* {
2792 syscallarg(int) fd;
2793 syscallarg(uid_t) uid;
2794 syscallarg(gid_t) gid;
2795 } */ *uap = v;
2796 struct sys_fchown_args ua;
2797
2798 NETBSD32TO64_UAP(fd);
2799 NETBSD32TO64_UAP(uid);
2800 NETBSD32TO64_UAP(gid);
2801 return (sys_fchown(p, &ua, retval));
2802 }
2803
2804 int
2805 netbsd32_fchmod(p, v, retval)
2806 struct proc *p;
2807 void *v;
2808 register_t *retval;
2809 {
2810 struct netbsd32_fchmod_args /* {
2811 syscallarg(int) fd;
2812 syscallarg(mode_t) mode;
2813 } */ *uap = v;
2814 struct sys_fchmod_args ua;
2815
2816 NETBSD32TO64_UAP(fd);
2817 NETBSD32TO64_UAP(mode);
2818 return (sys_fchmod(p, &ua, retval));
2819 }
2820
2821 int
2822 netbsd32_setreuid(p, v, retval)
2823 struct proc *p;
2824 void *v;
2825 register_t *retval;
2826 {
2827 struct netbsd32_setreuid_args /* {
2828 syscallarg(uid_t) ruid;
2829 syscallarg(uid_t) euid;
2830 } */ *uap = v;
2831 struct sys_setreuid_args ua;
2832
2833 NETBSD32TO64_UAP(ruid);
2834 NETBSD32TO64_UAP(euid);
2835 return (sys_setreuid(p, &ua, retval));
2836 }
2837
2838 int
2839 netbsd32_setregid(p, v, retval)
2840 struct proc *p;
2841 void *v;
2842 register_t *retval;
2843 {
2844 struct netbsd32_setregid_args /* {
2845 syscallarg(gid_t) rgid;
2846 syscallarg(gid_t) egid;
2847 } */ *uap = v;
2848 struct sys_setregid_args ua;
2849
2850 NETBSD32TO64_UAP(rgid);
2851 NETBSD32TO64_UAP(egid);
2852 return (sys_setregid(p, &ua, retval));
2853 }
2854
2855 int
2856 netbsd32_getrusage(p, v, retval)
2857 struct proc *p;
2858 void *v;
2859 register_t *retval;
2860 {
2861 struct netbsd32_getrusage_args /* {
2862 syscallarg(int) who;
2863 syscallarg(netbsd32_rusagep_t) rusage;
2864 } */ *uap = v;
2865 struct rusage *rup;
2866 struct netbsd32_rusage ru;
2867
2868 switch (SCARG(uap, who)) {
2869
2870 case RUSAGE_SELF:
2871 rup = &p->p_stats->p_ru;
2872 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
2873 break;
2874
2875 case RUSAGE_CHILDREN:
2876 rup = &p->p_stats->p_cru;
2877 break;
2878
2879 default:
2880 return (EINVAL);
2881 }
2882 netbsd32_from_rusage(rup, &ru);
2883 return (copyout(&ru, (caddr_t)(u_long)SCARG(uap, rusage), sizeof(ru)));
2884 }
2885
2886 int
2887 netbsd32_getsockopt(p, v, retval)
2888 struct proc *p;
2889 void *v;
2890 register_t *retval;
2891 {
2892 struct netbsd32_getsockopt_args /* {
2893 syscallarg(int) s;
2894 syscallarg(int) level;
2895 syscallarg(int) name;
2896 syscallarg(netbsd32_voidp) val;
2897 syscallarg(netbsd32_intp) avalsize;
2898 } */ *uap = v;
2899 struct sys_getsockopt_args ua;
2900
2901 NETBSD32TO64_UAP(s);
2902 NETBSD32TO64_UAP(level);
2903 NETBSD32TO64_UAP(name);
2904 NETBSD32TOP_UAP(val, void);
2905 NETBSD32TOP_UAP(avalsize, int);
2906 return (sys_getsockopt(p, &ua, retval));
2907 }
2908
2909 int
2910 netbsd32_readv(p, v, retval)
2911 struct proc *p;
2912 void *v;
2913 register_t *retval;
2914 {
2915 struct netbsd32_readv_args /* {
2916 syscallarg(int) fd;
2917 syscallarg(const netbsd32_iovecp_t) iovp;
2918 syscallarg(int) iovcnt;
2919 } */ *uap = v;
2920 int fd = SCARG(uap, fd);
2921 struct file *fp;
2922 struct filedesc *fdp = p->p_fd;
2923
2924 if ((u_int)fd >= fdp->fd_nfiles ||
2925 (fp = fdp->fd_ofiles[fd]) == NULL ||
2926 (fp->f_flag & FREAD) == 0)
2927 return (EBADF);
2928
2929 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
2930 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
2931 }
2932
2933 /* Damn thing copies in the iovec! */
2934 int
2935 dofilereadv32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
2936 struct proc *p;
2937 int fd;
2938 struct file *fp;
2939 struct netbsd32_iovec *iovp;
2940 int iovcnt;
2941 off_t *offset;
2942 int flags;
2943 register_t *retval;
2944 {
2945 struct uio auio;
2946 struct iovec *iov;
2947 struct iovec *needfree;
2948 struct iovec aiov[UIO_SMALLIOV];
2949 long i, cnt, error = 0;
2950 u_int iovlen;
2951 #ifdef KTRACE
2952 struct iovec *ktriov = NULL;
2953 #endif
2954
2955 /* note: can't use iovlen until iovcnt is validated */
2956 iovlen = iovcnt * sizeof(struct iovec);
2957 if ((u_int)iovcnt > UIO_SMALLIOV) {
2958 if ((u_int)iovcnt > IOV_MAX)
2959 return (EINVAL);
2960 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
2961 needfree = iov;
2962 } else if ((u_int)iovcnt > 0) {
2963 iov = aiov;
2964 needfree = NULL;
2965 } else
2966 return (EINVAL);
2967
2968 auio.uio_iov = iov;
2969 auio.uio_iovcnt = iovcnt;
2970 auio.uio_rw = UIO_READ;
2971 auio.uio_segflg = UIO_USERSPACE;
2972 auio.uio_procp = p;
2973 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
2974 if (error)
2975 goto done;
2976 auio.uio_resid = 0;
2977 for (i = 0; i < iovcnt; i++) {
2978 auio.uio_resid += iov->iov_len;
2979 /*
2980 * Reads return ssize_t because -1 is returned on error.
2981 * Therefore we must restrict the length to SSIZE_MAX to
2982 * avoid garbage return values.
2983 */
2984 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
2985 error = EINVAL;
2986 goto done;
2987 }
2988 iov++;
2989 }
2990 #ifdef KTRACE
2991 /*
2992 * if tracing, save a copy of iovec
2993 */
2994 if (KTRPOINT(p, KTR_GENIO)) {
2995 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
2996 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
2997 }
2998 #endif
2999 cnt = auio.uio_resid;
3000 error = (*fp->f_ops->fo_read)(fp, offset, &auio, fp->f_cred, flags);
3001 if (error)
3002 if (auio.uio_resid != cnt && (error == ERESTART ||
3003 error == EINTR || error == EWOULDBLOCK))
3004 error = 0;
3005 cnt -= auio.uio_resid;
3006 #ifdef KTRACE
3007 if (KTRPOINT(p, KTR_GENIO))
3008 if (error == 0) {
3009 ktrgenio(p, fd, UIO_READ, ktriov, cnt,
3010 error);
3011 FREE(ktriov, M_TEMP);
3012 }
3013 #endif
3014 *retval = cnt;
3015 done:
3016 if (needfree)
3017 FREE(needfree, M_IOV);
3018 return (error);
3019 }
3020
3021
3022 int
3023 netbsd32_writev(p, v, retval)
3024 struct proc *p;
3025 void *v;
3026 register_t *retval;
3027 {
3028 struct netbsd32_writev_args /* {
3029 syscallarg(int) fd;
3030 syscallarg(const netbsd32_iovecp_t) iovp;
3031 syscallarg(int) iovcnt;
3032 } */ *uap = v;
3033 int fd = SCARG(uap, fd);
3034 struct file *fp;
3035 struct filedesc *fdp = p->p_fd;
3036
3037 if ((u_int)fd >= fdp->fd_nfiles ||
3038 (fp = fdp->fd_ofiles[fd]) == NULL ||
3039 (fp->f_flag & FWRITE) == 0)
3040 return (EBADF);
3041
3042 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
3043 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
3044 }
3045
3046 int
3047 dofilewritev32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
3048 struct proc *p;
3049 int fd;
3050 struct file *fp;
3051 struct netbsd32_iovec *iovp;
3052 int iovcnt;
3053 off_t *offset;
3054 int flags;
3055 register_t *retval;
3056 {
3057 struct uio auio;
3058 struct iovec *iov;
3059 struct iovec *needfree;
3060 struct iovec aiov[UIO_SMALLIOV];
3061 long i, cnt, error = 0;
3062 u_int iovlen;
3063 #ifdef KTRACE
3064 struct iovec *ktriov = NULL;
3065 #endif
3066
3067 /* note: can't use iovlen until iovcnt is validated */
3068 iovlen = iovcnt * sizeof(struct iovec);
3069 if ((u_int)iovcnt > UIO_SMALLIOV) {
3070 if ((u_int)iovcnt > IOV_MAX)
3071 return (EINVAL);
3072 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
3073 needfree = iov;
3074 } else if ((u_int)iovcnt > 0) {
3075 iov = aiov;
3076 needfree = NULL;
3077 } else
3078 return (EINVAL);
3079
3080 auio.uio_iov = iov;
3081 auio.uio_iovcnt = iovcnt;
3082 auio.uio_rw = UIO_WRITE;
3083 auio.uio_segflg = UIO_USERSPACE;
3084 auio.uio_procp = p;
3085 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
3086 if (error)
3087 goto done;
3088 auio.uio_resid = 0;
3089 for (i = 0; i < iovcnt; i++) {
3090 auio.uio_resid += iov->iov_len;
3091 /*
3092 * Writes return ssize_t because -1 is returned on error.
3093 * Therefore we must restrict the length to SSIZE_MAX to
3094 * avoid garbage return values.
3095 */
3096 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
3097 error = EINVAL;
3098 goto done;
3099 }
3100 iov++;
3101 }
3102 #ifdef KTRACE
3103 /*
3104 * if tracing, save a copy of iovec
3105 */
3106 if (KTRPOINT(p, KTR_GENIO)) {
3107 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
3108 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
3109 }
3110 #endif
3111 cnt = auio.uio_resid;
3112 error = (*fp->f_ops->fo_write)(fp, offset, &auio, fp->f_cred, flags);
3113 if (error) {
3114 if (auio.uio_resid != cnt && (error == ERESTART ||
3115 error == EINTR || error == EWOULDBLOCK))
3116 error = 0;
3117 if (error == EPIPE)
3118 psignal(p, SIGPIPE);
3119 }
3120 cnt -= auio.uio_resid;
3121 #ifdef KTRACE
3122 if (KTRPOINT(p, KTR_GENIO))
3123 if (error == 0) {
3124 ktrgenio(p, fd, UIO_WRITE, ktriov, cnt,
3125 error);
3126 FREE(ktriov, M_TEMP);
3127 }
3128 #endif
3129 *retval = cnt;
3130 done:
3131 if (needfree)
3132 FREE(needfree, M_IOV);
3133 return (error);
3134 }
3135
3136
3137 int
3138 netbsd32_rename(p, v, retval)
3139 struct proc *p;
3140 void *v;
3141 register_t *retval;
3142 {
3143 struct netbsd32_rename_args /* {
3144 syscallarg(const netbsd32_charp) from;
3145 syscallarg(const netbsd32_charp) to;
3146 } */ *uap = v;
3147 struct sys_rename_args ua;
3148
3149 NETBSD32TOP_UAP(from, const char);
3150 NETBSD32TOP_UAP(to, const char)
3151
3152 return (sys_rename(p, &ua, retval));
3153 }
3154
3155 int
3156 netbsd32_flock(p, v, retval)
3157 struct proc *p;
3158 void *v;
3159 register_t *retval;
3160 {
3161 struct netbsd32_flock_args /* {
3162 syscallarg(int) fd;
3163 syscallarg(int) how;
3164 } */ *uap = v;
3165 struct sys_flock_args ua;
3166
3167 NETBSD32TO64_UAP(fd);
3168 NETBSD32TO64_UAP(how)
3169
3170 return (sys_flock(p, &ua, retval));
3171 }
3172
3173 int
3174 netbsd32_mkfifo(p, v, retval)
3175 struct proc *p;
3176 void *v;
3177 register_t *retval;
3178 {
3179 struct netbsd32_mkfifo_args /* {
3180 syscallarg(const netbsd32_charp) path;
3181 syscallarg(mode_t) mode;
3182 } */ *uap = v;
3183 struct sys_mkfifo_args ua;
3184
3185 NETBSD32TOP_UAP(path, const char)
3186 NETBSD32TO64_UAP(mode);
3187 return (sys_mkfifo(p, &ua, retval));
3188 }
3189
3190 int
3191 netbsd32_shutdown(p, v, retval)
3192 struct proc *p;
3193 void *v;
3194 register_t *retval;
3195 {
3196 struct netbsd32_shutdown_args /* {
3197 syscallarg(int) s;
3198 syscallarg(int) how;
3199 } */ *uap = v;
3200 struct sys_shutdown_args ua;
3201
3202 NETBSD32TO64_UAP(s)
3203 NETBSD32TO64_UAP(how);
3204 return (sys_shutdown(p, &ua, retval));
3205 }
3206
3207 int
3208 netbsd32_socketpair(p, v, retval)
3209 struct proc *p;
3210 void *v;
3211 register_t *retval;
3212 {
3213 struct netbsd32_socketpair_args /* {
3214 syscallarg(int) domain;
3215 syscallarg(int) type;
3216 syscallarg(int) protocol;
3217 syscallarg(netbsd32_intp) rsv;
3218 } */ *uap = v;
3219 struct sys_socketpair_args ua;
3220
3221 NETBSD32TO64_UAP(domain);
3222 NETBSD32TO64_UAP(type);
3223 NETBSD32TO64_UAP(protocol);
3224 NETBSD32TOP_UAP(rsv, int);
3225 /* Since we're just copying out two `int's we can do this */
3226 return (sys_socketpair(p, &ua, retval));
3227 }
3228
3229 int
3230 netbsd32_mkdir(p, v, retval)
3231 struct proc *p;
3232 void *v;
3233 register_t *retval;
3234 {
3235 struct netbsd32_mkdir_args /* {
3236 syscallarg(const netbsd32_charp) path;
3237 syscallarg(mode_t) mode;
3238 } */ *uap = v;
3239 struct sys_mkdir_args ua;
3240
3241 NETBSD32TOP_UAP(path, const char)
3242 NETBSD32TO64_UAP(mode);
3243 return (sys_mkdir(p, &ua, retval));
3244 }
3245
3246 int
3247 netbsd32_rmdir(p, v, retval)
3248 struct proc *p;
3249 void *v;
3250 register_t *retval;
3251 {
3252 struct netbsd32_rmdir_args /* {
3253 syscallarg(const netbsd32_charp) path;
3254 } */ *uap = v;
3255 struct sys_rmdir_args ua;
3256
3257 NETBSD32TOP_UAP(path, const char);
3258 return (sys_rmdir(p, &ua, retval));
3259 }
3260
3261 int
3262 netbsd32_utimes(p, v, retval)
3263 struct proc *p;
3264 void *v;
3265 register_t *retval;
3266 {
3267 struct netbsd32_utimes_args /* {
3268 syscallarg(const netbsd32_charp) path;
3269 syscallarg(const netbsd32_timevalp_t) tptr;
3270 } */ *uap = v;
3271 int error;
3272 struct nameidata nd;
3273
3274 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3275 if ((error = namei(&nd)) != 0)
3276 return (error);
3277
3278 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
3279
3280 vrele(nd.ni_vp);
3281 return (error);
3282 }
3283
3284 /*
3285 * Common routine to set access and modification times given a vnode.
3286 */
3287 static int
3288 change_utimes32(vp, tptr, p)
3289 struct vnode *vp;
3290 struct timeval *tptr;
3291 struct proc *p;
3292 {
3293 struct netbsd32_timeval tv32[2];
3294 struct timeval tv[2];
3295 struct vattr vattr;
3296 int error;
3297
3298 VATTR_NULL(&vattr);
3299 if (tptr == NULL) {
3300 microtime(&tv[0]);
3301 tv[1] = tv[0];
3302 vattr.va_vaflags |= VA_UTIMES_NULL;
3303 } else {
3304 error = copyin(tptr, tv, sizeof(tv));
3305 if (error)
3306 return (error);
3307 }
3308 netbsd32_to_timeval(&tv32[0], &tv[0]);
3309 netbsd32_to_timeval(&tv32[1], &tv[1]);
3310 VOP_LEASE(vp, p, p->p_ucred, LEASE_WRITE);
3311 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3312 vattr.va_atime.tv_sec = tv[0].tv_sec;
3313 vattr.va_atime.tv_nsec = tv[0].tv_usec * 1000;
3314 vattr.va_mtime.tv_sec = tv[1].tv_sec;
3315 vattr.va_mtime.tv_nsec = tv[1].tv_usec * 1000;
3316 error = VOP_SETATTR(vp, &vattr, p->p_ucred, p);
3317 VOP_UNLOCK(vp, 0);
3318 return (error);
3319 }
3320
3321 int
3322 netbsd32_adjtime(p, v, retval)
3323 struct proc *p;
3324 void *v;
3325 register_t *retval;
3326 {
3327 struct netbsd32_adjtime_args /* {
3328 syscallarg(const netbsd32_timevalp_t) delta;
3329 syscallarg(netbsd32_timevalp_t) olddelta;
3330 } */ *uap = v;
3331 struct netbsd32_timeval atv;
3332 int32_t ndelta, ntickdelta, odelta;
3333 int s, error;
3334 extern long bigadj, timedelta;
3335 extern int tickdelta;
3336
3337 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
3338 return (error);
3339
3340 error = copyin((caddr_t)(u_long)SCARG(uap, delta), &atv, sizeof(struct timeval));
3341 if (error)
3342 return (error);
3343 /*
3344 * Compute the total correction and the rate at which to apply it.
3345 * Round the adjustment down to a whole multiple of the per-tick
3346 * delta, so that after some number of incremental changes in
3347 * hardclock(), tickdelta will become zero, lest the correction
3348 * overshoot and start taking us away from the desired final time.
3349 */
3350 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
3351 if (ndelta > bigadj)
3352 ntickdelta = 10 * tickadj;
3353 else
3354 ntickdelta = tickadj;
3355 if (ndelta % ntickdelta)
3356 ndelta = ndelta / ntickdelta * ntickdelta;
3357
3358 /*
3359 * To make hardclock()'s job easier, make the per-tick delta negative
3360 * if we want time to run slower; then hardclock can simply compute
3361 * tick + tickdelta, and subtract tickdelta from timedelta.
3362 */
3363 if (ndelta < 0)
3364 ntickdelta = -ntickdelta;
3365 s = splclock();
3366 odelta = timedelta;
3367 timedelta = ndelta;
3368 tickdelta = ntickdelta;
3369 splx(s);
3370
3371 if (SCARG(uap, olddelta)) {
3372 atv.tv_sec = odelta / 1000000;
3373 atv.tv_usec = odelta % 1000000;
3374 (void) copyout(&atv, (caddr_t)(u_long)SCARG(uap, olddelta),
3375 sizeof(struct timeval));
3376 }
3377 return (0);
3378 }
3379
3380 int
3381 netbsd32_quotactl(p, v, retval)
3382 struct proc *p;
3383 void *v;
3384 register_t *retval;
3385 {
3386 struct netbsd32_quotactl_args /* {
3387 syscallarg(const netbsd32_charp) path;
3388 syscallarg(int) cmd;
3389 syscallarg(int) uid;
3390 syscallarg(netbsd32_caddr_t) arg;
3391 } */ *uap = v;
3392 struct sys_quotactl_args ua;
3393
3394 NETBSD32TOP_UAP(path, const char);
3395 NETBSD32TO64_UAP(cmd);
3396 NETBSD32TO64_UAP(uid);
3397 NETBSD32TOX64_UAP(arg, caddr_t);
3398 return (sys_quotactl(p, &ua, retval));
3399 }
3400
3401 #if defined(NFS) || defined(NFSSERVER)
3402 int
3403 netbsd32_nfssvc(p, v, retval)
3404 struct proc *p;
3405 void *v;
3406 register_t *retval;
3407 {
3408 #if 0
3409 struct netbsd32_nfssvc_args /* {
3410 syscallarg(int) flag;
3411 syscallarg(netbsd32_voidp) argp;
3412 } */ *uap = v;
3413 struct sys_nfssvc_args ua;
3414
3415 NETBSD32TO64_UAP(flag);
3416 NETBSD32TOP_UAP(argp, void);
3417 return (sys_nfssvc(p, &ua, retval));
3418 #else
3419 /* Why would we want to support a 32-bit nfsd? */
3420 return (ENOSYS);
3421 #endif
3422 }
3423 #endif
3424
3425 int
3426 netbsd32_statfs(p, v, retval)
3427 struct proc *p;
3428 void *v;
3429 register_t *retval;
3430 {
3431 struct netbsd32_statfs_args /* {
3432 syscallarg(const netbsd32_charp) path;
3433 syscallarg(netbsd32_statfsp_t) buf;
3434 } */ *uap = v;
3435 struct mount *mp;
3436 struct statfs *sp;
3437 struct netbsd32_statfs s32;
3438 int error;
3439 struct nameidata nd;
3440
3441 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3442 if ((error = namei(&nd)) != 0)
3443 return (error);
3444 mp = nd.ni_vp->v_mount;
3445 sp = &mp->mnt_stat;
3446 vrele(nd.ni_vp);
3447 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3448 return (error);
3449 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3450 netbsd32_from_statfs(sp, &s32);
3451 return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3452 }
3453
3454 int
3455 netbsd32_fstatfs(p, v, retval)
3456 struct proc *p;
3457 void *v;
3458 register_t *retval;
3459 {
3460 struct netbsd32_fstatfs_args /* {
3461 syscallarg(int) fd;
3462 syscallarg(netbsd32_statfsp_t) buf;
3463 } */ *uap = v;
3464 struct file *fp;
3465 struct mount *mp;
3466 struct statfs *sp;
3467 struct netbsd32_statfs s32;
3468 int error;
3469
3470 /* getvnode() will use the descriptor for us */
3471 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3472 return (error);
3473 mp = ((struct vnode *)fp->f_data)->v_mount;
3474 sp = &mp->mnt_stat;
3475 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3476 goto out;
3477 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3478 netbsd32_from_statfs(sp, &s32);
3479 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32));
3480 out:
3481 FILE_UNUSE(fp, p);
3482 return (error);
3483 }
3484
3485 #if defined(NFS) || defined(NFSSERVER)
3486 int
3487 netbsd32_getfh(p, v, retval)
3488 struct proc *p;
3489 void *v;
3490 register_t *retval;
3491 {
3492 struct netbsd32_getfh_args /* {
3493 syscallarg(const netbsd32_charp) fname;
3494 syscallarg(netbsd32_fhandlep_t) fhp;
3495 } */ *uap = v;
3496 struct sys_getfh_args ua;
3497
3498 NETBSD32TOP_UAP(fname, const char);
3499 NETBSD32TOP_UAP(fhp, struct fhandle);
3500 /* Lucky for us a fhandlep_t doesn't change sizes */
3501 return (sys_getfh(p, &ua, retval));
3502 }
3503 #endif
3504
3505 int
3506 netbsd32_sysarch(p, v, retval)
3507 struct proc *p;
3508 void *v;
3509 register_t *retval;
3510 {
3511 struct netbsd32_sysarch_args /* {
3512 syscallarg(int) op;
3513 syscallarg(netbsd32_voidp) parms;
3514 } */ *uap = v;
3515
3516 switch (SCARG(uap, op)) {
3517 default:
3518 printf("(sparc64) netbsd32_sysarch(%d)\n", SCARG(uap, op));
3519 return EINVAL;
3520 }
3521 }
3522
3523 int
3524 netbsd32_pread(p, v, retval)
3525 struct proc *p;
3526 void *v;
3527 register_t *retval;
3528 {
3529 struct netbsd32_pread_args /* {
3530 syscallarg(int) fd;
3531 syscallarg(netbsd32_voidp) buf;
3532 syscallarg(netbsd32_size_t) nbyte;
3533 syscallarg(int) pad;
3534 syscallarg(off_t) offset;
3535 } */ *uap = v;
3536 struct sys_pread_args ua;
3537 ssize_t rt;
3538 int error;
3539
3540 NETBSD32TO64_UAP(fd);
3541 NETBSD32TOP_UAP(buf, void);
3542 NETBSD32TOX_UAP(nbyte, size_t);
3543 NETBSD32TO64_UAP(pad);
3544 NETBSD32TO64_UAP(offset);
3545 error = sys_pread(p, &ua, (register_t *)&rt);
3546 *retval = rt;
3547 return (error);
3548 }
3549
3550 int
3551 netbsd32_pwrite(p, v, retval)
3552 struct proc *p;
3553 void *v;
3554 register_t *retval;
3555 {
3556 struct netbsd32_pwrite_args /* {
3557 syscallarg(int) fd;
3558 syscallarg(const netbsd32_voidp) buf;
3559 syscallarg(netbsd32_size_t) nbyte;
3560 syscallarg(int) pad;
3561 syscallarg(off_t) offset;
3562 } */ *uap = v;
3563 struct sys_pwrite_args ua;
3564 ssize_t rt;
3565 int error;
3566
3567 NETBSD32TO64_UAP(fd);
3568 NETBSD32TOP_UAP(buf, void);
3569 NETBSD32TOX_UAP(nbyte, size_t);
3570 NETBSD32TO64_UAP(pad);
3571 NETBSD32TO64_UAP(offset);
3572 error = sys_pwrite(p, &ua, (register_t *)&rt);
3573 *retval = rt;
3574 return (error);
3575 }
3576
3577 #ifdef NTP
3578 int
3579 netbsd32_ntp_gettime(p, v, retval)
3580 struct proc *p;
3581 void *v;
3582 register_t *retval;
3583 {
3584 struct netbsd32_ntp_gettime_args /* {
3585 syscallarg(netbsd32_ntptimevalp_t) ntvp;
3586 } */ *uap = v;
3587 struct netbsd32_ntptimeval ntv32;
3588 struct timeval atv;
3589 struct ntptimeval ntv;
3590 int error = 0;
3591 int s;
3592
3593 /* The following are NTP variables */
3594 extern long time_maxerror;
3595 extern long time_esterror;
3596 extern int time_status;
3597 extern int time_state; /* clock state */
3598 extern int time_status; /* clock status bits */
3599
3600 if (SCARG(uap, ntvp)) {
3601 s = splclock();
3602 #ifdef EXT_CLOCK
3603 /*
3604 * The microtime() external clock routine returns a
3605 * status code. If less than zero, we declare an error
3606 * in the clock status word and return the kernel
3607 * (software) time variable. While there are other
3608 * places that call microtime(), this is the only place
3609 * that matters from an application point of view.
3610 */
3611 if (microtime(&atv) < 0) {
3612 time_status |= STA_CLOCKERR;
3613 ntv.time = time;
3614 } else
3615 time_status &= ~STA_CLOCKERR;
3616 #else /* EXT_CLOCK */
3617 microtime(&atv);
3618 #endif /* EXT_CLOCK */
3619 ntv.time = atv;
3620 ntv.maxerror = time_maxerror;
3621 ntv.esterror = time_esterror;
3622 (void) splx(s);
3623
3624 netbsd32_from_timeval(&ntv.time, &ntv32.time);
3625 ntv32.maxerror = (netbsd32_long)ntv.maxerror;
3626 ntv32.esterror = (netbsd32_long)ntv.esterror;
3627 error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, ntvp),
3628 sizeof(ntv32));
3629 }
3630 if (!error) {
3631
3632 /*
3633 * Status word error decode. If any of these conditions
3634 * occur, an error is returned, instead of the status
3635 * word. Most applications will care only about the fact
3636 * the system clock may not be trusted, not about the
3637 * details.
3638 *
3639 * Hardware or software error
3640 */
3641 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3642
3643 /*
3644 * PPS signal lost when either time or frequency
3645 * synchronization requested
3646 */
3647 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3648 !(time_status & STA_PPSSIGNAL)) ||
3649
3650 /*
3651 * PPS jitter exceeded when time synchronization
3652 * requested
3653 */
3654 (time_status & STA_PPSTIME &&
3655 time_status & STA_PPSJITTER) ||
3656
3657 /*
3658 * PPS wander exceeded or calibration error when
3659 * frequency synchronization requested
3660 */
3661 (time_status & STA_PPSFREQ &&
3662 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3663 *retval = TIME_ERROR;
3664 else
3665 *retval = time_state;
3666 }
3667 return(error);
3668 }
3669
3670 int
3671 netbsd32_ntp_adjtime(p, v, retval)
3672 struct proc *p;
3673 void *v;
3674 register_t *retval;
3675 {
3676 struct netbsd32_ntp_adjtime_args /* {
3677 syscallarg(netbsd32_timexp_t) tp;
3678 } */ *uap = v;
3679 struct netbsd32_timex ntv32;
3680 struct timex ntv;
3681 int error = 0;
3682 int modes;
3683 int s;
3684 extern long time_freq; /* frequency offset (scaled ppm) */
3685 extern long time_maxerror;
3686 extern long time_esterror;
3687 extern int time_state; /* clock state */
3688 extern int time_status; /* clock status bits */
3689 extern long time_constant; /* pll time constant */
3690 extern long time_offset; /* time offset (us) */
3691 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
3692 extern long time_precision; /* clock precision (us) */
3693
3694 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), (caddr_t)&ntv32,
3695 sizeof(ntv32))))
3696 return (error);
3697 netbsd32_to_timex(&ntv32, &ntv);
3698
3699 /*
3700 * Update selected clock variables - only the superuser can
3701 * change anything. Note that there is no error checking here on
3702 * the assumption the superuser should know what it is doing.
3703 */
3704 modes = ntv.modes;
3705 if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
3706 return (error);
3707
3708 s = splclock();
3709 if (modes & MOD_FREQUENCY)
3710 #ifdef PPS_SYNC
3711 time_freq = ntv.freq - pps_freq;
3712 #else /* PPS_SYNC */
3713 time_freq = ntv.freq;
3714 #endif /* PPS_SYNC */
3715 if (modes & MOD_MAXERROR)
3716 time_maxerror = ntv.maxerror;
3717 if (modes & MOD_ESTERROR)
3718 time_esterror = ntv.esterror;
3719 if (modes & MOD_STATUS) {
3720 time_status &= STA_RONLY;
3721 time_status |= ntv.status & ~STA_RONLY;
3722 }
3723 if (modes & MOD_TIMECONST)
3724 time_constant = ntv.constant;
3725 if (modes & MOD_OFFSET)
3726 hardupdate(ntv.offset);
3727
3728 /*
3729 * Retrieve all clock variables
3730 */
3731 if (time_offset < 0)
3732 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
3733 else
3734 ntv.offset = time_offset >> SHIFT_UPDATE;
3735 #ifdef PPS_SYNC
3736 ntv.freq = time_freq + pps_freq;
3737 #else /* PPS_SYNC */
3738 ntv.freq = time_freq;
3739 #endif /* PPS_SYNC */
3740 ntv.maxerror = time_maxerror;
3741 ntv.esterror = time_esterror;
3742 ntv.status = time_status;
3743 ntv.constant = time_constant;
3744 ntv.precision = time_precision;
3745 ntv.tolerance = time_tolerance;
3746 #ifdef PPS_SYNC
3747 ntv.shift = pps_shift;
3748 ntv.ppsfreq = pps_freq;
3749 ntv.jitter = pps_jitter >> PPS_AVG;
3750 ntv.stabil = pps_stabil;
3751 ntv.calcnt = pps_calcnt;
3752 ntv.errcnt = pps_errcnt;
3753 ntv.jitcnt = pps_jitcnt;
3754 ntv.stbcnt = pps_stbcnt;
3755 #endif /* PPS_SYNC */
3756 (void)splx(s);
3757
3758 netbsd32_from_timex(&ntv, &ntv32);
3759 error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, tp),
3760 sizeof(ntv32));
3761 if (!error) {
3762
3763 /*
3764 * Status word error decode. See comments in
3765 * ntp_gettime() routine.
3766 */
3767 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3768 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3769 !(time_status & STA_PPSSIGNAL)) ||
3770 (time_status & STA_PPSTIME &&
3771 time_status & STA_PPSJITTER) ||
3772 (time_status & STA_PPSFREQ &&
3773 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3774 *retval = TIME_ERROR;
3775 else
3776 *retval = time_state;
3777 }
3778 return error;
3779 }
3780 #else
3781 int
3782 netbsd32_ntp_gettime(p, v, retval)
3783 struct proc *p;
3784 void *v;
3785 register_t *retval;
3786 {
3787 return(ENOSYS);
3788 }
3789
3790 int
3791 netbsd32_ntp_adjtime(p, v, retval)
3792 struct proc *p;
3793 void *v;
3794 register_t *retval;
3795 {
3796 return (ENOSYS);
3797 }
3798 #endif
3799
3800 int
3801 netbsd32_setgid(p, v, retval)
3802 struct proc *p;
3803 void *v;
3804 register_t *retval;
3805 {
3806 struct netbsd32_setgid_args /* {
3807 syscallarg(gid_t) gid;
3808 } */ *uap = v;
3809 struct sys_setgid_args ua;
3810
3811 NETBSD32TO64_UAP(gid);
3812 return (sys_setgid(p, v, retval));
3813 }
3814
3815 int
3816 netbsd32_setegid(p, v, retval)
3817 struct proc *p;
3818 void *v;
3819 register_t *retval;
3820 {
3821 struct netbsd32_setegid_args /* {
3822 syscallarg(gid_t) egid;
3823 } */ *uap = v;
3824 struct sys_setegid_args ua;
3825
3826 NETBSD32TO64_UAP(egid);
3827 return (sys_setegid(p, v, retval));
3828 }
3829
3830 int
3831 netbsd32_seteuid(p, v, retval)
3832 struct proc *p;
3833 void *v;
3834 register_t *retval;
3835 {
3836 struct netbsd32_seteuid_args /* {
3837 syscallarg(gid_t) euid;
3838 } */ *uap = v;
3839 struct sys_seteuid_args ua;
3840
3841 NETBSD32TO64_UAP(euid);
3842 return (sys_seteuid(p, v, retval));
3843 }
3844
3845 #ifdef LFS
3846 int
3847 netbsd32_sys_lfs_bmapv(p, v, retval)
3848 struct proc *p;
3849 void *v;
3850 register_t *retval;
3851 {
3852 #if 0
3853 struct netbsd32_lfs_bmapv_args /* {
3854 syscallarg(netbsd32_fsid_tp_t) fsidp;
3855 syscallarg(netbsd32_block_infop_t) blkiov;
3856 syscallarg(int) blkcnt;
3857 } */ *uap = v;
3858 struct sys_lfs_bmapv_args ua;
3859
3860 NETBSD32TOP_UAP(fdidp, struct fsid);
3861 NETBSD32TO64_UAP(blkcnt);
3862 /* XXX finish me */
3863 #else
3864
3865 return (ENOSYS); /* XXX */
3866 #endif
3867 }
3868
3869 int
3870 netbsd32_sys_lfs_markv(p, v, retval)
3871 struct proc *p;
3872 void *v;
3873 register_t *retval;
3874 {
3875 #if 0
3876 struct netbsd32_lfs_markv_args /* {
3877 syscallarg(netbsd32_fsid_tp_t) fsidp;
3878 syscallarg(netbsd32_block_infop_t) blkiov;
3879 syscallarg(int) blkcnt;
3880 } */ *uap = v;
3881 #endif
3882
3883 return (ENOSYS); /* XXX */
3884 }
3885
3886 int
3887 netbsd32_sys_lfs_segclean(p, v, retval)
3888 struct proc *p;
3889 void *v;
3890 register_t *retval;
3891 {
3892 #if 0
3893 struct netbsd32_lfs_segclean_args /* {
3894 syscallarg(netbsd32_fsid_tp_t) fsidp;
3895 syscallarg(netbsd32_u_long) segment;
3896 } */ *uap = v;
3897 #endif
3898
3899 return (ENOSYS); /* XXX */
3900 }
3901
3902 int
3903 netbsd32_sys_lfs_segwait(p, v, retval)
3904 struct proc *p;
3905 void *v;
3906 register_t *retval;
3907 {
3908 #if 0
3909 struct netbsd32_lfs_segwait_args /* {
3910 syscallarg(netbsd32_fsid_tp_t) fsidp;
3911 syscallarg(netbsd32_timevalp_t) tv;
3912 } */ *uap = v;
3913 #endif
3914
3915 return (ENOSYS); /* XXX */
3916 }
3917 #endif
3918
3919 int
3920 netbsd32_pathconf(p, v, retval)
3921 struct proc *p;
3922 void *v;
3923 register_t *retval;
3924 {
3925 struct netbsd32_pathconf_args /* {
3926 syscallarg(int) fd;
3927 syscallarg(int) name;
3928 } */ *uap = v;
3929 struct sys_pathconf_args ua;
3930 long rt;
3931 int error;
3932
3933 NETBSD32TOP_UAP(path, const char);
3934 NETBSD32TO64_UAP(name);
3935 error = sys_pathconf(p, &ua, (register_t *)&rt);
3936 *retval = rt;
3937 return (error);
3938 }
3939
3940 int
3941 netbsd32_fpathconf(p, v, retval)
3942 struct proc *p;
3943 void *v;
3944 register_t *retval;
3945 {
3946 struct netbsd32_fpathconf_args /* {
3947 syscallarg(int) fd;
3948 syscallarg(int) name;
3949 } */ *uap = v;
3950 struct sys_fpathconf_args ua;
3951 long rt;
3952 int error;
3953
3954 NETBSD32TO64_UAP(fd);
3955 NETBSD32TO64_UAP(name);
3956 error = sys_fpathconf(p, &ua, (register_t *)&rt);
3957 *retval = rt;
3958 return (error);
3959 }
3960
3961 int
3962 netbsd32_getrlimit(p, v, retval)
3963 struct proc *p;
3964 void *v;
3965 register_t *retval;
3966 {
3967 struct netbsd32_getrlimit_args /* {
3968 syscallarg(int) which;
3969 syscallarg(netbsd32_rlimitp_t) rlp;
3970 } */ *uap = v;
3971 int which = SCARG(uap, which);
3972
3973 if ((u_int)which >= RLIM_NLIMITS)
3974 return (EINVAL);
3975 return (copyout(&p->p_rlimit[which], (caddr_t)(u_long)SCARG(uap, rlp),
3976 sizeof(struct rlimit)));
3977 }
3978
3979 int
3980 netbsd32_setrlimit(p, v, retval)
3981 struct proc *p;
3982 void *v;
3983 register_t *retval;
3984 {
3985 struct netbsd32_setrlimit_args /* {
3986 syscallarg(int) which;
3987 syscallarg(const netbsd32_rlimitp_t) rlp;
3988 } */ *uap = v;
3989 int which = SCARG(uap, which);
3990 struct rlimit alim;
3991 int error;
3992
3993 error = copyin((caddr_t)(u_long)SCARG(uap, rlp), &alim, sizeof(struct rlimit));
3994 if (error)
3995 return (error);
3996 return (dosetrlimit(p, p->p_cred, which, &alim));
3997 }
3998
3999 int
4000 netbsd32_mmap(p, v, retval)
4001 struct proc *p;
4002 void *v;
4003 register_t *retval;
4004 {
4005 struct netbsd32_mmap_args /* {
4006 syscallarg(netbsd32_voidp) addr;
4007 syscallarg(netbsd32_size_t) len;
4008 syscallarg(int) prot;
4009 syscallarg(int) flags;
4010 syscallarg(int) fd;
4011 syscallarg(netbsd32_long) pad;
4012 syscallarg(off_t) pos;
4013 } */ *uap = v;
4014 struct sys_mmap_args ua;
4015 void *rt;
4016 int error;
4017
4018 NETBSD32TOP_UAP(addr, void);
4019 NETBSD32TOX_UAP(len, size_t);
4020 NETBSD32TO64_UAP(prot);
4021 NETBSD32TO64_UAP(flags);
4022 NETBSD32TO64_UAP(fd);
4023 NETBSD32TOX_UAP(pad, long);
4024 NETBSD32TOX_UAP(pos, off_t);
4025 error = sys_mmap(p, &ua, (register_t *)&rt);
4026 if ((long)rt > (long)UINT_MAX)
4027 printf("netbsd32_mmap: retval out of range: 0x%qx",
4028 rt);
4029 *retval = (netbsd32_voidp)(u_long)rt;
4030 return (error);
4031 }
4032
4033 int
4034 netbsd32_lseek(p, v, retval)
4035 struct proc *p;
4036 void *v;
4037 register_t *retval;
4038 {
4039 struct netbsd32_lseek_args /* {
4040 syscallarg(int) fd;
4041 syscallarg(int) pad;
4042 syscallarg(off_t) offset;
4043 syscallarg(int) whence;
4044 } */ *uap = v;
4045 struct sys_lseek_args ua;
4046
4047 NETBSD32TO64_UAP(fd);
4048 NETBSD32TO64_UAP(pad);
4049 NETBSD32TO64_UAP(offset);
4050 NETBSD32TO64_UAP(whence);
4051 return (sys_lseek(p, &ua, retval));
4052 }
4053
4054 int
4055 netbsd32_truncate(p, v, retval)
4056 struct proc *p;
4057 void *v;
4058 register_t *retval;
4059 {
4060 struct netbsd32_truncate_args /* {
4061 syscallarg(const netbsd32_charp) path;
4062 syscallarg(int) pad;
4063 syscallarg(off_t) length;
4064 } */ *uap = v;
4065 struct sys_truncate_args ua;
4066
4067 NETBSD32TOP_UAP(path, const char);
4068 NETBSD32TO64_UAP(pad);
4069 NETBSD32TO64_UAP(length);
4070 return (sys_truncate(p, &ua, retval));
4071 }
4072
4073 int
4074 netbsd32_ftruncate(p, v, retval)
4075 struct proc *p;
4076 void *v;
4077 register_t *retval;
4078 {
4079 struct netbsd32_ftruncate_args /* {
4080 syscallarg(int) fd;
4081 syscallarg(int) pad;
4082 syscallarg(off_t) length;
4083 } */ *uap = v;
4084 struct sys_ftruncate_args ua;
4085
4086 NETBSD32TO64_UAP(fd);
4087 NETBSD32TO64_UAP(pad);
4088 NETBSD32TO64_UAP(length);
4089 return (sys_ftruncate(p, &ua, retval));
4090 }
4091
4092 int
4093 netbsd32___sysctl(p, v, retval)
4094 struct proc *p;
4095 void *v;
4096 register_t *retval;
4097 {
4098 struct netbsd32___sysctl_args /* {
4099 syscallarg(netbsd32_intp) name;
4100 syscallarg(u_int) namelen;
4101 syscallarg(netbsd32_voidp) old;
4102 syscallarg(netbsd32_size_tp) oldlenp;
4103 syscallarg(netbsd32_voidp) new;
4104 syscallarg(netbsd32_size_t) newlen;
4105 } */ *uap = v;
4106 int error;
4107 netbsd32_size_t savelen = 0;
4108 size_t oldlen = 0;
4109 sysctlfn *fn;
4110 int name[CTL_MAXNAME];
4111
4112 /*
4113 * Some of these sysctl functions do their own copyin/copyout.
4114 * We need to disable or emulate the ones that need their
4115 * arguments converted.
4116 */
4117
4118 if (SCARG(uap, new) != NULL &&
4119 (error = suser(p->p_ucred, &p->p_acflag)))
4120 return (error);
4121 /*
4122 * all top-level sysctl names are non-terminal
4123 */
4124 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
4125 return (EINVAL);
4126 error = copyin((caddr_t)(u_long)SCARG(uap, name), &name,
4127 SCARG(uap, namelen) * sizeof(int));
4128 if (error)
4129 return (error);
4130
4131 switch (name[0]) {
4132 case CTL_KERN:
4133 fn = kern_sysctl;
4134 break;
4135 case CTL_HW:
4136 fn = hw_sysctl;
4137 break;
4138 case CTL_VM:
4139 fn = uvm_sysctl;
4140 break;
4141 case CTL_NET:
4142 fn = net_sysctl;
4143 break;
4144 case CTL_VFS:
4145 fn = vfs_sysctl;
4146 break;
4147 case CTL_MACHDEP:
4148 fn = cpu_sysctl;
4149 break;
4150 #ifdef DEBUG
4151 case CTL_DEBUG:
4152 fn = debug_sysctl;
4153 break;
4154 #endif
4155 #ifdef DDB
4156 case CTL_DDB:
4157 fn = ddb_sysctl;
4158 break;
4159 #endif
4160 case CTL_PROC:
4161 fn = proc_sysctl;
4162 break;
4163 default:
4164 return (EOPNOTSUPP);
4165 }
4166
4167 /*
4168 * XXX Hey, we wire `old', but what about `new'?
4169 */
4170
4171 if (SCARG(uap, oldlenp) &&
4172 (error = copyin((caddr_t)(u_long)SCARG(uap, oldlenp), &savelen,
4173 sizeof(savelen))))
4174 return (error);
4175 if (SCARG(uap, old) != NULL) {
4176 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
4177 if (error)
4178 return (error);
4179 if (uvm_vslock(p, (void *)(u_long)SCARG(uap, old), savelen,
4180 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
4181 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
4182 return (EFAULT);
4183 }
4184 oldlen = savelen;
4185 }
4186 error = (*fn)(name + 1, SCARG(uap, namelen) - 1,
4187 (void *)(u_long)SCARG(uap, old), &oldlen,
4188 (void *)(u_long)SCARG(uap, new), SCARG(uap, newlen), p);
4189 if (SCARG(uap, old) != NULL) {
4190 uvm_vsunlock(p, (void *)(u_long)SCARG(uap, old), savelen);
4191 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
4192 }
4193 savelen = oldlen;
4194 if (error)
4195 return (error);
4196 if (SCARG(uap, oldlenp))
4197 error = copyout(&savelen,
4198 (caddr_t)(u_long)SCARG(uap, oldlenp), sizeof(savelen));
4199 return (error);
4200 }
4201
4202 int
4203 netbsd32_mlock(p, v, retval)
4204 struct proc *p;
4205 void *v;
4206 register_t *retval;
4207 {
4208 struct netbsd32_mlock_args /* {
4209 syscallarg(const netbsd32_voidp) addr;
4210 syscallarg(netbsd32_size_t) len;
4211 } */ *uap = v;
4212 struct sys_mlock_args ua;
4213
4214 NETBSD32TOP_UAP(addr, const void);
4215 NETBSD32TO64_UAP(len);
4216 return (sys_mlock(p, &ua, retval));
4217 }
4218
4219 int
4220 netbsd32_munlock(p, v, retval)
4221 struct proc *p;
4222 void *v;
4223 register_t *retval;
4224 {
4225 struct netbsd32_munlock_args /* {
4226 syscallarg(const netbsd32_voidp) addr;
4227 syscallarg(netbsd32_size_t) len;
4228 } */ *uap = v;
4229 struct sys_munlock_args ua;
4230
4231 NETBSD32TOP_UAP(addr, const void);
4232 NETBSD32TO64_UAP(len);
4233 return (sys_munlock(p, &ua, retval));
4234 }
4235
4236 int
4237 netbsd32_undelete(p, v, retval)
4238 struct proc *p;
4239 void *v;
4240 register_t *retval;
4241 {
4242 struct netbsd32_undelete_args /* {
4243 syscallarg(const netbsd32_charp) path;
4244 } */ *uap = v;
4245 struct sys_undelete_args ua;
4246
4247 NETBSD32TOP_UAP(path, const char);
4248 return (sys_undelete(p, &ua, retval));
4249 }
4250
4251 int
4252 netbsd32_futimes(p, v, retval)
4253 struct proc *p;
4254 void *v;
4255 register_t *retval;
4256 {
4257 struct netbsd32_futimes_args /* {
4258 syscallarg(int) fd;
4259 syscallarg(const netbsd32_timevalp_t) tptr;
4260 } */ *uap = v;
4261 int error;
4262 struct file *fp;
4263
4264 /* getvnode() will use the descriptor for us */
4265 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
4266 return (error);
4267
4268 error = change_utimes32((struct vnode *)fp->f_data,
4269 (struct timeval *)(u_long)SCARG(uap, tptr), p);
4270 FILE_UNUSE(fp, p);
4271 return (error);
4272 }
4273
4274 int
4275 netbsd32_getpgid(p, v, retval)
4276 struct proc *p;
4277 void *v;
4278 register_t *retval;
4279 {
4280 struct netbsd32_getpgid_args /* {
4281 syscallarg(pid_t) pid;
4282 } */ *uap = v;
4283 struct sys_getpgid_args ua;
4284
4285 NETBSD32TO64_UAP(pid);
4286 return (sys_getpgid(p, &ua, retval));
4287 }
4288
4289 int
4290 netbsd32_reboot(p, v, retval)
4291 struct proc *p;
4292 void *v;
4293 register_t *retval;
4294 {
4295 struct netbsd32_reboot_args /* {
4296 syscallarg(int) opt;
4297 syscallarg(netbsd32_charp) bootstr;
4298 } */ *uap = v;
4299 struct sys_reboot_args ua;
4300
4301 NETBSD32TO64_UAP(opt);
4302 NETBSD32TOP_UAP(bootstr, char);
4303 return (sys_reboot(p, &ua, retval));
4304 }
4305
4306 int
4307 netbsd32_poll(p, v, retval)
4308 struct proc *p;
4309 void *v;
4310 register_t *retval;
4311 {
4312 struct netbsd32_poll_args /* {
4313 syscallarg(netbsd32_pollfdp_t) fds;
4314 syscallarg(u_int) nfds;
4315 syscallarg(int) timeout;
4316 } */ *uap = v;
4317 struct sys_poll_args ua;
4318
4319 NETBSD32TOP_UAP(fds, struct pollfd);
4320 NETBSD32TO64_UAP(nfds);
4321 NETBSD32TO64_UAP(timeout);
4322 return (sys_poll(p, &ua, retval));
4323 }
4324
4325 #if defined(SYSVSEM)
4326 /*
4327 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4328 *
4329 * This is BSD. We won't support System V IPC.
4330 * Too much work.
4331 *
4332 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4333 */
4334 int
4335 netbsd32___semctl14(p, v, retval)
4336 struct proc *p;
4337 void *v;
4338 register_t *retval;
4339 {
4340 #if 0
4341 struct netbsd32___semctl_args /* {
4342 syscallarg(int) semid;
4343 syscallarg(int) semnum;
4344 syscallarg(int) cmd;
4345 syscallarg(netbsd32_semunu_t *) arg;
4346 } */ *uap = v;
4347 union netbsd32_semun sem32;
4348 int semid = SCARG(uap, semid);
4349 int semnum = SCARG(uap, semnum);
4350 int cmd = SCARG(uap, cmd);
4351 union netbsd32_semun *arg = (void*)(u_long)SCARG(uap, arg);
4352 union netbsd32_semun real_arg;
4353 struct ucred *cred = p->p_ucred;
4354 int i, rval, eval;
4355 struct netbsd32_semid_ds sbuf;
4356 struct semid_ds *semaptr;
4357
4358 semlock(p);
4359
4360 semid = IPCID_TO_IX(semid);
4361 if (semid < 0 || semid >= seminfo.semmsl)
4362 return(EINVAL);
4363
4364 semaptr = &sema[semid];
4365 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
4366 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
4367 return(EINVAL);
4368
4369 eval = 0;
4370 rval = 0;
4371
4372 switch (cmd) {
4373 case IPC_RMID:
4374 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
4375 return(eval);
4376 semaptr->sem_perm.cuid = cred->cr_uid;
4377 semaptr->sem_perm.uid = cred->cr_uid;
4378 semtot -= semaptr->sem_nsems;
4379 for (i = semaptr->_sem_base - sem; i < semtot; i++)
4380 sem[i] = sem[i + semaptr->sem_nsems];
4381 for (i = 0; i < seminfo.semmni; i++) {
4382 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
4383 sema[i]._sem_base > semaptr->_sem_base)
4384 sema[i]._sem_base -= semaptr->sem_nsems;
4385 }
4386 semaptr->sem_perm.mode = 0;
4387 semundo_clear(semid, -1);
4388 wakeup((caddr_t)semaptr);
4389 break;
4390
4391 case IPC_SET:
4392 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
4393 return(eval);
4394 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4395 return(eval);
4396 if ((eval = copyin((caddr_t)(u_long)real_arg.buf, (caddr_t)&sbuf,
4397 sizeof(sbuf))) != 0)
4398 return(eval);
4399 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
4400 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
4401 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
4402 (sbuf.sem_perm.mode & 0777);
4403 semaptr->sem_ctime = time.tv_sec;
4404 break;
4405
4406 case IPC_STAT:
4407 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4408 return(eval);
4409 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4410 return(eval);
4411 eval = copyout((caddr_t)semaptr, (caddr_t)(u_long)real_arg.buf,
4412 sizeof(struct semid_ds));
4413 break;
4414
4415 case GETNCNT:
4416 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4417 return(eval);
4418 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4419 return(EINVAL);
4420 rval = semaptr->_sem_base[semnum].semncnt;
4421 break;
4422
4423 case GETPID:
4424 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4425 return(eval);
4426 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4427 return(EINVAL);
4428 rval = semaptr->_sem_base[semnum].sempid;
4429 break;
4430
4431 case GETVAL:
4432 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4433 return(eval);
4434 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4435 return(EINVAL);
4436 rval = semaptr->_sem_base[semnum].semval;
4437 break;
4438
4439 case GETALL:
4440 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4441 return(eval);
4442 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4443 return(eval);
4444 for (i = 0; i < semaptr->sem_nsems; i++) {
4445 eval = copyout((caddr_t)&semaptr->_sem_base[i].semval,
4446 &real_arg.array[i], sizeof(real_arg.array[0]));
4447 if (eval != 0)
4448 break;
4449 }
4450 break;
4451
4452 case GETZCNT:
4453 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4454 return(eval);
4455 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4456 return(EINVAL);
4457 rval = semaptr->_sem_base[semnum].semzcnt;
4458 break;
4459
4460 case SETVAL:
4461 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4462 return(eval);
4463 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4464 return(EINVAL);
4465 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4466 return(eval);
4467 semaptr->_sem_base[semnum].semval = real_arg.val;
4468 semundo_clear(semid, semnum);
4469 wakeup((caddr_t)semaptr);
4470 break;
4471
4472 case SETALL:
4473 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4474 return(eval);
4475 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4476 return(eval);
4477 for (i = 0; i < semaptr->sem_nsems; i++) {
4478 eval = copyin(&real_arg.array[i],
4479 (caddr_t)&semaptr->_sem_base[i].semval,
4480 sizeof(real_arg.array[0]));
4481 if (eval != 0)
4482 break;
4483 }
4484 semundo_clear(semid, -1);
4485 wakeup((caddr_t)semaptr);
4486 break;
4487
4488 default:
4489 return(EINVAL);
4490 }
4491
4492 if (eval == 0)
4493 *retval = rval;
4494 return(eval);
4495 #else
4496 return (ENOSYS);
4497 #endif
4498 }
4499
4500 int
4501 netbsd32_semget(p, v, retval)
4502 struct proc *p;
4503 void *v;
4504 register_t *retval;
4505 {
4506 struct netbsd32_semget_args /* {
4507 syscallarg(netbsd32_key_t) key;
4508 syscallarg(int) nsems;
4509 syscallarg(int) semflg;
4510 } */ *uap = v;
4511 struct sys_semget_args ua;
4512
4513 NETBSD32TOX_UAP(key, key_t);
4514 NETBSD32TO64_UAP(nsems);
4515 NETBSD32TO64_UAP(semflg);
4516 return (sys_semget(p, &ua, retval));
4517 }
4518
4519 int
4520 netbsd32_semop(p, v, retval)
4521 struct proc *p;
4522 void *v;
4523 register_t *retval;
4524 {
4525 struct netbsd32_semop_args /* {
4526 syscallarg(int) semid;
4527 syscallarg(netbsd32_sembufp_t) sops;
4528 syscallarg(netbsd32_size_t) nsops;
4529 } */ *uap = v;
4530 struct sys_semop_args ua;
4531
4532 NETBSD32TO64_UAP(semid);
4533 NETBSD32TOP_UAP(sops, struct sembuf);
4534 NETBSD32TOX_UAP(nsops, size_t);
4535 return (sys_semop(p, &ua, retval));
4536 }
4537
4538 int
4539 netbsd32_semconfig(p, v, retval)
4540 struct proc *p;
4541 void *v;
4542 register_t *retval;
4543 {
4544 struct netbsd32_semconfig_args /* {
4545 syscallarg(int) flag;
4546 } */ *uap = v;
4547 struct sys_semconfig_args ua;
4548
4549 NETBSD32TO64_UAP(flag);
4550 return (sys_semconfig(p, &ua, retval));
4551 }
4552 #endif /* SYSVSEM */
4553
4554 #if defined(SYSVMSG)
4555
4556 int
4557 netbsd32___msgctl13(p, v, retval)
4558 struct proc *p;
4559 void *v;
4560 register_t *retval;
4561 {
4562 #if 0
4563 struct netbsd32_msgctl_args /* {
4564 syscallarg(int) msqid;
4565 syscallarg(int) cmd;
4566 syscallarg(netbsd32_msqid_dsp_t) buf;
4567 } */ *uap = v;
4568 struct sys_msgctl_args ua;
4569 struct msqid_ds ds;
4570 struct netbsd32_msqid_ds *ds32p;
4571 int error;
4572
4573 NETBSD32TO64_UAP(msqid);
4574 NETBSD32TO64_UAP(cmd);
4575 ds32p = (struct netbsd32_msqid_ds *)(u_long)SCARG(uap, buf);
4576 if (ds32p) {
4577 SCARG(&ua, buf) = NULL;
4578 netbsd32_to_msqid_ds(ds32p, &ds);
4579 } else
4580 SCARG(&ua, buf) = NULL;
4581 error = sys_msgctl(p, &ua, retval);
4582 if (error)
4583 return (error);
4584
4585 if (ds32p)
4586 netbsd32_from_msqid_ds(&ds, ds32p);
4587 return (0);
4588 #else
4589 return (ENOSYS);
4590 #endif
4591 }
4592
4593 int
4594 netbsd32_msgget(p, v, retval)
4595 struct proc *p;
4596 void *v;
4597 register_t *retval;
4598 {
4599 #if 0
4600 struct netbsd32_msgget_args /* {
4601 syscallarg(netbsd32_key_t) key;
4602 syscallarg(int) msgflg;
4603 } */ *uap = v;
4604 struct sys_msgget_args ua;
4605
4606 NETBSD32TOX_UAP(key, key_t);
4607 NETBSD32TO64_UAP(msgflg);
4608 return (sys_msgget(p, &ua, retval));
4609 #else
4610 return (ENOSYS);
4611 #endif
4612 }
4613
4614 int
4615 netbsd32_msgsnd(p, v, retval)
4616 struct proc *p;
4617 void *v;
4618 register_t *retval;
4619 {
4620 #if 0
4621 struct netbsd32_msgsnd_args /* {
4622 syscallarg(int) msqid;
4623 syscallarg(const netbsd32_voidp) msgp;
4624 syscallarg(netbsd32_size_t) msgsz;
4625 syscallarg(int) msgflg;
4626 } */ *uap = v;
4627 struct sys_msgsnd_args ua;
4628
4629 NETBSD32TO64_UAP(msqid);
4630 NETBSD32TOP_UAP(msgp, void);
4631 NETBSD32TOX_UAP(msgsz, size_t);
4632 NETBSD32TO64_UAP(msgflg);
4633 return (sys_msgsnd(p, &ua, retval));
4634 #else
4635 return (ENOSYS);
4636 #endif
4637 }
4638
4639 int
4640 netbsd32_msgrcv(p, v, retval)
4641 struct proc *p;
4642 void *v;
4643 register_t *retval;
4644 {
4645 #if 0
4646 struct netbsd32_msgrcv_args /* {
4647 syscallarg(int) msqid;
4648 syscallarg(netbsd32_voidp) msgp;
4649 syscallarg(netbsd32_size_t) msgsz;
4650 syscallarg(netbsd32_long) msgtyp;
4651 syscallarg(int) msgflg;
4652 } */ *uap = v;
4653 struct sys_msgrcv_args ua;
4654 ssize_t rt;
4655 int error;
4656
4657 NETBSD32TO64_UAP(msqid);
4658 NETBSD32TOP_UAP(msgp, void);
4659 NETBSD32TOX_UAP(msgsz, size_t);
4660 NETBSD32TOX_UAP(msgtyp, long);
4661 NETBSD32TO64_UAP(msgflg);
4662 error = sys_msgrcv(p, &ua, (register_t *)&rt);
4663 *retval = rt;
4664 return (error);
4665 #else
4666 return (ENOSYS);
4667 #endif
4668 }
4669 #endif /* SYSVMSG */
4670
4671 #if defined(SYSVSHM)
4672
4673 int
4674 netbsd32_shmat(p, v, retval)
4675 struct proc *p;
4676 void *v;
4677 register_t *retval;
4678 {
4679 #if 0
4680 struct netbsd32_shmat_args /* {
4681 syscallarg(int) shmid;
4682 syscallarg(const netbsd32_voidp) shmaddr;
4683 syscallarg(int) shmflg;
4684 } */ *uap = v;
4685 struct sys_shmat_args ua;
4686 void *rt;
4687 int error;
4688
4689 NETBSD32TO64_UAP(shmid);
4690 NETBSD32TOP_UAP(shmaddr, void);
4691 NETBSD32TO64_UAP(shmflg);
4692 error = sys_shmat(p, &ua, (register_t *)&rt);
4693 *retval = rt;
4694 return (error);
4695 #else
4696 return (ENOSYS);
4697 #endif
4698 }
4699
4700 int
4701 netbsd32___shmctl13(p, v, retval)
4702 struct proc *p;
4703 void *v;
4704 register_t *retval;
4705 {
4706 #if 0
4707 struct netbsd32_shmctl_args /* {
4708 syscallarg(int) shmid;
4709 syscallarg(int) cmd;
4710 syscallarg(netbsd32_shmid_dsp_t) buf;
4711 } */ *uap = v;
4712 struct sys_shmctl_args ua;
4713 struct shmid_ds ds;
4714 struct netbsd32_shmid_ds *ds32p;
4715 int error;
4716
4717 NETBSD32TO64_UAP(shmid);
4718 NETBSD32TO64_UAP(cmd);
4719 ds32p = (struct netbsd32_shmid_ds *)(u_long)SCARG(uap, buf);
4720 if (ds32p) {
4721 SCARG(&ua, buf) = NULL;
4722 netbsd32_to_shmid_ds(ds32p, &ds);
4723 } else
4724 SCARG(&ua, buf) = NULL;
4725 error = sys_shmctl(p, &ua, retval);
4726 if (error)
4727 return (error);
4728
4729 if (ds32p)
4730 netbsd32_from_shmid_ds(&ds, ds32p);
4731 return (0);
4732 #else
4733 return (ENOSYS);
4734 #endif
4735 }
4736
4737 int
4738 netbsd32_shmdt(p, v, retval)
4739 struct proc *p;
4740 void *v;
4741 register_t *retval;
4742 {
4743 #if 0
4744 struct netbsd32_shmdt_args /* {
4745 syscallarg(const netbsd32_voidp) shmaddr;
4746 } */ *uap = v;
4747 struct sys_shmdt_args ua;
4748
4749 NETBSD32TOP_UAP(shmaddr, const char);
4750 return (sys_shmdt(p, &ua, retval));
4751 #else
4752 return (ENOSYS);
4753 #endif
4754 }
4755
4756 int
4757 netbsd32_shmget(p, v, retval)
4758 struct proc *p;
4759 void *v;
4760 register_t *retval;
4761 {
4762 #if 0
4763 struct netbsd32_shmget_args /* {
4764 syscallarg(netbsd32_key_t) key;
4765 syscallarg(netbsd32_size_t) size;
4766 syscallarg(int) shmflg;
4767 } */ *uap = v;
4768 struct sys_shmget_args ua;
4769
4770 NETBSD32TOX_UAP(key, key_t)
4771 NETBSD32TOX_UAP(size, size_t)
4772 NETBSD32TO64_UAP(shmflg);
4773 return (sys_shmget(p, &ua, retval));
4774 #else
4775 return (ENOSYS);
4776 #endif
4777 }
4778 #endif /* SYSVSHM */
4779
4780 int
4781 netbsd32_clock_gettime(p, v, retval)
4782 struct proc *p;
4783 void *v;
4784 register_t *retval;
4785 {
4786 struct netbsd32_clock_gettime_args /* {
4787 syscallarg(netbsd32_clockid_t) clock_id;
4788 syscallarg(netbsd32_timespecp_t) tp;
4789 } */ *uap = v;
4790 clockid_t clock_id;
4791 struct timeval atv;
4792 struct timespec ats;
4793 struct netbsd32_timespec ts32;
4794
4795 clock_id = SCARG(uap, clock_id);
4796 if (clock_id != CLOCK_REALTIME)
4797 return (EINVAL);
4798
4799 microtime(&atv);
4800 TIMEVAL_TO_TIMESPEC(&atv,&ats);
4801 netbsd32_from_timespec(&ats, &ts32);
4802
4803 return copyout(&ts32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts32));
4804 }
4805
4806 int
4807 netbsd32_clock_settime(p, v, retval)
4808 struct proc *p;
4809 void *v;
4810 register_t *retval;
4811 {
4812 struct netbsd32_clock_settime_args /* {
4813 syscallarg(netbsd32_clockid_t) clock_id;
4814 syscallarg(const netbsd32_timespecp_t) tp;
4815 } */ *uap = v;
4816 struct netbsd32_timespec ts32;
4817 clockid_t clock_id;
4818 struct timeval atv;
4819 struct timespec ats;
4820 int error;
4821
4822 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
4823 return (error);
4824
4825 clock_id = SCARG(uap, clock_id);
4826 if (clock_id != CLOCK_REALTIME)
4827 return (EINVAL);
4828
4829 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), &ts32, sizeof(ts32))) != 0)
4830 return (error);
4831
4832 netbsd32_to_timespec(&ts32, &ats);
4833 TIMESPEC_TO_TIMEVAL(&atv,&ats);
4834 if ((error = settime(&atv)))
4835 return (error);
4836
4837 return 0;
4838 }
4839
4840 int
4841 netbsd32_clock_getres(p, v, retval)
4842 struct proc *p;
4843 void *v;
4844 register_t *retval;
4845 {
4846 struct netbsd32_clock_getres_args /* {
4847 syscallarg(netbsd32_clockid_t) clock_id;
4848 syscallarg(netbsd32_timespecp_t) tp;
4849 } */ *uap = v;
4850 struct netbsd32_timespec ts32;
4851 clockid_t clock_id;
4852 struct timespec ts;
4853 int error = 0;
4854
4855 clock_id = SCARG(uap, clock_id);
4856 if (clock_id != CLOCK_REALTIME)
4857 return (EINVAL);
4858
4859 if (SCARG(uap, tp)) {
4860 ts.tv_sec = 0;
4861 ts.tv_nsec = 1000000000 / hz;
4862
4863 netbsd32_from_timespec(&ts, &ts32);
4864 error = copyout(&ts, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts));
4865 }
4866
4867 return error;
4868 }
4869
4870 int
4871 netbsd32_nanosleep(p, v, retval)
4872 struct proc *p;
4873 void *v;
4874 register_t *retval;
4875 {
4876 struct netbsd32_nanosleep_args /* {
4877 syscallarg(const netbsd32_timespecp_t) rqtp;
4878 syscallarg(netbsd32_timespecp_t) rmtp;
4879 } */ *uap = v;
4880 static int nanowait;
4881 struct netbsd32_timespec ts32;
4882 struct timespec rqt;
4883 struct timespec rmt;
4884 struct timeval atv, utv;
4885 int error, s, timo;
4886
4887 error = copyin((caddr_t)(u_long)SCARG(uap, rqtp), (caddr_t)&ts32,
4888 sizeof(ts32));
4889 if (error)
4890 return (error);
4891
4892 netbsd32_to_timespec(&ts32, &rqt);
4893 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
4894 if (itimerfix(&atv))
4895 return (EINVAL);
4896
4897 s = splclock();
4898 timeradd(&atv,&time,&atv);
4899 timo = hzto(&atv);
4900 /*
4901 * Avoid inadvertantly sleeping forever
4902 */
4903 if (timo == 0)
4904 timo = 1;
4905 splx(s);
4906
4907 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
4908 if (error == ERESTART)
4909 error = EINTR;
4910 if (error == EWOULDBLOCK)
4911 error = 0;
4912
4913 if (SCARG(uap, rmtp)) {
4914 int error;
4915
4916 s = splclock();
4917 utv = time;
4918 splx(s);
4919
4920 timersub(&atv, &utv, &utv);
4921 if (utv.tv_sec < 0)
4922 timerclear(&utv);
4923
4924 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
4925 netbsd32_from_timespec(&rmt, &ts32);
4926 error = copyout((caddr_t)&ts32, (caddr_t)(u_long)SCARG(uap,rmtp),
4927 sizeof(ts32));
4928 if (error)
4929 return (error);
4930 }
4931
4932 return error;
4933 }
4934
4935 int
4936 netbsd32_fdatasync(p, v, retval)
4937 struct proc *p;
4938 void *v;
4939 register_t *retval;
4940 {
4941 struct netbsd32_fdatasync_args /* {
4942 syscallarg(int) fd;
4943 } */ *uap = v;
4944 struct sys_fdatasync_args ua;
4945
4946 NETBSD32TO64_UAP(fd);
4947
4948 return (sys_fdatasync(p, &ua, retval));
4949 }
4950
4951 int
4952 netbsd32___posix_rename(p, v, retval)
4953 struct proc *p;
4954 void *v;
4955 register_t *retval;
4956 {
4957 struct netbsd32___posix_rename_args /* {
4958 syscallarg(const netbsd32_charp) from;
4959 syscallarg(const netbsd32_charp) to;
4960 } */ *uap = v;
4961 struct sys___posix_rename_args ua;
4962
4963 NETBSD32TOP_UAP(from, const char);
4964 NETBSD32TOP_UAP(to, const char);
4965
4966 return (sys___posix_rename(p, &ua, retval));
4967 }
4968
4969 int
4970 netbsd32_swapctl(p, v, retval)
4971 struct proc *p;
4972 void *v;
4973 register_t *retval;
4974 {
4975 struct netbsd32_swapctl_args /* {
4976 syscallarg(int) cmd;
4977 syscallarg(const netbsd32_voidp) arg;
4978 syscallarg(int) misc;
4979 } */ *uap = v;
4980 struct sys_swapctl_args ua;
4981
4982 NETBSD32TO64_UAP(cmd);
4983 NETBSD32TOP_UAP(arg, const void);
4984 NETBSD32TO64_UAP(misc);
4985 return (sys_swapctl(p, &ua, retval));
4986 }
4987
4988 int
4989 netbsd32_getdents(p, v, retval)
4990 struct proc *p;
4991 void *v;
4992 register_t *retval;
4993 {
4994 struct netbsd32_getdents_args /* {
4995 syscallarg(int) fd;
4996 syscallarg(netbsd32_charp) buf;
4997 syscallarg(netbsd32_size_t) count;
4998 } */ *uap = v;
4999 struct file *fp;
5000 int error, done;
5001
5002 /* getvnode() will use the descriptor for us */
5003 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
5004 return (error);
5005 if ((fp->f_flag & FREAD) == 0) {
5006 error = EBADF;
5007 goto out;
5008 }
5009 error = vn_readdir(fp, (caddr_t)(u_long)SCARG(uap, buf), UIO_USERSPACE,
5010 SCARG(uap, count), &done, p, 0, 0);
5011 *retval = done;
5012 out:
5013 FILE_UNUSE(fp, p);
5014 return (error);
5015 }
5016
5017
5018 int
5019 netbsd32_minherit(p, v, retval)
5020 struct proc *p;
5021 void *v;
5022 register_t *retval;
5023 {
5024 struct netbsd32_minherit_args /* {
5025 syscallarg(netbsd32_voidp) addr;
5026 syscallarg(netbsd32_size_t) len;
5027 syscallarg(int) inherit;
5028 } */ *uap = v;
5029 struct sys_minherit_args ua;
5030
5031 NETBSD32TOP_UAP(addr, void);
5032 NETBSD32TOX_UAP(len, size_t);
5033 NETBSD32TO64_UAP(inherit);
5034 return (sys_minherit(p, &ua, retval));
5035 }
5036
5037 int
5038 netbsd32_lchmod(p, v, retval)
5039 struct proc *p;
5040 void *v;
5041 register_t *retval;
5042 {
5043 struct netbsd32_lchmod_args /* {
5044 syscallarg(const netbsd32_charp) path;
5045 syscallarg(mode_t) mode;
5046 } */ *uap = v;
5047 struct sys_lchmod_args ua;
5048
5049 NETBSD32TOP_UAP(path, const char);
5050 NETBSD32TO64_UAP(mode);
5051 return (sys_lchmod(p, &ua, retval));
5052 }
5053
5054 int
5055 netbsd32_lchown(p, v, retval)
5056 struct proc *p;
5057 void *v;
5058 register_t *retval;
5059 {
5060 struct netbsd32_lchown_args /* {
5061 syscallarg(const netbsd32_charp) path;
5062 syscallarg(uid_t) uid;
5063 syscallarg(gid_t) gid;
5064 } */ *uap = v;
5065 struct sys_lchown_args ua;
5066
5067 NETBSD32TOP_UAP(path, const char);
5068 NETBSD32TO64_UAP(uid);
5069 NETBSD32TO64_UAP(gid);
5070 return (sys_lchown(p, &ua, retval));
5071 }
5072
5073 int
5074 netbsd32_lutimes(p, v, retval)
5075 struct proc *p;
5076 void *v;
5077 register_t *retval;
5078 {
5079 struct netbsd32_lutimes_args /* {
5080 syscallarg(const netbsd32_charp) path;
5081 syscallarg(const netbsd32_timevalp_t) tptr;
5082 } */ *uap = v;
5083 int error;
5084 struct nameidata nd;
5085
5086 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, (caddr_t)(u_long)SCARG(uap, path), p);
5087 if ((error = namei(&nd)) != 0)
5088 return (error);
5089
5090 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
5091
5092 vrele(nd.ni_vp);
5093 return (error);
5094 }
5095
5096
5097 int
5098 netbsd32___msync13(p, v, retval)
5099 struct proc *p;
5100 void *v;
5101 register_t *retval;
5102 {
5103 struct netbsd32___msync13_args /* {
5104 syscallarg(netbsd32_voidp) addr;
5105 syscallarg(netbsd32_size_t) len;
5106 syscallarg(int) flags;
5107 } */ *uap = v;
5108 struct sys___msync13_args ua;
5109
5110 NETBSD32TOP_UAP(addr, void);
5111 NETBSD32TOX_UAP(len, size_t);
5112 NETBSD32TO64_UAP(flags);
5113 return (sys___msync13(p, &ua, retval));
5114 }
5115
5116 int
5117 netbsd32___stat13(p, v, retval)
5118 struct proc *p;
5119 void *v;
5120 register_t *retval;
5121 {
5122 struct netbsd32___stat13_args /* {
5123 syscallarg(const netbsd32_charp) path;
5124 syscallarg(netbsd32_statp_t) ub;
5125 } */ *uap = v;
5126 struct netbsd32_stat sb32;
5127 struct stat sb;
5128 int error;
5129 struct nameidata nd;
5130 caddr_t sg;
5131 char *path;
5132
5133 path = (char *)(u_long)SCARG(uap, path);
5134 sg = stackgap_init(p->p_emul);
5135 NETBSD32_CHECK_ALT_EXIST(p, &sg, path);
5136
5137 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5138 if ((error = namei(&nd)) != 0)
5139 return (error);
5140 error = vn_stat(nd.ni_vp, &sb, p);
5141 vput(nd.ni_vp);
5142 if (error)
5143 return (error);
5144 netbsd32_from___stat13(&sb, &sb32);
5145 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5146 return (error);
5147 }
5148
5149 int
5150 netbsd32___fstat13(p, v, retval)
5151 struct proc *p;
5152 void *v;
5153 register_t *retval;
5154 {
5155 struct netbsd32___fstat13_args /* {
5156 syscallarg(int) fd;
5157 syscallarg(netbsd32_statp_t) sb;
5158 } */ *uap = v;
5159 int fd = SCARG(uap, fd);
5160 struct filedesc *fdp = p->p_fd;
5161 struct file *fp;
5162 struct netbsd32_stat sb32;
5163 struct stat ub;
5164 int error = 0;
5165
5166 if ((u_int)fd >= fdp->fd_nfiles ||
5167 (fp = fdp->fd_ofiles[fd]) == NULL)
5168 return (EBADF);
5169 switch (fp->f_type) {
5170
5171 case DTYPE_VNODE:
5172 error = vn_stat((struct vnode *)fp->f_data, &ub, p);
5173 break;
5174
5175 case DTYPE_SOCKET:
5176 error = soo_stat((struct socket *)fp->f_data, &ub);
5177 break;
5178
5179 default:
5180 panic("fstat");
5181 /*NOTREACHED*/
5182 }
5183 if (error == 0) {
5184 netbsd32_from___stat13(&ub, &sb32);
5185 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, sb), sizeof(sb32));
5186 }
5187 return (error);
5188 }
5189
5190 int
5191 netbsd32___lstat13(p, v, retval)
5192 struct proc *p;
5193 void *v;
5194 register_t *retval;
5195 {
5196 struct netbsd32___lstat13_args /* {
5197 syscallarg(const netbsd32_charp) path;
5198 syscallarg(netbsd32_statp_t) ub;
5199 } */ *uap = v;
5200 struct netbsd32_stat sb32;
5201 struct stat sb;
5202 int error;
5203 struct nameidata nd;
5204 caddr_t sg;
5205 char *path;
5206
5207 path = (char *)(u_long)SCARG(uap, path);
5208 sg = stackgap_init(p->p_emul);
5209 NETBSD32_CHECK_ALT_EXIST(p, &sg, path);
5210
5211 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5212 if ((error = namei(&nd)) != 0)
5213 return (error);
5214 error = vn_stat(nd.ni_vp, &sb, p);
5215 vput(nd.ni_vp);
5216 if (error)
5217 return (error);
5218 netbsd32_from___stat13(&sb, &sb32);
5219 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5220 return (error);
5221 }
5222
5223 int
5224 netbsd32___sigaltstack14(p, v, retval)
5225 struct proc *p;
5226 void *v;
5227 register_t *retval;
5228 {
5229 struct netbsd32___sigaltstack14_args /* {
5230 syscallarg(const netbsd32_sigaltstackp_t) nss;
5231 syscallarg(netbsd32_sigaltstackp_t) oss;
5232 } */ *uap = v;
5233 struct netbsd32_sigaltstack s32;
5234 struct sigaltstack nss, oss;
5235 int error;
5236
5237 if (SCARG(uap, nss)) {
5238 error = copyin((caddr_t)(u_long)SCARG(uap, nss), &s32, sizeof(s32));
5239 if (error)
5240 return (error);
5241 nss.ss_sp = (void *)(u_long)s32.ss_sp;
5242 nss.ss_size = (size_t)s32.ss_size;
5243 nss.ss_flags = s32.ss_flags;
5244 }
5245 error = sigaltstack1(p,
5246 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
5247 if (error)
5248 return (error);
5249 if (SCARG(uap, oss)) {
5250 s32.ss_sp = (netbsd32_voidp)(u_long)oss.ss_sp;
5251 s32.ss_size = (netbsd32_size_t)oss.ss_size;
5252 s32.ss_flags = oss.ss_flags;
5253 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, oss), sizeof(s32));
5254 if (error)
5255 return (error);
5256 }
5257 return (0);
5258 }
5259
5260 int
5261 netbsd32___posix_chown(p, v, retval)
5262 struct proc *p;
5263 void *v;
5264 register_t *retval;
5265 {
5266 struct netbsd32___posix_chown_args /* {
5267 syscallarg(const netbsd32_charp) path;
5268 syscallarg(uid_t) uid;
5269 syscallarg(gid_t) gid;
5270 } */ *uap = v;
5271 struct sys___posix_chown_args ua;
5272
5273 NETBSD32TOP_UAP(path, const char);
5274 NETBSD32TO64_UAP(uid);
5275 NETBSD32TO64_UAP(gid);
5276 return (sys___posix_chown(p, &ua, retval));
5277 }
5278
5279 int
5280 netbsd32___posix_fchown(p, v, retval)
5281 struct proc *p;
5282 void *v;
5283 register_t *retval;
5284 {
5285 struct netbsd32___posix_fchown_args /* {
5286 syscallarg(int) fd;
5287 syscallarg(uid_t) uid;
5288 syscallarg(gid_t) gid;
5289 } */ *uap = v;
5290 struct sys___posix_fchown_args ua;
5291
5292 NETBSD32TO64_UAP(fd);
5293 NETBSD32TO64_UAP(uid);
5294 NETBSD32TO64_UAP(gid);
5295 return (sys___posix_fchown(p, &ua, retval));
5296 }
5297
5298 int
5299 netbsd32___posix_lchown(p, v, retval)
5300 struct proc *p;
5301 void *v;
5302 register_t *retval;
5303 {
5304 struct netbsd32___posix_lchown_args /* {
5305 syscallarg(const netbsd32_charp) path;
5306 syscallarg(uid_t) uid;
5307 syscallarg(gid_t) gid;
5308 } */ *uap = v;
5309 struct sys___posix_lchown_args ua;
5310
5311 NETBSD32TOP_UAP(path, const char);
5312 NETBSD32TO64_UAP(uid);
5313 NETBSD32TO64_UAP(gid);
5314 return (sys___posix_lchown(p, &ua, retval));
5315 }
5316
5317 int
5318 netbsd32_getsid(p, v, retval)
5319 struct proc *p;
5320 void *v;
5321 register_t *retval;
5322 {
5323 struct netbsd32_getsid_args /* {
5324 syscallarg(pid_t) pid;
5325 } */ *uap = v;
5326 struct sys_getsid_args ua;
5327
5328 NETBSD32TO64_UAP(pid);
5329 return (sys_getsid(p, &ua, retval));
5330 }
5331
5332 int
5333 netbsd32_fktrace(p, v, retval)
5334 struct proc *p;
5335 void *v;
5336 register_t *retval;
5337 {
5338 struct netbsd32_fktrace_args /* {
5339 syscallarg(const int) fd;
5340 syscallarg(int) ops;
5341 syscallarg(int) facs;
5342 syscallarg(int) pid;
5343 } */ *uap = v;
5344 struct sys_fktrace_args ua;
5345
5346 NETBSD32TOX_UAP(fd, int);
5347 NETBSD32TO64_UAP(ops);
5348 NETBSD32TO64_UAP(facs);
5349 NETBSD32TO64_UAP(pid);
5350 return (sys_fktrace(p, &ua, retval));
5351 }
5352
5353 int
5354 netbsd32_preadv(p, v, retval)
5355 struct proc *p;
5356 void *v;
5357 register_t *retval;
5358 {
5359 struct netbsd32_preadv_args /* {
5360 syscallarg(int) fd;
5361 syscallarg(const netbsd32_iovecp_t) iovp;
5362 syscallarg(int) iovcnt;
5363 syscallarg(int) pad;
5364 syscallarg(off_t) offset;
5365 } */ *uap = v;
5366 struct filedesc *fdp = p->p_fd;
5367 struct file *fp;
5368 struct vnode *vp;
5369 off_t offset;
5370 int error, fd = SCARG(uap, fd);
5371
5372 if ((u_int)fd >= fdp->fd_nfiles ||
5373 (fp = fdp->fd_ofiles[fd]) == NULL ||
5374 (fp->f_flag & FREAD) == 0)
5375 return (EBADF);
5376
5377 vp = (struct vnode *)fp->f_data;
5378 if (fp->f_type != DTYPE_VNODE
5379 || vp->v_type == VFIFO)
5380 return (ESPIPE);
5381
5382 offset = SCARG(uap, offset);
5383
5384 /*
5385 * XXX This works because no file systems actually
5386 * XXX take any action on the seek operation.
5387 */
5388 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5389 return (error);
5390
5391 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5392 &offset, 0, retval));
5393 }
5394
5395 int
5396 netbsd32_pwritev(p, v, retval)
5397 struct proc *p;
5398 void *v;
5399 register_t *retval;
5400 {
5401 struct netbsd32_pwritev_args /* {
5402 syscallarg(int) fd;
5403 syscallarg(const netbsd32_iovecp_t) iovp;
5404 syscallarg(int) iovcnt;
5405 syscallarg(int) pad;
5406 syscallarg(off_t) offset;
5407 } */ *uap = v;
5408 struct filedesc *fdp = p->p_fd;
5409 struct file *fp;
5410 struct vnode *vp;
5411 off_t offset;
5412 int error, fd = SCARG(uap, fd);
5413
5414 if ((u_int)fd >= fdp->fd_nfiles ||
5415 (fp = fdp->fd_ofiles[fd]) == NULL ||
5416 (fp->f_flag & FWRITE) == 0)
5417 return (EBADF);
5418
5419 vp = (struct vnode *)fp->f_data;
5420 if (fp->f_type != DTYPE_VNODE
5421 || vp->v_type == VFIFO)
5422 return (ESPIPE);
5423
5424 offset = SCARG(uap, offset);
5425
5426 /*
5427 * XXX This works because no file systems actually
5428 * XXX take any action on the seek operation.
5429 */
5430 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5431 return (error);
5432
5433 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5434 &offset, 0, retval));
5435 }
5436
5437 /* ARGSUSED */
5438 int
5439 netbsd32___sigaction14(p, v, retval)
5440 struct proc *p;
5441 void *v;
5442 register_t *retval;
5443 {
5444 struct netbsd32___sigaction14_args /* {
5445 syscallarg(int) signum;
5446 syscallarg(const struct sigaction *) nsa;
5447 syscallarg(struct sigaction *) osa;
5448 } */ *uap = v;
5449 struct netbsd32_sigaction sa32;
5450 struct sigaction nsa, osa;
5451 int error;
5452
5453 if (SCARG(uap, nsa)) {
5454 error = copyin((caddr_t)(u_long)SCARG(uap, nsa),
5455 &sa32, sizeof(sa32));
5456 if (error)
5457 return (error);
5458 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
5459 nsa.sa_mask = sa32.sa_mask;
5460 nsa.sa_flags = sa32.sa_flags;
5461 }
5462 error = sigaction1(p, SCARG(uap, signum),
5463 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0);
5464 if (error)
5465 return (error);
5466 if (SCARG(uap, osa)) {
5467 sa32.sa_handler = (netbsd32_voidp)(u_long)osa.sa_handler;
5468 sa32.sa_mask = osa.sa_mask;
5469 sa32.sa_flags = osa.sa_flags;
5470 error = copyout(&sa32, (caddr_t)(u_long)SCARG(uap, osa), sizeof(sa32));
5471 if (error)
5472 return (error);
5473 }
5474 return (0);
5475 }
5476
5477 int netbsd32___sigpending14(p, v, retval)
5478 struct proc *p;
5479 void *v;
5480 register_t *retval;
5481 {
5482 struct netbsd32___sigpending14_args /* {
5483 syscallarg(sigset_t *) set;
5484 } */ *uap = v;
5485 struct sys___sigpending14_args ua;
5486
5487 NETBSD32TOP_UAP(set, sigset_t);
5488 return (sys___sigpending14(p, &ua, retval));
5489 }
5490
5491 int netbsd32___sigprocmask14(p, v, retval)
5492 struct proc *p;
5493 void *v;
5494 register_t *retval;
5495 {
5496 struct netbsd32___sigprocmask14_args /* {
5497 syscallarg(int) how;
5498 syscallarg(const sigset_t *) set;
5499 syscallarg(sigset_t *) oset;
5500 } */ *uap = v;
5501 struct sys___sigprocmask14_args ua;
5502
5503 NETBSD32TO64_UAP(how);
5504 NETBSD32TOP_UAP(set, sigset_t);
5505 NETBSD32TOP_UAP(oset, sigset_t);
5506 return (sys___sigprocmask14(p, &ua, retval));
5507 }
5508
5509 int netbsd32___sigsuspend14(p, v, retval)
5510 struct proc *p;
5511 void *v;
5512 register_t *retval;
5513 {
5514 struct netbsd32___sigsuspend14_args /* {
5515 syscallarg(const sigset_t *) set;
5516 } */ *uap = v;
5517 struct sys___sigsuspend14_args ua;
5518
5519 NETBSD32TOP_UAP(set, sigset_t);
5520 return (sys___sigsuspend14(p, &ua, retval));
5521 };
5522
5523
5524 /*
5525 * Find pathname of process's current directory.
5526 *
5527 * Use vfs vnode-to-name reverse cache; if that fails, fall back
5528 * to reading directory contents.
5529 */
5530 int
5531 getcwd_common __P((struct vnode *, struct vnode *,
5532 char **, char *, int, int, struct proc *));
5533
5534 int netbsd32___getcwd(p, v, retval)
5535 struct proc *p;
5536 void *v;
5537 register_t *retval;
5538 {
5539 struct netbsd32___getcwd_args /* {
5540 syscallarg(char *) bufp;
5541 syscallarg(size_t) length;
5542 } */ *uap = v;
5543
5544 int error;
5545 char *path;
5546 char *bp, *bend;
5547 int len = (int)SCARG(uap, length);
5548 int lenused;
5549
5550 if (len > MAXPATHLEN*4)
5551 len = MAXPATHLEN*4;
5552 else if (len < 2)
5553 return ERANGE;
5554
5555 path = (char *)malloc(len, M_TEMP, M_WAITOK);
5556 if (!path)
5557 return ENOMEM;
5558
5559 bp = &path[len];
5560 bend = bp;
5561 *(--bp) = '\0';
5562
5563 /*
5564 * 5th argument here is "max number of vnodes to traverse".
5565 * Since each entry takes up at least 2 bytes in the output buffer,
5566 * limit it to N/2 vnodes for an N byte buffer.
5567 */
5568 #define GETCWD_CHECK_ACCESS 0x0001
5569 error = getcwd_common (p->p_cwdi->cwdi_cdir, NULL, &bp, path, len/2,
5570 GETCWD_CHECK_ACCESS, p);
5571
5572 if (error)
5573 goto out;
5574 lenused = bend - bp;
5575 *retval = lenused;
5576 /* put the result into user buffer */
5577 error = copyout(bp, (caddr_t)(u_long)SCARG(uap, bufp), lenused);
5578
5579 out:
5580 free(path, M_TEMP);
5581 return error;
5582 }
5583
5584 int netbsd32_fchroot(p, v, retval)
5585 struct proc *p;
5586 void *v;
5587 register_t *retval;
5588 {
5589 struct netbsd32_fchroot_args /* {
5590 syscallarg(int) fd;
5591 } */ *uap = v;
5592 struct sys_fchroot_args ua;
5593
5594 NETBSD32TO64_UAP(fd);
5595 return (sys_fchroot(p, &ua, retval));
5596 }
5597
5598 /*
5599 * Open a file given a file handle.
5600 *
5601 * Check permissions, allocate an open file structure,
5602 * and call the device open routine if any.
5603 */
5604 int
5605 netbsd32_fhopen(p, v, retval)
5606 struct proc *p;
5607 void *v;
5608 register_t *retval;
5609 {
5610 struct netbsd32_fhopen_args /* {
5611 syscallarg(const fhandle_t *) fhp;
5612 syscallarg(int) flags;
5613 } */ *uap = v;
5614 struct sys_fhopen_args ua;
5615
5616 NETBSD32TOP_UAP(fhp, fhandle_t);
5617 NETBSD32TO64_UAP(flags);
5618 return (sys_fhopen(p, &ua, retval));
5619 }
5620
5621 int netbsd32_fhstat(p, v, retval)
5622 struct proc *p;
5623 void *v;
5624 register_t *retval;
5625 {
5626 struct netbsd32_fhstat_args /* {
5627 syscallarg(const netbsd32_fhandlep_t) fhp;
5628 syscallarg(struct stat *) sb;
5629 } */ *uap = v;
5630 struct sys_fhstat_args ua;
5631
5632 NETBSD32TOP_UAP(fhp, const fhandle_t);
5633 NETBSD32TOP_UAP(sb, struct stat);
5634 return (sys_fhstat(p, &ua, retval));
5635 }
5636
5637 int netbsd32_fhstatfs(p, v, retval)
5638 struct proc *p;
5639 void *v;
5640 register_t *retval;
5641 {
5642 struct netbsd32_fhstatfs_args /* {
5643 syscallarg(const netbsd32_fhandlep_t) fhp;
5644 syscallarg(struct statfs *) buf;
5645 } */ *uap = v;
5646 struct sys_fhstatfs_args ua;
5647
5648 NETBSD32TOP_UAP(fhp, const fhandle_t);
5649 NETBSD32TOP_UAP(buf, struct statfs);
5650 return (sys_fhstatfs(p, &ua, retval));
5651 }
5652
5653 /* virtual memory syscalls */
5654 int
5655 netbsd32_ovadvise(p, v, retval)
5656 struct proc *p;
5657 void *v;
5658 register_t *retval;
5659 {
5660 struct netbsd32_ovadvise_args /* {
5661 syscallarg(int) anom;
5662 } */ *uap = v;
5663 struct sys_ovadvise_args ua;
5664
5665 NETBSD32TO64_UAP(anom);
5666 return (sys_ovadvise(p, &ua, retval));
5667 }
5668
5669