netbsd32_netbsd.c revision 1.38 1 /* $NetBSD: netbsd32_netbsd.c,v 1.38 2000/09/28 19:05:07 eeh Exp $ */
2
3 /*
4 * Copyright (c) 1998 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include "opt_ddb.h"
32 #include "opt_ktrace.h"
33 #include "opt_ntp.h"
34 #include "opt_compat_netbsd.h"
35 #include "opt_compat_freebsd.h"
36 #include "opt_compat_linux.h"
37 #include "opt_compat_sunos.h"
38 #include "opt_compat_43.h"
39 #include "opt_sysv.h"
40 #if defined(COMPAT_43) || defined(COMPAT_SUNOS) || defined(COMPAT_LINUX) || \
41 defined(COMPAT_FREEBSD)
42 #define COMPAT_OLDSOCK /* used by <sys/socket.h> */
43 #endif
44
45 #include "fs_lfs.h"
46 #include "fs_nfs.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/filedesc.h>
51 #include <sys/kernel.h>
52 #include <sys/ipc.h>
53 #include <sys/msg.h>
54 #define msg __msg /* Don't ask me! */
55 #include <sys/sem.h>
56 #include <sys/shm.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/socket.h>
60 #include <sys/sockio.h>
61 #include <sys/socketvar.h>
62 #include <sys/mbuf.h>
63 #include <sys/stat.h>
64 #include <sys/time.h>
65 #include <sys/timex.h>
66 #include <sys/signalvar.h>
67 #include <sys/wait.h>
68 #include <sys/ptrace.h>
69 #include <sys/ktrace.h>
70 #include <sys/trace.h>
71 #include <sys/resourcevar.h>
72 #include <sys/pool.h>
73 #include <sys/vnode.h>
74 #include <sys/file.h>
75 #include <sys/filedesc.h>
76 #include <sys/namei.h>
77
78 #include <uvm/uvm_extern.h>
79
80 #include <sys/syscallargs.h>
81 #include <sys/proc.h>
82 #include <sys/acct.h>
83 #include <sys/exec.h>
84 #define __SYSCTL_PRIVATE
85 #include <sys/sysctl.h>
86
87 #include <net/if.h>
88
89 #include <compat/netbsd32/netbsd32.h>
90 #include <compat/netbsd32/netbsd32_syscallargs.h>
91
92 #include <machine/frame.h>
93
94 #if defined(DDB)
95 #include <ddb/ddbvar.h>
96 #endif
97
98 static __inline void netbsd32_from_timeval __P((struct timeval *, struct netbsd32_timeval *));
99 static __inline void netbsd32_to_timeval __P((struct netbsd32_timeval *, struct timeval *));
100 static __inline void netbsd32_from_itimerval __P((struct itimerval *, struct netbsd32_itimerval *));
101 static __inline void netbsd32_to_itimerval __P((struct netbsd32_itimerval *, struct itimerval *));
102 static __inline void netbsd32_to_timespec __P((struct netbsd32_timespec *, struct timespec *));
103 static __inline void netbsd32_from_timespec __P((struct timespec *, struct netbsd32_timespec *));
104 static __inline void netbsd32_from_rusage __P((struct rusage *, struct netbsd32_rusage *));
105 static __inline void netbsd32_to_rusage __P((struct netbsd32_rusage *, struct rusage *));
106 static __inline int netbsd32_to_iovecin __P((struct netbsd32_iovec *, struct iovec *, int));
107 static __inline void netbsd32_to_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
108 static __inline void netbsd32_from_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
109 static __inline void netbsd32_from_statfs __P((struct statfs *, struct netbsd32_statfs *));
110 static __inline void netbsd32_from_timex __P((struct timex *, struct netbsd32_timex *));
111 static __inline void netbsd32_to_timex __P((struct netbsd32_timex *, struct timex *));
112 static __inline void netbsd32_from___stat13 __P((struct stat *, struct netbsd32_stat *));
113 static __inline void netbsd32_to_ipc_perm __P((struct netbsd32_ipc_perm *, struct ipc_perm *));
114 static __inline void netbsd32_from_ipc_perm __P((struct ipc_perm *, struct netbsd32_ipc_perm *));
115 static __inline void netbsd32_to_msg __P((struct netbsd32_msg *, struct msg *));
116 static __inline void netbsd32_from_msg __P((struct msg *, struct netbsd32_msg *));
117 static __inline void netbsd32_to_msqid_ds __P((struct netbsd32_msqid_ds *, struct msqid_ds *));
118 static __inline void netbsd32_from_msqid_ds __P((struct msqid_ds *, struct netbsd32_msqid_ds *));
119 static __inline void netbsd32_to_shmid_ds __P((struct netbsd32_shmid_ds *, struct shmid_ds *));
120 static __inline void netbsd32_from_shmid_ds __P((struct shmid_ds *, struct netbsd32_shmid_ds *));
121 static __inline void netbsd32_to_semid_ds __P((struct netbsd32_semid_ds *, struct semid_ds *));
122 static __inline void netbsd32_from_semid_ds __P((struct semid_ds *, struct netbsd32_semid_ds *));
123
124
125 static int recvit32 __P((struct proc *, int, struct netbsd32_msghdr *, struct iovec *, caddr_t,
126 register_t *));
127 static int dofilereadv32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
128 int, off_t *, int, register_t *));
129 static int dofilewritev32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
130 int, off_t *, int, register_t *));
131 static int change_utimes32 __P((struct vnode *, struct timeval *, struct proc *));
132
133 /* converters for structures that we need */
134 static __inline void
135 netbsd32_from_timeval(tv, tv32)
136 struct timeval *tv;
137 struct netbsd32_timeval *tv32;
138 {
139
140 tv32->tv_sec = (netbsd32_long)tv->tv_sec;
141 tv32->tv_usec = (netbsd32_long)tv->tv_usec;
142 }
143
144 static __inline void
145 netbsd32_to_timeval(tv32, tv)
146 struct netbsd32_timeval *tv32;
147 struct timeval *tv;
148 {
149
150 tv->tv_sec = (long)tv32->tv_sec;
151 tv->tv_usec = (long)tv32->tv_usec;
152 }
153
154 static __inline void
155 netbsd32_from_itimerval(itv, itv32)
156 struct itimerval *itv;
157 struct netbsd32_itimerval *itv32;
158 {
159
160 netbsd32_from_timeval(&itv->it_interval,
161 &itv32->it_interval);
162 netbsd32_from_timeval(&itv->it_value,
163 &itv32->it_value);
164 }
165
166 static __inline void
167 netbsd32_to_itimerval(itv32, itv)
168 struct netbsd32_itimerval *itv32;
169 struct itimerval *itv;
170 {
171
172 netbsd32_to_timeval(&itv32->it_interval, &itv->it_interval);
173 netbsd32_to_timeval(&itv32->it_value, &itv->it_value);
174 }
175
176 static __inline void
177 netbsd32_to_timespec(s32p, p)
178 struct netbsd32_timespec *s32p;
179 struct timespec *p;
180 {
181
182 p->tv_sec = (time_t)s32p->tv_sec;
183 p->tv_nsec = (long)s32p->tv_nsec;
184 }
185
186 static __inline void
187 netbsd32_from_timespec(p, s32p)
188 struct timespec *p;
189 struct netbsd32_timespec *s32p;
190 {
191
192 s32p->tv_sec = (netbsd32_time_t)p->tv_sec;
193 s32p->tv_nsec = (netbsd32_long)p->tv_nsec;
194 }
195
196 static __inline void
197 netbsd32_from_rusage(rup, ru32p)
198 struct rusage *rup;
199 struct netbsd32_rusage *ru32p;
200 {
201
202 netbsd32_from_timeval(&rup->ru_utime, &ru32p->ru_utime);
203 netbsd32_from_timeval(&rup->ru_stime, &ru32p->ru_stime);
204 #define C(var) ru32p->var = (netbsd32_long)rup->var
205 C(ru_maxrss);
206 C(ru_ixrss);
207 C(ru_idrss);
208 C(ru_isrss);
209 C(ru_minflt);
210 C(ru_majflt);
211 C(ru_nswap);
212 C(ru_inblock);
213 C(ru_oublock);
214 C(ru_msgsnd);
215 C(ru_msgrcv);
216 C(ru_nsignals);
217 C(ru_nvcsw);
218 C(ru_nivcsw);
219 #undef C
220 }
221
222 static __inline void
223 netbsd32_to_rusage(ru32p, rup)
224 struct netbsd32_rusage *ru32p;
225 struct rusage *rup;
226 {
227
228 netbsd32_to_timeval(&ru32p->ru_utime, &rup->ru_utime);
229 netbsd32_to_timeval(&ru32p->ru_stime, &rup->ru_stime);
230 #define C(var) rup->var = (long)ru32p->var
231 C(ru_maxrss);
232 C(ru_ixrss);
233 C(ru_idrss);
234 C(ru_isrss);
235 C(ru_minflt);
236 C(ru_majflt);
237 C(ru_nswap);
238 C(ru_inblock);
239 C(ru_oublock);
240 C(ru_msgsnd);
241 C(ru_msgrcv);
242 C(ru_nsignals);
243 C(ru_nvcsw);
244 C(ru_nivcsw);
245 #undef C
246 }
247
248 static __inline int
249 netbsd32_to_iovecin(iov32p, iovp, len)
250 struct netbsd32_iovec *iov32p;
251 struct iovec *iovp;
252 int len;
253 {
254 int i, error=0;
255 u_int32_t iov_base;
256 u_int32_t iov_len;
257 /*
258 * We could allocate an iov32p, do a copyin, and translate
259 * each field and then free it all up, or we could copyin
260 * each field separately. I'm doing the latter to reduce
261 * the number of MALLOC()s.
262 */
263 for (i = 0; i < len; i++, iovp++, iov32p++) {
264 if ((error = copyin((caddr_t)&iov32p->iov_base, &iov_base, sizeof(iov_base))))
265 return (error);
266 if ((error = copyin((caddr_t)&iov32p->iov_len, &iov_len, sizeof(iov_len))))
267 return (error);
268 iovp->iov_base = (void *)(u_long)iov_base;
269 iovp->iov_len = (size_t)iov_len;
270 }
271 }
272
273 /* msg_iov must be done separately */
274 static __inline void
275 netbsd32_to_msghdr(mhp32, mhp)
276 struct netbsd32_msghdr *mhp32;
277 struct msghdr *mhp;
278 {
279
280 mhp->msg_name = (caddr_t)(u_long)mhp32->msg_name;
281 mhp->msg_namelen = mhp32->msg_namelen;
282 mhp->msg_iovlen = (size_t)mhp32->msg_iovlen;
283 mhp->msg_control = (caddr_t)(u_long)mhp32->msg_control;
284 mhp->msg_controllen = mhp32->msg_controllen;
285 mhp->msg_flags = mhp32->msg_flags;
286 }
287
288 /* msg_iov must be done separately */
289 static __inline void
290 netbsd32_from_msghdr(mhp32, mhp)
291 struct netbsd32_msghdr *mhp32;
292 struct msghdr *mhp;
293 {
294
295 mhp32->msg_name = mhp32->msg_name;
296 mhp32->msg_namelen = mhp32->msg_namelen;
297 mhp32->msg_iovlen = mhp32->msg_iovlen;
298 mhp32->msg_control = mhp32->msg_control;
299 mhp32->msg_controllen = mhp->msg_controllen;
300 mhp32->msg_flags = mhp->msg_flags;
301 }
302
303 static __inline void
304 netbsd32_from_statfs(sbp, sb32p)
305 struct statfs *sbp;
306 struct netbsd32_statfs *sb32p;
307 {
308 sb32p->f_type = sbp->f_type;
309 sb32p->f_flags = sbp->f_flags;
310 sb32p->f_bsize = (netbsd32_long)sbp->f_bsize;
311 sb32p->f_iosize = (netbsd32_long)sbp->f_iosize;
312 sb32p->f_blocks = (netbsd32_long)sbp->f_blocks;
313 sb32p->f_bfree = (netbsd32_long)sbp->f_bfree;
314 sb32p->f_bavail = (netbsd32_long)sbp->f_bavail;
315 sb32p->f_files = (netbsd32_long)sbp->f_files;
316 sb32p->f_ffree = (netbsd32_long)sbp->f_ffree;
317 sb32p->f_fsid = sbp->f_fsid;
318 sb32p->f_owner = sbp->f_owner;
319 sb32p->f_spare[0] = 0;
320 sb32p->f_spare[1] = 0;
321 sb32p->f_spare[2] = 0;
322 sb32p->f_spare[3] = 0;
323 #if 1
324 /* May as well do the whole batch in one go */
325 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN+MNAMELEN+MNAMELEN);
326 #else
327 /* If we want to be careful */
328 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN);
329 memcpy(sb32p->f_mntonname, sbp->f_mntonname, MNAMELEN);
330 memcpy(sb32p->f_mntfromname, sbp->f_mntfromname, MNAMELEN);
331 #endif
332 }
333
334 static __inline void
335 netbsd32_from_timex(txp, tx32p)
336 struct timex *txp;
337 struct netbsd32_timex *tx32p;
338 {
339
340 tx32p->modes = txp->modes;
341 tx32p->offset = (netbsd32_long)txp->offset;
342 tx32p->freq = (netbsd32_long)txp->freq;
343 tx32p->maxerror = (netbsd32_long)txp->maxerror;
344 tx32p->esterror = (netbsd32_long)txp->esterror;
345 tx32p->status = txp->status;
346 tx32p->constant = (netbsd32_long)txp->constant;
347 tx32p->precision = (netbsd32_long)txp->precision;
348 tx32p->tolerance = (netbsd32_long)txp->tolerance;
349 tx32p->ppsfreq = (netbsd32_long)txp->ppsfreq;
350 tx32p->jitter = (netbsd32_long)txp->jitter;
351 tx32p->shift = txp->shift;
352 tx32p->stabil = (netbsd32_long)txp->stabil;
353 tx32p->jitcnt = (netbsd32_long)txp->jitcnt;
354 tx32p->calcnt = (netbsd32_long)txp->calcnt;
355 tx32p->errcnt = (netbsd32_long)txp->errcnt;
356 tx32p->stbcnt = (netbsd32_long)txp->stbcnt;
357 }
358
359 static __inline void
360 netbsd32_to_timex(tx32p, txp)
361 struct netbsd32_timex *tx32p;
362 struct timex *txp;
363 {
364
365 txp->modes = tx32p->modes;
366 txp->offset = (long)tx32p->offset;
367 txp->freq = (long)tx32p->freq;
368 txp->maxerror = (long)tx32p->maxerror;
369 txp->esterror = (long)tx32p->esterror;
370 txp->status = tx32p->status;
371 txp->constant = (long)tx32p->constant;
372 txp->precision = (long)tx32p->precision;
373 txp->tolerance = (long)tx32p->tolerance;
374 txp->ppsfreq = (long)tx32p->ppsfreq;
375 txp->jitter = (long)tx32p->jitter;
376 txp->shift = tx32p->shift;
377 txp->stabil = (long)tx32p->stabil;
378 txp->jitcnt = (long)tx32p->jitcnt;
379 txp->calcnt = (long)tx32p->calcnt;
380 txp->errcnt = (long)tx32p->errcnt;
381 txp->stbcnt = (long)tx32p->stbcnt;
382 }
383
384 static __inline void
385 netbsd32_from___stat13(sbp, sb32p)
386 struct stat *sbp;
387 struct netbsd32_stat *sb32p;
388 {
389 sb32p->st_dev = sbp->st_dev;
390 sb32p->st_ino = sbp->st_ino;
391 sb32p->st_mode = sbp->st_mode;
392 sb32p->st_nlink = sbp->st_nlink;
393 sb32p->st_uid = sbp->st_uid;
394 sb32p->st_gid = sbp->st_gid;
395 sb32p->st_rdev = sbp->st_rdev;
396 if (sbp->st_size < (quad_t)1 << 32)
397 sb32p->st_size = sbp->st_size;
398 else
399 sb32p->st_size = -2;
400 sb32p->st_atimespec.tv_sec = (netbsd32_time_t)sbp->st_atimespec.tv_sec;
401 sb32p->st_atimespec.tv_nsec = (netbsd32_long)sbp->st_atimespec.tv_nsec;
402 sb32p->st_mtimespec.tv_sec = (netbsd32_time_t)sbp->st_mtimespec.tv_sec;
403 sb32p->st_mtimespec.tv_nsec = (netbsd32_long)sbp->st_mtimespec.tv_nsec;
404 sb32p->st_ctimespec.tv_sec = (netbsd32_time_t)sbp->st_ctimespec.tv_sec;
405 sb32p->st_ctimespec.tv_nsec = (netbsd32_long)sbp->st_ctimespec.tv_nsec;
406 sb32p->st_blksize = sbp->st_blksize;
407 sb32p->st_blocks = sbp->st_blocks;
408 sb32p->st_flags = sbp->st_flags;
409 sb32p->st_gen = sbp->st_gen;
410 }
411
412 static __inline void
413 netbsd32_to_ipc_perm(ip32p, ipp)
414 struct netbsd32_ipc_perm *ip32p;
415 struct ipc_perm *ipp;
416 {
417
418 ipp->cuid = ip32p->cuid;
419 ipp->cgid = ip32p->cgid;
420 ipp->uid = ip32p->uid;
421 ipp->gid = ip32p->gid;
422 ipp->mode = ip32p->mode;
423 ipp->_seq = ip32p->_seq;
424 ipp->_key = (key_t)ip32p->_key;
425 }
426
427 static __inline void
428 netbsd32_from_ipc_perm(ipp, ip32p)
429 struct ipc_perm *ipp;
430 struct netbsd32_ipc_perm *ip32p;
431 {
432
433 ip32p->cuid = ipp->cuid;
434 ip32p->cgid = ipp->cgid;
435 ip32p->uid = ipp->uid;
436 ip32p->gid = ipp->gid;
437 ip32p->mode = ipp->mode;
438 ip32p->_seq = ipp->_seq;
439 ip32p->_key = (netbsd32_key_t)ipp->_key;
440 }
441
442 static __inline void
443 netbsd32_to_msg(m32p, mp)
444 struct netbsd32_msg *m32p;
445 struct msg *mp;
446 {
447
448 mp->msg_next = (struct msg *)(u_long)m32p->msg_next;
449 mp->msg_type = (long)m32p->msg_type;
450 mp->msg_ts = m32p->msg_ts;
451 mp->msg_spot = m32p->msg_spot;
452 }
453
454 static __inline void
455 netbsd32_from_msg(mp, m32p)
456 struct msg *mp;
457 struct netbsd32_msg *m32p;
458 {
459
460 m32p->msg_next = (netbsd32_msgp_t)(u_long)mp->msg_next;
461 m32p->msg_type = (netbsd32_long)mp->msg_type;
462 m32p->msg_ts = mp->msg_ts;
463 m32p->msg_spot = mp->msg_spot;
464 }
465
466 static __inline void
467 netbsd32_to_msqid_ds(ds32p, dsp)
468 struct netbsd32_msqid_ds *ds32p;
469 struct msqid_ds *dsp;
470 {
471
472 netbsd32_to_ipc_perm(&ds32p->msg_perm, &dsp->msg_perm);
473 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_first, dsp->_msg_first);
474 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_last, dsp->_msg_last);
475 dsp->_msg_cbytes = (u_long)ds32p->_msg_cbytes;
476 dsp->msg_qnum = (u_long)ds32p->msg_qnum;
477 dsp->msg_qbytes = (u_long)ds32p->msg_qbytes;
478 dsp->msg_lspid = ds32p->msg_lspid;
479 dsp->msg_lrpid = ds32p->msg_lrpid;
480 dsp->msg_rtime = (time_t)ds32p->msg_rtime;
481 dsp->msg_stime = (time_t)ds32p->msg_stime;
482 dsp->msg_ctime = (time_t)ds32p->msg_ctime;
483 }
484
485 static __inline void
486 netbsd32_from_msqid_ds(dsp, ds32p)
487 struct msqid_ds *dsp;
488 struct netbsd32_msqid_ds *ds32p;
489 {
490
491 netbsd32_from_ipc_perm(&dsp->msg_perm, &ds32p->msg_perm);
492 netbsd32_from_msg(dsp->_msg_first, (struct netbsd32_msg *)(u_long)ds32p->_msg_first);
493 netbsd32_from_msg(dsp->_msg_last, (struct netbsd32_msg *)(u_long)ds32p->_msg_last);
494 ds32p->_msg_cbytes = (netbsd32_u_long)dsp->_msg_cbytes;
495 ds32p->msg_qnum = (netbsd32_u_long)dsp->msg_qnum;
496 ds32p->msg_qbytes = (netbsd32_u_long)dsp->msg_qbytes;
497 ds32p->msg_lspid = dsp->msg_lspid;
498 ds32p->msg_lrpid = dsp->msg_lrpid;
499 ds32p->msg_rtime = dsp->msg_rtime;
500 ds32p->msg_stime = dsp->msg_stime;
501 ds32p->msg_ctime = dsp->msg_ctime;
502 }
503
504 static __inline void
505 netbsd32_to_shmid_ds(ds32p, dsp)
506 struct netbsd32_shmid_ds *ds32p;
507 struct shmid_ds *dsp;
508 {
509
510 netbsd32_to_ipc_perm(&ds32p->shm_perm, &dsp->shm_perm);
511 dsp->shm_segsz = ds32p->shm_segsz;
512 dsp->shm_lpid = ds32p->shm_lpid;
513 dsp->shm_cpid = ds32p->shm_cpid;
514 dsp->shm_nattch = ds32p->shm_nattch;
515 dsp->shm_atime = (long)ds32p->shm_atime;
516 dsp->shm_dtime = (long)ds32p->shm_dtime;
517 dsp->shm_ctime = (long)ds32p->shm_ctime;
518 dsp->_shm_internal = (void *)(u_long)ds32p->_shm_internal;
519 }
520
521 static __inline void
522 netbsd32_from_shmid_ds(dsp, ds32p)
523 struct shmid_ds *dsp;
524 struct netbsd32_shmid_ds *ds32p;
525 {
526
527 netbsd32_from_ipc_perm(&dsp->shm_perm, &ds32p->shm_perm);
528 ds32p->shm_segsz = dsp->shm_segsz;
529 ds32p->shm_lpid = dsp->shm_lpid;
530 ds32p->shm_cpid = dsp->shm_cpid;
531 ds32p->shm_nattch = dsp->shm_nattch;
532 ds32p->shm_atime = (netbsd32_long)dsp->shm_atime;
533 ds32p->shm_dtime = (netbsd32_long)dsp->shm_dtime;
534 ds32p->shm_ctime = (netbsd32_long)dsp->shm_ctime;
535 ds32p->_shm_internal = (netbsd32_voidp)(u_long)dsp->_shm_internal;
536 }
537
538 static __inline void
539 netbsd32_to_semid_ds(s32dsp, dsp)
540 struct netbsd32_semid_ds *s32dsp;
541 struct semid_ds *dsp;
542 {
543
544 netbsd32_from_ipc_perm(&dsp->sem_perm, &s32dsp->sem_perm);
545 dsp->_sem_base = (struct __sem *)(u_long)s32dsp->_sem_base;
546 dsp->sem_nsems = s32dsp->sem_nsems;
547 dsp->sem_otime = s32dsp->sem_otime;
548 dsp->sem_ctime = s32dsp->sem_ctime;
549 }
550
551 static __inline void
552 netbsd32_from_semid_ds(dsp, s32dsp)
553 struct semid_ds *dsp;
554 struct netbsd32_semid_ds *s32dsp;
555 {
556
557 netbsd32_to_ipc_perm(&s32dsp->sem_perm, &dsp->sem_perm);
558 s32dsp->_sem_base = (netbsd32_semp_t)(u_long)dsp->_sem_base;
559 s32dsp->sem_nsems = dsp->sem_nsems;
560 s32dsp->sem_otime = dsp->sem_otime;
561 s32dsp->sem_ctime = dsp->sem_ctime;
562 }
563
564 /*
565 * below are all the standard NetBSD system calls, in the 32bit
566 * environment, with the necessary conversions to 64bit before
567 * calling the real syscall, unless we need to inline the whole
568 * syscall here, sigh.
569 */
570
571 int
572 netbsd32_exit(p, v, retval)
573 struct proc *p;
574 void *v;
575 register_t *retval;
576 {
577 struct netbsd32_exit_args /* {
578 syscallarg(int) rval;
579 } */ *uap = v;
580 struct sys_exit_args ua;
581
582 NETBSD32TO64_UAP(rval);
583 sys_exit(p, &ua, retval);
584 }
585
586 int
587 netbsd32_read(p, v, retval)
588 struct proc *p;
589 void *v;
590 register_t *retval;
591 {
592 struct netbsd32_read_args /* {
593 syscallarg(int) fd;
594 syscallarg(netbsd32_voidp) buf;
595 syscallarg(netbsd32_size_t) nbyte;
596 } */ *uap = v;
597 struct sys_read_args ua;
598
599 NETBSD32TO64_UAP(fd);
600 NETBSD32TOP_UAP(buf, void *);
601 NETBSD32TOX_UAP(nbyte, size_t);
602 return sys_read(p, &ua, retval);
603 }
604
605 int
606 netbsd32_write(p, v, retval)
607 struct proc *p;
608 void *v;
609 register_t *retval;
610 {
611 struct netbsd32_write_args /* {
612 syscallarg(int) fd;
613 syscallarg(const netbsd32_voidp) buf;
614 syscallarg(netbsd32_size_t) nbyte;
615 } */ *uap = v;
616 struct sys_write_args ua;
617
618 NETBSD32TO64_UAP(fd);
619 NETBSD32TOP_UAP(buf, void *);
620 NETBSD32TOX_UAP(nbyte, size_t);
621 return sys_write(p, &ua, retval);
622 }
623
624 int
625 netbsd32_close(p, v, retval)
626 struct proc *p;
627 void *v;
628 register_t *retval;
629 {
630 struct netbsd32_close_args /* {
631 syscallarg(int) fd;
632 } */ *uap = v;
633 struct sys_close_args ua;
634
635 NETBSD32TO64_UAP(fd);
636 return sys_close(p, &ua, retval);
637 }
638
639 int
640 netbsd32_open(p, v, retval)
641 struct proc *p;
642 void *v;
643 register_t *retval;
644 {
645 struct netbsd32_open_args /* {
646 syscallarg(const netbsd32_charp) path;
647 syscallarg(int) flags;
648 syscallarg(mode_t) mode;
649 } */ *uap = v;
650 struct sys_open_args ua;
651 caddr_t sg;
652
653 NETBSD32TOP_UAP(path, const char);
654 NETBSD32TO64_UAP(flags);
655 NETBSD32TO64_UAP(mode);
656 sg = stackgap_init(p->p_emul);
657 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
658
659 return (sys_open(p, &ua, retval));
660 }
661
662 int
663 netbsd32_wait4(q, v, retval)
664 struct proc *q;
665 void *v;
666 register_t *retval;
667 {
668 struct netbsd32_wait4_args /* {
669 syscallarg(int) pid;
670 syscallarg(netbsd32_intp) status;
671 syscallarg(int) options;
672 syscallarg(netbsd32_rusagep_t) rusage;
673 } */ *uap = v;
674 struct netbsd32_rusage ru32;
675 int nfound;
676 struct proc *p, *t;
677 int status, error;
678
679 if (SCARG(uap, pid) == 0)
680 SCARG(uap, pid) = -q->p_pgid;
681 if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG))
682 return (EINVAL);
683
684 loop:
685 nfound = 0;
686 for (p = q->p_children.lh_first; p != 0; p = p->p_sibling.le_next) {
687 if (SCARG(uap, pid) != WAIT_ANY &&
688 p->p_pid != SCARG(uap, pid) &&
689 p->p_pgid != -SCARG(uap, pid))
690 continue;
691 nfound++;
692 if (p->p_stat == SZOMB) {
693 retval[0] = p->p_pid;
694
695 if (SCARG(uap, status)) {
696 status = p->p_xstat; /* convert to int */
697 error = copyout((caddr_t)&status,
698 (caddr_t)(u_long)SCARG(uap, status),
699 sizeof(status));
700 if (error)
701 return (error);
702 }
703 if (SCARG(uap, rusage)) {
704 netbsd32_from_rusage(p->p_ru, &ru32);
705 if ((error = copyout((caddr_t)&ru32,
706 (caddr_t)(u_long)SCARG(uap, rusage),
707 sizeof(struct netbsd32_rusage))))
708 return (error);
709 }
710 /*
711 * If we got the child via ptrace(2) or procfs, and
712 * the parent is different (meaning the process was
713 * attached, rather than run as a child), then we need
714 * to give it back to the old parent, and send the
715 * parent a SIGCHLD. The rest of the cleanup will be
716 * done when the old parent waits on the child.
717 */
718 if ((p->p_flag & P_TRACED) &&
719 p->p_oppid != p->p_pptr->p_pid) {
720 t = pfind(p->p_oppid);
721 proc_reparent(p, t ? t : initproc);
722 p->p_oppid = 0;
723 p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
724 psignal(p->p_pptr, SIGCHLD);
725 wakeup((caddr_t)p->p_pptr);
726 return (0);
727 }
728 p->p_xstat = 0;
729 ruadd(&q->p_stats->p_cru, p->p_ru);
730 pool_put(&rusage_pool, p->p_ru);
731
732 /*
733 * Finally finished with old proc entry.
734 * Unlink it from its process group and free it.
735 */
736 leavepgrp(p);
737
738 LIST_REMOVE(p, p_list); /* off zombproc */
739
740 LIST_REMOVE(p, p_sibling);
741
742 /*
743 * Decrement the count of procs running with this uid.
744 */
745 (void)chgproccnt(p->p_cred->p_ruid, -1);
746
747 /*
748 * Free up credentials.
749 */
750 if (--p->p_cred->p_refcnt == 0) {
751 crfree(p->p_cred->pc_ucred);
752 pool_put(&pcred_pool, p->p_cred);
753 }
754
755 /*
756 * Release reference to text vnode
757 */
758 if (p->p_textvp)
759 vrele(p->p_textvp);
760
761 pool_put(&proc_pool, p);
762 nprocs--;
763 return (0);
764 }
765 if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
766 (p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
767 p->p_flag |= P_WAITED;
768 retval[0] = p->p_pid;
769
770 if (SCARG(uap, status)) {
771 status = W_STOPCODE(p->p_xstat);
772 error = copyout((caddr_t)&status,
773 (caddr_t)(u_long)SCARG(uap, status),
774 sizeof(status));
775 } else
776 error = 0;
777 return (error);
778 }
779 }
780 if (nfound == 0)
781 return (ECHILD);
782 if (SCARG(uap, options) & WNOHANG) {
783 retval[0] = 0;
784 return (0);
785 }
786 if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
787 return (error);
788 goto loop;
789 }
790
791 int
792 netbsd32_link(p, v, retval)
793 struct proc *p;
794 void *v;
795 register_t *retval;
796 {
797 struct netbsd32_link_args /* {
798 syscallarg(const netbsd32_charp) path;
799 syscallarg(const netbsd32_charp) link;
800 } */ *uap = v;
801 struct sys_link_args ua;
802
803 NETBSD32TOP_UAP(path, const char);
804 NETBSD32TOP_UAP(link, const char);
805 return (sys_link(p, &ua, retval));
806 }
807
808 int
809 netbsd32_unlink(p, v, retval)
810 struct proc *p;
811 void *v;
812 register_t *retval;
813 {
814 struct netbsd32_unlink_args /* {
815 syscallarg(const netbsd32_charp) path;
816 } */ *uap = v;
817 struct sys_unlink_args ua;
818
819 NETBSD32TOP_UAP(path, const char);
820
821 return (sys_unlink(p, &ua, retval));
822 }
823
824 int
825 netbsd32_chdir(p, v, retval)
826 struct proc *p;
827 void *v;
828 register_t *retval;
829 {
830 struct netbsd32_chdir_args /* {
831 syscallarg(const netbsd32_charp) path;
832 } */ *uap = v;
833 struct sys_chdir_args ua;
834
835 NETBSD32TOP_UAP(path, const char);
836
837 return (sys_chdir(p, &ua, retval));
838 }
839
840 int
841 netbsd32_fchdir(p, v, retval)
842 struct proc *p;
843 void *v;
844 register_t *retval;
845 {
846 struct netbsd32_fchdir_args /* {
847 syscallarg(int) fd;
848 } */ *uap = v;
849 struct sys_fchdir_args ua;
850
851 NETBSD32TO64_UAP(fd);
852
853 return (sys_fchdir(p, &ua, retval));
854 }
855
856 int
857 netbsd32_mknod(p, v, retval)
858 struct proc *p;
859 void *v;
860 register_t *retval;
861 {
862 struct netbsd32_mknod_args /* {
863 syscallarg(const netbsd32_charp) path;
864 syscallarg(mode_t) mode;
865 syscallarg(dev_t) dev;
866 } */ *uap = v;
867 struct sys_mknod_args ua;
868
869 NETBSD32TOP_UAP(path, const char);
870 NETBSD32TO64_UAP(dev);
871 NETBSD32TO64_UAP(mode);
872
873 return (sys_mknod(p, &ua, retval));
874 }
875
876 int
877 netbsd32_chmod(p, v, retval)
878 struct proc *p;
879 void *v;
880 register_t *retval;
881 {
882 struct netbsd32_chmod_args /* {
883 syscallarg(const netbsd32_charp) path;
884 syscallarg(mode_t) mode;
885 } */ *uap = v;
886 struct sys_chmod_args ua;
887
888 NETBSD32TOP_UAP(path, const char);
889 NETBSD32TO64_UAP(mode);
890
891 return (sys_chmod(p, &ua, retval));
892 }
893
894 int
895 netbsd32_chown(p, v, retval)
896 struct proc *p;
897 void *v;
898 register_t *retval;
899 {
900 struct netbsd32_chown_args /* {
901 syscallarg(const netbsd32_charp) path;
902 syscallarg(uid_t) uid;
903 syscallarg(gid_t) gid;
904 } */ *uap = v;
905 struct sys_chown_args ua;
906
907 NETBSD32TOP_UAP(path, const char);
908 NETBSD32TO64_UAP(uid);
909 NETBSD32TO64_UAP(gid);
910
911 return (sys_chown(p, &ua, retval));
912 }
913
914 int
915 netbsd32_break(p, v, retval)
916 struct proc *p;
917 void *v;
918 register_t *retval;
919 {
920 struct netbsd32_break_args /* {
921 syscallarg(netbsd32_charp) nsize;
922 } */ *uap = v;
923 struct sys_obreak_args ua;
924
925 SCARG(&ua, nsize) = (char *)(u_long)SCARG(uap, nsize);
926 NETBSD32TOP_UAP(nsize, char);
927 return (sys_obreak(p, &ua, retval));
928 }
929
930 int
931 netbsd32_getfsstat(p, v, retval)
932 struct proc *p;
933 void *v;
934 register_t *retval;
935 {
936 struct netbsd32_getfsstat_args /* {
937 syscallarg(netbsd32_statfsp_t) buf;
938 syscallarg(netbsd32_long) bufsize;
939 syscallarg(int) flags;
940 } */ *uap = v;
941 struct mount *mp, *nmp;
942 struct statfs *sp;
943 struct netbsd32_statfs sb32;
944 caddr_t sfsp;
945 long count, maxcount, error;
946
947 maxcount = SCARG(uap, bufsize) / sizeof(struct netbsd32_statfs);
948 sfsp = (caddr_t)(u_long)SCARG(uap, buf);
949 simple_lock(&mountlist_slock);
950 count = 0;
951 for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
952 if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
953 nmp = mp->mnt_list.cqe_next;
954 continue;
955 }
956 if (sfsp && count < maxcount) {
957 sp = &mp->mnt_stat;
958 /*
959 * If MNT_NOWAIT or MNT_LAZY is specified, do not
960 * refresh the fsstat cache. MNT_WAIT or MNT_LAXY
961 * overrides MNT_NOWAIT.
962 */
963 if (SCARG(uap, flags) != MNT_NOWAIT &&
964 SCARG(uap, flags) != MNT_LAZY &&
965 (SCARG(uap, flags) == MNT_WAIT ||
966 SCARG(uap, flags) == 0) &&
967 (error = VFS_STATFS(mp, sp, p)) != 0) {
968 simple_lock(&mountlist_slock);
969 nmp = mp->mnt_list.cqe_next;
970 vfs_unbusy(mp);
971 continue;
972 }
973 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
974 sp->f_oflags = sp->f_flags & 0xffff;
975 netbsd32_from_statfs(sp, &sb32);
976 error = copyout(&sb32, sfsp, sizeof(sb32));
977 if (error) {
978 vfs_unbusy(mp);
979 return (error);
980 }
981 sfsp += sizeof(sb32);
982 }
983 count++;
984 simple_lock(&mountlist_slock);
985 nmp = mp->mnt_list.cqe_next;
986 vfs_unbusy(mp);
987 }
988 simple_unlock(&mountlist_slock);
989 if (sfsp && count > maxcount)
990 *retval = maxcount;
991 else
992 *retval = count;
993 return (0);
994 }
995
996 int
997 netbsd32_mount(p, v, retval)
998 struct proc *p;
999 void *v;
1000 register_t *retval;
1001 {
1002 struct netbsd32_mount_args /* {
1003 syscallarg(const netbsd32_charp) type;
1004 syscallarg(const netbsd32_charp) path;
1005 syscallarg(int) flags;
1006 syscallarg(netbsd32_voidp) data;
1007 } */ *uap = v;
1008 struct sys_mount_args ua;
1009
1010 NETBSD32TOP_UAP(type, const char);
1011 NETBSD32TOP_UAP(path, const char);
1012 NETBSD32TO64_UAP(flags);
1013 NETBSD32TOP_UAP(data, void);
1014 return (sys_mount(p, &ua, retval));
1015 }
1016
1017 int
1018 netbsd32_unmount(p, v, retval)
1019 struct proc *p;
1020 void *v;
1021 register_t *retval;
1022 {
1023 struct netbsd32_unmount_args /* {
1024 syscallarg(const netbsd32_charp) path;
1025 syscallarg(int) flags;
1026 } */ *uap = v;
1027 struct sys_unmount_args ua;
1028
1029 NETBSD32TOP_UAP(path, const char);
1030 NETBSD32TO64_UAP(flags);
1031 return (sys_unmount(p, &ua, retval));
1032 }
1033
1034 int
1035 netbsd32_setuid(p, v, retval)
1036 struct proc *p;
1037 void *v;
1038 register_t *retval;
1039 {
1040 struct netbsd32_setuid_args /* {
1041 syscallarg(uid_t) uid;
1042 } */ *uap = v;
1043 struct sys_setuid_args ua;
1044
1045 NETBSD32TO64_UAP(uid);
1046 return (sys_setuid(p, &ua, retval));
1047 }
1048
1049 int
1050 netbsd32_ptrace(p, v, retval)
1051 struct proc *p;
1052 void *v;
1053 register_t *retval;
1054 {
1055 struct netbsd32_ptrace_args /* {
1056 syscallarg(int) req;
1057 syscallarg(pid_t) pid;
1058 syscallarg(netbsd32_caddr_t) addr;
1059 syscallarg(int) data;
1060 } */ *uap = v;
1061 struct sys_ptrace_args ua;
1062
1063 NETBSD32TO64_UAP(req);
1064 NETBSD32TO64_UAP(pid);
1065 NETBSD32TOX64_UAP(addr, caddr_t);
1066 NETBSD32TO64_UAP(data);
1067 return (sys_ptrace(p, &ua, retval));
1068 }
1069
1070 int
1071 netbsd32_recvmsg(p, v, retval)
1072 struct proc *p;
1073 void *v;
1074 register_t *retval;
1075 {
1076 struct netbsd32_recvmsg_args /* {
1077 syscallarg(int) s;
1078 syscallarg(netbsd32_msghdrp_t) msg;
1079 syscallarg(int) flags;
1080 } */ *uap = v;
1081 struct netbsd32_msghdr msg;
1082 struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
1083 int error;
1084
1085 error = copyin((caddr_t)(u_long)SCARG(uap, msg), (caddr_t)&msg,
1086 sizeof(msg));
1087 /* netbsd32_msghdr needs the iov pre-allocated */
1088 if (error)
1089 return (error);
1090 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1091 if ((u_int)msg.msg_iovlen > IOV_MAX)
1092 return (EMSGSIZE);
1093 MALLOC(iov, struct iovec *,
1094 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1095 M_WAITOK);
1096 } else if ((u_int)msg.msg_iovlen > 0)
1097 iov = aiov;
1098 else
1099 return (EMSGSIZE);
1100 #ifdef COMPAT_OLDSOCK
1101 msg.msg_flags = SCARG(uap, flags) &~ MSG_COMPAT;
1102 #else
1103 msg.msg_flags = SCARG(uap, flags);
1104 #endif
1105 uiov = (struct iovec *)(u_long)msg.msg_iov;
1106 error = netbsd32_to_iovecin((struct netbsd32_iovec *)uiov,
1107 iov, msg.msg_iovlen);
1108 if (error)
1109 goto done;
1110 if ((error = recvit32(p, SCARG(uap, s), &msg, iov, (caddr_t)0, retval)) == 0) {
1111 error = copyout((caddr_t)&msg, (caddr_t)(u_long)SCARG(uap, msg),
1112 sizeof(msg));
1113 }
1114 done:
1115 if (iov != aiov)
1116 FREE(iov, M_IOV);
1117 return (error);
1118 }
1119
1120 int
1121 recvit32(p, s, mp, iov, namelenp, retsize)
1122 struct proc *p;
1123 int s;
1124 struct netbsd32_msghdr *mp;
1125 struct iovec *iov;
1126 caddr_t namelenp;
1127 register_t *retsize;
1128 {
1129 struct file *fp;
1130 struct uio auio;
1131 int i;
1132 int len, error;
1133 struct mbuf *from = 0, *control = 0;
1134 struct socket *so;
1135 #ifdef KTRACE
1136 struct iovec *ktriov = NULL;
1137 #endif
1138
1139 /* getsock() will use the descriptor for us */
1140 if ((error = getsock(p->p_fd, s, &fp)) != 0)
1141 return (error);
1142 auio.uio_iov = (struct iovec *)(u_long)mp->msg_iov;
1143 auio.uio_iovcnt = mp->msg_iovlen;
1144 auio.uio_segflg = UIO_USERSPACE;
1145 auio.uio_rw = UIO_READ;
1146 auio.uio_procp = p;
1147 auio.uio_offset = 0; /* XXX */
1148 auio.uio_resid = 0;
1149 for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1150 #if 0
1151 /* cannot happen iov_len is unsigned */
1152 if (iov->iov_len < 0) {
1153 error = EINVAL;
1154 goto out1;
1155 }
1156 #endif
1157 /*
1158 * Reads return ssize_t because -1 is returned on error.
1159 * Therefore we must restrict the length to SSIZE_MAX to
1160 * avoid garbage return values.
1161 */
1162 auio.uio_resid += iov->iov_len;
1163 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
1164 error = EINVAL;
1165 goto out1;
1166 }
1167 }
1168 #ifdef KTRACE
1169 if (KTRPOINT(p, KTR_GENIO)) {
1170 int iovlen = auio.uio_iovcnt * sizeof(struct iovec);
1171
1172 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
1173 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
1174 }
1175 #endif
1176 len = auio.uio_resid;
1177 so = (struct socket *)fp->f_data;
1178 error = (*so->so_receive)(so, &from, &auio, NULL,
1179 mp->msg_control ? &control : NULL, &mp->msg_flags);
1180 if (error) {
1181 if (auio.uio_resid != len && (error == ERESTART ||
1182 error == EINTR || error == EWOULDBLOCK))
1183 error = 0;
1184 }
1185 #ifdef KTRACE
1186 if (ktriov != NULL) {
1187 if (error == 0)
1188 ktrgenio(p, s, UIO_READ, ktriov,
1189 len - auio.uio_resid, error);
1190 FREE(ktriov, M_TEMP);
1191 }
1192 #endif
1193 if (error)
1194 goto out;
1195 *retsize = len - auio.uio_resid;
1196 if (mp->msg_name) {
1197 len = mp->msg_namelen;
1198 if (len <= 0 || from == 0)
1199 len = 0;
1200 else {
1201 #ifdef COMPAT_OLDSOCK
1202 if (mp->msg_flags & MSG_COMPAT)
1203 mtod(from, struct osockaddr *)->sa_family =
1204 mtod(from, struct sockaddr *)->sa_family;
1205 #endif
1206 if (len > from->m_len)
1207 len = from->m_len;
1208 /* else if len < from->m_len ??? */
1209 error = copyout(mtod(from, caddr_t),
1210 (caddr_t)(u_long)mp->msg_name, (unsigned)len);
1211 if (error)
1212 goto out;
1213 }
1214 mp->msg_namelen = len;
1215 if (namelenp &&
1216 (error = copyout((caddr_t)&len, namelenp, sizeof(int)))) {
1217 #ifdef COMPAT_OLDSOCK
1218 if (mp->msg_flags & MSG_COMPAT)
1219 error = 0; /* old recvfrom didn't check */
1220 else
1221 #endif
1222 goto out;
1223 }
1224 }
1225 if (mp->msg_control) {
1226 #ifdef COMPAT_OLDSOCK
1227 /*
1228 * We assume that old recvmsg calls won't receive access
1229 * rights and other control info, esp. as control info
1230 * is always optional and those options didn't exist in 4.3.
1231 * If we receive rights, trim the cmsghdr; anything else
1232 * is tossed.
1233 */
1234 if (control && mp->msg_flags & MSG_COMPAT) {
1235 if (mtod(control, struct cmsghdr *)->cmsg_level !=
1236 SOL_SOCKET ||
1237 mtod(control, struct cmsghdr *)->cmsg_type !=
1238 SCM_RIGHTS) {
1239 mp->msg_controllen = 0;
1240 goto out;
1241 }
1242 control->m_len -= sizeof(struct cmsghdr);
1243 control->m_data += sizeof(struct cmsghdr);
1244 }
1245 #endif
1246 len = mp->msg_controllen;
1247 if (len <= 0 || control == 0)
1248 len = 0;
1249 else {
1250 struct mbuf *m = control;
1251 caddr_t p = (caddr_t)(u_long)mp->msg_control;
1252
1253 do {
1254 i = m->m_len;
1255 if (len < i) {
1256 mp->msg_flags |= MSG_CTRUNC;
1257 i = len;
1258 }
1259 error = copyout(mtod(m, caddr_t), p,
1260 (unsigned)i);
1261 if (m->m_next)
1262 i = ALIGN(i);
1263 p += i;
1264 len -= i;
1265 if (error != 0 || len <= 0)
1266 break;
1267 } while ((m = m->m_next) != NULL);
1268 len = p - (caddr_t)(u_long)mp->msg_control;
1269 }
1270 mp->msg_controllen = len;
1271 }
1272 out:
1273 if (from)
1274 m_freem(from);
1275 if (control)
1276 m_freem(control);
1277 out1:
1278 FILE_UNUSE(fp, p);
1279 return (error);
1280 }
1281
1282
1283 int
1284 netbsd32_sendmsg(p, v, retval)
1285 struct proc *p;
1286 void *v;
1287 register_t *retval;
1288 {
1289 struct netbsd32_sendmsg_args /* {
1290 syscallarg(int) s;
1291 syscallarg(const netbsd32_msghdrp_t) msg;
1292 syscallarg(int) flags;
1293 } */ *uap = v;
1294 struct msghdr msg;
1295 struct netbsd32_msghdr msg32;
1296 struct iovec aiov[UIO_SMALLIOV], *iov;
1297 int error;
1298
1299 error = copyin((caddr_t)(u_long)SCARG(uap, msg),
1300 (caddr_t)&msg32, sizeof(msg32));
1301 if (error)
1302 return (error);
1303 netbsd32_to_msghdr(&msg32, &msg);
1304 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1305 if ((u_int)msg.msg_iovlen > IOV_MAX)
1306 return (EMSGSIZE);
1307 MALLOC(iov, struct iovec *,
1308 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1309 M_WAITOK);
1310 } else if ((u_int)msg.msg_iovlen > 0)
1311 iov = aiov;
1312 else
1313 return (EMSGSIZE);
1314 error = netbsd32_to_iovecin((struct netbsd32_iovec *)msg.msg_iov,
1315 iov, msg.msg_iovlen);
1316 if (error)
1317 goto done;
1318 msg.msg_iov = iov;
1319 #ifdef COMPAT_OLDSOCK
1320 msg.msg_flags = 0;
1321 #endif
1322 /* Luckily we can use this directly */
1323 error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval);
1324 done:
1325 if (iov != aiov)
1326 FREE(iov, M_IOV);
1327 return (error);
1328 }
1329
1330 int
1331 netbsd32_recvfrom(p, v, retval)
1332 struct proc *p;
1333 void *v;
1334 register_t *retval;
1335 {
1336 struct netbsd32_recvfrom_args /* {
1337 syscallarg(int) s;
1338 syscallarg(netbsd32_voidp) buf;
1339 syscallarg(netbsd32_size_t) len;
1340 syscallarg(int) flags;
1341 syscallarg(netbsd32_sockaddrp_t) from;
1342 syscallarg(netbsd32_intp) fromlenaddr;
1343 } */ *uap = v;
1344 struct netbsd32_msghdr msg;
1345 struct iovec aiov;
1346 int error;
1347
1348 if (SCARG(uap, fromlenaddr)) {
1349 error = copyin((caddr_t)(u_long)SCARG(uap, fromlenaddr),
1350 (caddr_t)&msg.msg_namelen,
1351 sizeof(msg.msg_namelen));
1352 if (error)
1353 return (error);
1354 } else
1355 msg.msg_namelen = 0;
1356 msg.msg_name = SCARG(uap, from);
1357 msg.msg_iov = NULL; /* We can't store a real pointer here */
1358 msg.msg_iovlen = 1;
1359 aiov.iov_base = (caddr_t)(u_long)SCARG(uap, buf);
1360 aiov.iov_len = (u_long)SCARG(uap, len);
1361 msg.msg_control = 0;
1362 msg.msg_flags = SCARG(uap, flags);
1363 return (recvit32(p, SCARG(uap, s), &msg, &aiov,
1364 (caddr_t)(u_long)SCARG(uap, fromlenaddr), retval));
1365 }
1366
1367 int
1368 netbsd32_sendto(p, v, retval)
1369 struct proc *p;
1370 void *v;
1371 register_t *retval;
1372 {
1373 struct netbsd32_sendto_args /* {
1374 syscallarg(int) s;
1375 syscallarg(const netbsd32_voidp) buf;
1376 syscallarg(netbsd32_size_t) len;
1377 syscallarg(int) flags;
1378 syscallarg(const netbsd32_sockaddrp_t) to;
1379 syscallarg(int) tolen;
1380 } */ *uap = v;
1381 struct msghdr msg;
1382 struct iovec aiov;
1383
1384 msg.msg_name = (caddr_t)(u_long)SCARG(uap, to); /* XXX kills const */
1385 msg.msg_namelen = SCARG(uap, tolen);
1386 msg.msg_iov = &aiov;
1387 msg.msg_iovlen = 1;
1388 msg.msg_control = 0;
1389 #ifdef COMPAT_OLDSOCK
1390 msg.msg_flags = 0;
1391 #endif
1392 aiov.iov_base = (char *)(u_long)SCARG(uap, buf); /* XXX kills const */
1393 aiov.iov_len = SCARG(uap, len);
1394 return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval));
1395 }
1396
1397 int
1398 netbsd32_accept(p, v, retval)
1399 struct proc *p;
1400 void *v;
1401 register_t *retval;
1402 {
1403 struct netbsd32_accept_args /* {
1404 syscallarg(int) s;
1405 syscallarg(netbsd32_sockaddrp_t) name;
1406 syscallarg(netbsd32_intp) anamelen;
1407 } */ *uap = v;
1408 struct sys_accept_args ua;
1409
1410 NETBSD32TO64_UAP(s);
1411 NETBSD32TOP_UAP(name, struct sockaddr);
1412 NETBSD32TOP_UAP(anamelen, int);
1413 return (sys_accept(p, &ua, retval));
1414 }
1415
1416 int
1417 netbsd32_getpeername(p, v, retval)
1418 struct proc *p;
1419 void *v;
1420 register_t *retval;
1421 {
1422 struct netbsd32_getpeername_args /* {
1423 syscallarg(int) fdes;
1424 syscallarg(netbsd32_sockaddrp_t) asa;
1425 syscallarg(netbsd32_intp) alen;
1426 } */ *uap = v;
1427 struct sys_getpeername_args ua;
1428
1429 NETBSD32TO64_UAP(fdes);
1430 NETBSD32TOP_UAP(asa, struct sockaddr);
1431 NETBSD32TOP_UAP(alen, int);
1432 /* NB: do the protocol specific sockaddrs need to be converted? */
1433 return (sys_getpeername(p, &ua, retval));
1434 }
1435
1436 int
1437 netbsd32_getsockname(p, v, retval)
1438 struct proc *p;
1439 void *v;
1440 register_t *retval;
1441 {
1442 struct netbsd32_getsockname_args /* {
1443 syscallarg(int) fdes;
1444 syscallarg(netbsd32_sockaddrp_t) asa;
1445 syscallarg(netbsd32_intp) alen;
1446 } */ *uap = v;
1447 struct sys_getsockname_args ua;
1448
1449 NETBSD32TO64_UAP(fdes);
1450 NETBSD32TOP_UAP(asa, struct sockaddr);
1451 NETBSD32TOP_UAP(alen, int);
1452 return (sys_getsockname(p, &ua, retval));
1453 }
1454
1455 int
1456 netbsd32_access(p, v, retval)
1457 struct proc *p;
1458 void *v;
1459 register_t *retval;
1460 {
1461 struct netbsd32_access_args /* {
1462 syscallarg(const netbsd32_charp) path;
1463 syscallarg(int) flags;
1464 } */ *uap = v;
1465 struct sys_access_args ua;
1466 caddr_t sg;
1467
1468 NETBSD32TOP_UAP(path, const char);
1469 NETBSD32TO64_UAP(flags);
1470 sg = stackgap_init(p->p_emul);
1471 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1472
1473 return (sys_access(p, &ua, retval));
1474 }
1475
1476 int
1477 netbsd32_chflags(p, v, retval)
1478 struct proc *p;
1479 void *v;
1480 register_t *retval;
1481 {
1482 struct netbsd32_chflags_args /* {
1483 syscallarg(const netbsd32_charp) path;
1484 syscallarg(netbsd32_u_long) flags;
1485 } */ *uap = v;
1486 struct sys_chflags_args ua;
1487
1488 NETBSD32TOP_UAP(path, const char);
1489 NETBSD32TO64_UAP(flags);
1490
1491 return (sys_chflags(p, &ua, retval));
1492 }
1493
1494 int
1495 netbsd32_fchflags(p, v, retval)
1496 struct proc *p;
1497 void *v;
1498 register_t *retval;
1499 {
1500 struct netbsd32_fchflags_args /* {
1501 syscallarg(int) fd;
1502 syscallarg(netbsd32_u_long) flags;
1503 } */ *uap = v;
1504 struct sys_fchflags_args ua;
1505
1506 NETBSD32TO64_UAP(fd);
1507 NETBSD32TO64_UAP(flags);
1508
1509 return (sys_fchflags(p, &ua, retval));
1510 }
1511
1512 int
1513 netbsd32_kill(p, v, retval)
1514 struct proc *p;
1515 void *v;
1516 register_t *retval;
1517 {
1518 struct netbsd32_kill_args /* {
1519 syscallarg(int) pid;
1520 syscallarg(int) signum;
1521 } */ *uap = v;
1522 struct sys_kill_args ua;
1523
1524 NETBSD32TO64_UAP(pid);
1525 NETBSD32TO64_UAP(signum);
1526
1527 return (sys_kill(p, &ua, retval));
1528 }
1529
1530 int
1531 netbsd32_dup(p, v, retval)
1532 struct proc *p;
1533 void *v;
1534 register_t *retval;
1535 {
1536 struct netbsd32_dup_args /* {
1537 syscallarg(int) fd;
1538 } */ *uap = v;
1539 struct sys_dup_args ua;
1540
1541 NETBSD32TO64_UAP(fd);
1542
1543 return (sys_dup(p, &ua, retval));
1544 }
1545
1546 int
1547 netbsd32_profil(p, v, retval)
1548 struct proc *p;
1549 void *v;
1550 register_t *retval;
1551 {
1552 struct netbsd32_profil_args /* {
1553 syscallarg(netbsd32_caddr_t) samples;
1554 syscallarg(netbsd32_size_t) size;
1555 syscallarg(netbsd32_u_long) offset;
1556 syscallarg(u_int) scale;
1557 } */ *uap = v;
1558 struct sys_profil_args ua;
1559
1560 NETBSD32TOX64_UAP(samples, caddr_t);
1561 NETBSD32TOX_UAP(size, size_t);
1562 NETBSD32TOX_UAP(offset, u_long);
1563 NETBSD32TO64_UAP(scale);
1564 return (sys_profil(p, &ua, retval));
1565 }
1566
1567 int
1568 netbsd32_ktrace(p, v, retval)
1569 struct proc *p;
1570 void *v;
1571 register_t *retval;
1572 {
1573 struct netbsd32_ktrace_args /* {
1574 syscallarg(const netbsd32_charp) fname;
1575 syscallarg(int) ops;
1576 syscallarg(int) facs;
1577 syscallarg(int) pid;
1578 } */ *uap = v;
1579 struct sys_ktrace_args ua;
1580
1581 NETBSD32TOP_UAP(fname, const char);
1582 NETBSD32TO64_UAP(ops);
1583 NETBSD32TO64_UAP(facs);
1584 NETBSD32TO64_UAP(pid);
1585 return (sys_ktrace(p, &ua, retval));
1586 }
1587
1588 int
1589 netbsd32_sigaction(p, v, retval)
1590 struct proc *p;
1591 void *v;
1592 register_t *retval;
1593 {
1594 struct netbsd32_sigaction_args /* {
1595 syscallarg(int) signum;
1596 syscallarg(const netbsd32_sigactionp_t) nsa;
1597 syscallarg(netbsd32_sigactionp_t) osa;
1598 } */ *uap = v;
1599 struct sigaction nsa, osa;
1600 struct netbsd32_sigaction *sa32p, sa32;
1601 int error;
1602
1603 if (SCARG(uap, nsa)) {
1604 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, nsa);
1605 if (copyin(sa32p, &sa32, sizeof(sa32)))
1606 return EFAULT;
1607 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
1608 nsa.sa_mask = sa32.sa_mask;
1609 nsa.sa_flags = sa32.sa_flags;
1610 }
1611 error = sigaction1(p, SCARG(uap, signum),
1612 SCARG(uap, nsa) ? &nsa : 0,
1613 SCARG(uap, osa) ? &osa : 0);
1614
1615 if (error)
1616 return (error);
1617
1618 if (SCARG(uap, osa)) {
1619 sa32.sa_handler = (netbsd32_sigactionp_t)(u_long)osa.sa_handler;
1620 sa32.sa_mask = osa.sa_mask;
1621 sa32.sa_flags = osa.sa_flags;
1622 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, osa);
1623 if (copyout(&sa32, sa32p, sizeof(sa32)))
1624 return EFAULT;
1625 }
1626
1627 return (0);
1628 }
1629
1630 int
1631 netbsd32___getlogin(p, v, retval)
1632 struct proc *p;
1633 void *v;
1634 register_t *retval;
1635 {
1636 struct netbsd32___getlogin_args /* {
1637 syscallarg(netbsd32_charp) namebuf;
1638 syscallarg(u_int) namelen;
1639 } */ *uap = v;
1640 struct sys___getlogin_args ua;
1641
1642 NETBSD32TOP_UAP(namebuf, char);
1643 NETBSD32TO64_UAP(namelen);
1644 return (sys___getlogin(p, &ua, retval));
1645 }
1646
1647 int
1648 netbsd32_setlogin(p, v, retval)
1649 struct proc *p;
1650 void *v;
1651 register_t *retval;
1652 {
1653 struct netbsd32_setlogin_args /* {
1654 syscallarg(const netbsd32_charp) namebuf;
1655 } */ *uap = v;
1656 struct sys_setlogin_args ua;
1657
1658 NETBSD32TOP_UAP(namebuf, char);
1659 return (sys_setlogin(p, &ua, retval));
1660 }
1661
1662 int
1663 netbsd32_acct(p, v, retval)
1664 struct proc *p;
1665 void *v;
1666 register_t *retval;
1667 {
1668 struct netbsd32_acct_args /* {
1669 syscallarg(const netbsd32_charp) path;
1670 } */ *uap = v;
1671 struct sys_acct_args ua;
1672
1673 NETBSD32TOP_UAP(path, const char);
1674 return (sys_acct(p, &ua, retval));
1675 }
1676
1677 int
1678 netbsd32_revoke(p, v, retval)
1679 struct proc *p;
1680 void *v;
1681 register_t *retval;
1682 {
1683 struct netbsd32_revoke_args /* {
1684 syscallarg(const netbsd32_charp) path;
1685 } */ *uap = v;
1686 struct sys_revoke_args ua;
1687 caddr_t sg;
1688
1689 NETBSD32TOP_UAP(path, const char);
1690 sg = stackgap_init(p->p_emul);
1691 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1692
1693 return (sys_revoke(p, &ua, retval));
1694 }
1695
1696 int
1697 netbsd32_symlink(p, v, retval)
1698 struct proc *p;
1699 void *v;
1700 register_t *retval;
1701 {
1702 struct netbsd32_symlink_args /* {
1703 syscallarg(const netbsd32_charp) path;
1704 syscallarg(const netbsd32_charp) link;
1705 } */ *uap = v;
1706 struct sys_symlink_args ua;
1707
1708 NETBSD32TOP_UAP(path, const char);
1709 NETBSD32TOP_UAP(link, const char);
1710
1711 return (sys_symlink(p, &ua, retval));
1712 }
1713
1714 int
1715 netbsd32_readlink(p, v, retval)
1716 struct proc *p;
1717 void *v;
1718 register_t *retval;
1719 {
1720 struct netbsd32_readlink_args /* {
1721 syscallarg(const netbsd32_charp) path;
1722 syscallarg(netbsd32_charp) buf;
1723 syscallarg(netbsd32_size_t) count;
1724 } */ *uap = v;
1725 struct sys_readlink_args ua;
1726 caddr_t sg;
1727
1728 NETBSD32TOP_UAP(path, const char);
1729 NETBSD32TOP_UAP(buf, char);
1730 NETBSD32TOX_UAP(count, size_t);
1731 sg = stackgap_init(p->p_emul);
1732 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1733
1734 return (sys_readlink(p, &ua, retval));
1735 }
1736
1737 /*
1738 * Need to completly reimplement this syscall due to argument copying.
1739 */
1740 int
1741 netbsd32_execve(p, v, retval)
1742 struct proc *p;
1743 void *v;
1744 register_t *retval;
1745 {
1746 struct netbsd32_execve_args /* {
1747 syscallarg(const netbsd32_charp) path;
1748 syscallarg(netbsd32_charpp) argp;
1749 syscallarg(netbsd32_charpp) envp;
1750 } */ *uap = v;
1751 struct sys_execve_args ua;
1752 caddr_t sg;
1753 /* Function args */
1754 int error, i;
1755 struct exec_package pack;
1756 struct nameidata nid;
1757 struct vattr attr;
1758 struct ucred *cred = p->p_ucred;
1759 char *argp;
1760 netbsd32_charp const *cpp;
1761 char *dp;
1762 netbsd32_charp sp;
1763 long argc, envc;
1764 size_t len;
1765 char *stack;
1766 struct ps_strings arginfo;
1767 struct vmspace *vm;
1768 char **tmpfap;
1769 int szsigcode;
1770 extern struct emul emul_netbsd;
1771
1772
1773 NETBSD32TOP_UAP(path, const char);
1774 NETBSD32TOP_UAP(argp, char *);
1775 NETBSD32TOP_UAP(envp, char *);
1776 sg = stackgap_init(p->p_emul);
1777 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1778
1779 /*
1780 * figure out the maximum size of an exec header, if necessary.
1781 * XXX should be able to keep LKM code from modifying exec switch
1782 * when we're still using it, but...
1783 */
1784 if (exec_maxhdrsz == 0) {
1785 for (i = 0; i < nexecs; i++)
1786 if (execsw[i].es_check != NULL
1787 && execsw[i].es_hdrsz > exec_maxhdrsz)
1788 exec_maxhdrsz = execsw[i].es_hdrsz;
1789 }
1790
1791 /* init the namei data to point the file user's program name */
1792 /* XXX cgd 960926: why do this here? most will be clobbered. */
1793 NDINIT(&nid, LOOKUP, NOFOLLOW, UIO_USERSPACE, SCARG(&ua, path), p);
1794
1795 /*
1796 * initialize the fields of the exec package.
1797 */
1798 pack.ep_name = SCARG(&ua, path);
1799 MALLOC(pack.ep_hdr, void *, exec_maxhdrsz, M_EXEC, M_WAITOK);
1800 pack.ep_hdrlen = exec_maxhdrsz;
1801 pack.ep_hdrvalid = 0;
1802 pack.ep_ndp = &nid;
1803 pack.ep_emul_arg = NULL;
1804 pack.ep_vmcmds.evs_cnt = 0;
1805 pack.ep_vmcmds.evs_used = 0;
1806 pack.ep_vap = &attr;
1807 pack.ep_emul = &emul_netbsd;
1808 pack.ep_flags = 0;
1809
1810 /* see if we can run it. */
1811 if ((error = check_exec(p, &pack)) != 0)
1812 goto freehdr;
1813
1814 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
1815
1816 /* allocate an argument buffer */
1817 argp = (char *) uvm_km_valloc_wait(exec_map, NCARGS);
1818 #ifdef DIAGNOSTIC
1819 if (argp == (vaddr_t) 0)
1820 panic("execve: argp == NULL");
1821 #endif
1822 dp = argp;
1823 argc = 0;
1824
1825 /* copy the fake args list, if there's one, freeing it as we go */
1826 if (pack.ep_flags & EXEC_HASARGL) {
1827 tmpfap = pack.ep_fa;
1828 while (*tmpfap != NULL) {
1829 char *cp;
1830
1831 cp = *tmpfap;
1832 while (*cp)
1833 *dp++ = *cp++;
1834 dp++;
1835
1836 FREE(*tmpfap, M_EXEC);
1837 tmpfap++; argc++;
1838 }
1839 FREE(pack.ep_fa, M_EXEC);
1840 pack.ep_flags &= ~EXEC_HASARGL;
1841 }
1842
1843 /* Now get argv & environment */
1844 if (!(cpp = (netbsd32_charp *)SCARG(&ua, argp))) {
1845 error = EINVAL;
1846 goto bad;
1847 }
1848
1849 if (pack.ep_flags & EXEC_SKIPARG)
1850 cpp++;
1851
1852 while (1) {
1853 len = argp + ARG_MAX - dp;
1854 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1855 goto bad;
1856 if (!sp)
1857 break;
1858 if ((error = copyinstr((char *)(u_long)sp, dp,
1859 len, &len)) != 0) {
1860 if (error == ENAMETOOLONG)
1861 error = E2BIG;
1862 goto bad;
1863 }
1864 dp += len;
1865 cpp++;
1866 argc++;
1867 }
1868
1869 envc = 0;
1870 /* environment need not be there */
1871 if ((cpp = (netbsd32_charp *)SCARG(&ua, envp)) != NULL ) {
1872 while (1) {
1873 len = argp + ARG_MAX - dp;
1874 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1875 goto bad;
1876 if (!sp)
1877 break;
1878 if ((error = copyinstr((char *)(u_long)sp,
1879 dp, len, &len)) != 0) {
1880 if (error == ENAMETOOLONG)
1881 error = E2BIG;
1882 goto bad;
1883 }
1884 dp += len;
1885 cpp++;
1886 envc++;
1887 }
1888 }
1889
1890 dp = (char *) ALIGN(dp);
1891
1892 szsigcode = pack.ep_emul->e_esigcode - pack.ep_emul->e_sigcode;
1893
1894 /* Now check if args & environ fit into new stack */
1895 if (pack.ep_flags & EXEC_32)
1896 len = ((argc + envc + 2 + pack.ep_emul->e_arglen) * sizeof(int) +
1897 sizeof(int) + dp + STACKGAPLEN + szsigcode +
1898 sizeof(struct ps_strings)) - argp;
1899 else
1900 len = ((argc + envc + 2 + pack.ep_emul->e_arglen) * sizeof(char *) +
1901 sizeof(int) + dp + STACKGAPLEN + szsigcode +
1902 sizeof(struct ps_strings)) - argp;
1903
1904 len = ALIGN(len); /* make the stack "safely" aligned */
1905
1906 if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
1907 error = ENOMEM;
1908 goto bad;
1909 }
1910
1911 /* adjust "active stack depth" for process VSZ */
1912 pack.ep_ssize = len; /* maybe should go elsewhere, but... */
1913
1914 /*
1915 * Do whatever is necessary to prepare the address space
1916 * for remapping. Note that this might replace the current
1917 * vmspace with another!
1918 */
1919 uvmspace_exec(p);
1920
1921 /* Now map address space */
1922 vm = p->p_vmspace;
1923 vm->vm_taddr = (char *) pack.ep_taddr;
1924 vm->vm_tsize = btoc(pack.ep_tsize);
1925 vm->vm_daddr = (char *) pack.ep_daddr;
1926 vm->vm_dsize = btoc(pack.ep_dsize);
1927 vm->vm_ssize = btoc(pack.ep_ssize);
1928 vm->vm_maxsaddr = (char *) pack.ep_maxsaddr;
1929 vm->vm_minsaddr = (char *) pack.ep_minsaddr;
1930
1931 /* create the new process's VM space by running the vmcmds */
1932 #ifdef DIAGNOSTIC
1933 if (pack.ep_vmcmds.evs_used == 0)
1934 panic("execve: no vmcmds");
1935 #endif
1936 for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
1937 struct exec_vmcmd *vcp;
1938
1939 vcp = &pack.ep_vmcmds.evs_cmds[i];
1940 error = (*vcp->ev_proc)(p, vcp);
1941 }
1942
1943 /* free the vmspace-creation commands, and release their references */
1944 kill_vmcmds(&pack.ep_vmcmds);
1945
1946 /* if an error happened, deallocate and punt */
1947 if (error)
1948 goto exec_abort;
1949
1950 /* remember information about the process */
1951 arginfo.ps_nargvstr = argc;
1952 arginfo.ps_nenvstr = envc;
1953
1954 stack = (char *) (vm->vm_minsaddr - len);
1955 /* Now copy argc, args & environ to new stack */
1956 if (!(*pack.ep_emul->e_copyargs)(&pack, &arginfo, stack, argp))
1957 goto exec_abort;
1958
1959 /* fill process ps_strings info */
1960 p->p_psstr = (struct ps_strings *)(stack - sizeof(struct ps_strings));
1961 p->p_psargv = offsetof(struct ps_strings, ps_argvstr);
1962 p->p_psnargv = offsetof(struct ps_strings, ps_nargvstr);
1963 p->p_psenv = offsetof(struct ps_strings, ps_envstr);
1964 p->p_psnenv = offsetof(struct ps_strings, ps_nenvstr);
1965
1966 /* copy out the process's ps_strings structure */
1967 if (copyout(&arginfo, (char *)p->p_psstr, sizeof(arginfo)))
1968 goto exec_abort;
1969
1970 /* copy out the process's signal trapoline code */
1971 if (szsigcode) {
1972 if (copyout((char *)pack.ep_emul->e_sigcode,
1973 p->p_sigacts->ps_sigcode = (char *)p->p_psstr - szsigcode,
1974 szsigcode))
1975 goto exec_abort;
1976 #ifdef PMAP_NEED_PROCWR
1977 /* This is code. Let the pmap do what is needed. */
1978 pmap_procwr(p, (vaddr_t)p->p_sigacts->ps_sigcode, szsigcode);
1979 #endif
1980 }
1981
1982 stopprofclock(p); /* stop profiling */
1983 fdcloseexec(p); /* handle close on exec */
1984 execsigs(p); /* reset catched signals */
1985 p->p_ctxlink = NULL; /* reset ucontext link */
1986
1987 /* set command name & other accounting info */
1988 len = min(nid.ni_cnd.cn_namelen, MAXCOMLEN);
1989 memcpy(p->p_comm, nid.ni_cnd.cn_nameptr, len);
1990 p->p_comm[len] = 0;
1991 p->p_acflag &= ~AFORK;
1992
1993 /* record proc's vnode, for use by procfs and others */
1994 if (p->p_textvp)
1995 vrele(p->p_textvp);
1996 VREF(pack.ep_vp);
1997 p->p_textvp = pack.ep_vp;
1998
1999 p->p_flag |= P_EXEC;
2000 if (p->p_flag & P_PPWAIT) {
2001 p->p_flag &= ~P_PPWAIT;
2002 wakeup((caddr_t) p->p_pptr);
2003 }
2004
2005 /*
2006 * deal with set[ug]id.
2007 * MNT_NOSUID and P_TRACED have already been used to disable s[ug]id.
2008 */
2009 if (((attr.va_mode & S_ISUID) != 0 && p->p_ucred->cr_uid != attr.va_uid)
2010 || ((attr.va_mode & S_ISGID) != 0 && p->p_ucred->cr_gid != attr.va_gid)){
2011 p->p_ucred = crcopy(cred);
2012 #ifdef KTRACE
2013 /*
2014 * If process is being ktraced, turn off - unless
2015 * root set it.
2016 */
2017 if (p->p_tracep && !(p->p_traceflag & KTRFAC_ROOT))
2018 ktrderef(p);
2019 #endif
2020 if (attr.va_mode & S_ISUID)
2021 p->p_ucred->cr_uid = attr.va_uid;
2022 if (attr.va_mode & S_ISGID)
2023 p->p_ucred->cr_gid = attr.va_gid;
2024 p_sugid(p);
2025 } else
2026 p->p_flag &= ~P_SUGID;
2027 p->p_cred->p_svuid = p->p_ucred->cr_uid;
2028 p->p_cred->p_svgid = p->p_ucred->cr_gid;
2029
2030 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2031
2032 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2033 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2034 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2035 vput(pack.ep_vp);
2036
2037 /* setup new registers and do misc. setup. */
2038 (*pack.ep_emul->e_setregs)(p, &pack, (u_long) stack);
2039
2040 if (p->p_flag & P_TRACED)
2041 psignal(p, SIGTRAP);
2042
2043 p->p_emul = pack.ep_emul;
2044 FREE(pack.ep_hdr, M_EXEC);
2045
2046 #ifdef KTRACE
2047 if (KTRPOINT(p, KTR_EMUL))
2048 ktremul(p);
2049 #endif
2050
2051 return (EJUSTRETURN);
2052
2053 bad:
2054 /* free the vmspace-creation commands, and release their references */
2055 kill_vmcmds(&pack.ep_vmcmds);
2056 /* kill any opened file descriptor, if necessary */
2057 if (pack.ep_flags & EXEC_HASFD) {
2058 pack.ep_flags &= ~EXEC_HASFD;
2059 (void) fdrelease(p, pack.ep_fd);
2060 }
2061 /* close and put the exec'd file */
2062 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2063 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2064 vput(pack.ep_vp);
2065 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2066 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2067
2068 freehdr:
2069 FREE(pack.ep_hdr, M_EXEC);
2070 return error;
2071
2072 exec_abort:
2073 /*
2074 * the old process doesn't exist anymore. exit gracefully.
2075 * get rid of the (new) address space we have created, if any, get rid
2076 * of our namei data and vnode, and exit noting failure
2077 */
2078 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
2079 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
2080 if (pack.ep_emul_arg)
2081 FREE(pack.ep_emul_arg, M_TEMP);
2082 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2083 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2084 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2085 vput(pack.ep_vp);
2086 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2087 FREE(pack.ep_hdr, M_EXEC);
2088 exit1(p, W_EXITCODE(0, SIGABRT));
2089 exit1(p, -1);
2090
2091 /* NOTREACHED */
2092 return 0;
2093 }
2094
2095 int
2096 netbsd32_umask(p, v, retval)
2097 struct proc *p;
2098 void *v;
2099 register_t *retval;
2100 {
2101 struct netbsd32_umask_args /* {
2102 syscallarg(mode_t) newmask;
2103 } */ *uap = v;
2104 struct sys_umask_args ua;
2105
2106 NETBSD32TO64_UAP(newmask);
2107 return (sys_umask(p, &ua, retval));
2108 }
2109
2110 int
2111 netbsd32_chroot(p, v, retval)
2112 struct proc *p;
2113 void *v;
2114 register_t *retval;
2115 {
2116 struct netbsd32_chroot_args /* {
2117 syscallarg(const netbsd32_charp) path;
2118 } */ *uap = v;
2119 struct sys_chroot_args ua;
2120
2121 NETBSD32TOP_UAP(path, const char);
2122 return (sys_chroot(p, &ua, retval));
2123 }
2124
2125 int
2126 netbsd32_sbrk(p, v, retval)
2127 struct proc *p;
2128 void *v;
2129 register_t *retval;
2130 {
2131 struct netbsd32_sbrk_args /* {
2132 syscallarg(int) incr;
2133 } */ *uap = v;
2134 struct sys_sbrk_args ua;
2135
2136 NETBSD32TO64_UAP(incr);
2137 return (sys_sbrk(p, &ua, retval));
2138 }
2139
2140 int
2141 netbsd32_sstk(p, v, retval)
2142 struct proc *p;
2143 void *v;
2144 register_t *retval;
2145 {
2146 struct netbsd32_sstk_args /* {
2147 syscallarg(int) incr;
2148 } */ *uap = v;
2149 struct sys_sstk_args ua;
2150
2151 NETBSD32TO64_UAP(incr);
2152 return (sys_sstk(p, &ua, retval));
2153 }
2154
2155 int
2156 netbsd32_munmap(p, v, retval)
2157 struct proc *p;
2158 void *v;
2159 register_t *retval;
2160 {
2161 struct netbsd32_munmap_args /* {
2162 syscallarg(netbsd32_voidp) addr;
2163 syscallarg(netbsd32_size_t) len;
2164 } */ *uap = v;
2165 struct sys_munmap_args ua;
2166
2167 NETBSD32TOP_UAP(addr, void);
2168 NETBSD32TOX_UAP(len, size_t);
2169 return (sys_munmap(p, &ua, retval));
2170 }
2171
2172 int
2173 netbsd32_mprotect(p, v, retval)
2174 struct proc *p;
2175 void *v;
2176 register_t *retval;
2177 {
2178 struct netbsd32_mprotect_args /* {
2179 syscallarg(netbsd32_voidp) addr;
2180 syscallarg(netbsd32_size_t) len;
2181 syscallarg(int) prot;
2182 } */ *uap = v;
2183 struct sys_mprotect_args ua;
2184
2185 NETBSD32TOP_UAP(addr, void);
2186 NETBSD32TOX_UAP(len, size_t);
2187 NETBSD32TO64_UAP(prot);
2188 return (sys_mprotect(p, &ua, retval));
2189 }
2190
2191 int
2192 netbsd32_madvise(p, v, retval)
2193 struct proc *p;
2194 void *v;
2195 register_t *retval;
2196 {
2197 struct netbsd32_madvise_args /* {
2198 syscallarg(netbsd32_voidp) addr;
2199 syscallarg(netbsd32_size_t) len;
2200 syscallarg(int) behav;
2201 } */ *uap = v;
2202 struct sys_madvise_args ua;
2203
2204 NETBSD32TOP_UAP(addr, void);
2205 NETBSD32TOX_UAP(len, size_t);
2206 NETBSD32TO64_UAP(behav);
2207 return (sys_madvise(p, &ua, retval));
2208 }
2209
2210 int
2211 netbsd32_mincore(p, v, retval)
2212 struct proc *p;
2213 void *v;
2214 register_t *retval;
2215 {
2216 struct netbsd32_mincore_args /* {
2217 syscallarg(netbsd32_caddr_t) addr;
2218 syscallarg(netbsd32_size_t) len;
2219 syscallarg(netbsd32_charp) vec;
2220 } */ *uap = v;
2221 struct sys_mincore_args ua;
2222
2223 NETBSD32TOX64_UAP(addr, caddr_t);
2224 NETBSD32TOX_UAP(len, size_t);
2225 NETBSD32TOP_UAP(vec, char);
2226 return (sys_mincore(p, &ua, retval));
2227 }
2228
2229 int
2230 netbsd32_getgroups(p, v, retval)
2231 struct proc *p;
2232 void *v;
2233 register_t *retval;
2234 {
2235 struct netbsd32_getgroups_args /* {
2236 syscallarg(int) gidsetsize;
2237 syscallarg(netbsd32_gid_tp) gidset;
2238 } */ *uap = v;
2239 struct pcred *pc = p->p_cred;
2240 int ngrp;
2241 int error;
2242
2243 ngrp = SCARG(uap, gidsetsize);
2244 if (ngrp == 0) {
2245 *retval = pc->pc_ucred->cr_ngroups;
2246 return (0);
2247 }
2248 if (ngrp < pc->pc_ucred->cr_ngroups)
2249 return (EINVAL);
2250 ngrp = pc->pc_ucred->cr_ngroups;
2251 /* Should convert gid_t to netbsd32_gid_t, but they're the same */
2252 error = copyout((caddr_t)pc->pc_ucred->cr_groups,
2253 (caddr_t)(u_long)SCARG(uap, gidset),
2254 ngrp * sizeof(gid_t));
2255 if (error)
2256 return (error);
2257 *retval = ngrp;
2258 return (0);
2259 }
2260
2261 int
2262 netbsd32_setgroups(p, v, retval)
2263 struct proc *p;
2264 void *v;
2265 register_t *retval;
2266 {
2267 struct netbsd32_setgroups_args /* {
2268 syscallarg(int) gidsetsize;
2269 syscallarg(const netbsd32_gid_tp) gidset;
2270 } */ *uap = v;
2271 struct sys_setgroups_args ua;
2272
2273 NETBSD32TO64_UAP(gidsetsize);
2274 NETBSD32TOP_UAP(gidset, gid_t);
2275 return (sys_setgroups(p, &ua, retval));
2276 }
2277
2278 int
2279 netbsd32_setpgid(p, v, retval)
2280 struct proc *p;
2281 void *v;
2282 register_t *retval;
2283 {
2284 struct netbsd32_setpgid_args /* {
2285 syscallarg(int) pid;
2286 syscallarg(int) pgid;
2287 } */ *uap = v;
2288 struct sys_setpgid_args ua;
2289
2290 NETBSD32TO64_UAP(pid);
2291 NETBSD32TO64_UAP(pgid);
2292 return (sys_setpgid(p, &ua, retval));
2293 }
2294
2295 int
2296 netbsd32_setitimer(p, v, retval)
2297 struct proc *p;
2298 void *v;
2299 register_t *retval;
2300 {
2301 struct netbsd32_setitimer_args /* {
2302 syscallarg(int) which;
2303 syscallarg(const netbsd32_itimervalp_t) itv;
2304 syscallarg(netbsd32_itimervalp_t) oitv;
2305 } */ *uap = v;
2306 struct netbsd32_itimerval s32it, *itvp;
2307 int which = SCARG(uap, which);
2308 struct netbsd32_getitimer_args getargs;
2309 struct itimerval aitv;
2310 int s, error;
2311
2312 if ((u_int)which > ITIMER_PROF)
2313 return (EINVAL);
2314 itvp = (struct netbsd32_itimerval *)(u_long)SCARG(uap, itv);
2315 if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
2316 return (error);
2317 netbsd32_to_itimerval(&s32it, &aitv);
2318 if (SCARG(uap, oitv) != NULL) {
2319 SCARG(&getargs, which) = which;
2320 SCARG(&getargs, itv) = SCARG(uap, oitv);
2321 if ((error = netbsd32_getitimer(p, &getargs, retval)) != 0)
2322 return (error);
2323 }
2324 if (itvp == 0)
2325 return (0);
2326 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
2327 return (EINVAL);
2328 s = splclock();
2329 if (which == ITIMER_REAL) {
2330 callout_stop(&p->p_realit_ch);
2331 if (timerisset(&aitv.it_value)) {
2332 /*
2333 * Don't need to check hzto() return value, here.
2334 * callout_reset() does it for us.
2335 */
2336 timeradd(&aitv.it_value, &time, &aitv.it_value);
2337 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
2338 realitexpire, p);
2339 }
2340 p->p_realtimer = aitv;
2341 } else
2342 p->p_stats->p_timer[which] = aitv;
2343 splx(s);
2344 return (0);
2345 }
2346
2347 int
2348 netbsd32_getitimer(p, v, retval)
2349 struct proc *p;
2350 void *v;
2351 register_t *retval;
2352 {
2353 struct netbsd32_getitimer_args /* {
2354 syscallarg(int) which;
2355 syscallarg(netbsd32_itimervalp_t) itv;
2356 } */ *uap = v;
2357 int which = SCARG(uap, which);
2358 struct netbsd32_itimerval s32it;
2359 struct itimerval aitv;
2360 int s;
2361
2362 if ((u_int)which > ITIMER_PROF)
2363 return (EINVAL);
2364 s = splclock();
2365 if (which == ITIMER_REAL) {
2366 /*
2367 * Convert from absolute to relative time in .it_value
2368 * part of real time timer. If time for real time timer
2369 * has passed return 0, else return difference between
2370 * current time and time for the timer to go off.
2371 */
2372 aitv = p->p_realtimer;
2373 if (timerisset(&aitv.it_value)) {
2374 if (timercmp(&aitv.it_value, &time, <))
2375 timerclear(&aitv.it_value);
2376 else
2377 timersub(&aitv.it_value, &time, &aitv.it_value);
2378 }
2379 } else
2380 aitv = p->p_stats->p_timer[which];
2381 splx(s);
2382 netbsd32_from_itimerval(&aitv, &s32it);
2383 return (copyout(&s32it, (caddr_t)(u_long)SCARG(uap, itv), sizeof(s32it)));
2384 }
2385
2386 int
2387 netbsd32_fcntl(p, v, retval)
2388 struct proc *p;
2389 void *v;
2390 register_t *retval;
2391 {
2392 struct netbsd32_fcntl_args /* {
2393 syscallarg(int) fd;
2394 syscallarg(int) cmd;
2395 syscallarg(netbsd32_voidp) arg;
2396 } */ *uap = v;
2397 struct sys_fcntl_args ua;
2398
2399 NETBSD32TO64_UAP(fd);
2400 NETBSD32TO64_UAP(cmd);
2401 NETBSD32TOP_UAP(arg, void);
2402 /* XXXX we can do this 'cause flock doesn't change */
2403 return (sys_fcntl(p, &ua, retval));
2404 }
2405
2406 int
2407 netbsd32_dup2(p, v, retval)
2408 struct proc *p;
2409 void *v;
2410 register_t *retval;
2411 {
2412 struct netbsd32_dup2_args /* {
2413 syscallarg(int) from;
2414 syscallarg(int) to;
2415 } */ *uap = v;
2416 struct sys_dup2_args ua;
2417
2418 NETBSD32TO64_UAP(from);
2419 NETBSD32TO64_UAP(to);
2420 return (sys_dup2(p, &ua, retval));
2421 }
2422
2423 int
2424 netbsd32_select(p, v, retval)
2425 struct proc *p;
2426 void *v;
2427 register_t *retval;
2428 {
2429 struct netbsd32_select_args /* {
2430 syscallarg(int) nd;
2431 syscallarg(netbsd32_fd_setp_t) in;
2432 syscallarg(netbsd32_fd_setp_t) ou;
2433 syscallarg(netbsd32_fd_setp_t) ex;
2434 syscallarg(netbsd32_timevalp_t) tv;
2435 } */ *uap = v;
2436 /* This one must be done in-line 'cause of the timeval */
2437 struct netbsd32_timeval tv32;
2438 caddr_t bits;
2439 char smallbits[howmany(FD_SETSIZE, NFDBITS) * sizeof(fd_mask) * 6];
2440 struct timeval atv;
2441 int s, ncoll, error = 0, timo;
2442 size_t ni;
2443 extern int selwait, nselcoll;
2444 extern int selscan __P((struct proc *, fd_mask *, fd_mask *, int, register_t *));
2445
2446 if (SCARG(uap, nd) < 0)
2447 return (EINVAL);
2448 if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {
2449 /* forgiving; slightly wrong */
2450 SCARG(uap, nd) = p->p_fd->fd_nfiles;
2451 }
2452 ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);
2453 if (ni * 6 > sizeof(smallbits))
2454 bits = malloc(ni * 6, M_TEMP, M_WAITOK);
2455 else
2456 bits = smallbits;
2457
2458 #define getbits(name, x) \
2459 if (SCARG(uap, name)) { \
2460 error = copyin((caddr_t)(u_long)SCARG(uap, name), bits + ni * x, ni); \
2461 if (error) \
2462 goto done; \
2463 } else \
2464 memset(bits + ni * x, 0, ni);
2465 getbits(in, 0);
2466 getbits(ou, 1);
2467 getbits(ex, 2);
2468 #undef getbits
2469
2470 if (SCARG(uap, tv)) {
2471 error = copyin((caddr_t)(u_long)SCARG(uap, tv), (caddr_t)&tv32,
2472 sizeof(tv32));
2473 if (error)
2474 goto done;
2475 netbsd32_to_timeval(&tv32, &atv);
2476 if (itimerfix(&atv)) {
2477 error = EINVAL;
2478 goto done;
2479 }
2480 s = splclock();
2481 timeradd(&atv, &time, &atv);
2482 splx(s);
2483 } else
2484 timo = 0;
2485 retry:
2486 ncoll = nselcoll;
2487 p->p_flag |= P_SELECT;
2488 error = selscan(p, (fd_mask *)(bits + ni * 0),
2489 (fd_mask *)(bits + ni * 3), SCARG(uap, nd), retval);
2490 if (error || *retval)
2491 goto done;
2492 if (SCARG(uap, tv)) {
2493 /*
2494 * We have to recalculate the timeout on every retry.
2495 */
2496 timo = hzto(&atv);
2497 if (timo <= 0)
2498 goto done;
2499 }
2500 s = splhigh();
2501 if ((p->p_flag & P_SELECT) == 0 || nselcoll != ncoll) {
2502 splx(s);
2503 goto retry;
2504 }
2505 p->p_flag &= ~P_SELECT;
2506 error = tsleep((caddr_t)&selwait, PSOCK | PCATCH, "select", timo);
2507 splx(s);
2508 if (error == 0)
2509 goto retry;
2510 done:
2511 p->p_flag &= ~P_SELECT;
2512 /* select is not restarted after signals... */
2513 if (error == ERESTART)
2514 error = EINTR;
2515 if (error == EWOULDBLOCK)
2516 error = 0;
2517 if (error == 0) {
2518 #define putbits(name, x) \
2519 if (SCARG(uap, name)) { \
2520 error = copyout(bits + ni * x, (caddr_t)(u_long)SCARG(uap, name), ni); \
2521 if (error) \
2522 goto out; \
2523 }
2524 putbits(in, 3);
2525 putbits(ou, 4);
2526 putbits(ex, 5);
2527 #undef putbits
2528 }
2529 out:
2530 if (ni * 6 > sizeof(smallbits))
2531 free(bits, M_TEMP);
2532 return (error);
2533 }
2534
2535 int
2536 netbsd32_fsync(p, v, retval)
2537 struct proc *p;
2538 void *v;
2539 register_t *retval;
2540 {
2541 struct netbsd32_fsync_args /* {
2542 syscallarg(int) fd;
2543 } */ *uap = v;
2544 struct sys_fsync_args ua;
2545
2546 NETBSD32TO64_UAP(fd);
2547 return (sys_fsync(p, &ua, retval));
2548 }
2549
2550 int
2551 netbsd32_setpriority(p, v, retval)
2552 struct proc *p;
2553 void *v;
2554 register_t *retval;
2555 {
2556 struct netbsd32_setpriority_args /* {
2557 syscallarg(int) which;
2558 syscallarg(int) who;
2559 syscallarg(int) prio;
2560 } */ *uap = v;
2561 struct sys_setpriority_args ua;
2562
2563 NETBSD32TO64_UAP(which);
2564 NETBSD32TO64_UAP(who);
2565 NETBSD32TO64_UAP(prio);
2566 return (sys_setpriority(p, &ua, retval));
2567 }
2568
2569 int
2570 netbsd32_socket(p, v, retval)
2571 struct proc *p;
2572 void *v;
2573 register_t *retval;
2574 {
2575 struct netbsd32_socket_args /* {
2576 syscallarg(int) domain;
2577 syscallarg(int) type;
2578 syscallarg(int) protocol;
2579 } */ *uap = v;
2580 struct sys_socket_args ua;
2581
2582 NETBSD32TO64_UAP(domain);
2583 NETBSD32TO64_UAP(type);
2584 NETBSD32TO64_UAP(protocol);
2585 return (sys_socket(p, &ua, retval));
2586 }
2587
2588 int
2589 netbsd32_connect(p, v, retval)
2590 struct proc *p;
2591 void *v;
2592 register_t *retval;
2593 {
2594 struct netbsd32_connect_args /* {
2595 syscallarg(int) s;
2596 syscallarg(const netbsd32_sockaddrp_t) name;
2597 syscallarg(int) namelen;
2598 } */ *uap = v;
2599 struct sys_connect_args ua;
2600
2601 NETBSD32TO64_UAP(s);
2602 NETBSD32TOP_UAP(name, struct sockaddr);
2603 NETBSD32TO64_UAP(namelen);
2604 return (sys_connect(p, &ua, retval));
2605 }
2606
2607 int
2608 netbsd32_getpriority(p, v, retval)
2609 struct proc *p;
2610 void *v;
2611 register_t *retval;
2612 {
2613 struct netbsd32_getpriority_args /* {
2614 syscallarg(int) which;
2615 syscallarg(int) who;
2616 } */ *uap = v;
2617 struct sys_getpriority_args ua;
2618
2619 NETBSD32TO64_UAP(which);
2620 NETBSD32TO64_UAP(who);
2621 return (sys_getpriority(p, &ua, retval));
2622 }
2623
2624 int
2625 netbsd32_bind(p, v, retval)
2626 struct proc *p;
2627 void *v;
2628 register_t *retval;
2629 {
2630 struct netbsd32_bind_args /* {
2631 syscallarg(int) s;
2632 syscallarg(const netbsd32_sockaddrp_t) name;
2633 syscallarg(int) namelen;
2634 } */ *uap = v;
2635 struct sys_bind_args ua;
2636
2637 NETBSD32TO64_UAP(s);
2638 NETBSD32TOP_UAP(name, struct sockaddr);
2639 NETBSD32TO64_UAP(namelen);
2640 return (sys_bind(p, &ua, retval));
2641 }
2642
2643 int
2644 netbsd32_setsockopt(p, v, retval)
2645 struct proc *p;
2646 void *v;
2647 register_t *retval;
2648 {
2649 struct netbsd32_setsockopt_args /* {
2650 syscallarg(int) s;
2651 syscallarg(int) level;
2652 syscallarg(int) name;
2653 syscallarg(const netbsd32_voidp) val;
2654 syscallarg(int) valsize;
2655 } */ *uap = v;
2656 struct sys_setsockopt_args ua;
2657
2658 NETBSD32TO64_UAP(s);
2659 NETBSD32TO64_UAP(level);
2660 NETBSD32TO64_UAP(name);
2661 NETBSD32TOP_UAP(val, void);
2662 NETBSD32TO64_UAP(valsize);
2663 /* may be more efficient to do this inline. */
2664 return (sys_setsockopt(p, &ua, retval));
2665 }
2666
2667 int
2668 netbsd32_listen(p, v, retval)
2669 struct proc *p;
2670 void *v;
2671 register_t *retval;
2672 {
2673 struct netbsd32_listen_args /* {
2674 syscallarg(int) s;
2675 syscallarg(int) backlog;
2676 } */ *uap = v;
2677 struct sys_listen_args ua;
2678
2679 NETBSD32TO64_UAP(s);
2680 NETBSD32TO64_UAP(backlog);
2681 return (sys_listen(p, &ua, retval));
2682 }
2683
2684 int
2685 netbsd32_gettimeofday(p, v, retval)
2686 struct proc *p;
2687 void *v;
2688 register_t *retval;
2689 {
2690 struct netbsd32_gettimeofday_args /* {
2691 syscallarg(netbsd32_timevalp_t) tp;
2692 syscallarg(netbsd32_timezonep_t) tzp;
2693 } */ *uap = v;
2694 struct timeval atv;
2695 struct netbsd32_timeval tv32;
2696 int error = 0;
2697 struct netbsd32_timezone tzfake;
2698
2699 if (SCARG(uap, tp)) {
2700 microtime(&atv);
2701 netbsd32_from_timeval(&atv, &tv32);
2702 error = copyout(&tv32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tv32));
2703 if (error)
2704 return (error);
2705 }
2706 if (SCARG(uap, tzp)) {
2707 /*
2708 * NetBSD has no kernel notion of time zone, so we just
2709 * fake up a timezone struct and return it if demanded.
2710 */
2711 tzfake.tz_minuteswest = 0;
2712 tzfake.tz_dsttime = 0;
2713 error = copyout(&tzfake, (caddr_t)(u_long)SCARG(uap, tzp), sizeof(tzfake));
2714 }
2715 return (error);
2716 }
2717
2718 #if 0
2719 static int settime32 __P((struct timeval *));
2720 /* This function is used by clock_settime and settimeofday */
2721 static int
2722 settime32(tv)
2723 struct timeval *tv;
2724 {
2725 struct timeval delta;
2726 int s;
2727
2728 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
2729 s = splclock();
2730 timersub(tv, &time, &delta);
2731 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
2732 return (EPERM);
2733 #ifdef notyet
2734 if ((delta.tv_sec < 86400) && securelevel > 0)
2735 return (EPERM);
2736 #endif
2737 time = *tv;
2738 (void) spllowersoftclock();
2739 timeradd(&boottime, &delta, &boottime);
2740 timeradd(&runtime, &delta, &runtime);
2741 # if defined(NFS) || defined(NFSSERVER)
2742 {
2743 extern void nqnfs_lease_updatetime __P((int));
2744
2745 nqnfs_lease_updatetime(delta.tv_sec);
2746 }
2747 # endif
2748 splx(s);
2749 resettodr();
2750 return (0);
2751 }
2752 #endif
2753
2754 int
2755 netbsd32_settimeofday(p, v, retval)
2756 struct proc *p;
2757 void *v;
2758 register_t *retval;
2759 {
2760 struct netbsd32_settimeofday_args /* {
2761 syscallarg(const netbsd32_timevalp_t) tv;
2762 syscallarg(const netbsd32_timezonep_t) tzp;
2763 } */ *uap = v;
2764 struct netbsd32_timeval atv32;
2765 struct timeval atv;
2766 struct netbsd32_timezone atz;
2767 int error;
2768
2769 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
2770 return (error);
2771 /* Verify all parameters before changing time. */
2772 if (SCARG(uap, tv) && (error = copyin((caddr_t)(u_long)SCARG(uap, tv),
2773 &atv32, sizeof(atv32))))
2774 return (error);
2775 netbsd32_to_timeval(&atv32, &atv);
2776 /* XXX since we don't use tz, probably no point in doing copyin. */
2777 if (SCARG(uap, tzp) && (error = copyin((caddr_t)(u_long)SCARG(uap, tzp),
2778 &atz, sizeof(atz))))
2779 return (error);
2780 if (SCARG(uap, tv))
2781 if ((error = settime(&atv)))
2782 return (error);
2783 /*
2784 * NetBSD has no kernel notion of time zone, and only an
2785 * obsolete program would try to set it, so we log a warning.
2786 */
2787 if (SCARG(uap, tzp))
2788 printf("pid %d attempted to set the "
2789 "(obsolete) kernel time zone\n", p->p_pid);
2790 return (0);
2791 }
2792
2793 int
2794 netbsd32_fchown(p, v, retval)
2795 struct proc *p;
2796 void *v;
2797 register_t *retval;
2798 {
2799 struct netbsd32_fchown_args /* {
2800 syscallarg(int) fd;
2801 syscallarg(uid_t) uid;
2802 syscallarg(gid_t) gid;
2803 } */ *uap = v;
2804 struct sys_fchown_args ua;
2805
2806 NETBSD32TO64_UAP(fd);
2807 NETBSD32TO64_UAP(uid);
2808 NETBSD32TO64_UAP(gid);
2809 return (sys_fchown(p, &ua, retval));
2810 }
2811
2812 int
2813 netbsd32_fchmod(p, v, retval)
2814 struct proc *p;
2815 void *v;
2816 register_t *retval;
2817 {
2818 struct netbsd32_fchmod_args /* {
2819 syscallarg(int) fd;
2820 syscallarg(mode_t) mode;
2821 } */ *uap = v;
2822 struct sys_fchmod_args ua;
2823
2824 NETBSD32TO64_UAP(fd);
2825 NETBSD32TO64_UAP(mode);
2826 return (sys_fchmod(p, &ua, retval));
2827 }
2828
2829 int
2830 netbsd32_setreuid(p, v, retval)
2831 struct proc *p;
2832 void *v;
2833 register_t *retval;
2834 {
2835 struct netbsd32_setreuid_args /* {
2836 syscallarg(uid_t) ruid;
2837 syscallarg(uid_t) euid;
2838 } */ *uap = v;
2839 struct sys_setreuid_args ua;
2840
2841 NETBSD32TO64_UAP(ruid);
2842 NETBSD32TO64_UAP(euid);
2843 return (sys_setreuid(p, &ua, retval));
2844 }
2845
2846 int
2847 netbsd32_setregid(p, v, retval)
2848 struct proc *p;
2849 void *v;
2850 register_t *retval;
2851 {
2852 struct netbsd32_setregid_args /* {
2853 syscallarg(gid_t) rgid;
2854 syscallarg(gid_t) egid;
2855 } */ *uap = v;
2856 struct sys_setregid_args ua;
2857
2858 NETBSD32TO64_UAP(rgid);
2859 NETBSD32TO64_UAP(egid);
2860 return (sys_setregid(p, &ua, retval));
2861 }
2862
2863 int
2864 netbsd32_getrusage(p, v, retval)
2865 struct proc *p;
2866 void *v;
2867 register_t *retval;
2868 {
2869 struct netbsd32_getrusage_args /* {
2870 syscallarg(int) who;
2871 syscallarg(netbsd32_rusagep_t) rusage;
2872 } */ *uap = v;
2873 struct rusage *rup;
2874 struct netbsd32_rusage ru;
2875
2876 switch (SCARG(uap, who)) {
2877
2878 case RUSAGE_SELF:
2879 rup = &p->p_stats->p_ru;
2880 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
2881 break;
2882
2883 case RUSAGE_CHILDREN:
2884 rup = &p->p_stats->p_cru;
2885 break;
2886
2887 default:
2888 return (EINVAL);
2889 }
2890 netbsd32_from_rusage(rup, &ru);
2891 return (copyout(&ru, (caddr_t)(u_long)SCARG(uap, rusage), sizeof(ru)));
2892 }
2893
2894 int
2895 netbsd32_getsockopt(p, v, retval)
2896 struct proc *p;
2897 void *v;
2898 register_t *retval;
2899 {
2900 struct netbsd32_getsockopt_args /* {
2901 syscallarg(int) s;
2902 syscallarg(int) level;
2903 syscallarg(int) name;
2904 syscallarg(netbsd32_voidp) val;
2905 syscallarg(netbsd32_intp) avalsize;
2906 } */ *uap = v;
2907 struct sys_getsockopt_args ua;
2908
2909 NETBSD32TO64_UAP(s);
2910 NETBSD32TO64_UAP(level);
2911 NETBSD32TO64_UAP(name);
2912 NETBSD32TOP_UAP(val, void);
2913 NETBSD32TOP_UAP(avalsize, int);
2914 return (sys_getsockopt(p, &ua, retval));
2915 }
2916
2917 int
2918 netbsd32_readv(p, v, retval)
2919 struct proc *p;
2920 void *v;
2921 register_t *retval;
2922 {
2923 struct netbsd32_readv_args /* {
2924 syscallarg(int) fd;
2925 syscallarg(const netbsd32_iovecp_t) iovp;
2926 syscallarg(int) iovcnt;
2927 } */ *uap = v;
2928 int fd = SCARG(uap, fd);
2929 struct file *fp;
2930 struct filedesc *fdp = p->p_fd;
2931
2932 if ((u_int)fd >= fdp->fd_nfiles ||
2933 (fp = fdp->fd_ofiles[fd]) == NULL ||
2934 (fp->f_flag & FREAD) == 0)
2935 return (EBADF);
2936
2937 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
2938 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
2939 }
2940
2941 /* Damn thing copies in the iovec! */
2942 int
2943 dofilereadv32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
2944 struct proc *p;
2945 int fd;
2946 struct file *fp;
2947 struct netbsd32_iovec *iovp;
2948 int iovcnt;
2949 off_t *offset;
2950 int flags;
2951 register_t *retval;
2952 {
2953 struct uio auio;
2954 struct iovec *iov;
2955 struct iovec *needfree;
2956 struct iovec aiov[UIO_SMALLIOV];
2957 long i, cnt, error = 0;
2958 u_int iovlen;
2959 #ifdef KTRACE
2960 struct iovec *ktriov = NULL;
2961 #endif
2962
2963 /* note: can't use iovlen until iovcnt is validated */
2964 iovlen = iovcnt * sizeof(struct iovec);
2965 if ((u_int)iovcnt > UIO_SMALLIOV) {
2966 if ((u_int)iovcnt > IOV_MAX)
2967 return (EINVAL);
2968 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
2969 needfree = iov;
2970 } else if ((u_int)iovcnt > 0) {
2971 iov = aiov;
2972 needfree = NULL;
2973 } else
2974 return (EINVAL);
2975
2976 auio.uio_iov = iov;
2977 auio.uio_iovcnt = iovcnt;
2978 auio.uio_rw = UIO_READ;
2979 auio.uio_segflg = UIO_USERSPACE;
2980 auio.uio_procp = p;
2981 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
2982 if (error)
2983 goto done;
2984 auio.uio_resid = 0;
2985 for (i = 0; i < iovcnt; i++) {
2986 auio.uio_resid += iov->iov_len;
2987 /*
2988 * Reads return ssize_t because -1 is returned on error.
2989 * Therefore we must restrict the length to SSIZE_MAX to
2990 * avoid garbage return values.
2991 */
2992 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
2993 error = EINVAL;
2994 goto done;
2995 }
2996 iov++;
2997 }
2998 #ifdef KTRACE
2999 /*
3000 * if tracing, save a copy of iovec
3001 */
3002 if (KTRPOINT(p, KTR_GENIO)) {
3003 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
3004 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
3005 }
3006 #endif
3007 cnt = auio.uio_resid;
3008 error = (*fp->f_ops->fo_read)(fp, offset, &auio, fp->f_cred, flags);
3009 if (error)
3010 if (auio.uio_resid != cnt && (error == ERESTART ||
3011 error == EINTR || error == EWOULDBLOCK))
3012 error = 0;
3013 cnt -= auio.uio_resid;
3014 #ifdef KTRACE
3015 if (KTRPOINT(p, KTR_GENIO))
3016 if (error == 0) {
3017 ktrgenio(p, fd, UIO_READ, ktriov, cnt,
3018 error);
3019 FREE(ktriov, M_TEMP);
3020 }
3021 #endif
3022 *retval = cnt;
3023 done:
3024 if (needfree)
3025 FREE(needfree, M_IOV);
3026 return (error);
3027 }
3028
3029
3030 int
3031 netbsd32_writev(p, v, retval)
3032 struct proc *p;
3033 void *v;
3034 register_t *retval;
3035 {
3036 struct netbsd32_writev_args /* {
3037 syscallarg(int) fd;
3038 syscallarg(const netbsd32_iovecp_t) iovp;
3039 syscallarg(int) iovcnt;
3040 } */ *uap = v;
3041 int fd = SCARG(uap, fd);
3042 struct file *fp;
3043 struct filedesc *fdp = p->p_fd;
3044
3045 if ((u_int)fd >= fdp->fd_nfiles ||
3046 (fp = fdp->fd_ofiles[fd]) == NULL ||
3047 (fp->f_flag & FWRITE) == 0)
3048 return (EBADF);
3049
3050 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
3051 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
3052 }
3053
3054 int
3055 dofilewritev32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
3056 struct proc *p;
3057 int fd;
3058 struct file *fp;
3059 struct netbsd32_iovec *iovp;
3060 int iovcnt;
3061 off_t *offset;
3062 int flags;
3063 register_t *retval;
3064 {
3065 struct uio auio;
3066 struct iovec *iov;
3067 struct iovec *needfree;
3068 struct iovec aiov[UIO_SMALLIOV];
3069 long i, cnt, error = 0;
3070 u_int iovlen;
3071 #ifdef KTRACE
3072 struct iovec *ktriov = NULL;
3073 #endif
3074
3075 /* note: can't use iovlen until iovcnt is validated */
3076 iovlen = iovcnt * sizeof(struct iovec);
3077 if ((u_int)iovcnt > UIO_SMALLIOV) {
3078 if ((u_int)iovcnt > IOV_MAX)
3079 return (EINVAL);
3080 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
3081 needfree = iov;
3082 } else if ((u_int)iovcnt > 0) {
3083 iov = aiov;
3084 needfree = NULL;
3085 } else
3086 return (EINVAL);
3087
3088 auio.uio_iov = iov;
3089 auio.uio_iovcnt = iovcnt;
3090 auio.uio_rw = UIO_WRITE;
3091 auio.uio_segflg = UIO_USERSPACE;
3092 auio.uio_procp = p;
3093 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
3094 if (error)
3095 goto done;
3096 auio.uio_resid = 0;
3097 for (i = 0; i < iovcnt; i++) {
3098 auio.uio_resid += iov->iov_len;
3099 /*
3100 * Writes return ssize_t because -1 is returned on error.
3101 * Therefore we must restrict the length to SSIZE_MAX to
3102 * avoid garbage return values.
3103 */
3104 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
3105 error = EINVAL;
3106 goto done;
3107 }
3108 iov++;
3109 }
3110 #ifdef KTRACE
3111 /*
3112 * if tracing, save a copy of iovec
3113 */
3114 if (KTRPOINT(p, KTR_GENIO)) {
3115 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
3116 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
3117 }
3118 #endif
3119 cnt = auio.uio_resid;
3120 error = (*fp->f_ops->fo_write)(fp, offset, &auio, fp->f_cred, flags);
3121 if (error) {
3122 if (auio.uio_resid != cnt && (error == ERESTART ||
3123 error == EINTR || error == EWOULDBLOCK))
3124 error = 0;
3125 if (error == EPIPE)
3126 psignal(p, SIGPIPE);
3127 }
3128 cnt -= auio.uio_resid;
3129 #ifdef KTRACE
3130 if (KTRPOINT(p, KTR_GENIO))
3131 if (error == 0) {
3132 ktrgenio(p, fd, UIO_WRITE, ktriov, cnt,
3133 error);
3134 FREE(ktriov, M_TEMP);
3135 }
3136 #endif
3137 *retval = cnt;
3138 done:
3139 if (needfree)
3140 FREE(needfree, M_IOV);
3141 return (error);
3142 }
3143
3144
3145 int
3146 netbsd32_rename(p, v, retval)
3147 struct proc *p;
3148 void *v;
3149 register_t *retval;
3150 {
3151 struct netbsd32_rename_args /* {
3152 syscallarg(const netbsd32_charp) from;
3153 syscallarg(const netbsd32_charp) to;
3154 } */ *uap = v;
3155 struct sys_rename_args ua;
3156
3157 NETBSD32TOP_UAP(from, const char);
3158 NETBSD32TOP_UAP(to, const char)
3159
3160 return (sys_rename(p, &ua, retval));
3161 }
3162
3163 int
3164 netbsd32_flock(p, v, retval)
3165 struct proc *p;
3166 void *v;
3167 register_t *retval;
3168 {
3169 struct netbsd32_flock_args /* {
3170 syscallarg(int) fd;
3171 syscallarg(int) how;
3172 } */ *uap = v;
3173 struct sys_flock_args ua;
3174
3175 NETBSD32TO64_UAP(fd);
3176 NETBSD32TO64_UAP(how)
3177
3178 return (sys_flock(p, &ua, retval));
3179 }
3180
3181 int
3182 netbsd32_mkfifo(p, v, retval)
3183 struct proc *p;
3184 void *v;
3185 register_t *retval;
3186 {
3187 struct netbsd32_mkfifo_args /* {
3188 syscallarg(const netbsd32_charp) path;
3189 syscallarg(mode_t) mode;
3190 } */ *uap = v;
3191 struct sys_mkfifo_args ua;
3192
3193 NETBSD32TOP_UAP(path, const char)
3194 NETBSD32TO64_UAP(mode);
3195 return (sys_mkfifo(p, &ua, retval));
3196 }
3197
3198 int
3199 netbsd32_shutdown(p, v, retval)
3200 struct proc *p;
3201 void *v;
3202 register_t *retval;
3203 {
3204 struct netbsd32_shutdown_args /* {
3205 syscallarg(int) s;
3206 syscallarg(int) how;
3207 } */ *uap = v;
3208 struct sys_shutdown_args ua;
3209
3210 NETBSD32TO64_UAP(s)
3211 NETBSD32TO64_UAP(how);
3212 return (sys_shutdown(p, &ua, retval));
3213 }
3214
3215 int
3216 netbsd32_socketpair(p, v, retval)
3217 struct proc *p;
3218 void *v;
3219 register_t *retval;
3220 {
3221 struct netbsd32_socketpair_args /* {
3222 syscallarg(int) domain;
3223 syscallarg(int) type;
3224 syscallarg(int) protocol;
3225 syscallarg(netbsd32_intp) rsv;
3226 } */ *uap = v;
3227 struct sys_socketpair_args ua;
3228
3229 NETBSD32TO64_UAP(domain);
3230 NETBSD32TO64_UAP(type);
3231 NETBSD32TO64_UAP(protocol);
3232 NETBSD32TOP_UAP(rsv, int);
3233 /* Since we're just copying out two `int's we can do this */
3234 return (sys_socketpair(p, &ua, retval));
3235 }
3236
3237 int
3238 netbsd32_mkdir(p, v, retval)
3239 struct proc *p;
3240 void *v;
3241 register_t *retval;
3242 {
3243 struct netbsd32_mkdir_args /* {
3244 syscallarg(const netbsd32_charp) path;
3245 syscallarg(mode_t) mode;
3246 } */ *uap = v;
3247 struct sys_mkdir_args ua;
3248
3249 NETBSD32TOP_UAP(path, const char)
3250 NETBSD32TO64_UAP(mode);
3251 return (sys_mkdir(p, &ua, retval));
3252 }
3253
3254 int
3255 netbsd32_rmdir(p, v, retval)
3256 struct proc *p;
3257 void *v;
3258 register_t *retval;
3259 {
3260 struct netbsd32_rmdir_args /* {
3261 syscallarg(const netbsd32_charp) path;
3262 } */ *uap = v;
3263 struct sys_rmdir_args ua;
3264
3265 NETBSD32TOP_UAP(path, const char);
3266 return (sys_rmdir(p, &ua, retval));
3267 }
3268
3269 int
3270 netbsd32_utimes(p, v, retval)
3271 struct proc *p;
3272 void *v;
3273 register_t *retval;
3274 {
3275 struct netbsd32_utimes_args /* {
3276 syscallarg(const netbsd32_charp) path;
3277 syscallarg(const netbsd32_timevalp_t) tptr;
3278 } */ *uap = v;
3279 int error;
3280 struct nameidata nd;
3281
3282 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3283 if ((error = namei(&nd)) != 0)
3284 return (error);
3285
3286 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
3287
3288 vrele(nd.ni_vp);
3289 return (error);
3290 }
3291
3292 /*
3293 * Common routine to set access and modification times given a vnode.
3294 */
3295 static int
3296 change_utimes32(vp, tptr, p)
3297 struct vnode *vp;
3298 struct timeval *tptr;
3299 struct proc *p;
3300 {
3301 struct netbsd32_timeval tv32[2];
3302 struct timeval tv[2];
3303 struct vattr vattr;
3304 int error;
3305
3306 VATTR_NULL(&vattr);
3307 if (tptr == NULL) {
3308 microtime(&tv[0]);
3309 tv[1] = tv[0];
3310 vattr.va_vaflags |= VA_UTIMES_NULL;
3311 } else {
3312 error = copyin(tptr, tv, sizeof(tv));
3313 if (error)
3314 return (error);
3315 }
3316 netbsd32_to_timeval(&tv32[0], &tv[0]);
3317 netbsd32_to_timeval(&tv32[1], &tv[1]);
3318 VOP_LEASE(vp, p, p->p_ucred, LEASE_WRITE);
3319 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3320 vattr.va_atime.tv_sec = tv[0].tv_sec;
3321 vattr.va_atime.tv_nsec = tv[0].tv_usec * 1000;
3322 vattr.va_mtime.tv_sec = tv[1].tv_sec;
3323 vattr.va_mtime.tv_nsec = tv[1].tv_usec * 1000;
3324 error = VOP_SETATTR(vp, &vattr, p->p_ucred, p);
3325 VOP_UNLOCK(vp, 0);
3326 return (error);
3327 }
3328
3329 int
3330 netbsd32_adjtime(p, v, retval)
3331 struct proc *p;
3332 void *v;
3333 register_t *retval;
3334 {
3335 struct netbsd32_adjtime_args /* {
3336 syscallarg(const netbsd32_timevalp_t) delta;
3337 syscallarg(netbsd32_timevalp_t) olddelta;
3338 } */ *uap = v;
3339 struct netbsd32_timeval atv;
3340 int32_t ndelta, ntickdelta, odelta;
3341 int s, error;
3342 extern long bigadj, timedelta;
3343 extern int tickdelta;
3344
3345 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
3346 return (error);
3347
3348 error = copyin((caddr_t)(u_long)SCARG(uap, delta), &atv, sizeof(struct timeval));
3349 if (error)
3350 return (error);
3351 /*
3352 * Compute the total correction and the rate at which to apply it.
3353 * Round the adjustment down to a whole multiple of the per-tick
3354 * delta, so that after some number of incremental changes in
3355 * hardclock(), tickdelta will become zero, lest the correction
3356 * overshoot and start taking us away from the desired final time.
3357 */
3358 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
3359 if (ndelta > bigadj)
3360 ntickdelta = 10 * tickadj;
3361 else
3362 ntickdelta = tickadj;
3363 if (ndelta % ntickdelta)
3364 ndelta = ndelta / ntickdelta * ntickdelta;
3365
3366 /*
3367 * To make hardclock()'s job easier, make the per-tick delta negative
3368 * if we want time to run slower; then hardclock can simply compute
3369 * tick + tickdelta, and subtract tickdelta from timedelta.
3370 */
3371 if (ndelta < 0)
3372 ntickdelta = -ntickdelta;
3373 s = splclock();
3374 odelta = timedelta;
3375 timedelta = ndelta;
3376 tickdelta = ntickdelta;
3377 splx(s);
3378
3379 if (SCARG(uap, olddelta)) {
3380 atv.tv_sec = odelta / 1000000;
3381 atv.tv_usec = odelta % 1000000;
3382 (void) copyout(&atv, (caddr_t)(u_long)SCARG(uap, olddelta),
3383 sizeof(struct timeval));
3384 }
3385 return (0);
3386 }
3387
3388 int
3389 netbsd32_quotactl(p, v, retval)
3390 struct proc *p;
3391 void *v;
3392 register_t *retval;
3393 {
3394 struct netbsd32_quotactl_args /* {
3395 syscallarg(const netbsd32_charp) path;
3396 syscallarg(int) cmd;
3397 syscallarg(int) uid;
3398 syscallarg(netbsd32_caddr_t) arg;
3399 } */ *uap = v;
3400 struct sys_quotactl_args ua;
3401
3402 NETBSD32TOP_UAP(path, const char);
3403 NETBSD32TO64_UAP(cmd);
3404 NETBSD32TO64_UAP(uid);
3405 NETBSD32TOX64_UAP(arg, caddr_t);
3406 return (sys_quotactl(p, &ua, retval));
3407 }
3408
3409 #if defined(NFS) || defined(NFSSERVER)
3410 int
3411 netbsd32_nfssvc(p, v, retval)
3412 struct proc *p;
3413 void *v;
3414 register_t *retval;
3415 {
3416 #if 0
3417 struct netbsd32_nfssvc_args /* {
3418 syscallarg(int) flag;
3419 syscallarg(netbsd32_voidp) argp;
3420 } */ *uap = v;
3421 struct sys_nfssvc_args ua;
3422
3423 NETBSD32TO64_UAP(flag);
3424 NETBSD32TOP_UAP(argp, void);
3425 return (sys_nfssvc(p, &ua, retval));
3426 #else
3427 /* Why would we want to support a 32-bit nfsd? */
3428 return (ENOSYS);
3429 #endif
3430 }
3431 #endif
3432
3433 int
3434 netbsd32_statfs(p, v, retval)
3435 struct proc *p;
3436 void *v;
3437 register_t *retval;
3438 {
3439 struct netbsd32_statfs_args /* {
3440 syscallarg(const netbsd32_charp) path;
3441 syscallarg(netbsd32_statfsp_t) buf;
3442 } */ *uap = v;
3443 struct mount *mp;
3444 struct statfs *sp;
3445 struct netbsd32_statfs s32;
3446 int error;
3447 struct nameidata nd;
3448
3449 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3450 if ((error = namei(&nd)) != 0)
3451 return (error);
3452 mp = nd.ni_vp->v_mount;
3453 sp = &mp->mnt_stat;
3454 vrele(nd.ni_vp);
3455 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3456 return (error);
3457 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3458 netbsd32_from_statfs(sp, &s32);
3459 return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3460 }
3461
3462 int
3463 netbsd32_fstatfs(p, v, retval)
3464 struct proc *p;
3465 void *v;
3466 register_t *retval;
3467 {
3468 struct netbsd32_fstatfs_args /* {
3469 syscallarg(int) fd;
3470 syscallarg(netbsd32_statfsp_t) buf;
3471 } */ *uap = v;
3472 struct file *fp;
3473 struct mount *mp;
3474 struct statfs *sp;
3475 struct netbsd32_statfs s32;
3476 int error;
3477
3478 /* getvnode() will use the descriptor for us */
3479 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3480 return (error);
3481 mp = ((struct vnode *)fp->f_data)->v_mount;
3482 sp = &mp->mnt_stat;
3483 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3484 goto out;
3485 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3486 netbsd32_from_statfs(sp, &s32);
3487 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32));
3488 out:
3489 FILE_UNUSE(fp, p);
3490 return (error);
3491 }
3492
3493 #if defined(NFS) || defined(NFSSERVER)
3494 int
3495 netbsd32_getfh(p, v, retval)
3496 struct proc *p;
3497 void *v;
3498 register_t *retval;
3499 {
3500 struct netbsd32_getfh_args /* {
3501 syscallarg(const netbsd32_charp) fname;
3502 syscallarg(netbsd32_fhandlep_t) fhp;
3503 } */ *uap = v;
3504 struct sys_getfh_args ua;
3505
3506 NETBSD32TOP_UAP(fname, const char);
3507 NETBSD32TOP_UAP(fhp, struct fhandle);
3508 /* Lucky for us a fhandlep_t doesn't change sizes */
3509 return (sys_getfh(p, &ua, retval));
3510 }
3511 #endif
3512
3513 int
3514 netbsd32_sysarch(p, v, retval)
3515 struct proc *p;
3516 void *v;
3517 register_t *retval;
3518 {
3519 struct netbsd32_sysarch_args /* {
3520 syscallarg(int) op;
3521 syscallarg(netbsd32_voidp) parms;
3522 } */ *uap = v;
3523
3524 switch (SCARG(uap, op)) {
3525 default:
3526 printf("(sparc64) netbsd32_sysarch(%d)\n", SCARG(uap, op));
3527 return EINVAL;
3528 }
3529 }
3530
3531 int
3532 netbsd32_pread(p, v, retval)
3533 struct proc *p;
3534 void *v;
3535 register_t *retval;
3536 {
3537 struct netbsd32_pread_args /* {
3538 syscallarg(int) fd;
3539 syscallarg(netbsd32_voidp) buf;
3540 syscallarg(netbsd32_size_t) nbyte;
3541 syscallarg(int) pad;
3542 syscallarg(off_t) offset;
3543 } */ *uap = v;
3544 struct sys_pread_args ua;
3545 ssize_t rt;
3546 int error;
3547
3548 NETBSD32TO64_UAP(fd);
3549 NETBSD32TOP_UAP(buf, void);
3550 NETBSD32TOX_UAP(nbyte, size_t);
3551 NETBSD32TO64_UAP(pad);
3552 NETBSD32TO64_UAP(offset);
3553 error = sys_pread(p, &ua, (register_t *)&rt);
3554 *retval = rt;
3555 return (error);
3556 }
3557
3558 int
3559 netbsd32_pwrite(p, v, retval)
3560 struct proc *p;
3561 void *v;
3562 register_t *retval;
3563 {
3564 struct netbsd32_pwrite_args /* {
3565 syscallarg(int) fd;
3566 syscallarg(const netbsd32_voidp) buf;
3567 syscallarg(netbsd32_size_t) nbyte;
3568 syscallarg(int) pad;
3569 syscallarg(off_t) offset;
3570 } */ *uap = v;
3571 struct sys_pwrite_args ua;
3572 ssize_t rt;
3573 int error;
3574
3575 NETBSD32TO64_UAP(fd);
3576 NETBSD32TOP_UAP(buf, void);
3577 NETBSD32TOX_UAP(nbyte, size_t);
3578 NETBSD32TO64_UAP(pad);
3579 NETBSD32TO64_UAP(offset);
3580 error = sys_pwrite(p, &ua, (register_t *)&rt);
3581 *retval = rt;
3582 return (error);
3583 }
3584
3585 #ifdef NTP
3586 int
3587 netbsd32_ntp_gettime(p, v, retval)
3588 struct proc *p;
3589 void *v;
3590 register_t *retval;
3591 {
3592 struct netbsd32_ntp_gettime_args /* {
3593 syscallarg(netbsd32_ntptimevalp_t) ntvp;
3594 } */ *uap = v;
3595 struct netbsd32_ntptimeval ntv32;
3596 struct timeval atv;
3597 struct ntptimeval ntv;
3598 int error = 0;
3599 int s;
3600
3601 /* The following are NTP variables */
3602 extern long time_maxerror;
3603 extern long time_esterror;
3604 extern int time_status;
3605 extern int time_state; /* clock state */
3606 extern int time_status; /* clock status bits */
3607
3608 if (SCARG(uap, ntvp)) {
3609 s = splclock();
3610 #ifdef EXT_CLOCK
3611 /*
3612 * The microtime() external clock routine returns a
3613 * status code. If less than zero, we declare an error
3614 * in the clock status word and return the kernel
3615 * (software) time variable. While there are other
3616 * places that call microtime(), this is the only place
3617 * that matters from an application point of view.
3618 */
3619 if (microtime(&atv) < 0) {
3620 time_status |= STA_CLOCKERR;
3621 ntv.time = time;
3622 } else
3623 time_status &= ~STA_CLOCKERR;
3624 #else /* EXT_CLOCK */
3625 microtime(&atv);
3626 #endif /* EXT_CLOCK */
3627 ntv.time = atv;
3628 ntv.maxerror = time_maxerror;
3629 ntv.esterror = time_esterror;
3630 (void) splx(s);
3631
3632 netbsd32_from_timeval(&ntv.time, &ntv32.time);
3633 ntv32.maxerror = (netbsd32_long)ntv.maxerror;
3634 ntv32.esterror = (netbsd32_long)ntv.esterror;
3635 error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, ntvp),
3636 sizeof(ntv32));
3637 }
3638 if (!error) {
3639
3640 /*
3641 * Status word error decode. If any of these conditions
3642 * occur, an error is returned, instead of the status
3643 * word. Most applications will care only about the fact
3644 * the system clock may not be trusted, not about the
3645 * details.
3646 *
3647 * Hardware or software error
3648 */
3649 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3650
3651 /*
3652 * PPS signal lost when either time or frequency
3653 * synchronization requested
3654 */
3655 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3656 !(time_status & STA_PPSSIGNAL)) ||
3657
3658 /*
3659 * PPS jitter exceeded when time synchronization
3660 * requested
3661 */
3662 (time_status & STA_PPSTIME &&
3663 time_status & STA_PPSJITTER) ||
3664
3665 /*
3666 * PPS wander exceeded or calibration error when
3667 * frequency synchronization requested
3668 */
3669 (time_status & STA_PPSFREQ &&
3670 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3671 *retval = TIME_ERROR;
3672 else
3673 *retval = time_state;
3674 }
3675 return(error);
3676 }
3677
3678 int
3679 netbsd32_ntp_adjtime(p, v, retval)
3680 struct proc *p;
3681 void *v;
3682 register_t *retval;
3683 {
3684 struct netbsd32_ntp_adjtime_args /* {
3685 syscallarg(netbsd32_timexp_t) tp;
3686 } */ *uap = v;
3687 struct netbsd32_timex ntv32;
3688 struct timex ntv;
3689 int error = 0;
3690 int modes;
3691 int s;
3692 extern long time_freq; /* frequency offset (scaled ppm) */
3693 extern long time_maxerror;
3694 extern long time_esterror;
3695 extern int time_state; /* clock state */
3696 extern int time_status; /* clock status bits */
3697 extern long time_constant; /* pll time constant */
3698 extern long time_offset; /* time offset (us) */
3699 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
3700 extern long time_precision; /* clock precision (us) */
3701
3702 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), (caddr_t)&ntv32,
3703 sizeof(ntv32))))
3704 return (error);
3705 netbsd32_to_timex(&ntv32, &ntv);
3706
3707 /*
3708 * Update selected clock variables - only the superuser can
3709 * change anything. Note that there is no error checking here on
3710 * the assumption the superuser should know what it is doing.
3711 */
3712 modes = ntv.modes;
3713 if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
3714 return (error);
3715
3716 s = splclock();
3717 if (modes & MOD_FREQUENCY)
3718 #ifdef PPS_SYNC
3719 time_freq = ntv.freq - pps_freq;
3720 #else /* PPS_SYNC */
3721 time_freq = ntv.freq;
3722 #endif /* PPS_SYNC */
3723 if (modes & MOD_MAXERROR)
3724 time_maxerror = ntv.maxerror;
3725 if (modes & MOD_ESTERROR)
3726 time_esterror = ntv.esterror;
3727 if (modes & MOD_STATUS) {
3728 time_status &= STA_RONLY;
3729 time_status |= ntv.status & ~STA_RONLY;
3730 }
3731 if (modes & MOD_TIMECONST)
3732 time_constant = ntv.constant;
3733 if (modes & MOD_OFFSET)
3734 hardupdate(ntv.offset);
3735
3736 /*
3737 * Retrieve all clock variables
3738 */
3739 if (time_offset < 0)
3740 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
3741 else
3742 ntv.offset = time_offset >> SHIFT_UPDATE;
3743 #ifdef PPS_SYNC
3744 ntv.freq = time_freq + pps_freq;
3745 #else /* PPS_SYNC */
3746 ntv.freq = time_freq;
3747 #endif /* PPS_SYNC */
3748 ntv.maxerror = time_maxerror;
3749 ntv.esterror = time_esterror;
3750 ntv.status = time_status;
3751 ntv.constant = time_constant;
3752 ntv.precision = time_precision;
3753 ntv.tolerance = time_tolerance;
3754 #ifdef PPS_SYNC
3755 ntv.shift = pps_shift;
3756 ntv.ppsfreq = pps_freq;
3757 ntv.jitter = pps_jitter >> PPS_AVG;
3758 ntv.stabil = pps_stabil;
3759 ntv.calcnt = pps_calcnt;
3760 ntv.errcnt = pps_errcnt;
3761 ntv.jitcnt = pps_jitcnt;
3762 ntv.stbcnt = pps_stbcnt;
3763 #endif /* PPS_SYNC */
3764 (void)splx(s);
3765
3766 netbsd32_from_timex(&ntv, &ntv32);
3767 error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, tp),
3768 sizeof(ntv32));
3769 if (!error) {
3770
3771 /*
3772 * Status word error decode. See comments in
3773 * ntp_gettime() routine.
3774 */
3775 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3776 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3777 !(time_status & STA_PPSSIGNAL)) ||
3778 (time_status & STA_PPSTIME &&
3779 time_status & STA_PPSJITTER) ||
3780 (time_status & STA_PPSFREQ &&
3781 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3782 *retval = TIME_ERROR;
3783 else
3784 *retval = time_state;
3785 }
3786 return error;
3787 }
3788 #else
3789 int
3790 netbsd32_ntp_gettime(p, v, retval)
3791 struct proc *p;
3792 void *v;
3793 register_t *retval;
3794 {
3795 return(ENOSYS);
3796 }
3797
3798 int
3799 netbsd32_ntp_adjtime(p, v, retval)
3800 struct proc *p;
3801 void *v;
3802 register_t *retval;
3803 {
3804 return (ENOSYS);
3805 }
3806 #endif
3807
3808 int
3809 netbsd32_setgid(p, v, retval)
3810 struct proc *p;
3811 void *v;
3812 register_t *retval;
3813 {
3814 struct netbsd32_setgid_args /* {
3815 syscallarg(gid_t) gid;
3816 } */ *uap = v;
3817 struct sys_setgid_args ua;
3818
3819 NETBSD32TO64_UAP(gid);
3820 return (sys_setgid(p, v, retval));
3821 }
3822
3823 int
3824 netbsd32_setegid(p, v, retval)
3825 struct proc *p;
3826 void *v;
3827 register_t *retval;
3828 {
3829 struct netbsd32_setegid_args /* {
3830 syscallarg(gid_t) egid;
3831 } */ *uap = v;
3832 struct sys_setegid_args ua;
3833
3834 NETBSD32TO64_UAP(egid);
3835 return (sys_setegid(p, v, retval));
3836 }
3837
3838 int
3839 netbsd32_seteuid(p, v, retval)
3840 struct proc *p;
3841 void *v;
3842 register_t *retval;
3843 {
3844 struct netbsd32_seteuid_args /* {
3845 syscallarg(gid_t) euid;
3846 } */ *uap = v;
3847 struct sys_seteuid_args ua;
3848
3849 NETBSD32TO64_UAP(euid);
3850 return (sys_seteuid(p, v, retval));
3851 }
3852
3853 #ifdef LFS
3854 int
3855 netbsd32_sys_lfs_bmapv(p, v, retval)
3856 struct proc *p;
3857 void *v;
3858 register_t *retval;
3859 {
3860 #if 0
3861 struct netbsd32_lfs_bmapv_args /* {
3862 syscallarg(netbsd32_fsid_tp_t) fsidp;
3863 syscallarg(netbsd32_block_infop_t) blkiov;
3864 syscallarg(int) blkcnt;
3865 } */ *uap = v;
3866 struct sys_lfs_bmapv_args ua;
3867
3868 NETBSD32TOP_UAP(fdidp, struct fsid);
3869 NETBSD32TO64_UAP(blkcnt);
3870 /* XXX finish me */
3871 #else
3872
3873 return (ENOSYS); /* XXX */
3874 #endif
3875 }
3876
3877 int
3878 netbsd32_sys_lfs_markv(p, v, retval)
3879 struct proc *p;
3880 void *v;
3881 register_t *retval;
3882 {
3883 #if 0
3884 struct netbsd32_lfs_markv_args /* {
3885 syscallarg(netbsd32_fsid_tp_t) fsidp;
3886 syscallarg(netbsd32_block_infop_t) blkiov;
3887 syscallarg(int) blkcnt;
3888 } */ *uap = v;
3889 #endif
3890
3891 return (ENOSYS); /* XXX */
3892 }
3893
3894 int
3895 netbsd32_sys_lfs_segclean(p, v, retval)
3896 struct proc *p;
3897 void *v;
3898 register_t *retval;
3899 {
3900 #if 0
3901 struct netbsd32_lfs_segclean_args /* {
3902 syscallarg(netbsd32_fsid_tp_t) fsidp;
3903 syscallarg(netbsd32_u_long) segment;
3904 } */ *uap = v;
3905 #endif
3906
3907 return (ENOSYS); /* XXX */
3908 }
3909
3910 int
3911 netbsd32_sys_lfs_segwait(p, v, retval)
3912 struct proc *p;
3913 void *v;
3914 register_t *retval;
3915 {
3916 #if 0
3917 struct netbsd32_lfs_segwait_args /* {
3918 syscallarg(netbsd32_fsid_tp_t) fsidp;
3919 syscallarg(netbsd32_timevalp_t) tv;
3920 } */ *uap = v;
3921 #endif
3922
3923 return (ENOSYS); /* XXX */
3924 }
3925 #endif
3926
3927 int
3928 netbsd32_pathconf(p, v, retval)
3929 struct proc *p;
3930 void *v;
3931 register_t *retval;
3932 {
3933 struct netbsd32_pathconf_args /* {
3934 syscallarg(int) fd;
3935 syscallarg(int) name;
3936 } */ *uap = v;
3937 struct sys_pathconf_args ua;
3938 long rt;
3939 int error;
3940
3941 NETBSD32TOP_UAP(path, const char);
3942 NETBSD32TO64_UAP(name);
3943 error = sys_pathconf(p, &ua, (register_t *)&rt);
3944 *retval = rt;
3945 return (error);
3946 }
3947
3948 int
3949 netbsd32_fpathconf(p, v, retval)
3950 struct proc *p;
3951 void *v;
3952 register_t *retval;
3953 {
3954 struct netbsd32_fpathconf_args /* {
3955 syscallarg(int) fd;
3956 syscallarg(int) name;
3957 } */ *uap = v;
3958 struct sys_fpathconf_args ua;
3959 long rt;
3960 int error;
3961
3962 NETBSD32TO64_UAP(fd);
3963 NETBSD32TO64_UAP(name);
3964 error = sys_fpathconf(p, &ua, (register_t *)&rt);
3965 *retval = rt;
3966 return (error);
3967 }
3968
3969 int
3970 netbsd32_getrlimit(p, v, retval)
3971 struct proc *p;
3972 void *v;
3973 register_t *retval;
3974 {
3975 struct netbsd32_getrlimit_args /* {
3976 syscallarg(int) which;
3977 syscallarg(netbsd32_rlimitp_t) rlp;
3978 } */ *uap = v;
3979 int which = SCARG(uap, which);
3980
3981 if ((u_int)which >= RLIM_NLIMITS)
3982 return (EINVAL);
3983 return (copyout(&p->p_rlimit[which], (caddr_t)(u_long)SCARG(uap, rlp),
3984 sizeof(struct rlimit)));
3985 }
3986
3987 int
3988 netbsd32_setrlimit(p, v, retval)
3989 struct proc *p;
3990 void *v;
3991 register_t *retval;
3992 {
3993 struct netbsd32_setrlimit_args /* {
3994 syscallarg(int) which;
3995 syscallarg(const netbsd32_rlimitp_t) rlp;
3996 } */ *uap = v;
3997 int which = SCARG(uap, which);
3998 struct rlimit alim;
3999 int error;
4000
4001 error = copyin((caddr_t)(u_long)SCARG(uap, rlp), &alim, sizeof(struct rlimit));
4002 if (error)
4003 return (error);
4004 return (dosetrlimit(p, p->p_cred, which, &alim));
4005 }
4006
4007 int
4008 netbsd32_mmap(p, v, retval)
4009 struct proc *p;
4010 void *v;
4011 register_t *retval;
4012 {
4013 struct netbsd32_mmap_args /* {
4014 syscallarg(netbsd32_voidp) addr;
4015 syscallarg(netbsd32_size_t) len;
4016 syscallarg(int) prot;
4017 syscallarg(int) flags;
4018 syscallarg(int) fd;
4019 syscallarg(netbsd32_long) pad;
4020 syscallarg(off_t) pos;
4021 } */ *uap = v;
4022 struct sys_mmap_args ua;
4023 void *rt;
4024 int error;
4025
4026 NETBSD32TOP_UAP(addr, void);
4027 NETBSD32TOX_UAP(len, size_t);
4028 NETBSD32TO64_UAP(prot);
4029 NETBSD32TO64_UAP(flags);
4030 NETBSD32TO64_UAP(fd);
4031 NETBSD32TOX_UAP(pad, long);
4032 NETBSD32TOX_UAP(pos, off_t);
4033 error = sys_mmap(p, &ua, (register_t *)&rt);
4034 if ((long)rt > (long)UINT_MAX)
4035 printf("netbsd32_mmap: retval out of range: 0x%qx",
4036 rt);
4037 *retval = (netbsd32_voidp)(u_long)rt;
4038 return (error);
4039 }
4040
4041 int
4042 netbsd32_lseek(p, v, retval)
4043 struct proc *p;
4044 void *v;
4045 register_t *retval;
4046 {
4047 struct netbsd32_lseek_args /* {
4048 syscallarg(int) fd;
4049 syscallarg(int) pad;
4050 syscallarg(off_t) offset;
4051 syscallarg(int) whence;
4052 } */ *uap = v;
4053 struct sys_lseek_args ua;
4054
4055 NETBSD32TO64_UAP(fd);
4056 NETBSD32TO64_UAP(pad);
4057 NETBSD32TO64_UAP(offset);
4058 NETBSD32TO64_UAP(whence);
4059 return (sys_lseek(p, &ua, retval));
4060 }
4061
4062 int
4063 netbsd32_truncate(p, v, retval)
4064 struct proc *p;
4065 void *v;
4066 register_t *retval;
4067 {
4068 struct netbsd32_truncate_args /* {
4069 syscallarg(const netbsd32_charp) path;
4070 syscallarg(int) pad;
4071 syscallarg(off_t) length;
4072 } */ *uap = v;
4073 struct sys_truncate_args ua;
4074
4075 NETBSD32TOP_UAP(path, const char);
4076 NETBSD32TO64_UAP(pad);
4077 NETBSD32TO64_UAP(length);
4078 return (sys_truncate(p, &ua, retval));
4079 }
4080
4081 int
4082 netbsd32_ftruncate(p, v, retval)
4083 struct proc *p;
4084 void *v;
4085 register_t *retval;
4086 {
4087 struct netbsd32_ftruncate_args /* {
4088 syscallarg(int) fd;
4089 syscallarg(int) pad;
4090 syscallarg(off_t) length;
4091 } */ *uap = v;
4092 struct sys_ftruncate_args ua;
4093
4094 NETBSD32TO64_UAP(fd);
4095 NETBSD32TO64_UAP(pad);
4096 NETBSD32TO64_UAP(length);
4097 return (sys_ftruncate(p, &ua, retval));
4098 }
4099
4100 int
4101 netbsd32___sysctl(p, v, retval)
4102 struct proc *p;
4103 void *v;
4104 register_t *retval;
4105 {
4106 struct netbsd32___sysctl_args /* {
4107 syscallarg(netbsd32_intp) name;
4108 syscallarg(u_int) namelen;
4109 syscallarg(netbsd32_voidp) old;
4110 syscallarg(netbsd32_size_tp) oldlenp;
4111 syscallarg(netbsd32_voidp) new;
4112 syscallarg(netbsd32_size_t) newlen;
4113 } */ *uap = v;
4114 int error;
4115 netbsd32_size_t savelen = 0;
4116 size_t oldlen = 0;
4117 sysctlfn *fn;
4118 int name[CTL_MAXNAME];
4119
4120 /*
4121 * Some of these sysctl functions do their own copyin/copyout.
4122 * We need to disable or emulate the ones that need their
4123 * arguments converted.
4124 */
4125
4126 if (SCARG(uap, new) != NULL &&
4127 (error = suser(p->p_ucred, &p->p_acflag)))
4128 return (error);
4129 /*
4130 * all top-level sysctl names are non-terminal
4131 */
4132 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
4133 return (EINVAL);
4134 error = copyin((caddr_t)(u_long)SCARG(uap, name), &name,
4135 SCARG(uap, namelen) * sizeof(int));
4136 if (error)
4137 return (error);
4138
4139 switch (name[0]) {
4140 case CTL_KERN:
4141 fn = kern_sysctl;
4142 break;
4143 case CTL_HW:
4144 fn = hw_sysctl;
4145 break;
4146 case CTL_VM:
4147 fn = uvm_sysctl;
4148 break;
4149 case CTL_NET:
4150 fn = net_sysctl;
4151 break;
4152 case CTL_VFS:
4153 fn = vfs_sysctl;
4154 break;
4155 case CTL_MACHDEP:
4156 fn = cpu_sysctl;
4157 break;
4158 #ifdef DEBUG
4159 case CTL_DEBUG:
4160 fn = debug_sysctl;
4161 break;
4162 #endif
4163 #ifdef DDB
4164 case CTL_DDB:
4165 fn = ddb_sysctl;
4166 break;
4167 #endif
4168 case CTL_PROC:
4169 fn = proc_sysctl;
4170 break;
4171 default:
4172 return (EOPNOTSUPP);
4173 }
4174
4175 /*
4176 * XXX Hey, we wire `old', but what about `new'?
4177 */
4178
4179 if (SCARG(uap, oldlenp) &&
4180 (error = copyin((caddr_t)(u_long)SCARG(uap, oldlenp), &savelen,
4181 sizeof(savelen))))
4182 return (error);
4183 if (SCARG(uap, old) != NULL) {
4184 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
4185 if (error)
4186 return (error);
4187 if (uvm_vslock(p, (void *)(u_long)SCARG(uap, old), savelen,
4188 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
4189 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
4190 return (EFAULT);
4191 }
4192 oldlen = savelen;
4193 }
4194 error = (*fn)(name + 1, SCARG(uap, namelen) - 1,
4195 (void *)(u_long)SCARG(uap, old), &oldlen,
4196 (void *)(u_long)SCARG(uap, new), SCARG(uap, newlen), p);
4197 if (SCARG(uap, old) != NULL) {
4198 uvm_vsunlock(p, (void *)(u_long)SCARG(uap, old), savelen);
4199 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
4200 }
4201 savelen = oldlen;
4202 if (error)
4203 return (error);
4204 if (SCARG(uap, oldlenp))
4205 error = copyout(&savelen,
4206 (caddr_t)(u_long)SCARG(uap, oldlenp), sizeof(savelen));
4207 return (error);
4208 }
4209
4210 int
4211 netbsd32_mlock(p, v, retval)
4212 struct proc *p;
4213 void *v;
4214 register_t *retval;
4215 {
4216 struct netbsd32_mlock_args /* {
4217 syscallarg(const netbsd32_voidp) addr;
4218 syscallarg(netbsd32_size_t) len;
4219 } */ *uap = v;
4220 struct sys_mlock_args ua;
4221
4222 NETBSD32TOP_UAP(addr, const void);
4223 NETBSD32TO64_UAP(len);
4224 return (sys_mlock(p, &ua, retval));
4225 }
4226
4227 int
4228 netbsd32_munlock(p, v, retval)
4229 struct proc *p;
4230 void *v;
4231 register_t *retval;
4232 {
4233 struct netbsd32_munlock_args /* {
4234 syscallarg(const netbsd32_voidp) addr;
4235 syscallarg(netbsd32_size_t) len;
4236 } */ *uap = v;
4237 struct sys_munlock_args ua;
4238
4239 NETBSD32TOP_UAP(addr, const void);
4240 NETBSD32TO64_UAP(len);
4241 return (sys_munlock(p, &ua, retval));
4242 }
4243
4244 int
4245 netbsd32_undelete(p, v, retval)
4246 struct proc *p;
4247 void *v;
4248 register_t *retval;
4249 {
4250 struct netbsd32_undelete_args /* {
4251 syscallarg(const netbsd32_charp) path;
4252 } */ *uap = v;
4253 struct sys_undelete_args ua;
4254
4255 NETBSD32TOP_UAP(path, const char);
4256 return (sys_undelete(p, &ua, retval));
4257 }
4258
4259 int
4260 netbsd32_futimes(p, v, retval)
4261 struct proc *p;
4262 void *v;
4263 register_t *retval;
4264 {
4265 struct netbsd32_futimes_args /* {
4266 syscallarg(int) fd;
4267 syscallarg(const netbsd32_timevalp_t) tptr;
4268 } */ *uap = v;
4269 int error;
4270 struct file *fp;
4271
4272 /* getvnode() will use the descriptor for us */
4273 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
4274 return (error);
4275
4276 error = change_utimes32((struct vnode *)fp->f_data,
4277 (struct timeval *)(u_long)SCARG(uap, tptr), p);
4278 FILE_UNUSE(fp, p);
4279 return (error);
4280 }
4281
4282 int
4283 netbsd32_getpgid(p, v, retval)
4284 struct proc *p;
4285 void *v;
4286 register_t *retval;
4287 {
4288 struct netbsd32_getpgid_args /* {
4289 syscallarg(pid_t) pid;
4290 } */ *uap = v;
4291 struct sys_getpgid_args ua;
4292
4293 NETBSD32TO64_UAP(pid);
4294 return (sys_getpgid(p, &ua, retval));
4295 }
4296
4297 int
4298 netbsd32_reboot(p, v, retval)
4299 struct proc *p;
4300 void *v;
4301 register_t *retval;
4302 {
4303 struct netbsd32_reboot_args /* {
4304 syscallarg(int) opt;
4305 syscallarg(netbsd32_charp) bootstr;
4306 } */ *uap = v;
4307 struct sys_reboot_args ua;
4308
4309 NETBSD32TO64_UAP(opt);
4310 NETBSD32TOP_UAP(bootstr, char);
4311 return (sys_reboot(p, &ua, retval));
4312 }
4313
4314 int
4315 netbsd32_poll(p, v, retval)
4316 struct proc *p;
4317 void *v;
4318 register_t *retval;
4319 {
4320 struct netbsd32_poll_args /* {
4321 syscallarg(netbsd32_pollfdp_t) fds;
4322 syscallarg(u_int) nfds;
4323 syscallarg(int) timeout;
4324 } */ *uap = v;
4325 struct sys_poll_args ua;
4326
4327 NETBSD32TOP_UAP(fds, struct pollfd);
4328 NETBSD32TO64_UAP(nfds);
4329 NETBSD32TO64_UAP(timeout);
4330 return (sys_poll(p, &ua, retval));
4331 }
4332
4333 #if defined(SYSVSEM)
4334 /*
4335 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4336 *
4337 * This is BSD. We won't support System V IPC.
4338 * Too much work.
4339 *
4340 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4341 */
4342 int
4343 netbsd32___semctl14(p, v, retval)
4344 struct proc *p;
4345 void *v;
4346 register_t *retval;
4347 {
4348 #if 0
4349 struct netbsd32___semctl_args /* {
4350 syscallarg(int) semid;
4351 syscallarg(int) semnum;
4352 syscallarg(int) cmd;
4353 syscallarg(netbsd32_semunu_t *) arg;
4354 } */ *uap = v;
4355 union netbsd32_semun sem32;
4356 int semid = SCARG(uap, semid);
4357 int semnum = SCARG(uap, semnum);
4358 int cmd = SCARG(uap, cmd);
4359 union netbsd32_semun *arg = (void*)(u_long)SCARG(uap, arg);
4360 union netbsd32_semun real_arg;
4361 struct ucred *cred = p->p_ucred;
4362 int i, rval, eval;
4363 struct netbsd32_semid_ds sbuf;
4364 struct semid_ds *semaptr;
4365
4366 semlock(p);
4367
4368 semid = IPCID_TO_IX(semid);
4369 if (semid < 0 || semid >= seminfo.semmsl)
4370 return(EINVAL);
4371
4372 semaptr = &sema[semid];
4373 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
4374 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
4375 return(EINVAL);
4376
4377 eval = 0;
4378 rval = 0;
4379
4380 switch (cmd) {
4381 case IPC_RMID:
4382 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
4383 return(eval);
4384 semaptr->sem_perm.cuid = cred->cr_uid;
4385 semaptr->sem_perm.uid = cred->cr_uid;
4386 semtot -= semaptr->sem_nsems;
4387 for (i = semaptr->_sem_base - sem; i < semtot; i++)
4388 sem[i] = sem[i + semaptr->sem_nsems];
4389 for (i = 0; i < seminfo.semmni; i++) {
4390 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
4391 sema[i]._sem_base > semaptr->_sem_base)
4392 sema[i]._sem_base -= semaptr->sem_nsems;
4393 }
4394 semaptr->sem_perm.mode = 0;
4395 semundo_clear(semid, -1);
4396 wakeup((caddr_t)semaptr);
4397 break;
4398
4399 case IPC_SET:
4400 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
4401 return(eval);
4402 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4403 return(eval);
4404 if ((eval = copyin((caddr_t)(u_long)real_arg.buf, (caddr_t)&sbuf,
4405 sizeof(sbuf))) != 0)
4406 return(eval);
4407 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
4408 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
4409 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
4410 (sbuf.sem_perm.mode & 0777);
4411 semaptr->sem_ctime = time.tv_sec;
4412 break;
4413
4414 case IPC_STAT:
4415 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4416 return(eval);
4417 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4418 return(eval);
4419 eval = copyout((caddr_t)semaptr, (caddr_t)(u_long)real_arg.buf,
4420 sizeof(struct semid_ds));
4421 break;
4422
4423 case GETNCNT:
4424 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4425 return(eval);
4426 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4427 return(EINVAL);
4428 rval = semaptr->_sem_base[semnum].semncnt;
4429 break;
4430
4431 case GETPID:
4432 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4433 return(eval);
4434 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4435 return(EINVAL);
4436 rval = semaptr->_sem_base[semnum].sempid;
4437 break;
4438
4439 case GETVAL:
4440 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4441 return(eval);
4442 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4443 return(EINVAL);
4444 rval = semaptr->_sem_base[semnum].semval;
4445 break;
4446
4447 case GETALL:
4448 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4449 return(eval);
4450 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4451 return(eval);
4452 for (i = 0; i < semaptr->sem_nsems; i++) {
4453 eval = copyout((caddr_t)&semaptr->_sem_base[i].semval,
4454 &real_arg.array[i], sizeof(real_arg.array[0]));
4455 if (eval != 0)
4456 break;
4457 }
4458 break;
4459
4460 case GETZCNT:
4461 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4462 return(eval);
4463 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4464 return(EINVAL);
4465 rval = semaptr->_sem_base[semnum].semzcnt;
4466 break;
4467
4468 case SETVAL:
4469 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4470 return(eval);
4471 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4472 return(EINVAL);
4473 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4474 return(eval);
4475 semaptr->_sem_base[semnum].semval = real_arg.val;
4476 semundo_clear(semid, semnum);
4477 wakeup((caddr_t)semaptr);
4478 break;
4479
4480 case SETALL:
4481 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4482 return(eval);
4483 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4484 return(eval);
4485 for (i = 0; i < semaptr->sem_nsems; i++) {
4486 eval = copyin(&real_arg.array[i],
4487 (caddr_t)&semaptr->_sem_base[i].semval,
4488 sizeof(real_arg.array[0]));
4489 if (eval != 0)
4490 break;
4491 }
4492 semundo_clear(semid, -1);
4493 wakeup((caddr_t)semaptr);
4494 break;
4495
4496 default:
4497 return(EINVAL);
4498 }
4499
4500 if (eval == 0)
4501 *retval = rval;
4502 return(eval);
4503 #else
4504 return (ENOSYS);
4505 #endif
4506 }
4507
4508 int
4509 netbsd32_semget(p, v, retval)
4510 struct proc *p;
4511 void *v;
4512 register_t *retval;
4513 {
4514 struct netbsd32_semget_args /* {
4515 syscallarg(netbsd32_key_t) key;
4516 syscallarg(int) nsems;
4517 syscallarg(int) semflg;
4518 } */ *uap = v;
4519 struct sys_semget_args ua;
4520
4521 NETBSD32TOX_UAP(key, key_t);
4522 NETBSD32TO64_UAP(nsems);
4523 NETBSD32TO64_UAP(semflg);
4524 return (sys_semget(p, &ua, retval));
4525 }
4526
4527 int
4528 netbsd32_semop(p, v, retval)
4529 struct proc *p;
4530 void *v;
4531 register_t *retval;
4532 {
4533 struct netbsd32_semop_args /* {
4534 syscallarg(int) semid;
4535 syscallarg(netbsd32_sembufp_t) sops;
4536 syscallarg(netbsd32_size_t) nsops;
4537 } */ *uap = v;
4538 struct sys_semop_args ua;
4539
4540 NETBSD32TO64_UAP(semid);
4541 NETBSD32TOP_UAP(sops, struct sembuf);
4542 NETBSD32TOX_UAP(nsops, size_t);
4543 return (sys_semop(p, &ua, retval));
4544 }
4545
4546 int
4547 netbsd32_semconfig(p, v, retval)
4548 struct proc *p;
4549 void *v;
4550 register_t *retval;
4551 {
4552 struct netbsd32_semconfig_args /* {
4553 syscallarg(int) flag;
4554 } */ *uap = v;
4555 struct sys_semconfig_args ua;
4556
4557 NETBSD32TO64_UAP(flag);
4558 return (sys_semconfig(p, &ua, retval));
4559 }
4560 #endif /* SYSVSEM */
4561
4562 #if defined(SYSVMSG)
4563
4564 int
4565 netbsd32___msgctl13(p, v, retval)
4566 struct proc *p;
4567 void *v;
4568 register_t *retval;
4569 {
4570 #if 0
4571 struct netbsd32_msgctl_args /* {
4572 syscallarg(int) msqid;
4573 syscallarg(int) cmd;
4574 syscallarg(netbsd32_msqid_dsp_t) buf;
4575 } */ *uap = v;
4576 struct sys_msgctl_args ua;
4577 struct msqid_ds ds;
4578 struct netbsd32_msqid_ds *ds32p;
4579 int error;
4580
4581 NETBSD32TO64_UAP(msqid);
4582 NETBSD32TO64_UAP(cmd);
4583 ds32p = (struct netbsd32_msqid_ds *)(u_long)SCARG(uap, buf);
4584 if (ds32p) {
4585 SCARG(&ua, buf) = NULL;
4586 netbsd32_to_msqid_ds(ds32p, &ds);
4587 } else
4588 SCARG(&ua, buf) = NULL;
4589 error = sys_msgctl(p, &ua, retval);
4590 if (error)
4591 return (error);
4592
4593 if (ds32p)
4594 netbsd32_from_msqid_ds(&ds, ds32p);
4595 return (0);
4596 #else
4597 return (ENOSYS);
4598 #endif
4599 }
4600
4601 int
4602 netbsd32_msgget(p, v, retval)
4603 struct proc *p;
4604 void *v;
4605 register_t *retval;
4606 {
4607 #if 0
4608 struct netbsd32_msgget_args /* {
4609 syscallarg(netbsd32_key_t) key;
4610 syscallarg(int) msgflg;
4611 } */ *uap = v;
4612 struct sys_msgget_args ua;
4613
4614 NETBSD32TOX_UAP(key, key_t);
4615 NETBSD32TO64_UAP(msgflg);
4616 return (sys_msgget(p, &ua, retval));
4617 #else
4618 return (ENOSYS);
4619 #endif
4620 }
4621
4622 int
4623 netbsd32_msgsnd(p, v, retval)
4624 struct proc *p;
4625 void *v;
4626 register_t *retval;
4627 {
4628 #if 0
4629 struct netbsd32_msgsnd_args /* {
4630 syscallarg(int) msqid;
4631 syscallarg(const netbsd32_voidp) msgp;
4632 syscallarg(netbsd32_size_t) msgsz;
4633 syscallarg(int) msgflg;
4634 } */ *uap = v;
4635 struct sys_msgsnd_args ua;
4636
4637 NETBSD32TO64_UAP(msqid);
4638 NETBSD32TOP_UAP(msgp, void);
4639 NETBSD32TOX_UAP(msgsz, size_t);
4640 NETBSD32TO64_UAP(msgflg);
4641 return (sys_msgsnd(p, &ua, retval));
4642 #else
4643 return (ENOSYS);
4644 #endif
4645 }
4646
4647 int
4648 netbsd32_msgrcv(p, v, retval)
4649 struct proc *p;
4650 void *v;
4651 register_t *retval;
4652 {
4653 #if 0
4654 struct netbsd32_msgrcv_args /* {
4655 syscallarg(int) msqid;
4656 syscallarg(netbsd32_voidp) msgp;
4657 syscallarg(netbsd32_size_t) msgsz;
4658 syscallarg(netbsd32_long) msgtyp;
4659 syscallarg(int) msgflg;
4660 } */ *uap = v;
4661 struct sys_msgrcv_args ua;
4662 ssize_t rt;
4663 int error;
4664
4665 NETBSD32TO64_UAP(msqid);
4666 NETBSD32TOP_UAP(msgp, void);
4667 NETBSD32TOX_UAP(msgsz, size_t);
4668 NETBSD32TOX_UAP(msgtyp, long);
4669 NETBSD32TO64_UAP(msgflg);
4670 error = sys_msgrcv(p, &ua, (register_t *)&rt);
4671 *retval = rt;
4672 return (error);
4673 #else
4674 return (ENOSYS);
4675 #endif
4676 }
4677 #endif /* SYSVMSG */
4678
4679 #if defined(SYSVSHM)
4680
4681 int
4682 netbsd32_shmat(p, v, retval)
4683 struct proc *p;
4684 void *v;
4685 register_t *retval;
4686 {
4687 #if 0
4688 struct netbsd32_shmat_args /* {
4689 syscallarg(int) shmid;
4690 syscallarg(const netbsd32_voidp) shmaddr;
4691 syscallarg(int) shmflg;
4692 } */ *uap = v;
4693 struct sys_shmat_args ua;
4694 void *rt;
4695 int error;
4696
4697 NETBSD32TO64_UAP(shmid);
4698 NETBSD32TOP_UAP(shmaddr, void);
4699 NETBSD32TO64_UAP(shmflg);
4700 error = sys_shmat(p, &ua, (register_t *)&rt);
4701 *retval = rt;
4702 return (error);
4703 #else
4704 return (ENOSYS);
4705 #endif
4706 }
4707
4708 int
4709 netbsd32___shmctl13(p, v, retval)
4710 struct proc *p;
4711 void *v;
4712 register_t *retval;
4713 {
4714 #if 0
4715 struct netbsd32_shmctl_args /* {
4716 syscallarg(int) shmid;
4717 syscallarg(int) cmd;
4718 syscallarg(netbsd32_shmid_dsp_t) buf;
4719 } */ *uap = v;
4720 struct sys_shmctl_args ua;
4721 struct shmid_ds ds;
4722 struct netbsd32_shmid_ds *ds32p;
4723 int error;
4724
4725 NETBSD32TO64_UAP(shmid);
4726 NETBSD32TO64_UAP(cmd);
4727 ds32p = (struct netbsd32_shmid_ds *)(u_long)SCARG(uap, buf);
4728 if (ds32p) {
4729 SCARG(&ua, buf) = NULL;
4730 netbsd32_to_shmid_ds(ds32p, &ds);
4731 } else
4732 SCARG(&ua, buf) = NULL;
4733 error = sys_shmctl(p, &ua, retval);
4734 if (error)
4735 return (error);
4736
4737 if (ds32p)
4738 netbsd32_from_shmid_ds(&ds, ds32p);
4739 return (0);
4740 #else
4741 return (ENOSYS);
4742 #endif
4743 }
4744
4745 int
4746 netbsd32_shmdt(p, v, retval)
4747 struct proc *p;
4748 void *v;
4749 register_t *retval;
4750 {
4751 #if 0
4752 struct netbsd32_shmdt_args /* {
4753 syscallarg(const netbsd32_voidp) shmaddr;
4754 } */ *uap = v;
4755 struct sys_shmdt_args ua;
4756
4757 NETBSD32TOP_UAP(shmaddr, const char);
4758 return (sys_shmdt(p, &ua, retval));
4759 #else
4760 return (ENOSYS);
4761 #endif
4762 }
4763
4764 int
4765 netbsd32_shmget(p, v, retval)
4766 struct proc *p;
4767 void *v;
4768 register_t *retval;
4769 {
4770 #if 0
4771 struct netbsd32_shmget_args /* {
4772 syscallarg(netbsd32_key_t) key;
4773 syscallarg(netbsd32_size_t) size;
4774 syscallarg(int) shmflg;
4775 } */ *uap = v;
4776 struct sys_shmget_args ua;
4777
4778 NETBSD32TOX_UAP(key, key_t)
4779 NETBSD32TOX_UAP(size, size_t)
4780 NETBSD32TO64_UAP(shmflg);
4781 return (sys_shmget(p, &ua, retval));
4782 #else
4783 return (ENOSYS);
4784 #endif
4785 }
4786 #endif /* SYSVSHM */
4787
4788 int
4789 netbsd32_clock_gettime(p, v, retval)
4790 struct proc *p;
4791 void *v;
4792 register_t *retval;
4793 {
4794 struct netbsd32_clock_gettime_args /* {
4795 syscallarg(netbsd32_clockid_t) clock_id;
4796 syscallarg(netbsd32_timespecp_t) tp;
4797 } */ *uap = v;
4798 clockid_t clock_id;
4799 struct timeval atv;
4800 struct timespec ats;
4801 struct netbsd32_timespec ts32;
4802
4803 clock_id = SCARG(uap, clock_id);
4804 if (clock_id != CLOCK_REALTIME)
4805 return (EINVAL);
4806
4807 microtime(&atv);
4808 TIMEVAL_TO_TIMESPEC(&atv,&ats);
4809 netbsd32_from_timespec(&ats, &ts32);
4810
4811 return copyout(&ts32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts32));
4812 }
4813
4814 int
4815 netbsd32_clock_settime(p, v, retval)
4816 struct proc *p;
4817 void *v;
4818 register_t *retval;
4819 {
4820 struct netbsd32_clock_settime_args /* {
4821 syscallarg(netbsd32_clockid_t) clock_id;
4822 syscallarg(const netbsd32_timespecp_t) tp;
4823 } */ *uap = v;
4824 struct netbsd32_timespec ts32;
4825 clockid_t clock_id;
4826 struct timeval atv;
4827 struct timespec ats;
4828 int error;
4829
4830 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
4831 return (error);
4832
4833 clock_id = SCARG(uap, clock_id);
4834 if (clock_id != CLOCK_REALTIME)
4835 return (EINVAL);
4836
4837 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), &ts32, sizeof(ts32))) != 0)
4838 return (error);
4839
4840 netbsd32_to_timespec(&ts32, &ats);
4841 TIMESPEC_TO_TIMEVAL(&atv,&ats);
4842 if ((error = settime(&atv)))
4843 return (error);
4844
4845 return 0;
4846 }
4847
4848 int
4849 netbsd32_clock_getres(p, v, retval)
4850 struct proc *p;
4851 void *v;
4852 register_t *retval;
4853 {
4854 struct netbsd32_clock_getres_args /* {
4855 syscallarg(netbsd32_clockid_t) clock_id;
4856 syscallarg(netbsd32_timespecp_t) tp;
4857 } */ *uap = v;
4858 struct netbsd32_timespec ts32;
4859 clockid_t clock_id;
4860 struct timespec ts;
4861 int error = 0;
4862
4863 clock_id = SCARG(uap, clock_id);
4864 if (clock_id != CLOCK_REALTIME)
4865 return (EINVAL);
4866
4867 if (SCARG(uap, tp)) {
4868 ts.tv_sec = 0;
4869 ts.tv_nsec = 1000000000 / hz;
4870
4871 netbsd32_from_timespec(&ts, &ts32);
4872 error = copyout(&ts, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts));
4873 }
4874
4875 return error;
4876 }
4877
4878 int
4879 netbsd32_nanosleep(p, v, retval)
4880 struct proc *p;
4881 void *v;
4882 register_t *retval;
4883 {
4884 struct netbsd32_nanosleep_args /* {
4885 syscallarg(const netbsd32_timespecp_t) rqtp;
4886 syscallarg(netbsd32_timespecp_t) rmtp;
4887 } */ *uap = v;
4888 static int nanowait;
4889 struct netbsd32_timespec ts32;
4890 struct timespec rqt;
4891 struct timespec rmt;
4892 struct timeval atv, utv;
4893 int error, s, timo;
4894
4895 error = copyin((caddr_t)(u_long)SCARG(uap, rqtp), (caddr_t)&ts32,
4896 sizeof(ts32));
4897 if (error)
4898 return (error);
4899
4900 netbsd32_to_timespec(&ts32, &rqt);
4901 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
4902 if (itimerfix(&atv))
4903 return (EINVAL);
4904
4905 s = splclock();
4906 timeradd(&atv,&time,&atv);
4907 timo = hzto(&atv);
4908 /*
4909 * Avoid inadvertantly sleeping forever
4910 */
4911 if (timo == 0)
4912 timo = 1;
4913 splx(s);
4914
4915 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
4916 if (error == ERESTART)
4917 error = EINTR;
4918 if (error == EWOULDBLOCK)
4919 error = 0;
4920
4921 if (SCARG(uap, rmtp)) {
4922 int error;
4923
4924 s = splclock();
4925 utv = time;
4926 splx(s);
4927
4928 timersub(&atv, &utv, &utv);
4929 if (utv.tv_sec < 0)
4930 timerclear(&utv);
4931
4932 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
4933 netbsd32_from_timespec(&rmt, &ts32);
4934 error = copyout((caddr_t)&ts32, (caddr_t)(u_long)SCARG(uap,rmtp),
4935 sizeof(ts32));
4936 if (error)
4937 return (error);
4938 }
4939
4940 return error;
4941 }
4942
4943 int
4944 netbsd32_fdatasync(p, v, retval)
4945 struct proc *p;
4946 void *v;
4947 register_t *retval;
4948 {
4949 struct netbsd32_fdatasync_args /* {
4950 syscallarg(int) fd;
4951 } */ *uap = v;
4952 struct sys_fdatasync_args ua;
4953
4954 NETBSD32TO64_UAP(fd);
4955
4956 return (sys_fdatasync(p, &ua, retval));
4957 }
4958
4959 int
4960 netbsd32___posix_rename(p, v, retval)
4961 struct proc *p;
4962 void *v;
4963 register_t *retval;
4964 {
4965 struct netbsd32___posix_rename_args /* {
4966 syscallarg(const netbsd32_charp) from;
4967 syscallarg(const netbsd32_charp) to;
4968 } */ *uap = v;
4969 struct sys___posix_rename_args ua;
4970
4971 NETBSD32TOP_UAP(from, const char);
4972 NETBSD32TOP_UAP(to, const char);
4973
4974 return (sys___posix_rename(p, &ua, retval));
4975 }
4976
4977 int
4978 netbsd32_swapctl(p, v, retval)
4979 struct proc *p;
4980 void *v;
4981 register_t *retval;
4982 {
4983 struct netbsd32_swapctl_args /* {
4984 syscallarg(int) cmd;
4985 syscallarg(const netbsd32_voidp) arg;
4986 syscallarg(int) misc;
4987 } */ *uap = v;
4988 struct sys_swapctl_args ua;
4989
4990 NETBSD32TO64_UAP(cmd);
4991 NETBSD32TOP_UAP(arg, const void);
4992 NETBSD32TO64_UAP(misc);
4993 return (sys_swapctl(p, &ua, retval));
4994 }
4995
4996 int
4997 netbsd32_getdents(p, v, retval)
4998 struct proc *p;
4999 void *v;
5000 register_t *retval;
5001 {
5002 struct netbsd32_getdents_args /* {
5003 syscallarg(int) fd;
5004 syscallarg(netbsd32_charp) buf;
5005 syscallarg(netbsd32_size_t) count;
5006 } */ *uap = v;
5007 struct file *fp;
5008 int error, done;
5009
5010 /* getvnode() will use the descriptor for us */
5011 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
5012 return (error);
5013 if ((fp->f_flag & FREAD) == 0) {
5014 error = EBADF;
5015 goto out;
5016 }
5017 error = vn_readdir(fp, (caddr_t)(u_long)SCARG(uap, buf), UIO_USERSPACE,
5018 SCARG(uap, count), &done, p, 0, 0);
5019 *retval = done;
5020 out:
5021 FILE_UNUSE(fp, p);
5022 return (error);
5023 }
5024
5025
5026 int
5027 netbsd32_minherit(p, v, retval)
5028 struct proc *p;
5029 void *v;
5030 register_t *retval;
5031 {
5032 struct netbsd32_minherit_args /* {
5033 syscallarg(netbsd32_voidp) addr;
5034 syscallarg(netbsd32_size_t) len;
5035 syscallarg(int) inherit;
5036 } */ *uap = v;
5037 struct sys_minherit_args ua;
5038
5039 NETBSD32TOP_UAP(addr, void);
5040 NETBSD32TOX_UAP(len, size_t);
5041 NETBSD32TO64_UAP(inherit);
5042 return (sys_minherit(p, &ua, retval));
5043 }
5044
5045 int
5046 netbsd32_lchmod(p, v, retval)
5047 struct proc *p;
5048 void *v;
5049 register_t *retval;
5050 {
5051 struct netbsd32_lchmod_args /* {
5052 syscallarg(const netbsd32_charp) path;
5053 syscallarg(mode_t) mode;
5054 } */ *uap = v;
5055 struct sys_lchmod_args ua;
5056
5057 NETBSD32TOP_UAP(path, const char);
5058 NETBSD32TO64_UAP(mode);
5059 return (sys_lchmod(p, &ua, retval));
5060 }
5061
5062 int
5063 netbsd32_lchown(p, v, retval)
5064 struct proc *p;
5065 void *v;
5066 register_t *retval;
5067 {
5068 struct netbsd32_lchown_args /* {
5069 syscallarg(const netbsd32_charp) path;
5070 syscallarg(uid_t) uid;
5071 syscallarg(gid_t) gid;
5072 } */ *uap = v;
5073 struct sys_lchown_args ua;
5074
5075 NETBSD32TOP_UAP(path, const char);
5076 NETBSD32TO64_UAP(uid);
5077 NETBSD32TO64_UAP(gid);
5078 return (sys_lchown(p, &ua, retval));
5079 }
5080
5081 int
5082 netbsd32_lutimes(p, v, retval)
5083 struct proc *p;
5084 void *v;
5085 register_t *retval;
5086 {
5087 struct netbsd32_lutimes_args /* {
5088 syscallarg(const netbsd32_charp) path;
5089 syscallarg(const netbsd32_timevalp_t) tptr;
5090 } */ *uap = v;
5091 int error;
5092 struct nameidata nd;
5093
5094 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, (caddr_t)(u_long)SCARG(uap, path), p);
5095 if ((error = namei(&nd)) != 0)
5096 return (error);
5097
5098 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
5099
5100 vrele(nd.ni_vp);
5101 return (error);
5102 }
5103
5104
5105 int
5106 netbsd32___msync13(p, v, retval)
5107 struct proc *p;
5108 void *v;
5109 register_t *retval;
5110 {
5111 struct netbsd32___msync13_args /* {
5112 syscallarg(netbsd32_voidp) addr;
5113 syscallarg(netbsd32_size_t) len;
5114 syscallarg(int) flags;
5115 } */ *uap = v;
5116 struct sys___msync13_args ua;
5117
5118 NETBSD32TOP_UAP(addr, void);
5119 NETBSD32TOX_UAP(len, size_t);
5120 NETBSD32TO64_UAP(flags);
5121 return (sys___msync13(p, &ua, retval));
5122 }
5123
5124 int
5125 netbsd32___stat13(p, v, retval)
5126 struct proc *p;
5127 void *v;
5128 register_t *retval;
5129 {
5130 struct netbsd32___stat13_args /* {
5131 syscallarg(const netbsd32_charp) path;
5132 syscallarg(netbsd32_statp_t) ub;
5133 } */ *uap = v;
5134 struct netbsd32_stat sb32;
5135 struct stat sb;
5136 int error;
5137 struct nameidata nd;
5138 caddr_t sg;
5139 char *path;
5140
5141 path = (char *)(u_long)SCARG(uap, path);
5142 sg = stackgap_init(p->p_emul);
5143 NETBSD32_CHECK_ALT_EXIST(p, &sg, path);
5144
5145 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5146 if ((error = namei(&nd)) != 0)
5147 return (error);
5148 error = vn_stat(nd.ni_vp, &sb, p);
5149 vput(nd.ni_vp);
5150 if (error)
5151 return (error);
5152 netbsd32_from___stat13(&sb, &sb32);
5153 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5154 return (error);
5155 }
5156
5157 int
5158 netbsd32___fstat13(p, v, retval)
5159 struct proc *p;
5160 void *v;
5161 register_t *retval;
5162 {
5163 struct netbsd32___fstat13_args /* {
5164 syscallarg(int) fd;
5165 syscallarg(netbsd32_statp_t) sb;
5166 } */ *uap = v;
5167 int fd = SCARG(uap, fd);
5168 struct filedesc *fdp = p->p_fd;
5169 struct file *fp;
5170 struct netbsd32_stat sb32;
5171 struct stat ub;
5172 int error = 0;
5173
5174 if ((u_int)fd >= fdp->fd_nfiles ||
5175 (fp = fdp->fd_ofiles[fd]) == NULL)
5176 return (EBADF);
5177 switch (fp->f_type) {
5178
5179 case DTYPE_VNODE:
5180 error = vn_stat((struct vnode *)fp->f_data, &ub, p);
5181 break;
5182
5183 case DTYPE_SOCKET:
5184 error = soo_stat((struct socket *)fp->f_data, &ub);
5185 break;
5186
5187 default:
5188 panic("fstat");
5189 /*NOTREACHED*/
5190 }
5191 if (error == 0) {
5192 netbsd32_from___stat13(&ub, &sb32);
5193 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, sb), sizeof(sb32));
5194 }
5195 return (error);
5196 }
5197
5198 int
5199 netbsd32___lstat13(p, v, retval)
5200 struct proc *p;
5201 void *v;
5202 register_t *retval;
5203 {
5204 struct netbsd32___lstat13_args /* {
5205 syscallarg(const netbsd32_charp) path;
5206 syscallarg(netbsd32_statp_t) ub;
5207 } */ *uap = v;
5208 struct netbsd32_stat sb32;
5209 struct stat sb;
5210 int error;
5211 struct nameidata nd;
5212 caddr_t sg;
5213 char *path;
5214
5215 path = (char *)(u_long)SCARG(uap, path);
5216 sg = stackgap_init(p->p_emul);
5217 NETBSD32_CHECK_ALT_EXIST(p, &sg, path);
5218
5219 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5220 if ((error = namei(&nd)) != 0)
5221 return (error);
5222 error = vn_stat(nd.ni_vp, &sb, p);
5223 vput(nd.ni_vp);
5224 if (error)
5225 return (error);
5226 netbsd32_from___stat13(&sb, &sb32);
5227 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5228 return (error);
5229 }
5230
5231 int
5232 netbsd32___sigaltstack14(p, v, retval)
5233 struct proc *p;
5234 void *v;
5235 register_t *retval;
5236 {
5237 struct netbsd32___sigaltstack14_args /* {
5238 syscallarg(const netbsd32_sigaltstackp_t) nss;
5239 syscallarg(netbsd32_sigaltstackp_t) oss;
5240 } */ *uap = v;
5241 struct netbsd32_sigaltstack s32;
5242 struct sigaltstack nss, oss;
5243 int error;
5244
5245 if (SCARG(uap, nss)) {
5246 error = copyin((caddr_t)(u_long)SCARG(uap, nss), &s32, sizeof(s32));
5247 if (error)
5248 return (error);
5249 nss.ss_sp = (void *)(u_long)s32.ss_sp;
5250 nss.ss_size = (size_t)s32.ss_size;
5251 nss.ss_flags = s32.ss_flags;
5252 }
5253 error = sigaltstack1(p,
5254 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
5255 if (error)
5256 return (error);
5257 if (SCARG(uap, oss)) {
5258 s32.ss_sp = (netbsd32_voidp)(u_long)oss.ss_sp;
5259 s32.ss_size = (netbsd32_size_t)oss.ss_size;
5260 s32.ss_flags = oss.ss_flags;
5261 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, oss), sizeof(s32));
5262 if (error)
5263 return (error);
5264 }
5265 return (0);
5266 }
5267
5268 int
5269 netbsd32___posix_chown(p, v, retval)
5270 struct proc *p;
5271 void *v;
5272 register_t *retval;
5273 {
5274 struct netbsd32___posix_chown_args /* {
5275 syscallarg(const netbsd32_charp) path;
5276 syscallarg(uid_t) uid;
5277 syscallarg(gid_t) gid;
5278 } */ *uap = v;
5279 struct sys___posix_chown_args ua;
5280
5281 NETBSD32TOP_UAP(path, const char);
5282 NETBSD32TO64_UAP(uid);
5283 NETBSD32TO64_UAP(gid);
5284 return (sys___posix_chown(p, &ua, retval));
5285 }
5286
5287 int
5288 netbsd32___posix_fchown(p, v, retval)
5289 struct proc *p;
5290 void *v;
5291 register_t *retval;
5292 {
5293 struct netbsd32___posix_fchown_args /* {
5294 syscallarg(int) fd;
5295 syscallarg(uid_t) uid;
5296 syscallarg(gid_t) gid;
5297 } */ *uap = v;
5298 struct sys___posix_fchown_args ua;
5299
5300 NETBSD32TO64_UAP(fd);
5301 NETBSD32TO64_UAP(uid);
5302 NETBSD32TO64_UAP(gid);
5303 return (sys___posix_fchown(p, &ua, retval));
5304 }
5305
5306 int
5307 netbsd32___posix_lchown(p, v, retval)
5308 struct proc *p;
5309 void *v;
5310 register_t *retval;
5311 {
5312 struct netbsd32___posix_lchown_args /* {
5313 syscallarg(const netbsd32_charp) path;
5314 syscallarg(uid_t) uid;
5315 syscallarg(gid_t) gid;
5316 } */ *uap = v;
5317 struct sys___posix_lchown_args ua;
5318
5319 NETBSD32TOP_UAP(path, const char);
5320 NETBSD32TO64_UAP(uid);
5321 NETBSD32TO64_UAP(gid);
5322 return (sys___posix_lchown(p, &ua, retval));
5323 }
5324
5325 int
5326 netbsd32_getsid(p, v, retval)
5327 struct proc *p;
5328 void *v;
5329 register_t *retval;
5330 {
5331 struct netbsd32_getsid_args /* {
5332 syscallarg(pid_t) pid;
5333 } */ *uap = v;
5334 struct sys_getsid_args ua;
5335
5336 NETBSD32TO64_UAP(pid);
5337 return (sys_getsid(p, &ua, retval));
5338 }
5339
5340 int
5341 netbsd32_fktrace(p, v, retval)
5342 struct proc *p;
5343 void *v;
5344 register_t *retval;
5345 {
5346 struct netbsd32_fktrace_args /* {
5347 syscallarg(const int) fd;
5348 syscallarg(int) ops;
5349 syscallarg(int) facs;
5350 syscallarg(int) pid;
5351 } */ *uap = v;
5352 struct sys_fktrace_args ua;
5353
5354 NETBSD32TOX_UAP(fd, int);
5355 NETBSD32TO64_UAP(ops);
5356 NETBSD32TO64_UAP(facs);
5357 NETBSD32TO64_UAP(pid);
5358 return (sys_fktrace(p, &ua, retval));
5359 }
5360
5361 int
5362 netbsd32_preadv(p, v, retval)
5363 struct proc *p;
5364 void *v;
5365 register_t *retval;
5366 {
5367 struct netbsd32_preadv_args /* {
5368 syscallarg(int) fd;
5369 syscallarg(const netbsd32_iovecp_t) iovp;
5370 syscallarg(int) iovcnt;
5371 syscallarg(int) pad;
5372 syscallarg(off_t) offset;
5373 } */ *uap = v;
5374 struct filedesc *fdp = p->p_fd;
5375 struct file *fp;
5376 struct vnode *vp;
5377 off_t offset;
5378 int error, fd = SCARG(uap, fd);
5379
5380 if ((u_int)fd >= fdp->fd_nfiles ||
5381 (fp = fdp->fd_ofiles[fd]) == NULL ||
5382 (fp->f_flag & FREAD) == 0)
5383 return (EBADF);
5384
5385 vp = (struct vnode *)fp->f_data;
5386 if (fp->f_type != DTYPE_VNODE
5387 || vp->v_type == VFIFO)
5388 return (ESPIPE);
5389
5390 offset = SCARG(uap, offset);
5391
5392 /*
5393 * XXX This works because no file systems actually
5394 * XXX take any action on the seek operation.
5395 */
5396 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5397 return (error);
5398
5399 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5400 &offset, 0, retval));
5401 }
5402
5403 int
5404 netbsd32_pwritev(p, v, retval)
5405 struct proc *p;
5406 void *v;
5407 register_t *retval;
5408 {
5409 struct netbsd32_pwritev_args /* {
5410 syscallarg(int) fd;
5411 syscallarg(const netbsd32_iovecp_t) iovp;
5412 syscallarg(int) iovcnt;
5413 syscallarg(int) pad;
5414 syscallarg(off_t) offset;
5415 } */ *uap = v;
5416 struct filedesc *fdp = p->p_fd;
5417 struct file *fp;
5418 struct vnode *vp;
5419 off_t offset;
5420 int error, fd = SCARG(uap, fd);
5421
5422 if ((u_int)fd >= fdp->fd_nfiles ||
5423 (fp = fdp->fd_ofiles[fd]) == NULL ||
5424 (fp->f_flag & FWRITE) == 0)
5425 return (EBADF);
5426
5427 vp = (struct vnode *)fp->f_data;
5428 if (fp->f_type != DTYPE_VNODE
5429 || vp->v_type == VFIFO)
5430 return (ESPIPE);
5431
5432 offset = SCARG(uap, offset);
5433
5434 /*
5435 * XXX This works because no file systems actually
5436 * XXX take any action on the seek operation.
5437 */
5438 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5439 return (error);
5440
5441 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5442 &offset, 0, retval));
5443 }
5444
5445 /* ARGSUSED */
5446 int
5447 netbsd32___sigaction14(p, v, retval)
5448 struct proc *p;
5449 void *v;
5450 register_t *retval;
5451 {
5452 struct netbsd32___sigaction14_args /* {
5453 syscallarg(int) signum;
5454 syscallarg(const struct sigaction *) nsa;
5455 syscallarg(struct sigaction *) osa;
5456 } */ *uap = v;
5457 struct netbsd32_sigaction sa32;
5458 struct sigaction nsa, osa;
5459 int error;
5460
5461 if (SCARG(uap, nsa)) {
5462 error = copyin((caddr_t)(u_long)SCARG(uap, nsa),
5463 &sa32, sizeof(sa32));
5464 if (error)
5465 return (error);
5466 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
5467 nsa.sa_mask = sa32.sa_mask;
5468 nsa.sa_flags = sa32.sa_flags;
5469 }
5470 error = sigaction1(p, SCARG(uap, signum),
5471 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0);
5472 if (error)
5473 return (error);
5474 if (SCARG(uap, osa)) {
5475 sa32.sa_handler = (netbsd32_voidp)(u_long)osa.sa_handler;
5476 sa32.sa_mask = osa.sa_mask;
5477 sa32.sa_flags = osa.sa_flags;
5478 error = copyout(&sa32, (caddr_t)(u_long)SCARG(uap, osa), sizeof(sa32));
5479 if (error)
5480 return (error);
5481 }
5482 return (0);
5483 }
5484
5485 int netbsd32___sigpending14(p, v, retval)
5486 struct proc *p;
5487 void *v;
5488 register_t *retval;
5489 {
5490 struct netbsd32___sigpending14_args /* {
5491 syscallarg(sigset_t *) set;
5492 } */ *uap = v;
5493 struct sys___sigpending14_args ua;
5494
5495 NETBSD32TOP_UAP(set, sigset_t);
5496 return (sys___sigpending14(p, &ua, retval));
5497 }
5498
5499 int netbsd32___sigprocmask14(p, v, retval)
5500 struct proc *p;
5501 void *v;
5502 register_t *retval;
5503 {
5504 struct netbsd32___sigprocmask14_args /* {
5505 syscallarg(int) how;
5506 syscallarg(const sigset_t *) set;
5507 syscallarg(sigset_t *) oset;
5508 } */ *uap = v;
5509 struct sys___sigprocmask14_args ua;
5510
5511 NETBSD32TO64_UAP(how);
5512 NETBSD32TOP_UAP(set, sigset_t);
5513 NETBSD32TOP_UAP(oset, sigset_t);
5514 return (sys___sigprocmask14(p, &ua, retval));
5515 }
5516
5517 int netbsd32___sigsuspend14(p, v, retval)
5518 struct proc *p;
5519 void *v;
5520 register_t *retval;
5521 {
5522 struct netbsd32___sigsuspend14_args /* {
5523 syscallarg(const sigset_t *) set;
5524 } */ *uap = v;
5525 struct sys___sigsuspend14_args ua;
5526
5527 NETBSD32TOP_UAP(set, sigset_t);
5528 return (sys___sigsuspend14(p, &ua, retval));
5529 };
5530
5531
5532 /*
5533 * Find pathname of process's current directory.
5534 *
5535 * Use vfs vnode-to-name reverse cache; if that fails, fall back
5536 * to reading directory contents.
5537 */
5538 int
5539 getcwd_common __P((struct vnode *, struct vnode *,
5540 char **, char *, int, int, struct proc *));
5541
5542 int netbsd32___getcwd(p, v, retval)
5543 struct proc *p;
5544 void *v;
5545 register_t *retval;
5546 {
5547 struct netbsd32___getcwd_args /* {
5548 syscallarg(char *) bufp;
5549 syscallarg(size_t) length;
5550 } */ *uap = v;
5551
5552 int error;
5553 char *path;
5554 char *bp, *bend;
5555 int len = (int)SCARG(uap, length);
5556 int lenused;
5557
5558 if (len > MAXPATHLEN*4)
5559 len = MAXPATHLEN*4;
5560 else if (len < 2)
5561 return ERANGE;
5562
5563 path = (char *)malloc(len, M_TEMP, M_WAITOK);
5564 if (!path)
5565 return ENOMEM;
5566
5567 bp = &path[len];
5568 bend = bp;
5569 *(--bp) = '\0';
5570
5571 /*
5572 * 5th argument here is "max number of vnodes to traverse".
5573 * Since each entry takes up at least 2 bytes in the output buffer,
5574 * limit it to N/2 vnodes for an N byte buffer.
5575 */
5576 #define GETCWD_CHECK_ACCESS 0x0001
5577 error = getcwd_common (p->p_cwdi->cwdi_cdir, NULL, &bp, path, len/2,
5578 GETCWD_CHECK_ACCESS, p);
5579
5580 if (error)
5581 goto out;
5582 lenused = bend - bp;
5583 *retval = lenused;
5584 /* put the result into user buffer */
5585 error = copyout(bp, (caddr_t)(u_long)SCARG(uap, bufp), lenused);
5586
5587 out:
5588 free(path, M_TEMP);
5589 return error;
5590 }
5591
5592 int netbsd32_fchroot(p, v, retval)
5593 struct proc *p;
5594 void *v;
5595 register_t *retval;
5596 {
5597 struct netbsd32_fchroot_args /* {
5598 syscallarg(int) fd;
5599 } */ *uap = v;
5600 struct sys_fchroot_args ua;
5601
5602 NETBSD32TO64_UAP(fd);
5603 return (sys_fchroot(p, &ua, retval));
5604 }
5605
5606 /*
5607 * Open a file given a file handle.
5608 *
5609 * Check permissions, allocate an open file structure,
5610 * and call the device open routine if any.
5611 */
5612 int
5613 netbsd32_fhopen(p, v, retval)
5614 struct proc *p;
5615 void *v;
5616 register_t *retval;
5617 {
5618 struct netbsd32_fhopen_args /* {
5619 syscallarg(const fhandle_t *) fhp;
5620 syscallarg(int) flags;
5621 } */ *uap = v;
5622 struct sys_fhopen_args ua;
5623
5624 NETBSD32TOP_UAP(fhp, fhandle_t);
5625 NETBSD32TO64_UAP(flags);
5626 return (sys_fhopen(p, &ua, retval));
5627 }
5628
5629 int netbsd32_fhstat(p, v, retval)
5630 struct proc *p;
5631 void *v;
5632 register_t *retval;
5633 {
5634 struct netbsd32_fhstat_args /* {
5635 syscallarg(const netbsd32_fhandlep_t) fhp;
5636 syscallarg(struct stat *) sb;
5637 } */ *uap = v;
5638 struct sys_fhstat_args ua;
5639
5640 NETBSD32TOP_UAP(fhp, const fhandle_t);
5641 NETBSD32TOP_UAP(sb, struct stat);
5642 return (sys_fhstat(p, &ua, retval));
5643 }
5644
5645 int netbsd32_fhstatfs(p, v, retval)
5646 struct proc *p;
5647 void *v;
5648 register_t *retval;
5649 {
5650 struct netbsd32_fhstatfs_args /* {
5651 syscallarg(const netbsd32_fhandlep_t) fhp;
5652 syscallarg(struct statfs *) buf;
5653 } */ *uap = v;
5654 struct sys_fhstatfs_args ua;
5655
5656 NETBSD32TOP_UAP(fhp, const fhandle_t);
5657 NETBSD32TOP_UAP(buf, struct statfs);
5658 return (sys_fhstatfs(p, &ua, retval));
5659 }
5660
5661 /* virtual memory syscalls */
5662 int
5663 netbsd32_ovadvise(p, v, retval)
5664 struct proc *p;
5665 void *v;
5666 register_t *retval;
5667 {
5668 struct netbsd32_ovadvise_args /* {
5669 syscallarg(int) anom;
5670 } */ *uap = v;
5671 struct sys_ovadvise_args ua;
5672
5673 NETBSD32TO64_UAP(anom);
5674 return (sys_ovadvise(p, &ua, retval));
5675 }
5676
5677