netbsd32_netbsd.c revision 1.39 1 /* $NetBSD: netbsd32_netbsd.c,v 1.39 2000/11/28 13:07:27 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1998 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include "opt_ddb.h"
32 #include "opt_ktrace.h"
33 #include "opt_ntp.h"
34 #include "opt_compat_netbsd.h"
35 #include "opt_compat_freebsd.h"
36 #include "opt_compat_linux.h"
37 #include "opt_compat_sunos.h"
38 #include "opt_compat_43.h"
39 #include "opt_sysv.h"
40 #if defined(COMPAT_43) || defined(COMPAT_SUNOS) || defined(COMPAT_LINUX) || \
41 defined(COMPAT_FREEBSD)
42 #define COMPAT_OLDSOCK /* used by <sys/socket.h> */
43 #endif
44
45 #include "fs_lfs.h"
46 #include "fs_nfs.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/filedesc.h>
51 #include <sys/kernel.h>
52 #include <sys/ipc.h>
53 #include <sys/msg.h>
54 #define msg __msg /* Don't ask me! */
55 #include <sys/sem.h>
56 #include <sys/shm.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/socket.h>
60 #include <sys/sockio.h>
61 #include <sys/socketvar.h>
62 #include <sys/mbuf.h>
63 #include <sys/stat.h>
64 #include <sys/time.h>
65 #include <sys/timex.h>
66 #include <sys/signalvar.h>
67 #include <sys/wait.h>
68 #include <sys/ptrace.h>
69 #include <sys/ktrace.h>
70 #include <sys/trace.h>
71 #include <sys/resourcevar.h>
72 #include <sys/pool.h>
73 #include <sys/vnode.h>
74 #include <sys/file.h>
75 #include <sys/filedesc.h>
76 #include <sys/namei.h>
77
78 #include <uvm/uvm_extern.h>
79
80 #include <sys/syscallargs.h>
81 #include <sys/proc.h>
82 #include <sys/acct.h>
83 #include <sys/exec.h>
84 #define __SYSCTL_PRIVATE
85 #include <sys/sysctl.h>
86
87 #include <net/if.h>
88
89 #include <compat/netbsd32/netbsd32.h>
90 #include <compat/netbsd32/netbsd32_syscallargs.h>
91
92 #include <machine/frame.h>
93
94 #if defined(DDB)
95 #include <ddb/ddbvar.h>
96 #endif
97
98 static __inline void netbsd32_from_timeval __P((struct timeval *, struct netbsd32_timeval *));
99 static __inline void netbsd32_to_timeval __P((struct netbsd32_timeval *, struct timeval *));
100 static __inline void netbsd32_from_itimerval __P((struct itimerval *, struct netbsd32_itimerval *));
101 static __inline void netbsd32_to_itimerval __P((struct netbsd32_itimerval *, struct itimerval *));
102 static __inline void netbsd32_to_timespec __P((struct netbsd32_timespec *, struct timespec *));
103 static __inline void netbsd32_from_timespec __P((struct timespec *, struct netbsd32_timespec *));
104 static __inline void netbsd32_from_rusage __P((struct rusage *, struct netbsd32_rusage *));
105 static __inline void netbsd32_to_rusage __P((struct netbsd32_rusage *, struct rusage *));
106 static __inline int netbsd32_to_iovecin __P((struct netbsd32_iovec *, struct iovec *, int));
107 static __inline void netbsd32_to_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
108 static __inline void netbsd32_from_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
109 static __inline void netbsd32_from_statfs __P((struct statfs *, struct netbsd32_statfs *));
110 static __inline void netbsd32_from_timex __P((struct timex *, struct netbsd32_timex *));
111 static __inline void netbsd32_to_timex __P((struct netbsd32_timex *, struct timex *));
112 static __inline void netbsd32_from___stat13 __P((struct stat *, struct netbsd32_stat *));
113 static __inline void netbsd32_to_ipc_perm __P((struct netbsd32_ipc_perm *, struct ipc_perm *));
114 static __inline void netbsd32_from_ipc_perm __P((struct ipc_perm *, struct netbsd32_ipc_perm *));
115 static __inline void netbsd32_to_msg __P((struct netbsd32_msg *, struct msg *));
116 static __inline void netbsd32_from_msg __P((struct msg *, struct netbsd32_msg *));
117 static __inline void netbsd32_to_msqid_ds __P((struct netbsd32_msqid_ds *, struct msqid_ds *));
118 static __inline void netbsd32_from_msqid_ds __P((struct msqid_ds *, struct netbsd32_msqid_ds *));
119 static __inline void netbsd32_to_shmid_ds __P((struct netbsd32_shmid_ds *, struct shmid_ds *));
120 static __inline void netbsd32_from_shmid_ds __P((struct shmid_ds *, struct netbsd32_shmid_ds *));
121 static __inline void netbsd32_to_semid_ds __P((struct netbsd32_semid_ds *, struct semid_ds *));
122 static __inline void netbsd32_from_semid_ds __P((struct semid_ds *, struct netbsd32_semid_ds *));
123
124
125 static int recvit32 __P((struct proc *, int, struct netbsd32_msghdr *, struct iovec *, caddr_t,
126 register_t *));
127 static int dofilereadv32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
128 int, off_t *, int, register_t *));
129 static int dofilewritev32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
130 int, off_t *, int, register_t *));
131 static int change_utimes32 __P((struct vnode *, struct timeval *, struct proc *));
132
133 /* converters for structures that we need */
134 static __inline void
135 netbsd32_from_timeval(tv, tv32)
136 struct timeval *tv;
137 struct netbsd32_timeval *tv32;
138 {
139
140 tv32->tv_sec = (netbsd32_long)tv->tv_sec;
141 tv32->tv_usec = (netbsd32_long)tv->tv_usec;
142 }
143
144 static __inline void
145 netbsd32_to_timeval(tv32, tv)
146 struct netbsd32_timeval *tv32;
147 struct timeval *tv;
148 {
149
150 tv->tv_sec = (long)tv32->tv_sec;
151 tv->tv_usec = (long)tv32->tv_usec;
152 }
153
154 static __inline void
155 netbsd32_from_itimerval(itv, itv32)
156 struct itimerval *itv;
157 struct netbsd32_itimerval *itv32;
158 {
159
160 netbsd32_from_timeval(&itv->it_interval,
161 &itv32->it_interval);
162 netbsd32_from_timeval(&itv->it_value,
163 &itv32->it_value);
164 }
165
166 static __inline void
167 netbsd32_to_itimerval(itv32, itv)
168 struct netbsd32_itimerval *itv32;
169 struct itimerval *itv;
170 {
171
172 netbsd32_to_timeval(&itv32->it_interval, &itv->it_interval);
173 netbsd32_to_timeval(&itv32->it_value, &itv->it_value);
174 }
175
176 static __inline void
177 netbsd32_to_timespec(s32p, p)
178 struct netbsd32_timespec *s32p;
179 struct timespec *p;
180 {
181
182 p->tv_sec = (time_t)s32p->tv_sec;
183 p->tv_nsec = (long)s32p->tv_nsec;
184 }
185
186 static __inline void
187 netbsd32_from_timespec(p, s32p)
188 struct timespec *p;
189 struct netbsd32_timespec *s32p;
190 {
191
192 s32p->tv_sec = (netbsd32_time_t)p->tv_sec;
193 s32p->tv_nsec = (netbsd32_long)p->tv_nsec;
194 }
195
196 static __inline void
197 netbsd32_from_rusage(rup, ru32p)
198 struct rusage *rup;
199 struct netbsd32_rusage *ru32p;
200 {
201
202 netbsd32_from_timeval(&rup->ru_utime, &ru32p->ru_utime);
203 netbsd32_from_timeval(&rup->ru_stime, &ru32p->ru_stime);
204 #define C(var) ru32p->var = (netbsd32_long)rup->var
205 C(ru_maxrss);
206 C(ru_ixrss);
207 C(ru_idrss);
208 C(ru_isrss);
209 C(ru_minflt);
210 C(ru_majflt);
211 C(ru_nswap);
212 C(ru_inblock);
213 C(ru_oublock);
214 C(ru_msgsnd);
215 C(ru_msgrcv);
216 C(ru_nsignals);
217 C(ru_nvcsw);
218 C(ru_nivcsw);
219 #undef C
220 }
221
222 static __inline void
223 netbsd32_to_rusage(ru32p, rup)
224 struct netbsd32_rusage *ru32p;
225 struct rusage *rup;
226 {
227
228 netbsd32_to_timeval(&ru32p->ru_utime, &rup->ru_utime);
229 netbsd32_to_timeval(&ru32p->ru_stime, &rup->ru_stime);
230 #define C(var) rup->var = (long)ru32p->var
231 C(ru_maxrss);
232 C(ru_ixrss);
233 C(ru_idrss);
234 C(ru_isrss);
235 C(ru_minflt);
236 C(ru_majflt);
237 C(ru_nswap);
238 C(ru_inblock);
239 C(ru_oublock);
240 C(ru_msgsnd);
241 C(ru_msgrcv);
242 C(ru_nsignals);
243 C(ru_nvcsw);
244 C(ru_nivcsw);
245 #undef C
246 }
247
248 static __inline int
249 netbsd32_to_iovecin(iov32p, iovp, len)
250 struct netbsd32_iovec *iov32p;
251 struct iovec *iovp;
252 int len;
253 {
254 int i, error=0;
255 u_int32_t iov_base;
256 u_int32_t iov_len;
257 /*
258 * We could allocate an iov32p, do a copyin, and translate
259 * each field and then free it all up, or we could copyin
260 * each field separately. I'm doing the latter to reduce
261 * the number of MALLOC()s.
262 */
263 for (i = 0; i < len; i++, iovp++, iov32p++) {
264 if ((error = copyin((caddr_t)&iov32p->iov_base, &iov_base, sizeof(iov_base))))
265 return (error);
266 if ((error = copyin((caddr_t)&iov32p->iov_len, &iov_len, sizeof(iov_len))))
267 return (error);
268 iovp->iov_base = (void *)(u_long)iov_base;
269 iovp->iov_len = (size_t)iov_len;
270 }
271 }
272
273 /* msg_iov must be done separately */
274 static __inline void
275 netbsd32_to_msghdr(mhp32, mhp)
276 struct netbsd32_msghdr *mhp32;
277 struct msghdr *mhp;
278 {
279
280 mhp->msg_name = (caddr_t)(u_long)mhp32->msg_name;
281 mhp->msg_namelen = mhp32->msg_namelen;
282 mhp->msg_iovlen = (size_t)mhp32->msg_iovlen;
283 mhp->msg_control = (caddr_t)(u_long)mhp32->msg_control;
284 mhp->msg_controllen = mhp32->msg_controllen;
285 mhp->msg_flags = mhp32->msg_flags;
286 }
287
288 /* msg_iov must be done separately */
289 static __inline void
290 netbsd32_from_msghdr(mhp32, mhp)
291 struct netbsd32_msghdr *mhp32;
292 struct msghdr *mhp;
293 {
294
295 mhp32->msg_name = mhp32->msg_name;
296 mhp32->msg_namelen = mhp32->msg_namelen;
297 mhp32->msg_iovlen = mhp32->msg_iovlen;
298 mhp32->msg_control = mhp32->msg_control;
299 mhp32->msg_controllen = mhp->msg_controllen;
300 mhp32->msg_flags = mhp->msg_flags;
301 }
302
303 static __inline void
304 netbsd32_from_statfs(sbp, sb32p)
305 struct statfs *sbp;
306 struct netbsd32_statfs *sb32p;
307 {
308 sb32p->f_type = sbp->f_type;
309 sb32p->f_flags = sbp->f_flags;
310 sb32p->f_bsize = (netbsd32_long)sbp->f_bsize;
311 sb32p->f_iosize = (netbsd32_long)sbp->f_iosize;
312 sb32p->f_blocks = (netbsd32_long)sbp->f_blocks;
313 sb32p->f_bfree = (netbsd32_long)sbp->f_bfree;
314 sb32p->f_bavail = (netbsd32_long)sbp->f_bavail;
315 sb32p->f_files = (netbsd32_long)sbp->f_files;
316 sb32p->f_ffree = (netbsd32_long)sbp->f_ffree;
317 sb32p->f_fsid = sbp->f_fsid;
318 sb32p->f_owner = sbp->f_owner;
319 sb32p->f_spare[0] = 0;
320 sb32p->f_spare[1] = 0;
321 sb32p->f_spare[2] = 0;
322 sb32p->f_spare[3] = 0;
323 #if 1
324 /* May as well do the whole batch in one go */
325 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN+MNAMELEN+MNAMELEN);
326 #else
327 /* If we want to be careful */
328 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN);
329 memcpy(sb32p->f_mntonname, sbp->f_mntonname, MNAMELEN);
330 memcpy(sb32p->f_mntfromname, sbp->f_mntfromname, MNAMELEN);
331 #endif
332 }
333
334 static __inline void
335 netbsd32_from_timex(txp, tx32p)
336 struct timex *txp;
337 struct netbsd32_timex *tx32p;
338 {
339
340 tx32p->modes = txp->modes;
341 tx32p->offset = (netbsd32_long)txp->offset;
342 tx32p->freq = (netbsd32_long)txp->freq;
343 tx32p->maxerror = (netbsd32_long)txp->maxerror;
344 tx32p->esterror = (netbsd32_long)txp->esterror;
345 tx32p->status = txp->status;
346 tx32p->constant = (netbsd32_long)txp->constant;
347 tx32p->precision = (netbsd32_long)txp->precision;
348 tx32p->tolerance = (netbsd32_long)txp->tolerance;
349 tx32p->ppsfreq = (netbsd32_long)txp->ppsfreq;
350 tx32p->jitter = (netbsd32_long)txp->jitter;
351 tx32p->shift = txp->shift;
352 tx32p->stabil = (netbsd32_long)txp->stabil;
353 tx32p->jitcnt = (netbsd32_long)txp->jitcnt;
354 tx32p->calcnt = (netbsd32_long)txp->calcnt;
355 tx32p->errcnt = (netbsd32_long)txp->errcnt;
356 tx32p->stbcnt = (netbsd32_long)txp->stbcnt;
357 }
358
359 static __inline void
360 netbsd32_to_timex(tx32p, txp)
361 struct netbsd32_timex *tx32p;
362 struct timex *txp;
363 {
364
365 txp->modes = tx32p->modes;
366 txp->offset = (long)tx32p->offset;
367 txp->freq = (long)tx32p->freq;
368 txp->maxerror = (long)tx32p->maxerror;
369 txp->esterror = (long)tx32p->esterror;
370 txp->status = tx32p->status;
371 txp->constant = (long)tx32p->constant;
372 txp->precision = (long)tx32p->precision;
373 txp->tolerance = (long)tx32p->tolerance;
374 txp->ppsfreq = (long)tx32p->ppsfreq;
375 txp->jitter = (long)tx32p->jitter;
376 txp->shift = tx32p->shift;
377 txp->stabil = (long)tx32p->stabil;
378 txp->jitcnt = (long)tx32p->jitcnt;
379 txp->calcnt = (long)tx32p->calcnt;
380 txp->errcnt = (long)tx32p->errcnt;
381 txp->stbcnt = (long)tx32p->stbcnt;
382 }
383
384 static __inline void
385 netbsd32_from___stat13(sbp, sb32p)
386 struct stat *sbp;
387 struct netbsd32_stat *sb32p;
388 {
389 sb32p->st_dev = sbp->st_dev;
390 sb32p->st_ino = sbp->st_ino;
391 sb32p->st_mode = sbp->st_mode;
392 sb32p->st_nlink = sbp->st_nlink;
393 sb32p->st_uid = sbp->st_uid;
394 sb32p->st_gid = sbp->st_gid;
395 sb32p->st_rdev = sbp->st_rdev;
396 if (sbp->st_size < (quad_t)1 << 32)
397 sb32p->st_size = sbp->st_size;
398 else
399 sb32p->st_size = -2;
400 sb32p->st_atimespec.tv_sec = (netbsd32_time_t)sbp->st_atimespec.tv_sec;
401 sb32p->st_atimespec.tv_nsec = (netbsd32_long)sbp->st_atimespec.tv_nsec;
402 sb32p->st_mtimespec.tv_sec = (netbsd32_time_t)sbp->st_mtimespec.tv_sec;
403 sb32p->st_mtimespec.tv_nsec = (netbsd32_long)sbp->st_mtimespec.tv_nsec;
404 sb32p->st_ctimespec.tv_sec = (netbsd32_time_t)sbp->st_ctimespec.tv_sec;
405 sb32p->st_ctimespec.tv_nsec = (netbsd32_long)sbp->st_ctimespec.tv_nsec;
406 sb32p->st_blksize = sbp->st_blksize;
407 sb32p->st_blocks = sbp->st_blocks;
408 sb32p->st_flags = sbp->st_flags;
409 sb32p->st_gen = sbp->st_gen;
410 }
411
412 static __inline void
413 netbsd32_to_ipc_perm(ip32p, ipp)
414 struct netbsd32_ipc_perm *ip32p;
415 struct ipc_perm *ipp;
416 {
417
418 ipp->cuid = ip32p->cuid;
419 ipp->cgid = ip32p->cgid;
420 ipp->uid = ip32p->uid;
421 ipp->gid = ip32p->gid;
422 ipp->mode = ip32p->mode;
423 ipp->_seq = ip32p->_seq;
424 ipp->_key = (key_t)ip32p->_key;
425 }
426
427 static __inline void
428 netbsd32_from_ipc_perm(ipp, ip32p)
429 struct ipc_perm *ipp;
430 struct netbsd32_ipc_perm *ip32p;
431 {
432
433 ip32p->cuid = ipp->cuid;
434 ip32p->cgid = ipp->cgid;
435 ip32p->uid = ipp->uid;
436 ip32p->gid = ipp->gid;
437 ip32p->mode = ipp->mode;
438 ip32p->_seq = ipp->_seq;
439 ip32p->_key = (netbsd32_key_t)ipp->_key;
440 }
441
442 static __inline void
443 netbsd32_to_msg(m32p, mp)
444 struct netbsd32_msg *m32p;
445 struct msg *mp;
446 {
447
448 mp->msg_next = (struct msg *)(u_long)m32p->msg_next;
449 mp->msg_type = (long)m32p->msg_type;
450 mp->msg_ts = m32p->msg_ts;
451 mp->msg_spot = m32p->msg_spot;
452 }
453
454 static __inline void
455 netbsd32_from_msg(mp, m32p)
456 struct msg *mp;
457 struct netbsd32_msg *m32p;
458 {
459
460 m32p->msg_next = (netbsd32_msgp_t)(u_long)mp->msg_next;
461 m32p->msg_type = (netbsd32_long)mp->msg_type;
462 m32p->msg_ts = mp->msg_ts;
463 m32p->msg_spot = mp->msg_spot;
464 }
465
466 static __inline void
467 netbsd32_to_msqid_ds(ds32p, dsp)
468 struct netbsd32_msqid_ds *ds32p;
469 struct msqid_ds *dsp;
470 {
471
472 netbsd32_to_ipc_perm(&ds32p->msg_perm, &dsp->msg_perm);
473 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_first, dsp->_msg_first);
474 netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_last, dsp->_msg_last);
475 dsp->_msg_cbytes = (u_long)ds32p->_msg_cbytes;
476 dsp->msg_qnum = (u_long)ds32p->msg_qnum;
477 dsp->msg_qbytes = (u_long)ds32p->msg_qbytes;
478 dsp->msg_lspid = ds32p->msg_lspid;
479 dsp->msg_lrpid = ds32p->msg_lrpid;
480 dsp->msg_rtime = (time_t)ds32p->msg_rtime;
481 dsp->msg_stime = (time_t)ds32p->msg_stime;
482 dsp->msg_ctime = (time_t)ds32p->msg_ctime;
483 }
484
485 static __inline void
486 netbsd32_from_msqid_ds(dsp, ds32p)
487 struct msqid_ds *dsp;
488 struct netbsd32_msqid_ds *ds32p;
489 {
490
491 netbsd32_from_ipc_perm(&dsp->msg_perm, &ds32p->msg_perm);
492 netbsd32_from_msg(dsp->_msg_first, (struct netbsd32_msg *)(u_long)ds32p->_msg_first);
493 netbsd32_from_msg(dsp->_msg_last, (struct netbsd32_msg *)(u_long)ds32p->_msg_last);
494 ds32p->_msg_cbytes = (netbsd32_u_long)dsp->_msg_cbytes;
495 ds32p->msg_qnum = (netbsd32_u_long)dsp->msg_qnum;
496 ds32p->msg_qbytes = (netbsd32_u_long)dsp->msg_qbytes;
497 ds32p->msg_lspid = dsp->msg_lspid;
498 ds32p->msg_lrpid = dsp->msg_lrpid;
499 ds32p->msg_rtime = dsp->msg_rtime;
500 ds32p->msg_stime = dsp->msg_stime;
501 ds32p->msg_ctime = dsp->msg_ctime;
502 }
503
504 static __inline void
505 netbsd32_to_shmid_ds(ds32p, dsp)
506 struct netbsd32_shmid_ds *ds32p;
507 struct shmid_ds *dsp;
508 {
509
510 netbsd32_to_ipc_perm(&ds32p->shm_perm, &dsp->shm_perm);
511 dsp->shm_segsz = ds32p->shm_segsz;
512 dsp->shm_lpid = ds32p->shm_lpid;
513 dsp->shm_cpid = ds32p->shm_cpid;
514 dsp->shm_nattch = ds32p->shm_nattch;
515 dsp->shm_atime = (long)ds32p->shm_atime;
516 dsp->shm_dtime = (long)ds32p->shm_dtime;
517 dsp->shm_ctime = (long)ds32p->shm_ctime;
518 dsp->_shm_internal = (void *)(u_long)ds32p->_shm_internal;
519 }
520
521 static __inline void
522 netbsd32_from_shmid_ds(dsp, ds32p)
523 struct shmid_ds *dsp;
524 struct netbsd32_shmid_ds *ds32p;
525 {
526
527 netbsd32_from_ipc_perm(&dsp->shm_perm, &ds32p->shm_perm);
528 ds32p->shm_segsz = dsp->shm_segsz;
529 ds32p->shm_lpid = dsp->shm_lpid;
530 ds32p->shm_cpid = dsp->shm_cpid;
531 ds32p->shm_nattch = dsp->shm_nattch;
532 ds32p->shm_atime = (netbsd32_long)dsp->shm_atime;
533 ds32p->shm_dtime = (netbsd32_long)dsp->shm_dtime;
534 ds32p->shm_ctime = (netbsd32_long)dsp->shm_ctime;
535 ds32p->_shm_internal = (netbsd32_voidp)(u_long)dsp->_shm_internal;
536 }
537
538 static __inline void
539 netbsd32_to_semid_ds(s32dsp, dsp)
540 struct netbsd32_semid_ds *s32dsp;
541 struct semid_ds *dsp;
542 {
543
544 netbsd32_from_ipc_perm(&dsp->sem_perm, &s32dsp->sem_perm);
545 dsp->_sem_base = (struct __sem *)(u_long)s32dsp->_sem_base;
546 dsp->sem_nsems = s32dsp->sem_nsems;
547 dsp->sem_otime = s32dsp->sem_otime;
548 dsp->sem_ctime = s32dsp->sem_ctime;
549 }
550
551 static __inline void
552 netbsd32_from_semid_ds(dsp, s32dsp)
553 struct semid_ds *dsp;
554 struct netbsd32_semid_ds *s32dsp;
555 {
556
557 netbsd32_to_ipc_perm(&s32dsp->sem_perm, &dsp->sem_perm);
558 s32dsp->_sem_base = (netbsd32_semp_t)(u_long)dsp->_sem_base;
559 s32dsp->sem_nsems = dsp->sem_nsems;
560 s32dsp->sem_otime = dsp->sem_otime;
561 s32dsp->sem_ctime = dsp->sem_ctime;
562 }
563
564 /*
565 * below are all the standard NetBSD system calls, in the 32bit
566 * environment, with the necessary conversions to 64bit before
567 * calling the real syscall, unless we need to inline the whole
568 * syscall here, sigh.
569 */
570
571 int
572 netbsd32_exit(p, v, retval)
573 struct proc *p;
574 void *v;
575 register_t *retval;
576 {
577 struct netbsd32_exit_args /* {
578 syscallarg(int) rval;
579 } */ *uap = v;
580 struct sys_exit_args ua;
581
582 NETBSD32TO64_UAP(rval);
583 sys_exit(p, &ua, retval);
584 }
585
586 int
587 netbsd32_read(p, v, retval)
588 struct proc *p;
589 void *v;
590 register_t *retval;
591 {
592 struct netbsd32_read_args /* {
593 syscallarg(int) fd;
594 syscallarg(netbsd32_voidp) buf;
595 syscallarg(netbsd32_size_t) nbyte;
596 } */ *uap = v;
597 struct sys_read_args ua;
598
599 NETBSD32TO64_UAP(fd);
600 NETBSD32TOP_UAP(buf, void *);
601 NETBSD32TOX_UAP(nbyte, size_t);
602 return sys_read(p, &ua, retval);
603 }
604
605 int
606 netbsd32_write(p, v, retval)
607 struct proc *p;
608 void *v;
609 register_t *retval;
610 {
611 struct netbsd32_write_args /* {
612 syscallarg(int) fd;
613 syscallarg(const netbsd32_voidp) buf;
614 syscallarg(netbsd32_size_t) nbyte;
615 } */ *uap = v;
616 struct sys_write_args ua;
617
618 NETBSD32TO64_UAP(fd);
619 NETBSD32TOP_UAP(buf, void *);
620 NETBSD32TOX_UAP(nbyte, size_t);
621 return sys_write(p, &ua, retval);
622 }
623
624 int
625 netbsd32_close(p, v, retval)
626 struct proc *p;
627 void *v;
628 register_t *retval;
629 {
630 struct netbsd32_close_args /* {
631 syscallarg(int) fd;
632 } */ *uap = v;
633 struct sys_close_args ua;
634
635 NETBSD32TO64_UAP(fd);
636 return sys_close(p, &ua, retval);
637 }
638
639 int
640 netbsd32_open(p, v, retval)
641 struct proc *p;
642 void *v;
643 register_t *retval;
644 {
645 struct netbsd32_open_args /* {
646 syscallarg(const netbsd32_charp) path;
647 syscallarg(int) flags;
648 syscallarg(mode_t) mode;
649 } */ *uap = v;
650 struct sys_open_args ua;
651 caddr_t sg;
652
653 NETBSD32TOP_UAP(path, const char);
654 NETBSD32TO64_UAP(flags);
655 NETBSD32TO64_UAP(mode);
656 sg = stackgap_init(p->p_emul);
657 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
658
659 return (sys_open(p, &ua, retval));
660 }
661
662 int
663 netbsd32_wait4(q, v, retval)
664 struct proc *q;
665 void *v;
666 register_t *retval;
667 {
668 struct netbsd32_wait4_args /* {
669 syscallarg(int) pid;
670 syscallarg(netbsd32_intp) status;
671 syscallarg(int) options;
672 syscallarg(netbsd32_rusagep_t) rusage;
673 } */ *uap = v;
674 struct netbsd32_rusage ru32;
675 int nfound;
676 struct proc *p, *t;
677 int status, error;
678
679 if (SCARG(uap, pid) == 0)
680 SCARG(uap, pid) = -q->p_pgid;
681 if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG))
682 return (EINVAL);
683
684 loop:
685 nfound = 0;
686 for (p = q->p_children.lh_first; p != 0; p = p->p_sibling.le_next) {
687 if (SCARG(uap, pid) != WAIT_ANY &&
688 p->p_pid != SCARG(uap, pid) &&
689 p->p_pgid != -SCARG(uap, pid))
690 continue;
691 nfound++;
692 if (p->p_stat == SZOMB) {
693 retval[0] = p->p_pid;
694
695 if (SCARG(uap, status)) {
696 status = p->p_xstat; /* convert to int */
697 error = copyout((caddr_t)&status,
698 (caddr_t)(u_long)SCARG(uap, status),
699 sizeof(status));
700 if (error)
701 return (error);
702 }
703 if (SCARG(uap, rusage)) {
704 netbsd32_from_rusage(p->p_ru, &ru32);
705 if ((error = copyout((caddr_t)&ru32,
706 (caddr_t)(u_long)SCARG(uap, rusage),
707 sizeof(struct netbsd32_rusage))))
708 return (error);
709 }
710 /*
711 * If we got the child via ptrace(2) or procfs, and
712 * the parent is different (meaning the process was
713 * attached, rather than run as a child), then we need
714 * to give it back to the old parent, and send the
715 * parent a SIGCHLD. The rest of the cleanup will be
716 * done when the old parent waits on the child.
717 */
718 if ((p->p_flag & P_TRACED) &&
719 p->p_oppid != p->p_pptr->p_pid) {
720 t = pfind(p->p_oppid);
721 proc_reparent(p, t ? t : initproc);
722 p->p_oppid = 0;
723 p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
724 psignal(p->p_pptr, SIGCHLD);
725 wakeup((caddr_t)p->p_pptr);
726 return (0);
727 }
728 p->p_xstat = 0;
729 ruadd(&q->p_stats->p_cru, p->p_ru);
730 pool_put(&rusage_pool, p->p_ru);
731
732 /*
733 * Finally finished with old proc entry.
734 * Unlink it from its process group and free it.
735 */
736 leavepgrp(p);
737
738 LIST_REMOVE(p, p_list); /* off zombproc */
739
740 LIST_REMOVE(p, p_sibling);
741
742 /*
743 * Decrement the count of procs running with this uid.
744 */
745 (void)chgproccnt(p->p_cred->p_ruid, -1);
746
747 /*
748 * Free up credentials.
749 */
750 if (--p->p_cred->p_refcnt == 0) {
751 crfree(p->p_cred->pc_ucred);
752 pool_put(&pcred_pool, p->p_cred);
753 }
754
755 /*
756 * Release reference to text vnode
757 */
758 if (p->p_textvp)
759 vrele(p->p_textvp);
760
761 pool_put(&proc_pool, p);
762 nprocs--;
763 return (0);
764 }
765 if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
766 (p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
767 p->p_flag |= P_WAITED;
768 retval[0] = p->p_pid;
769
770 if (SCARG(uap, status)) {
771 status = W_STOPCODE(p->p_xstat);
772 error = copyout((caddr_t)&status,
773 (caddr_t)(u_long)SCARG(uap, status),
774 sizeof(status));
775 } else
776 error = 0;
777 return (error);
778 }
779 }
780 if (nfound == 0)
781 return (ECHILD);
782 if (SCARG(uap, options) & WNOHANG) {
783 retval[0] = 0;
784 return (0);
785 }
786 if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
787 return (error);
788 goto loop;
789 }
790
791 int
792 netbsd32_link(p, v, retval)
793 struct proc *p;
794 void *v;
795 register_t *retval;
796 {
797 struct netbsd32_link_args /* {
798 syscallarg(const netbsd32_charp) path;
799 syscallarg(const netbsd32_charp) link;
800 } */ *uap = v;
801 struct sys_link_args ua;
802
803 NETBSD32TOP_UAP(path, const char);
804 NETBSD32TOP_UAP(link, const char);
805 return (sys_link(p, &ua, retval));
806 }
807
808 int
809 netbsd32_unlink(p, v, retval)
810 struct proc *p;
811 void *v;
812 register_t *retval;
813 {
814 struct netbsd32_unlink_args /* {
815 syscallarg(const netbsd32_charp) path;
816 } */ *uap = v;
817 struct sys_unlink_args ua;
818
819 NETBSD32TOP_UAP(path, const char);
820
821 return (sys_unlink(p, &ua, retval));
822 }
823
824 int
825 netbsd32_chdir(p, v, retval)
826 struct proc *p;
827 void *v;
828 register_t *retval;
829 {
830 struct netbsd32_chdir_args /* {
831 syscallarg(const netbsd32_charp) path;
832 } */ *uap = v;
833 struct sys_chdir_args ua;
834
835 NETBSD32TOP_UAP(path, const char);
836
837 return (sys_chdir(p, &ua, retval));
838 }
839
840 int
841 netbsd32_fchdir(p, v, retval)
842 struct proc *p;
843 void *v;
844 register_t *retval;
845 {
846 struct netbsd32_fchdir_args /* {
847 syscallarg(int) fd;
848 } */ *uap = v;
849 struct sys_fchdir_args ua;
850
851 NETBSD32TO64_UAP(fd);
852
853 return (sys_fchdir(p, &ua, retval));
854 }
855
856 int
857 netbsd32_mknod(p, v, retval)
858 struct proc *p;
859 void *v;
860 register_t *retval;
861 {
862 struct netbsd32_mknod_args /* {
863 syscallarg(const netbsd32_charp) path;
864 syscallarg(mode_t) mode;
865 syscallarg(dev_t) dev;
866 } */ *uap = v;
867 struct sys_mknod_args ua;
868
869 NETBSD32TOP_UAP(path, const char);
870 NETBSD32TO64_UAP(dev);
871 NETBSD32TO64_UAP(mode);
872
873 return (sys_mknod(p, &ua, retval));
874 }
875
876 int
877 netbsd32_chmod(p, v, retval)
878 struct proc *p;
879 void *v;
880 register_t *retval;
881 {
882 struct netbsd32_chmod_args /* {
883 syscallarg(const netbsd32_charp) path;
884 syscallarg(mode_t) mode;
885 } */ *uap = v;
886 struct sys_chmod_args ua;
887
888 NETBSD32TOP_UAP(path, const char);
889 NETBSD32TO64_UAP(mode);
890
891 return (sys_chmod(p, &ua, retval));
892 }
893
894 int
895 netbsd32_chown(p, v, retval)
896 struct proc *p;
897 void *v;
898 register_t *retval;
899 {
900 struct netbsd32_chown_args /* {
901 syscallarg(const netbsd32_charp) path;
902 syscallarg(uid_t) uid;
903 syscallarg(gid_t) gid;
904 } */ *uap = v;
905 struct sys_chown_args ua;
906
907 NETBSD32TOP_UAP(path, const char);
908 NETBSD32TO64_UAP(uid);
909 NETBSD32TO64_UAP(gid);
910
911 return (sys_chown(p, &ua, retval));
912 }
913
914 int
915 netbsd32_break(p, v, retval)
916 struct proc *p;
917 void *v;
918 register_t *retval;
919 {
920 struct netbsd32_break_args /* {
921 syscallarg(netbsd32_charp) nsize;
922 } */ *uap = v;
923 struct sys_obreak_args ua;
924
925 SCARG(&ua, nsize) = (char *)(u_long)SCARG(uap, nsize);
926 NETBSD32TOP_UAP(nsize, char);
927 return (sys_obreak(p, &ua, retval));
928 }
929
930 int
931 netbsd32_getfsstat(p, v, retval)
932 struct proc *p;
933 void *v;
934 register_t *retval;
935 {
936 struct netbsd32_getfsstat_args /* {
937 syscallarg(netbsd32_statfsp_t) buf;
938 syscallarg(netbsd32_long) bufsize;
939 syscallarg(int) flags;
940 } */ *uap = v;
941 struct mount *mp, *nmp;
942 struct statfs *sp;
943 struct netbsd32_statfs sb32;
944 caddr_t sfsp;
945 long count, maxcount, error;
946
947 maxcount = SCARG(uap, bufsize) / sizeof(struct netbsd32_statfs);
948 sfsp = (caddr_t)(u_long)SCARG(uap, buf);
949 simple_lock(&mountlist_slock);
950 count = 0;
951 for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
952 if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
953 nmp = mp->mnt_list.cqe_next;
954 continue;
955 }
956 if (sfsp && count < maxcount) {
957 sp = &mp->mnt_stat;
958 /*
959 * If MNT_NOWAIT or MNT_LAZY is specified, do not
960 * refresh the fsstat cache. MNT_WAIT or MNT_LAXY
961 * overrides MNT_NOWAIT.
962 */
963 if (SCARG(uap, flags) != MNT_NOWAIT &&
964 SCARG(uap, flags) != MNT_LAZY &&
965 (SCARG(uap, flags) == MNT_WAIT ||
966 SCARG(uap, flags) == 0) &&
967 (error = VFS_STATFS(mp, sp, p)) != 0) {
968 simple_lock(&mountlist_slock);
969 nmp = mp->mnt_list.cqe_next;
970 vfs_unbusy(mp);
971 continue;
972 }
973 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
974 sp->f_oflags = sp->f_flags & 0xffff;
975 netbsd32_from_statfs(sp, &sb32);
976 error = copyout(&sb32, sfsp, sizeof(sb32));
977 if (error) {
978 vfs_unbusy(mp);
979 return (error);
980 }
981 sfsp += sizeof(sb32);
982 }
983 count++;
984 simple_lock(&mountlist_slock);
985 nmp = mp->mnt_list.cqe_next;
986 vfs_unbusy(mp);
987 }
988 simple_unlock(&mountlist_slock);
989 if (sfsp && count > maxcount)
990 *retval = maxcount;
991 else
992 *retval = count;
993 return (0);
994 }
995
996 int
997 netbsd32_mount(p, v, retval)
998 struct proc *p;
999 void *v;
1000 register_t *retval;
1001 {
1002 struct netbsd32_mount_args /* {
1003 syscallarg(const netbsd32_charp) type;
1004 syscallarg(const netbsd32_charp) path;
1005 syscallarg(int) flags;
1006 syscallarg(netbsd32_voidp) data;
1007 } */ *uap = v;
1008 struct sys_mount_args ua;
1009
1010 NETBSD32TOP_UAP(type, const char);
1011 NETBSD32TOP_UAP(path, const char);
1012 NETBSD32TO64_UAP(flags);
1013 NETBSD32TOP_UAP(data, void);
1014 return (sys_mount(p, &ua, retval));
1015 }
1016
1017 int
1018 netbsd32_unmount(p, v, retval)
1019 struct proc *p;
1020 void *v;
1021 register_t *retval;
1022 {
1023 struct netbsd32_unmount_args /* {
1024 syscallarg(const netbsd32_charp) path;
1025 syscallarg(int) flags;
1026 } */ *uap = v;
1027 struct sys_unmount_args ua;
1028
1029 NETBSD32TOP_UAP(path, const char);
1030 NETBSD32TO64_UAP(flags);
1031 return (sys_unmount(p, &ua, retval));
1032 }
1033
1034 int
1035 netbsd32_setuid(p, v, retval)
1036 struct proc *p;
1037 void *v;
1038 register_t *retval;
1039 {
1040 struct netbsd32_setuid_args /* {
1041 syscallarg(uid_t) uid;
1042 } */ *uap = v;
1043 struct sys_setuid_args ua;
1044
1045 NETBSD32TO64_UAP(uid);
1046 return (sys_setuid(p, &ua, retval));
1047 }
1048
1049 int
1050 netbsd32_ptrace(p, v, retval)
1051 struct proc *p;
1052 void *v;
1053 register_t *retval;
1054 {
1055 struct netbsd32_ptrace_args /* {
1056 syscallarg(int) req;
1057 syscallarg(pid_t) pid;
1058 syscallarg(netbsd32_caddr_t) addr;
1059 syscallarg(int) data;
1060 } */ *uap = v;
1061 struct sys_ptrace_args ua;
1062
1063 NETBSD32TO64_UAP(req);
1064 NETBSD32TO64_UAP(pid);
1065 NETBSD32TOX64_UAP(addr, caddr_t);
1066 NETBSD32TO64_UAP(data);
1067 return (sys_ptrace(p, &ua, retval));
1068 }
1069
1070 int
1071 netbsd32_recvmsg(p, v, retval)
1072 struct proc *p;
1073 void *v;
1074 register_t *retval;
1075 {
1076 struct netbsd32_recvmsg_args /* {
1077 syscallarg(int) s;
1078 syscallarg(netbsd32_msghdrp_t) msg;
1079 syscallarg(int) flags;
1080 } */ *uap = v;
1081 struct netbsd32_msghdr msg;
1082 struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
1083 int error;
1084
1085 error = copyin((caddr_t)(u_long)SCARG(uap, msg), (caddr_t)&msg,
1086 sizeof(msg));
1087 /* netbsd32_msghdr needs the iov pre-allocated */
1088 if (error)
1089 return (error);
1090 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1091 if ((u_int)msg.msg_iovlen > IOV_MAX)
1092 return (EMSGSIZE);
1093 MALLOC(iov, struct iovec *,
1094 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1095 M_WAITOK);
1096 } else if ((u_int)msg.msg_iovlen > 0)
1097 iov = aiov;
1098 else
1099 return (EMSGSIZE);
1100 #ifdef COMPAT_OLDSOCK
1101 msg.msg_flags = SCARG(uap, flags) &~ MSG_COMPAT;
1102 #else
1103 msg.msg_flags = SCARG(uap, flags);
1104 #endif
1105 uiov = (struct iovec *)(u_long)msg.msg_iov;
1106 error = netbsd32_to_iovecin((struct netbsd32_iovec *)uiov,
1107 iov, msg.msg_iovlen);
1108 if (error)
1109 goto done;
1110 if ((error = recvit32(p, SCARG(uap, s), &msg, iov, (caddr_t)0, retval)) == 0) {
1111 error = copyout((caddr_t)&msg, (caddr_t)(u_long)SCARG(uap, msg),
1112 sizeof(msg));
1113 }
1114 done:
1115 if (iov != aiov)
1116 FREE(iov, M_IOV);
1117 return (error);
1118 }
1119
1120 int
1121 recvit32(p, s, mp, iov, namelenp, retsize)
1122 struct proc *p;
1123 int s;
1124 struct netbsd32_msghdr *mp;
1125 struct iovec *iov;
1126 caddr_t namelenp;
1127 register_t *retsize;
1128 {
1129 struct file *fp;
1130 struct uio auio;
1131 int i;
1132 int len, error;
1133 struct mbuf *from = 0, *control = 0;
1134 struct socket *so;
1135 #ifdef KTRACE
1136 struct iovec *ktriov = NULL;
1137 #endif
1138
1139 /* getsock() will use the descriptor for us */
1140 if ((error = getsock(p->p_fd, s, &fp)) != 0)
1141 return (error);
1142 auio.uio_iov = (struct iovec *)(u_long)mp->msg_iov;
1143 auio.uio_iovcnt = mp->msg_iovlen;
1144 auio.uio_segflg = UIO_USERSPACE;
1145 auio.uio_rw = UIO_READ;
1146 auio.uio_procp = p;
1147 auio.uio_offset = 0; /* XXX */
1148 auio.uio_resid = 0;
1149 for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1150 #if 0
1151 /* cannot happen iov_len is unsigned */
1152 if (iov->iov_len < 0) {
1153 error = EINVAL;
1154 goto out1;
1155 }
1156 #endif
1157 /*
1158 * Reads return ssize_t because -1 is returned on error.
1159 * Therefore we must restrict the length to SSIZE_MAX to
1160 * avoid garbage return values.
1161 */
1162 auio.uio_resid += iov->iov_len;
1163 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
1164 error = EINVAL;
1165 goto out1;
1166 }
1167 }
1168 #ifdef KTRACE
1169 if (KTRPOINT(p, KTR_GENIO)) {
1170 int iovlen = auio.uio_iovcnt * sizeof(struct iovec);
1171
1172 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
1173 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
1174 }
1175 #endif
1176 len = auio.uio_resid;
1177 so = (struct socket *)fp->f_data;
1178 error = (*so->so_receive)(so, &from, &auio, NULL,
1179 mp->msg_control ? &control : NULL, &mp->msg_flags);
1180 if (error) {
1181 if (auio.uio_resid != len && (error == ERESTART ||
1182 error == EINTR || error == EWOULDBLOCK))
1183 error = 0;
1184 }
1185 #ifdef KTRACE
1186 if (ktriov != NULL) {
1187 if (error == 0)
1188 ktrgenio(p, s, UIO_READ, ktriov,
1189 len - auio.uio_resid, error);
1190 FREE(ktriov, M_TEMP);
1191 }
1192 #endif
1193 if (error)
1194 goto out;
1195 *retsize = len - auio.uio_resid;
1196 if (mp->msg_name) {
1197 len = mp->msg_namelen;
1198 if (len <= 0 || from == 0)
1199 len = 0;
1200 else {
1201 #ifdef COMPAT_OLDSOCK
1202 if (mp->msg_flags & MSG_COMPAT)
1203 mtod(from, struct osockaddr *)->sa_family =
1204 mtod(from, struct sockaddr *)->sa_family;
1205 #endif
1206 if (len > from->m_len)
1207 len = from->m_len;
1208 /* else if len < from->m_len ??? */
1209 error = copyout(mtod(from, caddr_t),
1210 (caddr_t)(u_long)mp->msg_name, (unsigned)len);
1211 if (error)
1212 goto out;
1213 }
1214 mp->msg_namelen = len;
1215 if (namelenp &&
1216 (error = copyout((caddr_t)&len, namelenp, sizeof(int)))) {
1217 #ifdef COMPAT_OLDSOCK
1218 if (mp->msg_flags & MSG_COMPAT)
1219 error = 0; /* old recvfrom didn't check */
1220 else
1221 #endif
1222 goto out;
1223 }
1224 }
1225 if (mp->msg_control) {
1226 #ifdef COMPAT_OLDSOCK
1227 /*
1228 * We assume that old recvmsg calls won't receive access
1229 * rights and other control info, esp. as control info
1230 * is always optional and those options didn't exist in 4.3.
1231 * If we receive rights, trim the cmsghdr; anything else
1232 * is tossed.
1233 */
1234 if (control && mp->msg_flags & MSG_COMPAT) {
1235 if (mtod(control, struct cmsghdr *)->cmsg_level !=
1236 SOL_SOCKET ||
1237 mtod(control, struct cmsghdr *)->cmsg_type !=
1238 SCM_RIGHTS) {
1239 mp->msg_controllen = 0;
1240 goto out;
1241 }
1242 control->m_len -= sizeof(struct cmsghdr);
1243 control->m_data += sizeof(struct cmsghdr);
1244 }
1245 #endif
1246 len = mp->msg_controllen;
1247 if (len <= 0 || control == 0)
1248 len = 0;
1249 else {
1250 struct mbuf *m = control;
1251 caddr_t p = (caddr_t)(u_long)mp->msg_control;
1252
1253 do {
1254 i = m->m_len;
1255 if (len < i) {
1256 mp->msg_flags |= MSG_CTRUNC;
1257 i = len;
1258 }
1259 error = copyout(mtod(m, caddr_t), p,
1260 (unsigned)i);
1261 if (m->m_next)
1262 i = ALIGN(i);
1263 p += i;
1264 len -= i;
1265 if (error != 0 || len <= 0)
1266 break;
1267 } while ((m = m->m_next) != NULL);
1268 len = p - (caddr_t)(u_long)mp->msg_control;
1269 }
1270 mp->msg_controllen = len;
1271 }
1272 out:
1273 if (from)
1274 m_freem(from);
1275 if (control)
1276 m_freem(control);
1277 out1:
1278 FILE_UNUSE(fp, p);
1279 return (error);
1280 }
1281
1282
1283 int
1284 netbsd32_sendmsg(p, v, retval)
1285 struct proc *p;
1286 void *v;
1287 register_t *retval;
1288 {
1289 struct netbsd32_sendmsg_args /* {
1290 syscallarg(int) s;
1291 syscallarg(const netbsd32_msghdrp_t) msg;
1292 syscallarg(int) flags;
1293 } */ *uap = v;
1294 struct msghdr msg;
1295 struct netbsd32_msghdr msg32;
1296 struct iovec aiov[UIO_SMALLIOV], *iov;
1297 int error;
1298
1299 error = copyin((caddr_t)(u_long)SCARG(uap, msg),
1300 (caddr_t)&msg32, sizeof(msg32));
1301 if (error)
1302 return (error);
1303 netbsd32_to_msghdr(&msg32, &msg);
1304 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1305 if ((u_int)msg.msg_iovlen > IOV_MAX)
1306 return (EMSGSIZE);
1307 MALLOC(iov, struct iovec *,
1308 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1309 M_WAITOK);
1310 } else if ((u_int)msg.msg_iovlen > 0)
1311 iov = aiov;
1312 else
1313 return (EMSGSIZE);
1314 error = netbsd32_to_iovecin((struct netbsd32_iovec *)msg.msg_iov,
1315 iov, msg.msg_iovlen);
1316 if (error)
1317 goto done;
1318 msg.msg_iov = iov;
1319 #ifdef COMPAT_OLDSOCK
1320 msg.msg_flags = 0;
1321 #endif
1322 /* Luckily we can use this directly */
1323 error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval);
1324 done:
1325 if (iov != aiov)
1326 FREE(iov, M_IOV);
1327 return (error);
1328 }
1329
1330 int
1331 netbsd32_recvfrom(p, v, retval)
1332 struct proc *p;
1333 void *v;
1334 register_t *retval;
1335 {
1336 struct netbsd32_recvfrom_args /* {
1337 syscallarg(int) s;
1338 syscallarg(netbsd32_voidp) buf;
1339 syscallarg(netbsd32_size_t) len;
1340 syscallarg(int) flags;
1341 syscallarg(netbsd32_sockaddrp_t) from;
1342 syscallarg(netbsd32_intp) fromlenaddr;
1343 } */ *uap = v;
1344 struct netbsd32_msghdr msg;
1345 struct iovec aiov;
1346 int error;
1347
1348 if (SCARG(uap, fromlenaddr)) {
1349 error = copyin((caddr_t)(u_long)SCARG(uap, fromlenaddr),
1350 (caddr_t)&msg.msg_namelen,
1351 sizeof(msg.msg_namelen));
1352 if (error)
1353 return (error);
1354 } else
1355 msg.msg_namelen = 0;
1356 msg.msg_name = SCARG(uap, from);
1357 msg.msg_iov = NULL; /* We can't store a real pointer here */
1358 msg.msg_iovlen = 1;
1359 aiov.iov_base = (caddr_t)(u_long)SCARG(uap, buf);
1360 aiov.iov_len = (u_long)SCARG(uap, len);
1361 msg.msg_control = 0;
1362 msg.msg_flags = SCARG(uap, flags);
1363 return (recvit32(p, SCARG(uap, s), &msg, &aiov,
1364 (caddr_t)(u_long)SCARG(uap, fromlenaddr), retval));
1365 }
1366
1367 int
1368 netbsd32_sendto(p, v, retval)
1369 struct proc *p;
1370 void *v;
1371 register_t *retval;
1372 {
1373 struct netbsd32_sendto_args /* {
1374 syscallarg(int) s;
1375 syscallarg(const netbsd32_voidp) buf;
1376 syscallarg(netbsd32_size_t) len;
1377 syscallarg(int) flags;
1378 syscallarg(const netbsd32_sockaddrp_t) to;
1379 syscallarg(int) tolen;
1380 } */ *uap = v;
1381 struct msghdr msg;
1382 struct iovec aiov;
1383
1384 msg.msg_name = (caddr_t)(u_long)SCARG(uap, to); /* XXX kills const */
1385 msg.msg_namelen = SCARG(uap, tolen);
1386 msg.msg_iov = &aiov;
1387 msg.msg_iovlen = 1;
1388 msg.msg_control = 0;
1389 #ifdef COMPAT_OLDSOCK
1390 msg.msg_flags = 0;
1391 #endif
1392 aiov.iov_base = (char *)(u_long)SCARG(uap, buf); /* XXX kills const */
1393 aiov.iov_len = SCARG(uap, len);
1394 return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval));
1395 }
1396
1397 int
1398 netbsd32_accept(p, v, retval)
1399 struct proc *p;
1400 void *v;
1401 register_t *retval;
1402 {
1403 struct netbsd32_accept_args /* {
1404 syscallarg(int) s;
1405 syscallarg(netbsd32_sockaddrp_t) name;
1406 syscallarg(netbsd32_intp) anamelen;
1407 } */ *uap = v;
1408 struct sys_accept_args ua;
1409
1410 NETBSD32TO64_UAP(s);
1411 NETBSD32TOP_UAP(name, struct sockaddr);
1412 NETBSD32TOP_UAP(anamelen, int);
1413 return (sys_accept(p, &ua, retval));
1414 }
1415
1416 int
1417 netbsd32_getpeername(p, v, retval)
1418 struct proc *p;
1419 void *v;
1420 register_t *retval;
1421 {
1422 struct netbsd32_getpeername_args /* {
1423 syscallarg(int) fdes;
1424 syscallarg(netbsd32_sockaddrp_t) asa;
1425 syscallarg(netbsd32_intp) alen;
1426 } */ *uap = v;
1427 struct sys_getpeername_args ua;
1428
1429 NETBSD32TO64_UAP(fdes);
1430 NETBSD32TOP_UAP(asa, struct sockaddr);
1431 NETBSD32TOP_UAP(alen, int);
1432 /* NB: do the protocol specific sockaddrs need to be converted? */
1433 return (sys_getpeername(p, &ua, retval));
1434 }
1435
1436 int
1437 netbsd32_getsockname(p, v, retval)
1438 struct proc *p;
1439 void *v;
1440 register_t *retval;
1441 {
1442 struct netbsd32_getsockname_args /* {
1443 syscallarg(int) fdes;
1444 syscallarg(netbsd32_sockaddrp_t) asa;
1445 syscallarg(netbsd32_intp) alen;
1446 } */ *uap = v;
1447 struct sys_getsockname_args ua;
1448
1449 NETBSD32TO64_UAP(fdes);
1450 NETBSD32TOP_UAP(asa, struct sockaddr);
1451 NETBSD32TOP_UAP(alen, int);
1452 return (sys_getsockname(p, &ua, retval));
1453 }
1454
1455 int
1456 netbsd32_access(p, v, retval)
1457 struct proc *p;
1458 void *v;
1459 register_t *retval;
1460 {
1461 struct netbsd32_access_args /* {
1462 syscallarg(const netbsd32_charp) path;
1463 syscallarg(int) flags;
1464 } */ *uap = v;
1465 struct sys_access_args ua;
1466 caddr_t sg;
1467
1468 NETBSD32TOP_UAP(path, const char);
1469 NETBSD32TO64_UAP(flags);
1470 sg = stackgap_init(p->p_emul);
1471 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1472
1473 return (sys_access(p, &ua, retval));
1474 }
1475
1476 int
1477 netbsd32_chflags(p, v, retval)
1478 struct proc *p;
1479 void *v;
1480 register_t *retval;
1481 {
1482 struct netbsd32_chflags_args /* {
1483 syscallarg(const netbsd32_charp) path;
1484 syscallarg(netbsd32_u_long) flags;
1485 } */ *uap = v;
1486 struct sys_chflags_args ua;
1487
1488 NETBSD32TOP_UAP(path, const char);
1489 NETBSD32TO64_UAP(flags);
1490
1491 return (sys_chflags(p, &ua, retval));
1492 }
1493
1494 int
1495 netbsd32_fchflags(p, v, retval)
1496 struct proc *p;
1497 void *v;
1498 register_t *retval;
1499 {
1500 struct netbsd32_fchflags_args /* {
1501 syscallarg(int) fd;
1502 syscallarg(netbsd32_u_long) flags;
1503 } */ *uap = v;
1504 struct sys_fchflags_args ua;
1505
1506 NETBSD32TO64_UAP(fd);
1507 NETBSD32TO64_UAP(flags);
1508
1509 return (sys_fchflags(p, &ua, retval));
1510 }
1511
1512 int
1513 netbsd32_kill(p, v, retval)
1514 struct proc *p;
1515 void *v;
1516 register_t *retval;
1517 {
1518 struct netbsd32_kill_args /* {
1519 syscallarg(int) pid;
1520 syscallarg(int) signum;
1521 } */ *uap = v;
1522 struct sys_kill_args ua;
1523
1524 NETBSD32TO64_UAP(pid);
1525 NETBSD32TO64_UAP(signum);
1526
1527 return (sys_kill(p, &ua, retval));
1528 }
1529
1530 int
1531 netbsd32_dup(p, v, retval)
1532 struct proc *p;
1533 void *v;
1534 register_t *retval;
1535 {
1536 struct netbsd32_dup_args /* {
1537 syscallarg(int) fd;
1538 } */ *uap = v;
1539 struct sys_dup_args ua;
1540
1541 NETBSD32TO64_UAP(fd);
1542
1543 return (sys_dup(p, &ua, retval));
1544 }
1545
1546 int
1547 netbsd32_profil(p, v, retval)
1548 struct proc *p;
1549 void *v;
1550 register_t *retval;
1551 {
1552 struct netbsd32_profil_args /* {
1553 syscallarg(netbsd32_caddr_t) samples;
1554 syscallarg(netbsd32_size_t) size;
1555 syscallarg(netbsd32_u_long) offset;
1556 syscallarg(u_int) scale;
1557 } */ *uap = v;
1558 struct sys_profil_args ua;
1559
1560 NETBSD32TOX64_UAP(samples, caddr_t);
1561 NETBSD32TOX_UAP(size, size_t);
1562 NETBSD32TOX_UAP(offset, u_long);
1563 NETBSD32TO64_UAP(scale);
1564 return (sys_profil(p, &ua, retval));
1565 }
1566
1567 int
1568 netbsd32_ktrace(p, v, retval)
1569 struct proc *p;
1570 void *v;
1571 register_t *retval;
1572 {
1573 struct netbsd32_ktrace_args /* {
1574 syscallarg(const netbsd32_charp) fname;
1575 syscallarg(int) ops;
1576 syscallarg(int) facs;
1577 syscallarg(int) pid;
1578 } */ *uap = v;
1579 struct sys_ktrace_args ua;
1580
1581 NETBSD32TOP_UAP(fname, const char);
1582 NETBSD32TO64_UAP(ops);
1583 NETBSD32TO64_UAP(facs);
1584 NETBSD32TO64_UAP(pid);
1585 return (sys_ktrace(p, &ua, retval));
1586 }
1587
1588 int
1589 netbsd32_sigaction(p, v, retval)
1590 struct proc *p;
1591 void *v;
1592 register_t *retval;
1593 {
1594 struct netbsd32_sigaction_args /* {
1595 syscallarg(int) signum;
1596 syscallarg(const netbsd32_sigactionp_t) nsa;
1597 syscallarg(netbsd32_sigactionp_t) osa;
1598 } */ *uap = v;
1599 struct sigaction nsa, osa;
1600 struct netbsd32_sigaction *sa32p, sa32;
1601 int error;
1602
1603 if (SCARG(uap, nsa)) {
1604 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, nsa);
1605 if (copyin(sa32p, &sa32, sizeof(sa32)))
1606 return EFAULT;
1607 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
1608 nsa.sa_mask = sa32.sa_mask;
1609 nsa.sa_flags = sa32.sa_flags;
1610 }
1611 error = sigaction1(p, SCARG(uap, signum),
1612 SCARG(uap, nsa) ? &nsa : 0,
1613 SCARG(uap, osa) ? &osa : 0);
1614
1615 if (error)
1616 return (error);
1617
1618 if (SCARG(uap, osa)) {
1619 sa32.sa_handler = (netbsd32_sigactionp_t)(u_long)osa.sa_handler;
1620 sa32.sa_mask = osa.sa_mask;
1621 sa32.sa_flags = osa.sa_flags;
1622 sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, osa);
1623 if (copyout(&sa32, sa32p, sizeof(sa32)))
1624 return EFAULT;
1625 }
1626
1627 return (0);
1628 }
1629
1630 int
1631 netbsd32___getlogin(p, v, retval)
1632 struct proc *p;
1633 void *v;
1634 register_t *retval;
1635 {
1636 struct netbsd32___getlogin_args /* {
1637 syscallarg(netbsd32_charp) namebuf;
1638 syscallarg(u_int) namelen;
1639 } */ *uap = v;
1640 struct sys___getlogin_args ua;
1641
1642 NETBSD32TOP_UAP(namebuf, char);
1643 NETBSD32TO64_UAP(namelen);
1644 return (sys___getlogin(p, &ua, retval));
1645 }
1646
1647 int
1648 netbsd32_setlogin(p, v, retval)
1649 struct proc *p;
1650 void *v;
1651 register_t *retval;
1652 {
1653 struct netbsd32_setlogin_args /* {
1654 syscallarg(const netbsd32_charp) namebuf;
1655 } */ *uap = v;
1656 struct sys_setlogin_args ua;
1657
1658 NETBSD32TOP_UAP(namebuf, char);
1659 return (sys_setlogin(p, &ua, retval));
1660 }
1661
1662 int
1663 netbsd32_acct(p, v, retval)
1664 struct proc *p;
1665 void *v;
1666 register_t *retval;
1667 {
1668 struct netbsd32_acct_args /* {
1669 syscallarg(const netbsd32_charp) path;
1670 } */ *uap = v;
1671 struct sys_acct_args ua;
1672
1673 NETBSD32TOP_UAP(path, const char);
1674 return (sys_acct(p, &ua, retval));
1675 }
1676
1677 int
1678 netbsd32_revoke(p, v, retval)
1679 struct proc *p;
1680 void *v;
1681 register_t *retval;
1682 {
1683 struct netbsd32_revoke_args /* {
1684 syscallarg(const netbsd32_charp) path;
1685 } */ *uap = v;
1686 struct sys_revoke_args ua;
1687 caddr_t sg;
1688
1689 NETBSD32TOP_UAP(path, const char);
1690 sg = stackgap_init(p->p_emul);
1691 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1692
1693 return (sys_revoke(p, &ua, retval));
1694 }
1695
1696 int
1697 netbsd32_symlink(p, v, retval)
1698 struct proc *p;
1699 void *v;
1700 register_t *retval;
1701 {
1702 struct netbsd32_symlink_args /* {
1703 syscallarg(const netbsd32_charp) path;
1704 syscallarg(const netbsd32_charp) link;
1705 } */ *uap = v;
1706 struct sys_symlink_args ua;
1707
1708 NETBSD32TOP_UAP(path, const char);
1709 NETBSD32TOP_UAP(link, const char);
1710
1711 return (sys_symlink(p, &ua, retval));
1712 }
1713
1714 int
1715 netbsd32_readlink(p, v, retval)
1716 struct proc *p;
1717 void *v;
1718 register_t *retval;
1719 {
1720 struct netbsd32_readlink_args /* {
1721 syscallarg(const netbsd32_charp) path;
1722 syscallarg(netbsd32_charp) buf;
1723 syscallarg(netbsd32_size_t) count;
1724 } */ *uap = v;
1725 struct sys_readlink_args ua;
1726 caddr_t sg;
1727
1728 NETBSD32TOP_UAP(path, const char);
1729 NETBSD32TOP_UAP(buf, char);
1730 NETBSD32TOX_UAP(count, size_t);
1731 sg = stackgap_init(p->p_emul);
1732 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1733
1734 return (sys_readlink(p, &ua, retval));
1735 }
1736
1737 /*
1738 * Need to completly reimplement this syscall due to argument copying.
1739 */
1740 int
1741 netbsd32_execve(p, v, retval)
1742 struct proc *p;
1743 void *v;
1744 register_t *retval;
1745 {
1746 struct netbsd32_execve_args /* {
1747 syscallarg(const netbsd32_charp) path;
1748 syscallarg(netbsd32_charpp) argp;
1749 syscallarg(netbsd32_charpp) envp;
1750 } */ *uap = v;
1751 struct sys_execve_args ua;
1752 caddr_t sg;
1753 /* Function args */
1754 int error, i;
1755 struct exec_package pack;
1756 struct nameidata nid;
1757 struct vattr attr;
1758 struct ucred *cred = p->p_ucred;
1759 char *argp;
1760 netbsd32_charp const *cpp;
1761 char *dp;
1762 netbsd32_charp sp;
1763 long argc, envc;
1764 size_t len;
1765 char *stack;
1766 struct ps_strings arginfo;
1767 struct vmspace *vm;
1768 char **tmpfap;
1769 int szsigcode;
1770
1771 NETBSD32TOP_UAP(path, const char);
1772 NETBSD32TOP_UAP(argp, char *);
1773 NETBSD32TOP_UAP(envp, char *);
1774 sg = stackgap_init(p->p_emul);
1775 NETBSD32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1776
1777 /*
1778 * figure out the maximum size of an exec header, if necessary.
1779 * XXX should be able to keep LKM code from modifying exec switch
1780 * when we're still using it, but...
1781 */
1782 if (exec_maxhdrsz == 0) {
1783 for (i = 0; i < nexecs; i++)
1784 if (execsw[i].es_check != NULL
1785 && execsw[i].es_hdrsz > exec_maxhdrsz)
1786 exec_maxhdrsz = execsw[i].es_hdrsz;
1787 }
1788
1789 /* init the namei data to point the file user's program name */
1790 /* XXX cgd 960926: why do this here? most will be clobbered. */
1791 NDINIT(&nid, LOOKUP, NOFOLLOW, UIO_USERSPACE, SCARG(&ua, path), p);
1792
1793 /*
1794 * initialize the fields of the exec package.
1795 */
1796 pack.ep_name = SCARG(&ua, path);
1797 pack.ep_hdr = malloc(exec_maxhdrsz, M_EXEC, M_WAITOK);
1798 pack.ep_hdrlen = exec_maxhdrsz;
1799 pack.ep_hdrvalid = 0;
1800 pack.ep_ndp = &nid;
1801 pack.ep_emul_arg = NULL;
1802 pack.ep_vmcmds.evs_cnt = 0;
1803 pack.ep_vmcmds.evs_used = 0;
1804 pack.ep_vap = &attr;
1805 pack.ep_flags = 0;
1806
1807 /* see if we can run it. */
1808 if ((error = check_exec(p, &pack)) != 0)
1809 goto freehdr;
1810
1811 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
1812
1813 /* allocate an argument buffer */
1814 argp = (char *) uvm_km_valloc_wait(exec_map, NCARGS);
1815 #ifdef DIAGNOSTIC
1816 if (argp == (vaddr_t) 0)
1817 panic("execve: argp == NULL");
1818 #endif
1819 dp = argp;
1820 argc = 0;
1821
1822 /* copy the fake args list, if there's one, freeing it as we go */
1823 if (pack.ep_flags & EXEC_HASARGL) {
1824 tmpfap = pack.ep_fa;
1825 while (*tmpfap != NULL) {
1826 char *cp;
1827
1828 cp = *tmpfap;
1829 while (*cp)
1830 *dp++ = *cp++;
1831 dp++;
1832
1833 FREE(*tmpfap, M_EXEC);
1834 tmpfap++; argc++;
1835 }
1836 FREE(pack.ep_fa, M_EXEC);
1837 pack.ep_flags &= ~EXEC_HASARGL;
1838 }
1839
1840 /* Now get argv & environment */
1841 if (!(cpp = (netbsd32_charp *)SCARG(&ua, argp))) {
1842 error = EINVAL;
1843 goto bad;
1844 }
1845
1846 if (pack.ep_flags & EXEC_SKIPARG)
1847 cpp++;
1848
1849 while (1) {
1850 len = argp + ARG_MAX - dp;
1851 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1852 goto bad;
1853 if (!sp)
1854 break;
1855 if ((error = copyinstr((char *)(u_long)sp, dp,
1856 len, &len)) != 0) {
1857 if (error == ENAMETOOLONG)
1858 error = E2BIG;
1859 goto bad;
1860 }
1861 dp += len;
1862 cpp++;
1863 argc++;
1864 }
1865
1866 envc = 0;
1867 /* environment need not be there */
1868 if ((cpp = (netbsd32_charp *)SCARG(&ua, envp)) != NULL ) {
1869 while (1) {
1870 len = argp + ARG_MAX - dp;
1871 if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1872 goto bad;
1873 if (!sp)
1874 break;
1875 if ((error = copyinstr((char *)(u_long)sp,
1876 dp, len, &len)) != 0) {
1877 if (error == ENAMETOOLONG)
1878 error = E2BIG;
1879 goto bad;
1880 }
1881 dp += len;
1882 cpp++;
1883 envc++;
1884 }
1885 }
1886
1887 dp = (char *) ALIGN(dp);
1888
1889 szsigcode = pack.ep_es->es_emul->e_esigcode -
1890 pack.ep_es->es_emul->e_sigcode;
1891
1892 /* Now check if args & environ fit into new stack */
1893 if (pack.ep_flags & EXEC_32)
1894 len = ((argc + envc + 2 + pack.ep_es->es_arglen) *
1895 sizeof(int) + sizeof(int) + dp + STACKGAPLEN +
1896 szsigcode + sizeof(struct ps_strings)) - argp;
1897 else
1898 len = ((argc + envc + 2 + pack.ep_es->es_arglen) *
1899 sizeof(char *) + sizeof(int) + dp + STACKGAPLEN +
1900 szsigcode + sizeof(struct ps_strings)) - argp;
1901
1902 len = ALIGN(len); /* make the stack "safely" aligned */
1903
1904 if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
1905 error = ENOMEM;
1906 goto bad;
1907 }
1908
1909 /* adjust "active stack depth" for process VSZ */
1910 pack.ep_ssize = len; /* maybe should go elsewhere, but... */
1911
1912 /*
1913 * Do whatever is necessary to prepare the address space
1914 * for remapping. Note that this might replace the current
1915 * vmspace with another!
1916 */
1917 uvmspace_exec(p);
1918
1919 /* Now map address space */
1920 vm = p->p_vmspace;
1921 vm->vm_taddr = (char *) pack.ep_taddr;
1922 vm->vm_tsize = btoc(pack.ep_tsize);
1923 vm->vm_daddr = (char *) pack.ep_daddr;
1924 vm->vm_dsize = btoc(pack.ep_dsize);
1925 vm->vm_ssize = btoc(pack.ep_ssize);
1926 vm->vm_maxsaddr = (char *) pack.ep_maxsaddr;
1927 vm->vm_minsaddr = (char *) pack.ep_minsaddr;
1928
1929 /* create the new process's VM space by running the vmcmds */
1930 #ifdef DIAGNOSTIC
1931 if (pack.ep_vmcmds.evs_used == 0)
1932 panic("execve: no vmcmds");
1933 #endif
1934 for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
1935 struct exec_vmcmd *vcp;
1936
1937 vcp = &pack.ep_vmcmds.evs_cmds[i];
1938 error = (*vcp->ev_proc)(p, vcp);
1939 }
1940
1941 /* free the vmspace-creation commands, and release their references */
1942 kill_vmcmds(&pack.ep_vmcmds);
1943
1944 /* if an error happened, deallocate and punt */
1945 if (error)
1946 goto exec_abort;
1947
1948 /* remember information about the process */
1949 arginfo.ps_nargvstr = argc;
1950 arginfo.ps_nenvstr = envc;
1951
1952 stack = (char *) (vm->vm_minsaddr - len);
1953 /* Now copy argc, args & environ to new stack */
1954 if (!(*pack.ep_es->es_copyargs)(&pack, &arginfo, stack, argp))
1955 goto exec_abort;
1956
1957 /* fill process ps_strings info */
1958 p->p_psstr = (struct ps_strings *)(stack - sizeof(struct ps_strings));
1959 p->p_psargv = offsetof(struct ps_strings, ps_argvstr);
1960 p->p_psnargv = offsetof(struct ps_strings, ps_nargvstr);
1961 p->p_psenv = offsetof(struct ps_strings, ps_envstr);
1962 p->p_psnenv = offsetof(struct ps_strings, ps_nenvstr);
1963
1964 /* copy out the process's ps_strings structure */
1965 if (copyout(&arginfo, (char *)p->p_psstr, sizeof(arginfo)))
1966 goto exec_abort;
1967
1968 /* copy out the process's signal trapoline code */
1969 if (szsigcode) {
1970 if (copyout((char *)pack.ep_es->es_emul->e_sigcode,
1971 p->p_sigacts->ps_sigcode = (char *)p->p_psstr - szsigcode,
1972 szsigcode))
1973 goto exec_abort;
1974 #ifdef PMAP_NEED_PROCWR
1975 /* This is code. Let the pmap do what is needed. */
1976 pmap_procwr(p, (vaddr_t)p->p_sigacts->ps_sigcode, szsigcode);
1977 #endif
1978 }
1979
1980 stopprofclock(p); /* stop profiling */
1981 fdcloseexec(p); /* handle close on exec */
1982 execsigs(p); /* reset catched signals */
1983 p->p_ctxlink = NULL; /* reset ucontext link */
1984
1985 /* set command name & other accounting info */
1986 len = min(nid.ni_cnd.cn_namelen, MAXCOMLEN);
1987 memcpy(p->p_comm, nid.ni_cnd.cn_nameptr, len);
1988 p->p_comm[len] = 0;
1989 p->p_acflag &= ~AFORK;
1990
1991 /* record proc's vnode, for use by procfs and others */
1992 if (p->p_textvp)
1993 vrele(p->p_textvp);
1994 VREF(pack.ep_vp);
1995 p->p_textvp = pack.ep_vp;
1996
1997 p->p_flag |= P_EXEC;
1998 if (p->p_flag & P_PPWAIT) {
1999 p->p_flag &= ~P_PPWAIT;
2000 wakeup((caddr_t) p->p_pptr);
2001 }
2002
2003 /*
2004 * deal with set[ug]id.
2005 * MNT_NOSUID and P_TRACED have already been used to disable s[ug]id.
2006 */
2007 if (((attr.va_mode & S_ISUID) != 0 && p->p_ucred->cr_uid != attr.va_uid)
2008 || ((attr.va_mode & S_ISGID) != 0 && p->p_ucred->cr_gid != attr.va_gid)){
2009 p->p_ucred = crcopy(cred);
2010 #ifdef KTRACE
2011 /*
2012 * If process is being ktraced, turn off - unless
2013 * root set it.
2014 */
2015 if (p->p_tracep && !(p->p_traceflag & KTRFAC_ROOT))
2016 ktrderef(p);
2017 #endif
2018 if (attr.va_mode & S_ISUID)
2019 p->p_ucred->cr_uid = attr.va_uid;
2020 if (attr.va_mode & S_ISGID)
2021 p->p_ucred->cr_gid = attr.va_gid;
2022 p_sugid(p);
2023 } else
2024 p->p_flag &= ~P_SUGID;
2025 p->p_cred->p_svuid = p->p_ucred->cr_uid;
2026 p->p_cred->p_svgid = p->p_ucred->cr_gid;
2027
2028 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2029
2030 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2031 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2032 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2033 vput(pack.ep_vp);
2034
2035 /* setup new registers and do misc. setup. */
2036 (*pack.ep_es->es_setregs)(p, &pack, (u_long) stack);
2037
2038 if (p->p_flag & P_TRACED)
2039 psignal(p, SIGTRAP);
2040
2041 free(pack.ep_hdr, M_EXEC);
2042
2043 /*
2044 * Call emulation specific exec hook. This can setup setup per-process
2045 * p->p_emuldata or do any other per-process stuff an emulation needs.
2046 *
2047 * If we are executing process of different emulation than the
2048 * original forked process, call e_proc_exit() of the old emulation
2049 * first, then e_proc_exec() of new emulation. If the emulation is
2050 * same, the exec hook code should deallocate any old emulation
2051 * resources held previously by this process.
2052 */
2053 if (p->p_emul && p->p_emul->e_proc_exit
2054 && p->p_emul != pack.ep_es->es_emul)
2055 (*p->p_emul->e_proc_exit)(p);
2056
2057 /*
2058 * Call exec hook. Emulation code may NOT store reference to anything
2059 * from &pack.
2060 */
2061 if (pack.ep_es->es_emul->e_proc_exec)
2062 (*pack.ep_es->es_emul->e_proc_exec)(p, &pack);
2063
2064 /* update p_emul, the old value is no longer needed */
2065 p->p_emul = pack.ep_es->es_emul;
2066
2067 #ifdef KTRACE
2068 if (KTRPOINT(p, KTR_EMUL))
2069 ktremul(p);
2070 #endif
2071
2072 return (EJUSTRETURN);
2073
2074 bad:
2075 /* free the vmspace-creation commands, and release their references */
2076 kill_vmcmds(&pack.ep_vmcmds);
2077 /* kill any opened file descriptor, if necessary */
2078 if (pack.ep_flags & EXEC_HASFD) {
2079 pack.ep_flags &= ~EXEC_HASFD;
2080 (void) fdrelease(p, pack.ep_fd);
2081 }
2082 /* close and put the exec'd file */
2083 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2084 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2085 vput(pack.ep_vp);
2086 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2087 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2088
2089 freehdr:
2090 free(pack.ep_hdr, M_EXEC);
2091 return error;
2092
2093 exec_abort:
2094 /*
2095 * the old process doesn't exist anymore. exit gracefully.
2096 * get rid of the (new) address space we have created, if any, get rid
2097 * of our namei data and vnode, and exit noting failure
2098 */
2099 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
2100 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
2101 if (pack.ep_emul_arg)
2102 FREE(pack.ep_emul_arg, M_TEMP);
2103 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2104 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2105 VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2106 vput(pack.ep_vp);
2107 uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2108 FREE(pack.ep_hdr, M_EXEC);
2109 exit1(p, W_EXITCODE(0, SIGABRT));
2110 exit1(p, -1);
2111
2112 /* NOTREACHED */
2113 return 0;
2114 }
2115
2116 int
2117 netbsd32_umask(p, v, retval)
2118 struct proc *p;
2119 void *v;
2120 register_t *retval;
2121 {
2122 struct netbsd32_umask_args /* {
2123 syscallarg(mode_t) newmask;
2124 } */ *uap = v;
2125 struct sys_umask_args ua;
2126
2127 NETBSD32TO64_UAP(newmask);
2128 return (sys_umask(p, &ua, retval));
2129 }
2130
2131 int
2132 netbsd32_chroot(p, v, retval)
2133 struct proc *p;
2134 void *v;
2135 register_t *retval;
2136 {
2137 struct netbsd32_chroot_args /* {
2138 syscallarg(const netbsd32_charp) path;
2139 } */ *uap = v;
2140 struct sys_chroot_args ua;
2141
2142 NETBSD32TOP_UAP(path, const char);
2143 return (sys_chroot(p, &ua, retval));
2144 }
2145
2146 int
2147 netbsd32_sbrk(p, v, retval)
2148 struct proc *p;
2149 void *v;
2150 register_t *retval;
2151 {
2152 struct netbsd32_sbrk_args /* {
2153 syscallarg(int) incr;
2154 } */ *uap = v;
2155 struct sys_sbrk_args ua;
2156
2157 NETBSD32TO64_UAP(incr);
2158 return (sys_sbrk(p, &ua, retval));
2159 }
2160
2161 int
2162 netbsd32_sstk(p, v, retval)
2163 struct proc *p;
2164 void *v;
2165 register_t *retval;
2166 {
2167 struct netbsd32_sstk_args /* {
2168 syscallarg(int) incr;
2169 } */ *uap = v;
2170 struct sys_sstk_args ua;
2171
2172 NETBSD32TO64_UAP(incr);
2173 return (sys_sstk(p, &ua, retval));
2174 }
2175
2176 int
2177 netbsd32_munmap(p, v, retval)
2178 struct proc *p;
2179 void *v;
2180 register_t *retval;
2181 {
2182 struct netbsd32_munmap_args /* {
2183 syscallarg(netbsd32_voidp) addr;
2184 syscallarg(netbsd32_size_t) len;
2185 } */ *uap = v;
2186 struct sys_munmap_args ua;
2187
2188 NETBSD32TOP_UAP(addr, void);
2189 NETBSD32TOX_UAP(len, size_t);
2190 return (sys_munmap(p, &ua, retval));
2191 }
2192
2193 int
2194 netbsd32_mprotect(p, v, retval)
2195 struct proc *p;
2196 void *v;
2197 register_t *retval;
2198 {
2199 struct netbsd32_mprotect_args /* {
2200 syscallarg(netbsd32_voidp) addr;
2201 syscallarg(netbsd32_size_t) len;
2202 syscallarg(int) prot;
2203 } */ *uap = v;
2204 struct sys_mprotect_args ua;
2205
2206 NETBSD32TOP_UAP(addr, void);
2207 NETBSD32TOX_UAP(len, size_t);
2208 NETBSD32TO64_UAP(prot);
2209 return (sys_mprotect(p, &ua, retval));
2210 }
2211
2212 int
2213 netbsd32_madvise(p, v, retval)
2214 struct proc *p;
2215 void *v;
2216 register_t *retval;
2217 {
2218 struct netbsd32_madvise_args /* {
2219 syscallarg(netbsd32_voidp) addr;
2220 syscallarg(netbsd32_size_t) len;
2221 syscallarg(int) behav;
2222 } */ *uap = v;
2223 struct sys_madvise_args ua;
2224
2225 NETBSD32TOP_UAP(addr, void);
2226 NETBSD32TOX_UAP(len, size_t);
2227 NETBSD32TO64_UAP(behav);
2228 return (sys_madvise(p, &ua, retval));
2229 }
2230
2231 int
2232 netbsd32_mincore(p, v, retval)
2233 struct proc *p;
2234 void *v;
2235 register_t *retval;
2236 {
2237 struct netbsd32_mincore_args /* {
2238 syscallarg(netbsd32_caddr_t) addr;
2239 syscallarg(netbsd32_size_t) len;
2240 syscallarg(netbsd32_charp) vec;
2241 } */ *uap = v;
2242 struct sys_mincore_args ua;
2243
2244 NETBSD32TOX64_UAP(addr, caddr_t);
2245 NETBSD32TOX_UAP(len, size_t);
2246 NETBSD32TOP_UAP(vec, char);
2247 return (sys_mincore(p, &ua, retval));
2248 }
2249
2250 int
2251 netbsd32_getgroups(p, v, retval)
2252 struct proc *p;
2253 void *v;
2254 register_t *retval;
2255 {
2256 struct netbsd32_getgroups_args /* {
2257 syscallarg(int) gidsetsize;
2258 syscallarg(netbsd32_gid_tp) gidset;
2259 } */ *uap = v;
2260 struct pcred *pc = p->p_cred;
2261 int ngrp;
2262 int error;
2263
2264 ngrp = SCARG(uap, gidsetsize);
2265 if (ngrp == 0) {
2266 *retval = pc->pc_ucred->cr_ngroups;
2267 return (0);
2268 }
2269 if (ngrp < pc->pc_ucred->cr_ngroups)
2270 return (EINVAL);
2271 ngrp = pc->pc_ucred->cr_ngroups;
2272 /* Should convert gid_t to netbsd32_gid_t, but they're the same */
2273 error = copyout((caddr_t)pc->pc_ucred->cr_groups,
2274 (caddr_t)(u_long)SCARG(uap, gidset),
2275 ngrp * sizeof(gid_t));
2276 if (error)
2277 return (error);
2278 *retval = ngrp;
2279 return (0);
2280 }
2281
2282 int
2283 netbsd32_setgroups(p, v, retval)
2284 struct proc *p;
2285 void *v;
2286 register_t *retval;
2287 {
2288 struct netbsd32_setgroups_args /* {
2289 syscallarg(int) gidsetsize;
2290 syscallarg(const netbsd32_gid_tp) gidset;
2291 } */ *uap = v;
2292 struct sys_setgroups_args ua;
2293
2294 NETBSD32TO64_UAP(gidsetsize);
2295 NETBSD32TOP_UAP(gidset, gid_t);
2296 return (sys_setgroups(p, &ua, retval));
2297 }
2298
2299 int
2300 netbsd32_setpgid(p, v, retval)
2301 struct proc *p;
2302 void *v;
2303 register_t *retval;
2304 {
2305 struct netbsd32_setpgid_args /* {
2306 syscallarg(int) pid;
2307 syscallarg(int) pgid;
2308 } */ *uap = v;
2309 struct sys_setpgid_args ua;
2310
2311 NETBSD32TO64_UAP(pid);
2312 NETBSD32TO64_UAP(pgid);
2313 return (sys_setpgid(p, &ua, retval));
2314 }
2315
2316 int
2317 netbsd32_setitimer(p, v, retval)
2318 struct proc *p;
2319 void *v;
2320 register_t *retval;
2321 {
2322 struct netbsd32_setitimer_args /* {
2323 syscallarg(int) which;
2324 syscallarg(const netbsd32_itimervalp_t) itv;
2325 syscallarg(netbsd32_itimervalp_t) oitv;
2326 } */ *uap = v;
2327 struct netbsd32_itimerval s32it, *itvp;
2328 int which = SCARG(uap, which);
2329 struct netbsd32_getitimer_args getargs;
2330 struct itimerval aitv;
2331 int s, error;
2332
2333 if ((u_int)which > ITIMER_PROF)
2334 return (EINVAL);
2335 itvp = (struct netbsd32_itimerval *)(u_long)SCARG(uap, itv);
2336 if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
2337 return (error);
2338 netbsd32_to_itimerval(&s32it, &aitv);
2339 if (SCARG(uap, oitv) != NULL) {
2340 SCARG(&getargs, which) = which;
2341 SCARG(&getargs, itv) = SCARG(uap, oitv);
2342 if ((error = netbsd32_getitimer(p, &getargs, retval)) != 0)
2343 return (error);
2344 }
2345 if (itvp == 0)
2346 return (0);
2347 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
2348 return (EINVAL);
2349 s = splclock();
2350 if (which == ITIMER_REAL) {
2351 callout_stop(&p->p_realit_ch);
2352 if (timerisset(&aitv.it_value)) {
2353 /*
2354 * Don't need to check hzto() return value, here.
2355 * callout_reset() does it for us.
2356 */
2357 timeradd(&aitv.it_value, &time, &aitv.it_value);
2358 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
2359 realitexpire, p);
2360 }
2361 p->p_realtimer = aitv;
2362 } else
2363 p->p_stats->p_timer[which] = aitv;
2364 splx(s);
2365 return (0);
2366 }
2367
2368 int
2369 netbsd32_getitimer(p, v, retval)
2370 struct proc *p;
2371 void *v;
2372 register_t *retval;
2373 {
2374 struct netbsd32_getitimer_args /* {
2375 syscallarg(int) which;
2376 syscallarg(netbsd32_itimervalp_t) itv;
2377 } */ *uap = v;
2378 int which = SCARG(uap, which);
2379 struct netbsd32_itimerval s32it;
2380 struct itimerval aitv;
2381 int s;
2382
2383 if ((u_int)which > ITIMER_PROF)
2384 return (EINVAL);
2385 s = splclock();
2386 if (which == ITIMER_REAL) {
2387 /*
2388 * Convert from absolute to relative time in .it_value
2389 * part of real time timer. If time for real time timer
2390 * has passed return 0, else return difference between
2391 * current time and time for the timer to go off.
2392 */
2393 aitv = p->p_realtimer;
2394 if (timerisset(&aitv.it_value)) {
2395 if (timercmp(&aitv.it_value, &time, <))
2396 timerclear(&aitv.it_value);
2397 else
2398 timersub(&aitv.it_value, &time, &aitv.it_value);
2399 }
2400 } else
2401 aitv = p->p_stats->p_timer[which];
2402 splx(s);
2403 netbsd32_from_itimerval(&aitv, &s32it);
2404 return (copyout(&s32it, (caddr_t)(u_long)SCARG(uap, itv), sizeof(s32it)));
2405 }
2406
2407 int
2408 netbsd32_fcntl(p, v, retval)
2409 struct proc *p;
2410 void *v;
2411 register_t *retval;
2412 {
2413 struct netbsd32_fcntl_args /* {
2414 syscallarg(int) fd;
2415 syscallarg(int) cmd;
2416 syscallarg(netbsd32_voidp) arg;
2417 } */ *uap = v;
2418 struct sys_fcntl_args ua;
2419
2420 NETBSD32TO64_UAP(fd);
2421 NETBSD32TO64_UAP(cmd);
2422 NETBSD32TOP_UAP(arg, void);
2423 /* XXXX we can do this 'cause flock doesn't change */
2424 return (sys_fcntl(p, &ua, retval));
2425 }
2426
2427 int
2428 netbsd32_dup2(p, v, retval)
2429 struct proc *p;
2430 void *v;
2431 register_t *retval;
2432 {
2433 struct netbsd32_dup2_args /* {
2434 syscallarg(int) from;
2435 syscallarg(int) to;
2436 } */ *uap = v;
2437 struct sys_dup2_args ua;
2438
2439 NETBSD32TO64_UAP(from);
2440 NETBSD32TO64_UAP(to);
2441 return (sys_dup2(p, &ua, retval));
2442 }
2443
2444 int
2445 netbsd32_select(p, v, retval)
2446 struct proc *p;
2447 void *v;
2448 register_t *retval;
2449 {
2450 struct netbsd32_select_args /* {
2451 syscallarg(int) nd;
2452 syscallarg(netbsd32_fd_setp_t) in;
2453 syscallarg(netbsd32_fd_setp_t) ou;
2454 syscallarg(netbsd32_fd_setp_t) ex;
2455 syscallarg(netbsd32_timevalp_t) tv;
2456 } */ *uap = v;
2457 /* This one must be done in-line 'cause of the timeval */
2458 struct netbsd32_timeval tv32;
2459 caddr_t bits;
2460 char smallbits[howmany(FD_SETSIZE, NFDBITS) * sizeof(fd_mask) * 6];
2461 struct timeval atv;
2462 int s, ncoll, error = 0, timo;
2463 size_t ni;
2464 extern int selwait, nselcoll;
2465 extern int selscan __P((struct proc *, fd_mask *, fd_mask *, int, register_t *));
2466
2467 if (SCARG(uap, nd) < 0)
2468 return (EINVAL);
2469 if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {
2470 /* forgiving; slightly wrong */
2471 SCARG(uap, nd) = p->p_fd->fd_nfiles;
2472 }
2473 ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);
2474 if (ni * 6 > sizeof(smallbits))
2475 bits = malloc(ni * 6, M_TEMP, M_WAITOK);
2476 else
2477 bits = smallbits;
2478
2479 #define getbits(name, x) \
2480 if (SCARG(uap, name)) { \
2481 error = copyin((caddr_t)(u_long)SCARG(uap, name), bits + ni * x, ni); \
2482 if (error) \
2483 goto done; \
2484 } else \
2485 memset(bits + ni * x, 0, ni);
2486 getbits(in, 0);
2487 getbits(ou, 1);
2488 getbits(ex, 2);
2489 #undef getbits
2490
2491 if (SCARG(uap, tv)) {
2492 error = copyin((caddr_t)(u_long)SCARG(uap, tv), (caddr_t)&tv32,
2493 sizeof(tv32));
2494 if (error)
2495 goto done;
2496 netbsd32_to_timeval(&tv32, &atv);
2497 if (itimerfix(&atv)) {
2498 error = EINVAL;
2499 goto done;
2500 }
2501 s = splclock();
2502 timeradd(&atv, &time, &atv);
2503 splx(s);
2504 } else
2505 timo = 0;
2506 retry:
2507 ncoll = nselcoll;
2508 p->p_flag |= P_SELECT;
2509 error = selscan(p, (fd_mask *)(bits + ni * 0),
2510 (fd_mask *)(bits + ni * 3), SCARG(uap, nd), retval);
2511 if (error || *retval)
2512 goto done;
2513 if (SCARG(uap, tv)) {
2514 /*
2515 * We have to recalculate the timeout on every retry.
2516 */
2517 timo = hzto(&atv);
2518 if (timo <= 0)
2519 goto done;
2520 }
2521 s = splhigh();
2522 if ((p->p_flag & P_SELECT) == 0 || nselcoll != ncoll) {
2523 splx(s);
2524 goto retry;
2525 }
2526 p->p_flag &= ~P_SELECT;
2527 error = tsleep((caddr_t)&selwait, PSOCK | PCATCH, "select", timo);
2528 splx(s);
2529 if (error == 0)
2530 goto retry;
2531 done:
2532 p->p_flag &= ~P_SELECT;
2533 /* select is not restarted after signals... */
2534 if (error == ERESTART)
2535 error = EINTR;
2536 if (error == EWOULDBLOCK)
2537 error = 0;
2538 if (error == 0) {
2539 #define putbits(name, x) \
2540 if (SCARG(uap, name)) { \
2541 error = copyout(bits + ni * x, (caddr_t)(u_long)SCARG(uap, name), ni); \
2542 if (error) \
2543 goto out; \
2544 }
2545 putbits(in, 3);
2546 putbits(ou, 4);
2547 putbits(ex, 5);
2548 #undef putbits
2549 }
2550 out:
2551 if (ni * 6 > sizeof(smallbits))
2552 free(bits, M_TEMP);
2553 return (error);
2554 }
2555
2556 int
2557 netbsd32_fsync(p, v, retval)
2558 struct proc *p;
2559 void *v;
2560 register_t *retval;
2561 {
2562 struct netbsd32_fsync_args /* {
2563 syscallarg(int) fd;
2564 } */ *uap = v;
2565 struct sys_fsync_args ua;
2566
2567 NETBSD32TO64_UAP(fd);
2568 return (sys_fsync(p, &ua, retval));
2569 }
2570
2571 int
2572 netbsd32_setpriority(p, v, retval)
2573 struct proc *p;
2574 void *v;
2575 register_t *retval;
2576 {
2577 struct netbsd32_setpriority_args /* {
2578 syscallarg(int) which;
2579 syscallarg(int) who;
2580 syscallarg(int) prio;
2581 } */ *uap = v;
2582 struct sys_setpriority_args ua;
2583
2584 NETBSD32TO64_UAP(which);
2585 NETBSD32TO64_UAP(who);
2586 NETBSD32TO64_UAP(prio);
2587 return (sys_setpriority(p, &ua, retval));
2588 }
2589
2590 int
2591 netbsd32_socket(p, v, retval)
2592 struct proc *p;
2593 void *v;
2594 register_t *retval;
2595 {
2596 struct netbsd32_socket_args /* {
2597 syscallarg(int) domain;
2598 syscallarg(int) type;
2599 syscallarg(int) protocol;
2600 } */ *uap = v;
2601 struct sys_socket_args ua;
2602
2603 NETBSD32TO64_UAP(domain);
2604 NETBSD32TO64_UAP(type);
2605 NETBSD32TO64_UAP(protocol);
2606 return (sys_socket(p, &ua, retval));
2607 }
2608
2609 int
2610 netbsd32_connect(p, v, retval)
2611 struct proc *p;
2612 void *v;
2613 register_t *retval;
2614 {
2615 struct netbsd32_connect_args /* {
2616 syscallarg(int) s;
2617 syscallarg(const netbsd32_sockaddrp_t) name;
2618 syscallarg(int) namelen;
2619 } */ *uap = v;
2620 struct sys_connect_args ua;
2621
2622 NETBSD32TO64_UAP(s);
2623 NETBSD32TOP_UAP(name, struct sockaddr);
2624 NETBSD32TO64_UAP(namelen);
2625 return (sys_connect(p, &ua, retval));
2626 }
2627
2628 int
2629 netbsd32_getpriority(p, v, retval)
2630 struct proc *p;
2631 void *v;
2632 register_t *retval;
2633 {
2634 struct netbsd32_getpriority_args /* {
2635 syscallarg(int) which;
2636 syscallarg(int) who;
2637 } */ *uap = v;
2638 struct sys_getpriority_args ua;
2639
2640 NETBSD32TO64_UAP(which);
2641 NETBSD32TO64_UAP(who);
2642 return (sys_getpriority(p, &ua, retval));
2643 }
2644
2645 int
2646 netbsd32_bind(p, v, retval)
2647 struct proc *p;
2648 void *v;
2649 register_t *retval;
2650 {
2651 struct netbsd32_bind_args /* {
2652 syscallarg(int) s;
2653 syscallarg(const netbsd32_sockaddrp_t) name;
2654 syscallarg(int) namelen;
2655 } */ *uap = v;
2656 struct sys_bind_args ua;
2657
2658 NETBSD32TO64_UAP(s);
2659 NETBSD32TOP_UAP(name, struct sockaddr);
2660 NETBSD32TO64_UAP(namelen);
2661 return (sys_bind(p, &ua, retval));
2662 }
2663
2664 int
2665 netbsd32_setsockopt(p, v, retval)
2666 struct proc *p;
2667 void *v;
2668 register_t *retval;
2669 {
2670 struct netbsd32_setsockopt_args /* {
2671 syscallarg(int) s;
2672 syscallarg(int) level;
2673 syscallarg(int) name;
2674 syscallarg(const netbsd32_voidp) val;
2675 syscallarg(int) valsize;
2676 } */ *uap = v;
2677 struct sys_setsockopt_args ua;
2678
2679 NETBSD32TO64_UAP(s);
2680 NETBSD32TO64_UAP(level);
2681 NETBSD32TO64_UAP(name);
2682 NETBSD32TOP_UAP(val, void);
2683 NETBSD32TO64_UAP(valsize);
2684 /* may be more efficient to do this inline. */
2685 return (sys_setsockopt(p, &ua, retval));
2686 }
2687
2688 int
2689 netbsd32_listen(p, v, retval)
2690 struct proc *p;
2691 void *v;
2692 register_t *retval;
2693 {
2694 struct netbsd32_listen_args /* {
2695 syscallarg(int) s;
2696 syscallarg(int) backlog;
2697 } */ *uap = v;
2698 struct sys_listen_args ua;
2699
2700 NETBSD32TO64_UAP(s);
2701 NETBSD32TO64_UAP(backlog);
2702 return (sys_listen(p, &ua, retval));
2703 }
2704
2705 int
2706 netbsd32_gettimeofday(p, v, retval)
2707 struct proc *p;
2708 void *v;
2709 register_t *retval;
2710 {
2711 struct netbsd32_gettimeofday_args /* {
2712 syscallarg(netbsd32_timevalp_t) tp;
2713 syscallarg(netbsd32_timezonep_t) tzp;
2714 } */ *uap = v;
2715 struct timeval atv;
2716 struct netbsd32_timeval tv32;
2717 int error = 0;
2718 struct netbsd32_timezone tzfake;
2719
2720 if (SCARG(uap, tp)) {
2721 microtime(&atv);
2722 netbsd32_from_timeval(&atv, &tv32);
2723 error = copyout(&tv32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tv32));
2724 if (error)
2725 return (error);
2726 }
2727 if (SCARG(uap, tzp)) {
2728 /*
2729 * NetBSD has no kernel notion of time zone, so we just
2730 * fake up a timezone struct and return it if demanded.
2731 */
2732 tzfake.tz_minuteswest = 0;
2733 tzfake.tz_dsttime = 0;
2734 error = copyout(&tzfake, (caddr_t)(u_long)SCARG(uap, tzp), sizeof(tzfake));
2735 }
2736 return (error);
2737 }
2738
2739 #if 0
2740 static int settime32 __P((struct timeval *));
2741 /* This function is used by clock_settime and settimeofday */
2742 static int
2743 settime32(tv)
2744 struct timeval *tv;
2745 {
2746 struct timeval delta;
2747 int s;
2748
2749 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
2750 s = splclock();
2751 timersub(tv, &time, &delta);
2752 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
2753 return (EPERM);
2754 #ifdef notyet
2755 if ((delta.tv_sec < 86400) && securelevel > 0)
2756 return (EPERM);
2757 #endif
2758 time = *tv;
2759 (void) spllowersoftclock();
2760 timeradd(&boottime, &delta, &boottime);
2761 timeradd(&runtime, &delta, &runtime);
2762 # if defined(NFS) || defined(NFSSERVER)
2763 {
2764 extern void nqnfs_lease_updatetime __P((int));
2765
2766 nqnfs_lease_updatetime(delta.tv_sec);
2767 }
2768 # endif
2769 splx(s);
2770 resettodr();
2771 return (0);
2772 }
2773 #endif
2774
2775 int
2776 netbsd32_settimeofday(p, v, retval)
2777 struct proc *p;
2778 void *v;
2779 register_t *retval;
2780 {
2781 struct netbsd32_settimeofday_args /* {
2782 syscallarg(const netbsd32_timevalp_t) tv;
2783 syscallarg(const netbsd32_timezonep_t) tzp;
2784 } */ *uap = v;
2785 struct netbsd32_timeval atv32;
2786 struct timeval atv;
2787 struct netbsd32_timezone atz;
2788 int error;
2789
2790 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
2791 return (error);
2792 /* Verify all parameters before changing time. */
2793 if (SCARG(uap, tv) && (error = copyin((caddr_t)(u_long)SCARG(uap, tv),
2794 &atv32, sizeof(atv32))))
2795 return (error);
2796 netbsd32_to_timeval(&atv32, &atv);
2797 /* XXX since we don't use tz, probably no point in doing copyin. */
2798 if (SCARG(uap, tzp) && (error = copyin((caddr_t)(u_long)SCARG(uap, tzp),
2799 &atz, sizeof(atz))))
2800 return (error);
2801 if (SCARG(uap, tv))
2802 if ((error = settime(&atv)))
2803 return (error);
2804 /*
2805 * NetBSD has no kernel notion of time zone, and only an
2806 * obsolete program would try to set it, so we log a warning.
2807 */
2808 if (SCARG(uap, tzp))
2809 printf("pid %d attempted to set the "
2810 "(obsolete) kernel time zone\n", p->p_pid);
2811 return (0);
2812 }
2813
2814 int
2815 netbsd32_fchown(p, v, retval)
2816 struct proc *p;
2817 void *v;
2818 register_t *retval;
2819 {
2820 struct netbsd32_fchown_args /* {
2821 syscallarg(int) fd;
2822 syscallarg(uid_t) uid;
2823 syscallarg(gid_t) gid;
2824 } */ *uap = v;
2825 struct sys_fchown_args ua;
2826
2827 NETBSD32TO64_UAP(fd);
2828 NETBSD32TO64_UAP(uid);
2829 NETBSD32TO64_UAP(gid);
2830 return (sys_fchown(p, &ua, retval));
2831 }
2832
2833 int
2834 netbsd32_fchmod(p, v, retval)
2835 struct proc *p;
2836 void *v;
2837 register_t *retval;
2838 {
2839 struct netbsd32_fchmod_args /* {
2840 syscallarg(int) fd;
2841 syscallarg(mode_t) mode;
2842 } */ *uap = v;
2843 struct sys_fchmod_args ua;
2844
2845 NETBSD32TO64_UAP(fd);
2846 NETBSD32TO64_UAP(mode);
2847 return (sys_fchmod(p, &ua, retval));
2848 }
2849
2850 int
2851 netbsd32_setreuid(p, v, retval)
2852 struct proc *p;
2853 void *v;
2854 register_t *retval;
2855 {
2856 struct netbsd32_setreuid_args /* {
2857 syscallarg(uid_t) ruid;
2858 syscallarg(uid_t) euid;
2859 } */ *uap = v;
2860 struct sys_setreuid_args ua;
2861
2862 NETBSD32TO64_UAP(ruid);
2863 NETBSD32TO64_UAP(euid);
2864 return (sys_setreuid(p, &ua, retval));
2865 }
2866
2867 int
2868 netbsd32_setregid(p, v, retval)
2869 struct proc *p;
2870 void *v;
2871 register_t *retval;
2872 {
2873 struct netbsd32_setregid_args /* {
2874 syscallarg(gid_t) rgid;
2875 syscallarg(gid_t) egid;
2876 } */ *uap = v;
2877 struct sys_setregid_args ua;
2878
2879 NETBSD32TO64_UAP(rgid);
2880 NETBSD32TO64_UAP(egid);
2881 return (sys_setregid(p, &ua, retval));
2882 }
2883
2884 int
2885 netbsd32_getrusage(p, v, retval)
2886 struct proc *p;
2887 void *v;
2888 register_t *retval;
2889 {
2890 struct netbsd32_getrusage_args /* {
2891 syscallarg(int) who;
2892 syscallarg(netbsd32_rusagep_t) rusage;
2893 } */ *uap = v;
2894 struct rusage *rup;
2895 struct netbsd32_rusage ru;
2896
2897 switch (SCARG(uap, who)) {
2898
2899 case RUSAGE_SELF:
2900 rup = &p->p_stats->p_ru;
2901 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
2902 break;
2903
2904 case RUSAGE_CHILDREN:
2905 rup = &p->p_stats->p_cru;
2906 break;
2907
2908 default:
2909 return (EINVAL);
2910 }
2911 netbsd32_from_rusage(rup, &ru);
2912 return (copyout(&ru, (caddr_t)(u_long)SCARG(uap, rusage), sizeof(ru)));
2913 }
2914
2915 int
2916 netbsd32_getsockopt(p, v, retval)
2917 struct proc *p;
2918 void *v;
2919 register_t *retval;
2920 {
2921 struct netbsd32_getsockopt_args /* {
2922 syscallarg(int) s;
2923 syscallarg(int) level;
2924 syscallarg(int) name;
2925 syscallarg(netbsd32_voidp) val;
2926 syscallarg(netbsd32_intp) avalsize;
2927 } */ *uap = v;
2928 struct sys_getsockopt_args ua;
2929
2930 NETBSD32TO64_UAP(s);
2931 NETBSD32TO64_UAP(level);
2932 NETBSD32TO64_UAP(name);
2933 NETBSD32TOP_UAP(val, void);
2934 NETBSD32TOP_UAP(avalsize, int);
2935 return (sys_getsockopt(p, &ua, retval));
2936 }
2937
2938 int
2939 netbsd32_readv(p, v, retval)
2940 struct proc *p;
2941 void *v;
2942 register_t *retval;
2943 {
2944 struct netbsd32_readv_args /* {
2945 syscallarg(int) fd;
2946 syscallarg(const netbsd32_iovecp_t) iovp;
2947 syscallarg(int) iovcnt;
2948 } */ *uap = v;
2949 int fd = SCARG(uap, fd);
2950 struct file *fp;
2951 struct filedesc *fdp = p->p_fd;
2952
2953 if ((u_int)fd >= fdp->fd_nfiles ||
2954 (fp = fdp->fd_ofiles[fd]) == NULL ||
2955 (fp->f_flag & FREAD) == 0)
2956 return (EBADF);
2957
2958 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
2959 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
2960 }
2961
2962 /* Damn thing copies in the iovec! */
2963 int
2964 dofilereadv32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
2965 struct proc *p;
2966 int fd;
2967 struct file *fp;
2968 struct netbsd32_iovec *iovp;
2969 int iovcnt;
2970 off_t *offset;
2971 int flags;
2972 register_t *retval;
2973 {
2974 struct uio auio;
2975 struct iovec *iov;
2976 struct iovec *needfree;
2977 struct iovec aiov[UIO_SMALLIOV];
2978 long i, cnt, error = 0;
2979 u_int iovlen;
2980 #ifdef KTRACE
2981 struct iovec *ktriov = NULL;
2982 #endif
2983
2984 /* note: can't use iovlen until iovcnt is validated */
2985 iovlen = iovcnt * sizeof(struct iovec);
2986 if ((u_int)iovcnt > UIO_SMALLIOV) {
2987 if ((u_int)iovcnt > IOV_MAX)
2988 return (EINVAL);
2989 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
2990 needfree = iov;
2991 } else if ((u_int)iovcnt > 0) {
2992 iov = aiov;
2993 needfree = NULL;
2994 } else
2995 return (EINVAL);
2996
2997 auio.uio_iov = iov;
2998 auio.uio_iovcnt = iovcnt;
2999 auio.uio_rw = UIO_READ;
3000 auio.uio_segflg = UIO_USERSPACE;
3001 auio.uio_procp = p;
3002 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
3003 if (error)
3004 goto done;
3005 auio.uio_resid = 0;
3006 for (i = 0; i < iovcnt; i++) {
3007 auio.uio_resid += iov->iov_len;
3008 /*
3009 * Reads return ssize_t because -1 is returned on error.
3010 * Therefore we must restrict the length to SSIZE_MAX to
3011 * avoid garbage return values.
3012 */
3013 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
3014 error = EINVAL;
3015 goto done;
3016 }
3017 iov++;
3018 }
3019 #ifdef KTRACE
3020 /*
3021 * if tracing, save a copy of iovec
3022 */
3023 if (KTRPOINT(p, KTR_GENIO)) {
3024 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
3025 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
3026 }
3027 #endif
3028 cnt = auio.uio_resid;
3029 error = (*fp->f_ops->fo_read)(fp, offset, &auio, fp->f_cred, flags);
3030 if (error)
3031 if (auio.uio_resid != cnt && (error == ERESTART ||
3032 error == EINTR || error == EWOULDBLOCK))
3033 error = 0;
3034 cnt -= auio.uio_resid;
3035 #ifdef KTRACE
3036 if (KTRPOINT(p, KTR_GENIO))
3037 if (error == 0) {
3038 ktrgenio(p, fd, UIO_READ, ktriov, cnt,
3039 error);
3040 FREE(ktriov, M_TEMP);
3041 }
3042 #endif
3043 *retval = cnt;
3044 done:
3045 if (needfree)
3046 FREE(needfree, M_IOV);
3047 return (error);
3048 }
3049
3050
3051 int
3052 netbsd32_writev(p, v, retval)
3053 struct proc *p;
3054 void *v;
3055 register_t *retval;
3056 {
3057 struct netbsd32_writev_args /* {
3058 syscallarg(int) fd;
3059 syscallarg(const netbsd32_iovecp_t) iovp;
3060 syscallarg(int) iovcnt;
3061 } */ *uap = v;
3062 int fd = SCARG(uap, fd);
3063 struct file *fp;
3064 struct filedesc *fdp = p->p_fd;
3065
3066 if ((u_int)fd >= fdp->fd_nfiles ||
3067 (fp = fdp->fd_ofiles[fd]) == NULL ||
3068 (fp->f_flag & FWRITE) == 0)
3069 return (EBADF);
3070
3071 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
3072 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
3073 }
3074
3075 int
3076 dofilewritev32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
3077 struct proc *p;
3078 int fd;
3079 struct file *fp;
3080 struct netbsd32_iovec *iovp;
3081 int iovcnt;
3082 off_t *offset;
3083 int flags;
3084 register_t *retval;
3085 {
3086 struct uio auio;
3087 struct iovec *iov;
3088 struct iovec *needfree;
3089 struct iovec aiov[UIO_SMALLIOV];
3090 long i, cnt, error = 0;
3091 u_int iovlen;
3092 #ifdef KTRACE
3093 struct iovec *ktriov = NULL;
3094 #endif
3095
3096 /* note: can't use iovlen until iovcnt is validated */
3097 iovlen = iovcnt * sizeof(struct iovec);
3098 if ((u_int)iovcnt > UIO_SMALLIOV) {
3099 if ((u_int)iovcnt > IOV_MAX)
3100 return (EINVAL);
3101 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
3102 needfree = iov;
3103 } else if ((u_int)iovcnt > 0) {
3104 iov = aiov;
3105 needfree = NULL;
3106 } else
3107 return (EINVAL);
3108
3109 auio.uio_iov = iov;
3110 auio.uio_iovcnt = iovcnt;
3111 auio.uio_rw = UIO_WRITE;
3112 auio.uio_segflg = UIO_USERSPACE;
3113 auio.uio_procp = p;
3114 error = netbsd32_to_iovecin(iovp, iov, iovcnt);
3115 if (error)
3116 goto done;
3117 auio.uio_resid = 0;
3118 for (i = 0; i < iovcnt; i++) {
3119 auio.uio_resid += iov->iov_len;
3120 /*
3121 * Writes return ssize_t because -1 is returned on error.
3122 * Therefore we must restrict the length to SSIZE_MAX to
3123 * avoid garbage return values.
3124 */
3125 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
3126 error = EINVAL;
3127 goto done;
3128 }
3129 iov++;
3130 }
3131 #ifdef KTRACE
3132 /*
3133 * if tracing, save a copy of iovec
3134 */
3135 if (KTRPOINT(p, KTR_GENIO)) {
3136 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
3137 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
3138 }
3139 #endif
3140 cnt = auio.uio_resid;
3141 error = (*fp->f_ops->fo_write)(fp, offset, &auio, fp->f_cred, flags);
3142 if (error) {
3143 if (auio.uio_resid != cnt && (error == ERESTART ||
3144 error == EINTR || error == EWOULDBLOCK))
3145 error = 0;
3146 if (error == EPIPE)
3147 psignal(p, SIGPIPE);
3148 }
3149 cnt -= auio.uio_resid;
3150 #ifdef KTRACE
3151 if (KTRPOINT(p, KTR_GENIO))
3152 if (error == 0) {
3153 ktrgenio(p, fd, UIO_WRITE, ktriov, cnt,
3154 error);
3155 FREE(ktriov, M_TEMP);
3156 }
3157 #endif
3158 *retval = cnt;
3159 done:
3160 if (needfree)
3161 FREE(needfree, M_IOV);
3162 return (error);
3163 }
3164
3165
3166 int
3167 netbsd32_rename(p, v, retval)
3168 struct proc *p;
3169 void *v;
3170 register_t *retval;
3171 {
3172 struct netbsd32_rename_args /* {
3173 syscallarg(const netbsd32_charp) from;
3174 syscallarg(const netbsd32_charp) to;
3175 } */ *uap = v;
3176 struct sys_rename_args ua;
3177
3178 NETBSD32TOP_UAP(from, const char);
3179 NETBSD32TOP_UAP(to, const char)
3180
3181 return (sys_rename(p, &ua, retval));
3182 }
3183
3184 int
3185 netbsd32_flock(p, v, retval)
3186 struct proc *p;
3187 void *v;
3188 register_t *retval;
3189 {
3190 struct netbsd32_flock_args /* {
3191 syscallarg(int) fd;
3192 syscallarg(int) how;
3193 } */ *uap = v;
3194 struct sys_flock_args ua;
3195
3196 NETBSD32TO64_UAP(fd);
3197 NETBSD32TO64_UAP(how)
3198
3199 return (sys_flock(p, &ua, retval));
3200 }
3201
3202 int
3203 netbsd32_mkfifo(p, v, retval)
3204 struct proc *p;
3205 void *v;
3206 register_t *retval;
3207 {
3208 struct netbsd32_mkfifo_args /* {
3209 syscallarg(const netbsd32_charp) path;
3210 syscallarg(mode_t) mode;
3211 } */ *uap = v;
3212 struct sys_mkfifo_args ua;
3213
3214 NETBSD32TOP_UAP(path, const char)
3215 NETBSD32TO64_UAP(mode);
3216 return (sys_mkfifo(p, &ua, retval));
3217 }
3218
3219 int
3220 netbsd32_shutdown(p, v, retval)
3221 struct proc *p;
3222 void *v;
3223 register_t *retval;
3224 {
3225 struct netbsd32_shutdown_args /* {
3226 syscallarg(int) s;
3227 syscallarg(int) how;
3228 } */ *uap = v;
3229 struct sys_shutdown_args ua;
3230
3231 NETBSD32TO64_UAP(s)
3232 NETBSD32TO64_UAP(how);
3233 return (sys_shutdown(p, &ua, retval));
3234 }
3235
3236 int
3237 netbsd32_socketpair(p, v, retval)
3238 struct proc *p;
3239 void *v;
3240 register_t *retval;
3241 {
3242 struct netbsd32_socketpair_args /* {
3243 syscallarg(int) domain;
3244 syscallarg(int) type;
3245 syscallarg(int) protocol;
3246 syscallarg(netbsd32_intp) rsv;
3247 } */ *uap = v;
3248 struct sys_socketpair_args ua;
3249
3250 NETBSD32TO64_UAP(domain);
3251 NETBSD32TO64_UAP(type);
3252 NETBSD32TO64_UAP(protocol);
3253 NETBSD32TOP_UAP(rsv, int);
3254 /* Since we're just copying out two `int's we can do this */
3255 return (sys_socketpair(p, &ua, retval));
3256 }
3257
3258 int
3259 netbsd32_mkdir(p, v, retval)
3260 struct proc *p;
3261 void *v;
3262 register_t *retval;
3263 {
3264 struct netbsd32_mkdir_args /* {
3265 syscallarg(const netbsd32_charp) path;
3266 syscallarg(mode_t) mode;
3267 } */ *uap = v;
3268 struct sys_mkdir_args ua;
3269
3270 NETBSD32TOP_UAP(path, const char)
3271 NETBSD32TO64_UAP(mode);
3272 return (sys_mkdir(p, &ua, retval));
3273 }
3274
3275 int
3276 netbsd32_rmdir(p, v, retval)
3277 struct proc *p;
3278 void *v;
3279 register_t *retval;
3280 {
3281 struct netbsd32_rmdir_args /* {
3282 syscallarg(const netbsd32_charp) path;
3283 } */ *uap = v;
3284 struct sys_rmdir_args ua;
3285
3286 NETBSD32TOP_UAP(path, const char);
3287 return (sys_rmdir(p, &ua, retval));
3288 }
3289
3290 int
3291 netbsd32_utimes(p, v, retval)
3292 struct proc *p;
3293 void *v;
3294 register_t *retval;
3295 {
3296 struct netbsd32_utimes_args /* {
3297 syscallarg(const netbsd32_charp) path;
3298 syscallarg(const netbsd32_timevalp_t) tptr;
3299 } */ *uap = v;
3300 int error;
3301 struct nameidata nd;
3302
3303 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3304 if ((error = namei(&nd)) != 0)
3305 return (error);
3306
3307 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
3308
3309 vrele(nd.ni_vp);
3310 return (error);
3311 }
3312
3313 /*
3314 * Common routine to set access and modification times given a vnode.
3315 */
3316 static int
3317 change_utimes32(vp, tptr, p)
3318 struct vnode *vp;
3319 struct timeval *tptr;
3320 struct proc *p;
3321 {
3322 struct netbsd32_timeval tv32[2];
3323 struct timeval tv[2];
3324 struct vattr vattr;
3325 int error;
3326
3327 VATTR_NULL(&vattr);
3328 if (tptr == NULL) {
3329 microtime(&tv[0]);
3330 tv[1] = tv[0];
3331 vattr.va_vaflags |= VA_UTIMES_NULL;
3332 } else {
3333 error = copyin(tptr, tv, sizeof(tv));
3334 if (error)
3335 return (error);
3336 }
3337 netbsd32_to_timeval(&tv32[0], &tv[0]);
3338 netbsd32_to_timeval(&tv32[1], &tv[1]);
3339 VOP_LEASE(vp, p, p->p_ucred, LEASE_WRITE);
3340 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3341 vattr.va_atime.tv_sec = tv[0].tv_sec;
3342 vattr.va_atime.tv_nsec = tv[0].tv_usec * 1000;
3343 vattr.va_mtime.tv_sec = tv[1].tv_sec;
3344 vattr.va_mtime.tv_nsec = tv[1].tv_usec * 1000;
3345 error = VOP_SETATTR(vp, &vattr, p->p_ucred, p);
3346 VOP_UNLOCK(vp, 0);
3347 return (error);
3348 }
3349
3350 int
3351 netbsd32_adjtime(p, v, retval)
3352 struct proc *p;
3353 void *v;
3354 register_t *retval;
3355 {
3356 struct netbsd32_adjtime_args /* {
3357 syscallarg(const netbsd32_timevalp_t) delta;
3358 syscallarg(netbsd32_timevalp_t) olddelta;
3359 } */ *uap = v;
3360 struct netbsd32_timeval atv;
3361 int32_t ndelta, ntickdelta, odelta;
3362 int s, error;
3363 extern long bigadj, timedelta;
3364 extern int tickdelta;
3365
3366 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
3367 return (error);
3368
3369 error = copyin((caddr_t)(u_long)SCARG(uap, delta), &atv, sizeof(struct timeval));
3370 if (error)
3371 return (error);
3372 /*
3373 * Compute the total correction and the rate at which to apply it.
3374 * Round the adjustment down to a whole multiple of the per-tick
3375 * delta, so that after some number of incremental changes in
3376 * hardclock(), tickdelta will become zero, lest the correction
3377 * overshoot and start taking us away from the desired final time.
3378 */
3379 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
3380 if (ndelta > bigadj)
3381 ntickdelta = 10 * tickadj;
3382 else
3383 ntickdelta = tickadj;
3384 if (ndelta % ntickdelta)
3385 ndelta = ndelta / ntickdelta * ntickdelta;
3386
3387 /*
3388 * To make hardclock()'s job easier, make the per-tick delta negative
3389 * if we want time to run slower; then hardclock can simply compute
3390 * tick + tickdelta, and subtract tickdelta from timedelta.
3391 */
3392 if (ndelta < 0)
3393 ntickdelta = -ntickdelta;
3394 s = splclock();
3395 odelta = timedelta;
3396 timedelta = ndelta;
3397 tickdelta = ntickdelta;
3398 splx(s);
3399
3400 if (SCARG(uap, olddelta)) {
3401 atv.tv_sec = odelta / 1000000;
3402 atv.tv_usec = odelta % 1000000;
3403 (void) copyout(&atv, (caddr_t)(u_long)SCARG(uap, olddelta),
3404 sizeof(struct timeval));
3405 }
3406 return (0);
3407 }
3408
3409 int
3410 netbsd32_quotactl(p, v, retval)
3411 struct proc *p;
3412 void *v;
3413 register_t *retval;
3414 {
3415 struct netbsd32_quotactl_args /* {
3416 syscallarg(const netbsd32_charp) path;
3417 syscallarg(int) cmd;
3418 syscallarg(int) uid;
3419 syscallarg(netbsd32_caddr_t) arg;
3420 } */ *uap = v;
3421 struct sys_quotactl_args ua;
3422
3423 NETBSD32TOP_UAP(path, const char);
3424 NETBSD32TO64_UAP(cmd);
3425 NETBSD32TO64_UAP(uid);
3426 NETBSD32TOX64_UAP(arg, caddr_t);
3427 return (sys_quotactl(p, &ua, retval));
3428 }
3429
3430 #if defined(NFS) || defined(NFSSERVER)
3431 int
3432 netbsd32_nfssvc(p, v, retval)
3433 struct proc *p;
3434 void *v;
3435 register_t *retval;
3436 {
3437 #if 0
3438 struct netbsd32_nfssvc_args /* {
3439 syscallarg(int) flag;
3440 syscallarg(netbsd32_voidp) argp;
3441 } */ *uap = v;
3442 struct sys_nfssvc_args ua;
3443
3444 NETBSD32TO64_UAP(flag);
3445 NETBSD32TOP_UAP(argp, void);
3446 return (sys_nfssvc(p, &ua, retval));
3447 #else
3448 /* Why would we want to support a 32-bit nfsd? */
3449 return (ENOSYS);
3450 #endif
3451 }
3452 #endif
3453
3454 int
3455 netbsd32_statfs(p, v, retval)
3456 struct proc *p;
3457 void *v;
3458 register_t *retval;
3459 {
3460 struct netbsd32_statfs_args /* {
3461 syscallarg(const netbsd32_charp) path;
3462 syscallarg(netbsd32_statfsp_t) buf;
3463 } */ *uap = v;
3464 struct mount *mp;
3465 struct statfs *sp;
3466 struct netbsd32_statfs s32;
3467 int error;
3468 struct nameidata nd;
3469
3470 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3471 if ((error = namei(&nd)) != 0)
3472 return (error);
3473 mp = nd.ni_vp->v_mount;
3474 sp = &mp->mnt_stat;
3475 vrele(nd.ni_vp);
3476 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3477 return (error);
3478 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3479 netbsd32_from_statfs(sp, &s32);
3480 return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3481 }
3482
3483 int
3484 netbsd32_fstatfs(p, v, retval)
3485 struct proc *p;
3486 void *v;
3487 register_t *retval;
3488 {
3489 struct netbsd32_fstatfs_args /* {
3490 syscallarg(int) fd;
3491 syscallarg(netbsd32_statfsp_t) buf;
3492 } */ *uap = v;
3493 struct file *fp;
3494 struct mount *mp;
3495 struct statfs *sp;
3496 struct netbsd32_statfs s32;
3497 int error;
3498
3499 /* getvnode() will use the descriptor for us */
3500 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3501 return (error);
3502 mp = ((struct vnode *)fp->f_data)->v_mount;
3503 sp = &mp->mnt_stat;
3504 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3505 goto out;
3506 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3507 netbsd32_from_statfs(sp, &s32);
3508 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32));
3509 out:
3510 FILE_UNUSE(fp, p);
3511 return (error);
3512 }
3513
3514 #if defined(NFS) || defined(NFSSERVER)
3515 int
3516 netbsd32_getfh(p, v, retval)
3517 struct proc *p;
3518 void *v;
3519 register_t *retval;
3520 {
3521 struct netbsd32_getfh_args /* {
3522 syscallarg(const netbsd32_charp) fname;
3523 syscallarg(netbsd32_fhandlep_t) fhp;
3524 } */ *uap = v;
3525 struct sys_getfh_args ua;
3526
3527 NETBSD32TOP_UAP(fname, const char);
3528 NETBSD32TOP_UAP(fhp, struct fhandle);
3529 /* Lucky for us a fhandlep_t doesn't change sizes */
3530 return (sys_getfh(p, &ua, retval));
3531 }
3532 #endif
3533
3534 int
3535 netbsd32_sysarch(p, v, retval)
3536 struct proc *p;
3537 void *v;
3538 register_t *retval;
3539 {
3540 struct netbsd32_sysarch_args /* {
3541 syscallarg(int) op;
3542 syscallarg(netbsd32_voidp) parms;
3543 } */ *uap = v;
3544
3545 switch (SCARG(uap, op)) {
3546 default:
3547 printf("(sparc64) netbsd32_sysarch(%d)\n", SCARG(uap, op));
3548 return EINVAL;
3549 }
3550 }
3551
3552 int
3553 netbsd32_pread(p, v, retval)
3554 struct proc *p;
3555 void *v;
3556 register_t *retval;
3557 {
3558 struct netbsd32_pread_args /* {
3559 syscallarg(int) fd;
3560 syscallarg(netbsd32_voidp) buf;
3561 syscallarg(netbsd32_size_t) nbyte;
3562 syscallarg(int) pad;
3563 syscallarg(off_t) offset;
3564 } */ *uap = v;
3565 struct sys_pread_args ua;
3566 ssize_t rt;
3567 int error;
3568
3569 NETBSD32TO64_UAP(fd);
3570 NETBSD32TOP_UAP(buf, void);
3571 NETBSD32TOX_UAP(nbyte, size_t);
3572 NETBSD32TO64_UAP(pad);
3573 NETBSD32TO64_UAP(offset);
3574 error = sys_pread(p, &ua, (register_t *)&rt);
3575 *retval = rt;
3576 return (error);
3577 }
3578
3579 int
3580 netbsd32_pwrite(p, v, retval)
3581 struct proc *p;
3582 void *v;
3583 register_t *retval;
3584 {
3585 struct netbsd32_pwrite_args /* {
3586 syscallarg(int) fd;
3587 syscallarg(const netbsd32_voidp) buf;
3588 syscallarg(netbsd32_size_t) nbyte;
3589 syscallarg(int) pad;
3590 syscallarg(off_t) offset;
3591 } */ *uap = v;
3592 struct sys_pwrite_args ua;
3593 ssize_t rt;
3594 int error;
3595
3596 NETBSD32TO64_UAP(fd);
3597 NETBSD32TOP_UAP(buf, void);
3598 NETBSD32TOX_UAP(nbyte, size_t);
3599 NETBSD32TO64_UAP(pad);
3600 NETBSD32TO64_UAP(offset);
3601 error = sys_pwrite(p, &ua, (register_t *)&rt);
3602 *retval = rt;
3603 return (error);
3604 }
3605
3606 #ifdef NTP
3607 int
3608 netbsd32_ntp_gettime(p, v, retval)
3609 struct proc *p;
3610 void *v;
3611 register_t *retval;
3612 {
3613 struct netbsd32_ntp_gettime_args /* {
3614 syscallarg(netbsd32_ntptimevalp_t) ntvp;
3615 } */ *uap = v;
3616 struct netbsd32_ntptimeval ntv32;
3617 struct timeval atv;
3618 struct ntptimeval ntv;
3619 int error = 0;
3620 int s;
3621
3622 /* The following are NTP variables */
3623 extern long time_maxerror;
3624 extern long time_esterror;
3625 extern int time_status;
3626 extern int time_state; /* clock state */
3627 extern int time_status; /* clock status bits */
3628
3629 if (SCARG(uap, ntvp)) {
3630 s = splclock();
3631 #ifdef EXT_CLOCK
3632 /*
3633 * The microtime() external clock routine returns a
3634 * status code. If less than zero, we declare an error
3635 * in the clock status word and return the kernel
3636 * (software) time variable. While there are other
3637 * places that call microtime(), this is the only place
3638 * that matters from an application point of view.
3639 */
3640 if (microtime(&atv) < 0) {
3641 time_status |= STA_CLOCKERR;
3642 ntv.time = time;
3643 } else
3644 time_status &= ~STA_CLOCKERR;
3645 #else /* EXT_CLOCK */
3646 microtime(&atv);
3647 #endif /* EXT_CLOCK */
3648 ntv.time = atv;
3649 ntv.maxerror = time_maxerror;
3650 ntv.esterror = time_esterror;
3651 (void) splx(s);
3652
3653 netbsd32_from_timeval(&ntv.time, &ntv32.time);
3654 ntv32.maxerror = (netbsd32_long)ntv.maxerror;
3655 ntv32.esterror = (netbsd32_long)ntv.esterror;
3656 error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, ntvp),
3657 sizeof(ntv32));
3658 }
3659 if (!error) {
3660
3661 /*
3662 * Status word error decode. If any of these conditions
3663 * occur, an error is returned, instead of the status
3664 * word. Most applications will care only about the fact
3665 * the system clock may not be trusted, not about the
3666 * details.
3667 *
3668 * Hardware or software error
3669 */
3670 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3671
3672 /*
3673 * PPS signal lost when either time or frequency
3674 * synchronization requested
3675 */
3676 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3677 !(time_status & STA_PPSSIGNAL)) ||
3678
3679 /*
3680 * PPS jitter exceeded when time synchronization
3681 * requested
3682 */
3683 (time_status & STA_PPSTIME &&
3684 time_status & STA_PPSJITTER) ||
3685
3686 /*
3687 * PPS wander exceeded or calibration error when
3688 * frequency synchronization requested
3689 */
3690 (time_status & STA_PPSFREQ &&
3691 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3692 *retval = TIME_ERROR;
3693 else
3694 *retval = time_state;
3695 }
3696 return(error);
3697 }
3698
3699 int
3700 netbsd32_ntp_adjtime(p, v, retval)
3701 struct proc *p;
3702 void *v;
3703 register_t *retval;
3704 {
3705 struct netbsd32_ntp_adjtime_args /* {
3706 syscallarg(netbsd32_timexp_t) tp;
3707 } */ *uap = v;
3708 struct netbsd32_timex ntv32;
3709 struct timex ntv;
3710 int error = 0;
3711 int modes;
3712 int s;
3713 extern long time_freq; /* frequency offset (scaled ppm) */
3714 extern long time_maxerror;
3715 extern long time_esterror;
3716 extern int time_state; /* clock state */
3717 extern int time_status; /* clock status bits */
3718 extern long time_constant; /* pll time constant */
3719 extern long time_offset; /* time offset (us) */
3720 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
3721 extern long time_precision; /* clock precision (us) */
3722
3723 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), (caddr_t)&ntv32,
3724 sizeof(ntv32))))
3725 return (error);
3726 netbsd32_to_timex(&ntv32, &ntv);
3727
3728 /*
3729 * Update selected clock variables - only the superuser can
3730 * change anything. Note that there is no error checking here on
3731 * the assumption the superuser should know what it is doing.
3732 */
3733 modes = ntv.modes;
3734 if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
3735 return (error);
3736
3737 s = splclock();
3738 if (modes & MOD_FREQUENCY)
3739 #ifdef PPS_SYNC
3740 time_freq = ntv.freq - pps_freq;
3741 #else /* PPS_SYNC */
3742 time_freq = ntv.freq;
3743 #endif /* PPS_SYNC */
3744 if (modes & MOD_MAXERROR)
3745 time_maxerror = ntv.maxerror;
3746 if (modes & MOD_ESTERROR)
3747 time_esterror = ntv.esterror;
3748 if (modes & MOD_STATUS) {
3749 time_status &= STA_RONLY;
3750 time_status |= ntv.status & ~STA_RONLY;
3751 }
3752 if (modes & MOD_TIMECONST)
3753 time_constant = ntv.constant;
3754 if (modes & MOD_OFFSET)
3755 hardupdate(ntv.offset);
3756
3757 /*
3758 * Retrieve all clock variables
3759 */
3760 if (time_offset < 0)
3761 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
3762 else
3763 ntv.offset = time_offset >> SHIFT_UPDATE;
3764 #ifdef PPS_SYNC
3765 ntv.freq = time_freq + pps_freq;
3766 #else /* PPS_SYNC */
3767 ntv.freq = time_freq;
3768 #endif /* PPS_SYNC */
3769 ntv.maxerror = time_maxerror;
3770 ntv.esterror = time_esterror;
3771 ntv.status = time_status;
3772 ntv.constant = time_constant;
3773 ntv.precision = time_precision;
3774 ntv.tolerance = time_tolerance;
3775 #ifdef PPS_SYNC
3776 ntv.shift = pps_shift;
3777 ntv.ppsfreq = pps_freq;
3778 ntv.jitter = pps_jitter >> PPS_AVG;
3779 ntv.stabil = pps_stabil;
3780 ntv.calcnt = pps_calcnt;
3781 ntv.errcnt = pps_errcnt;
3782 ntv.jitcnt = pps_jitcnt;
3783 ntv.stbcnt = pps_stbcnt;
3784 #endif /* PPS_SYNC */
3785 (void)splx(s);
3786
3787 netbsd32_from_timex(&ntv, &ntv32);
3788 error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, tp),
3789 sizeof(ntv32));
3790 if (!error) {
3791
3792 /*
3793 * Status word error decode. See comments in
3794 * ntp_gettime() routine.
3795 */
3796 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3797 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3798 !(time_status & STA_PPSSIGNAL)) ||
3799 (time_status & STA_PPSTIME &&
3800 time_status & STA_PPSJITTER) ||
3801 (time_status & STA_PPSFREQ &&
3802 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3803 *retval = TIME_ERROR;
3804 else
3805 *retval = time_state;
3806 }
3807 return error;
3808 }
3809 #else
3810 int
3811 netbsd32_ntp_gettime(p, v, retval)
3812 struct proc *p;
3813 void *v;
3814 register_t *retval;
3815 {
3816 return(ENOSYS);
3817 }
3818
3819 int
3820 netbsd32_ntp_adjtime(p, v, retval)
3821 struct proc *p;
3822 void *v;
3823 register_t *retval;
3824 {
3825 return (ENOSYS);
3826 }
3827 #endif
3828
3829 int
3830 netbsd32_setgid(p, v, retval)
3831 struct proc *p;
3832 void *v;
3833 register_t *retval;
3834 {
3835 struct netbsd32_setgid_args /* {
3836 syscallarg(gid_t) gid;
3837 } */ *uap = v;
3838 struct sys_setgid_args ua;
3839
3840 NETBSD32TO64_UAP(gid);
3841 return (sys_setgid(p, v, retval));
3842 }
3843
3844 int
3845 netbsd32_setegid(p, v, retval)
3846 struct proc *p;
3847 void *v;
3848 register_t *retval;
3849 {
3850 struct netbsd32_setegid_args /* {
3851 syscallarg(gid_t) egid;
3852 } */ *uap = v;
3853 struct sys_setegid_args ua;
3854
3855 NETBSD32TO64_UAP(egid);
3856 return (sys_setegid(p, v, retval));
3857 }
3858
3859 int
3860 netbsd32_seteuid(p, v, retval)
3861 struct proc *p;
3862 void *v;
3863 register_t *retval;
3864 {
3865 struct netbsd32_seteuid_args /* {
3866 syscallarg(gid_t) euid;
3867 } */ *uap = v;
3868 struct sys_seteuid_args ua;
3869
3870 NETBSD32TO64_UAP(euid);
3871 return (sys_seteuid(p, v, retval));
3872 }
3873
3874 #ifdef LFS
3875 int
3876 netbsd32_sys_lfs_bmapv(p, v, retval)
3877 struct proc *p;
3878 void *v;
3879 register_t *retval;
3880 {
3881 #if 0
3882 struct netbsd32_lfs_bmapv_args /* {
3883 syscallarg(netbsd32_fsid_tp_t) fsidp;
3884 syscallarg(netbsd32_block_infop_t) blkiov;
3885 syscallarg(int) blkcnt;
3886 } */ *uap = v;
3887 struct sys_lfs_bmapv_args ua;
3888
3889 NETBSD32TOP_UAP(fdidp, struct fsid);
3890 NETBSD32TO64_UAP(blkcnt);
3891 /* XXX finish me */
3892 #else
3893
3894 return (ENOSYS); /* XXX */
3895 #endif
3896 }
3897
3898 int
3899 netbsd32_sys_lfs_markv(p, v, retval)
3900 struct proc *p;
3901 void *v;
3902 register_t *retval;
3903 {
3904 #if 0
3905 struct netbsd32_lfs_markv_args /* {
3906 syscallarg(netbsd32_fsid_tp_t) fsidp;
3907 syscallarg(netbsd32_block_infop_t) blkiov;
3908 syscallarg(int) blkcnt;
3909 } */ *uap = v;
3910 #endif
3911
3912 return (ENOSYS); /* XXX */
3913 }
3914
3915 int
3916 netbsd32_sys_lfs_segclean(p, v, retval)
3917 struct proc *p;
3918 void *v;
3919 register_t *retval;
3920 {
3921 #if 0
3922 struct netbsd32_lfs_segclean_args /* {
3923 syscallarg(netbsd32_fsid_tp_t) fsidp;
3924 syscallarg(netbsd32_u_long) segment;
3925 } */ *uap = v;
3926 #endif
3927
3928 return (ENOSYS); /* XXX */
3929 }
3930
3931 int
3932 netbsd32_sys_lfs_segwait(p, v, retval)
3933 struct proc *p;
3934 void *v;
3935 register_t *retval;
3936 {
3937 #if 0
3938 struct netbsd32_lfs_segwait_args /* {
3939 syscallarg(netbsd32_fsid_tp_t) fsidp;
3940 syscallarg(netbsd32_timevalp_t) tv;
3941 } */ *uap = v;
3942 #endif
3943
3944 return (ENOSYS); /* XXX */
3945 }
3946 #endif
3947
3948 int
3949 netbsd32_pathconf(p, v, retval)
3950 struct proc *p;
3951 void *v;
3952 register_t *retval;
3953 {
3954 struct netbsd32_pathconf_args /* {
3955 syscallarg(int) fd;
3956 syscallarg(int) name;
3957 } */ *uap = v;
3958 struct sys_pathconf_args ua;
3959 long rt;
3960 int error;
3961
3962 NETBSD32TOP_UAP(path, const char);
3963 NETBSD32TO64_UAP(name);
3964 error = sys_pathconf(p, &ua, (register_t *)&rt);
3965 *retval = rt;
3966 return (error);
3967 }
3968
3969 int
3970 netbsd32_fpathconf(p, v, retval)
3971 struct proc *p;
3972 void *v;
3973 register_t *retval;
3974 {
3975 struct netbsd32_fpathconf_args /* {
3976 syscallarg(int) fd;
3977 syscallarg(int) name;
3978 } */ *uap = v;
3979 struct sys_fpathconf_args ua;
3980 long rt;
3981 int error;
3982
3983 NETBSD32TO64_UAP(fd);
3984 NETBSD32TO64_UAP(name);
3985 error = sys_fpathconf(p, &ua, (register_t *)&rt);
3986 *retval = rt;
3987 return (error);
3988 }
3989
3990 int
3991 netbsd32_getrlimit(p, v, retval)
3992 struct proc *p;
3993 void *v;
3994 register_t *retval;
3995 {
3996 struct netbsd32_getrlimit_args /* {
3997 syscallarg(int) which;
3998 syscallarg(netbsd32_rlimitp_t) rlp;
3999 } */ *uap = v;
4000 int which = SCARG(uap, which);
4001
4002 if ((u_int)which >= RLIM_NLIMITS)
4003 return (EINVAL);
4004 return (copyout(&p->p_rlimit[which], (caddr_t)(u_long)SCARG(uap, rlp),
4005 sizeof(struct rlimit)));
4006 }
4007
4008 int
4009 netbsd32_setrlimit(p, v, retval)
4010 struct proc *p;
4011 void *v;
4012 register_t *retval;
4013 {
4014 struct netbsd32_setrlimit_args /* {
4015 syscallarg(int) which;
4016 syscallarg(const netbsd32_rlimitp_t) rlp;
4017 } */ *uap = v;
4018 int which = SCARG(uap, which);
4019 struct rlimit alim;
4020 int error;
4021
4022 error = copyin((caddr_t)(u_long)SCARG(uap, rlp), &alim, sizeof(struct rlimit));
4023 if (error)
4024 return (error);
4025 return (dosetrlimit(p, p->p_cred, which, &alim));
4026 }
4027
4028 int
4029 netbsd32_mmap(p, v, retval)
4030 struct proc *p;
4031 void *v;
4032 register_t *retval;
4033 {
4034 struct netbsd32_mmap_args /* {
4035 syscallarg(netbsd32_voidp) addr;
4036 syscallarg(netbsd32_size_t) len;
4037 syscallarg(int) prot;
4038 syscallarg(int) flags;
4039 syscallarg(int) fd;
4040 syscallarg(netbsd32_long) pad;
4041 syscallarg(off_t) pos;
4042 } */ *uap = v;
4043 struct sys_mmap_args ua;
4044 void *rt;
4045 int error;
4046
4047 NETBSD32TOP_UAP(addr, void);
4048 NETBSD32TOX_UAP(len, size_t);
4049 NETBSD32TO64_UAP(prot);
4050 NETBSD32TO64_UAP(flags);
4051 NETBSD32TO64_UAP(fd);
4052 NETBSD32TOX_UAP(pad, long);
4053 NETBSD32TOX_UAP(pos, off_t);
4054 error = sys_mmap(p, &ua, (register_t *)&rt);
4055 if ((long)rt > (long)UINT_MAX)
4056 printf("netbsd32_mmap: retval out of range: 0x%qx",
4057 rt);
4058 *retval = (netbsd32_voidp)(u_long)rt;
4059 return (error);
4060 }
4061
4062 int
4063 netbsd32_lseek(p, v, retval)
4064 struct proc *p;
4065 void *v;
4066 register_t *retval;
4067 {
4068 struct netbsd32_lseek_args /* {
4069 syscallarg(int) fd;
4070 syscallarg(int) pad;
4071 syscallarg(off_t) offset;
4072 syscallarg(int) whence;
4073 } */ *uap = v;
4074 struct sys_lseek_args ua;
4075
4076 NETBSD32TO64_UAP(fd);
4077 NETBSD32TO64_UAP(pad);
4078 NETBSD32TO64_UAP(offset);
4079 NETBSD32TO64_UAP(whence);
4080 return (sys_lseek(p, &ua, retval));
4081 }
4082
4083 int
4084 netbsd32_truncate(p, v, retval)
4085 struct proc *p;
4086 void *v;
4087 register_t *retval;
4088 {
4089 struct netbsd32_truncate_args /* {
4090 syscallarg(const netbsd32_charp) path;
4091 syscallarg(int) pad;
4092 syscallarg(off_t) length;
4093 } */ *uap = v;
4094 struct sys_truncate_args ua;
4095
4096 NETBSD32TOP_UAP(path, const char);
4097 NETBSD32TO64_UAP(pad);
4098 NETBSD32TO64_UAP(length);
4099 return (sys_truncate(p, &ua, retval));
4100 }
4101
4102 int
4103 netbsd32_ftruncate(p, v, retval)
4104 struct proc *p;
4105 void *v;
4106 register_t *retval;
4107 {
4108 struct netbsd32_ftruncate_args /* {
4109 syscallarg(int) fd;
4110 syscallarg(int) pad;
4111 syscallarg(off_t) length;
4112 } */ *uap = v;
4113 struct sys_ftruncate_args ua;
4114
4115 NETBSD32TO64_UAP(fd);
4116 NETBSD32TO64_UAP(pad);
4117 NETBSD32TO64_UAP(length);
4118 return (sys_ftruncate(p, &ua, retval));
4119 }
4120
4121 int
4122 netbsd32___sysctl(p, v, retval)
4123 struct proc *p;
4124 void *v;
4125 register_t *retval;
4126 {
4127 struct netbsd32___sysctl_args /* {
4128 syscallarg(netbsd32_intp) name;
4129 syscallarg(u_int) namelen;
4130 syscallarg(netbsd32_voidp) old;
4131 syscallarg(netbsd32_size_tp) oldlenp;
4132 syscallarg(netbsd32_voidp) new;
4133 syscallarg(netbsd32_size_t) newlen;
4134 } */ *uap = v;
4135 int error;
4136 netbsd32_size_t savelen = 0;
4137 size_t oldlen = 0;
4138 sysctlfn *fn;
4139 int name[CTL_MAXNAME];
4140
4141 /*
4142 * Some of these sysctl functions do their own copyin/copyout.
4143 * We need to disable or emulate the ones that need their
4144 * arguments converted.
4145 */
4146
4147 if (SCARG(uap, new) != NULL &&
4148 (error = suser(p->p_ucred, &p->p_acflag)))
4149 return (error);
4150 /*
4151 * all top-level sysctl names are non-terminal
4152 */
4153 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
4154 return (EINVAL);
4155 error = copyin((caddr_t)(u_long)SCARG(uap, name), &name,
4156 SCARG(uap, namelen) * sizeof(int));
4157 if (error)
4158 return (error);
4159
4160 switch (name[0]) {
4161 case CTL_KERN:
4162 fn = kern_sysctl;
4163 break;
4164 case CTL_HW:
4165 fn = hw_sysctl;
4166 break;
4167 case CTL_VM:
4168 fn = uvm_sysctl;
4169 break;
4170 case CTL_NET:
4171 fn = net_sysctl;
4172 break;
4173 case CTL_VFS:
4174 fn = vfs_sysctl;
4175 break;
4176 case CTL_MACHDEP:
4177 fn = cpu_sysctl;
4178 break;
4179 #ifdef DEBUG
4180 case CTL_DEBUG:
4181 fn = debug_sysctl;
4182 break;
4183 #endif
4184 #ifdef DDB
4185 case CTL_DDB:
4186 fn = ddb_sysctl;
4187 break;
4188 #endif
4189 case CTL_PROC:
4190 fn = proc_sysctl;
4191 break;
4192 default:
4193 return (EOPNOTSUPP);
4194 }
4195
4196 /*
4197 * XXX Hey, we wire `old', but what about `new'?
4198 */
4199
4200 if (SCARG(uap, oldlenp) &&
4201 (error = copyin((caddr_t)(u_long)SCARG(uap, oldlenp), &savelen,
4202 sizeof(savelen))))
4203 return (error);
4204 if (SCARG(uap, old) != NULL) {
4205 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
4206 if (error)
4207 return (error);
4208 if (uvm_vslock(p, (void *)(u_long)SCARG(uap, old), savelen,
4209 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
4210 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
4211 return (EFAULT);
4212 }
4213 oldlen = savelen;
4214 }
4215 error = (*fn)(name + 1, SCARG(uap, namelen) - 1,
4216 (void *)(u_long)SCARG(uap, old), &oldlen,
4217 (void *)(u_long)SCARG(uap, new), SCARG(uap, newlen), p);
4218 if (SCARG(uap, old) != NULL) {
4219 uvm_vsunlock(p, (void *)(u_long)SCARG(uap, old), savelen);
4220 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
4221 }
4222 savelen = oldlen;
4223 if (error)
4224 return (error);
4225 if (SCARG(uap, oldlenp))
4226 error = copyout(&savelen,
4227 (caddr_t)(u_long)SCARG(uap, oldlenp), sizeof(savelen));
4228 return (error);
4229 }
4230
4231 int
4232 netbsd32_mlock(p, v, retval)
4233 struct proc *p;
4234 void *v;
4235 register_t *retval;
4236 {
4237 struct netbsd32_mlock_args /* {
4238 syscallarg(const netbsd32_voidp) addr;
4239 syscallarg(netbsd32_size_t) len;
4240 } */ *uap = v;
4241 struct sys_mlock_args ua;
4242
4243 NETBSD32TOP_UAP(addr, const void);
4244 NETBSD32TO64_UAP(len);
4245 return (sys_mlock(p, &ua, retval));
4246 }
4247
4248 int
4249 netbsd32_munlock(p, v, retval)
4250 struct proc *p;
4251 void *v;
4252 register_t *retval;
4253 {
4254 struct netbsd32_munlock_args /* {
4255 syscallarg(const netbsd32_voidp) addr;
4256 syscallarg(netbsd32_size_t) len;
4257 } */ *uap = v;
4258 struct sys_munlock_args ua;
4259
4260 NETBSD32TOP_UAP(addr, const void);
4261 NETBSD32TO64_UAP(len);
4262 return (sys_munlock(p, &ua, retval));
4263 }
4264
4265 int
4266 netbsd32_undelete(p, v, retval)
4267 struct proc *p;
4268 void *v;
4269 register_t *retval;
4270 {
4271 struct netbsd32_undelete_args /* {
4272 syscallarg(const netbsd32_charp) path;
4273 } */ *uap = v;
4274 struct sys_undelete_args ua;
4275
4276 NETBSD32TOP_UAP(path, const char);
4277 return (sys_undelete(p, &ua, retval));
4278 }
4279
4280 int
4281 netbsd32_futimes(p, v, retval)
4282 struct proc *p;
4283 void *v;
4284 register_t *retval;
4285 {
4286 struct netbsd32_futimes_args /* {
4287 syscallarg(int) fd;
4288 syscallarg(const netbsd32_timevalp_t) tptr;
4289 } */ *uap = v;
4290 int error;
4291 struct file *fp;
4292
4293 /* getvnode() will use the descriptor for us */
4294 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
4295 return (error);
4296
4297 error = change_utimes32((struct vnode *)fp->f_data,
4298 (struct timeval *)(u_long)SCARG(uap, tptr), p);
4299 FILE_UNUSE(fp, p);
4300 return (error);
4301 }
4302
4303 int
4304 netbsd32_getpgid(p, v, retval)
4305 struct proc *p;
4306 void *v;
4307 register_t *retval;
4308 {
4309 struct netbsd32_getpgid_args /* {
4310 syscallarg(pid_t) pid;
4311 } */ *uap = v;
4312 struct sys_getpgid_args ua;
4313
4314 NETBSD32TO64_UAP(pid);
4315 return (sys_getpgid(p, &ua, retval));
4316 }
4317
4318 int
4319 netbsd32_reboot(p, v, retval)
4320 struct proc *p;
4321 void *v;
4322 register_t *retval;
4323 {
4324 struct netbsd32_reboot_args /* {
4325 syscallarg(int) opt;
4326 syscallarg(netbsd32_charp) bootstr;
4327 } */ *uap = v;
4328 struct sys_reboot_args ua;
4329
4330 NETBSD32TO64_UAP(opt);
4331 NETBSD32TOP_UAP(bootstr, char);
4332 return (sys_reboot(p, &ua, retval));
4333 }
4334
4335 int
4336 netbsd32_poll(p, v, retval)
4337 struct proc *p;
4338 void *v;
4339 register_t *retval;
4340 {
4341 struct netbsd32_poll_args /* {
4342 syscallarg(netbsd32_pollfdp_t) fds;
4343 syscallarg(u_int) nfds;
4344 syscallarg(int) timeout;
4345 } */ *uap = v;
4346 struct sys_poll_args ua;
4347
4348 NETBSD32TOP_UAP(fds, struct pollfd);
4349 NETBSD32TO64_UAP(nfds);
4350 NETBSD32TO64_UAP(timeout);
4351 return (sys_poll(p, &ua, retval));
4352 }
4353
4354 #if defined(SYSVSEM)
4355 /*
4356 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4357 *
4358 * This is BSD. We won't support System V IPC.
4359 * Too much work.
4360 *
4361 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4362 */
4363 int
4364 netbsd32___semctl14(p, v, retval)
4365 struct proc *p;
4366 void *v;
4367 register_t *retval;
4368 {
4369 #if 0
4370 struct netbsd32___semctl_args /* {
4371 syscallarg(int) semid;
4372 syscallarg(int) semnum;
4373 syscallarg(int) cmd;
4374 syscallarg(netbsd32_semunu_t *) arg;
4375 } */ *uap = v;
4376 union netbsd32_semun sem32;
4377 int semid = SCARG(uap, semid);
4378 int semnum = SCARG(uap, semnum);
4379 int cmd = SCARG(uap, cmd);
4380 union netbsd32_semun *arg = (void*)(u_long)SCARG(uap, arg);
4381 union netbsd32_semun real_arg;
4382 struct ucred *cred = p->p_ucred;
4383 int i, rval, eval;
4384 struct netbsd32_semid_ds sbuf;
4385 struct semid_ds *semaptr;
4386
4387 semlock(p);
4388
4389 semid = IPCID_TO_IX(semid);
4390 if (semid < 0 || semid >= seminfo.semmsl)
4391 return(EINVAL);
4392
4393 semaptr = &sema[semid];
4394 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
4395 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
4396 return(EINVAL);
4397
4398 eval = 0;
4399 rval = 0;
4400
4401 switch (cmd) {
4402 case IPC_RMID:
4403 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
4404 return(eval);
4405 semaptr->sem_perm.cuid = cred->cr_uid;
4406 semaptr->sem_perm.uid = cred->cr_uid;
4407 semtot -= semaptr->sem_nsems;
4408 for (i = semaptr->_sem_base - sem; i < semtot; i++)
4409 sem[i] = sem[i + semaptr->sem_nsems];
4410 for (i = 0; i < seminfo.semmni; i++) {
4411 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
4412 sema[i]._sem_base > semaptr->_sem_base)
4413 sema[i]._sem_base -= semaptr->sem_nsems;
4414 }
4415 semaptr->sem_perm.mode = 0;
4416 semundo_clear(semid, -1);
4417 wakeup((caddr_t)semaptr);
4418 break;
4419
4420 case IPC_SET:
4421 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
4422 return(eval);
4423 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4424 return(eval);
4425 if ((eval = copyin((caddr_t)(u_long)real_arg.buf, (caddr_t)&sbuf,
4426 sizeof(sbuf))) != 0)
4427 return(eval);
4428 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
4429 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
4430 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
4431 (sbuf.sem_perm.mode & 0777);
4432 semaptr->sem_ctime = time.tv_sec;
4433 break;
4434
4435 case IPC_STAT:
4436 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4437 return(eval);
4438 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4439 return(eval);
4440 eval = copyout((caddr_t)semaptr, (caddr_t)(u_long)real_arg.buf,
4441 sizeof(struct semid_ds));
4442 break;
4443
4444 case GETNCNT:
4445 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4446 return(eval);
4447 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4448 return(EINVAL);
4449 rval = semaptr->_sem_base[semnum].semncnt;
4450 break;
4451
4452 case GETPID:
4453 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4454 return(eval);
4455 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4456 return(EINVAL);
4457 rval = semaptr->_sem_base[semnum].sempid;
4458 break;
4459
4460 case GETVAL:
4461 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4462 return(eval);
4463 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4464 return(EINVAL);
4465 rval = semaptr->_sem_base[semnum].semval;
4466 break;
4467
4468 case GETALL:
4469 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4470 return(eval);
4471 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4472 return(eval);
4473 for (i = 0; i < semaptr->sem_nsems; i++) {
4474 eval = copyout((caddr_t)&semaptr->_sem_base[i].semval,
4475 &real_arg.array[i], sizeof(real_arg.array[0]));
4476 if (eval != 0)
4477 break;
4478 }
4479 break;
4480
4481 case GETZCNT:
4482 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4483 return(eval);
4484 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4485 return(EINVAL);
4486 rval = semaptr->_sem_base[semnum].semzcnt;
4487 break;
4488
4489 case SETVAL:
4490 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4491 return(eval);
4492 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4493 return(EINVAL);
4494 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4495 return(eval);
4496 semaptr->_sem_base[semnum].semval = real_arg.val;
4497 semundo_clear(semid, semnum);
4498 wakeup((caddr_t)semaptr);
4499 break;
4500
4501 case SETALL:
4502 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4503 return(eval);
4504 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4505 return(eval);
4506 for (i = 0; i < semaptr->sem_nsems; i++) {
4507 eval = copyin(&real_arg.array[i],
4508 (caddr_t)&semaptr->_sem_base[i].semval,
4509 sizeof(real_arg.array[0]));
4510 if (eval != 0)
4511 break;
4512 }
4513 semundo_clear(semid, -1);
4514 wakeup((caddr_t)semaptr);
4515 break;
4516
4517 default:
4518 return(EINVAL);
4519 }
4520
4521 if (eval == 0)
4522 *retval = rval;
4523 return(eval);
4524 #else
4525 return (ENOSYS);
4526 #endif
4527 }
4528
4529 int
4530 netbsd32_semget(p, v, retval)
4531 struct proc *p;
4532 void *v;
4533 register_t *retval;
4534 {
4535 struct netbsd32_semget_args /* {
4536 syscallarg(netbsd32_key_t) key;
4537 syscallarg(int) nsems;
4538 syscallarg(int) semflg;
4539 } */ *uap = v;
4540 struct sys_semget_args ua;
4541
4542 NETBSD32TOX_UAP(key, key_t);
4543 NETBSD32TO64_UAP(nsems);
4544 NETBSD32TO64_UAP(semflg);
4545 return (sys_semget(p, &ua, retval));
4546 }
4547
4548 int
4549 netbsd32_semop(p, v, retval)
4550 struct proc *p;
4551 void *v;
4552 register_t *retval;
4553 {
4554 struct netbsd32_semop_args /* {
4555 syscallarg(int) semid;
4556 syscallarg(netbsd32_sembufp_t) sops;
4557 syscallarg(netbsd32_size_t) nsops;
4558 } */ *uap = v;
4559 struct sys_semop_args ua;
4560
4561 NETBSD32TO64_UAP(semid);
4562 NETBSD32TOP_UAP(sops, struct sembuf);
4563 NETBSD32TOX_UAP(nsops, size_t);
4564 return (sys_semop(p, &ua, retval));
4565 }
4566
4567 int
4568 netbsd32_semconfig(p, v, retval)
4569 struct proc *p;
4570 void *v;
4571 register_t *retval;
4572 {
4573 struct netbsd32_semconfig_args /* {
4574 syscallarg(int) flag;
4575 } */ *uap = v;
4576 struct sys_semconfig_args ua;
4577
4578 NETBSD32TO64_UAP(flag);
4579 return (sys_semconfig(p, &ua, retval));
4580 }
4581 #endif /* SYSVSEM */
4582
4583 #if defined(SYSVMSG)
4584
4585 int
4586 netbsd32___msgctl13(p, v, retval)
4587 struct proc *p;
4588 void *v;
4589 register_t *retval;
4590 {
4591 #if 0
4592 struct netbsd32_msgctl_args /* {
4593 syscallarg(int) msqid;
4594 syscallarg(int) cmd;
4595 syscallarg(netbsd32_msqid_dsp_t) buf;
4596 } */ *uap = v;
4597 struct sys_msgctl_args ua;
4598 struct msqid_ds ds;
4599 struct netbsd32_msqid_ds *ds32p;
4600 int error;
4601
4602 NETBSD32TO64_UAP(msqid);
4603 NETBSD32TO64_UAP(cmd);
4604 ds32p = (struct netbsd32_msqid_ds *)(u_long)SCARG(uap, buf);
4605 if (ds32p) {
4606 SCARG(&ua, buf) = NULL;
4607 netbsd32_to_msqid_ds(ds32p, &ds);
4608 } else
4609 SCARG(&ua, buf) = NULL;
4610 error = sys_msgctl(p, &ua, retval);
4611 if (error)
4612 return (error);
4613
4614 if (ds32p)
4615 netbsd32_from_msqid_ds(&ds, ds32p);
4616 return (0);
4617 #else
4618 return (ENOSYS);
4619 #endif
4620 }
4621
4622 int
4623 netbsd32_msgget(p, v, retval)
4624 struct proc *p;
4625 void *v;
4626 register_t *retval;
4627 {
4628 #if 0
4629 struct netbsd32_msgget_args /* {
4630 syscallarg(netbsd32_key_t) key;
4631 syscallarg(int) msgflg;
4632 } */ *uap = v;
4633 struct sys_msgget_args ua;
4634
4635 NETBSD32TOX_UAP(key, key_t);
4636 NETBSD32TO64_UAP(msgflg);
4637 return (sys_msgget(p, &ua, retval));
4638 #else
4639 return (ENOSYS);
4640 #endif
4641 }
4642
4643 int
4644 netbsd32_msgsnd(p, v, retval)
4645 struct proc *p;
4646 void *v;
4647 register_t *retval;
4648 {
4649 #if 0
4650 struct netbsd32_msgsnd_args /* {
4651 syscallarg(int) msqid;
4652 syscallarg(const netbsd32_voidp) msgp;
4653 syscallarg(netbsd32_size_t) msgsz;
4654 syscallarg(int) msgflg;
4655 } */ *uap = v;
4656 struct sys_msgsnd_args ua;
4657
4658 NETBSD32TO64_UAP(msqid);
4659 NETBSD32TOP_UAP(msgp, void);
4660 NETBSD32TOX_UAP(msgsz, size_t);
4661 NETBSD32TO64_UAP(msgflg);
4662 return (sys_msgsnd(p, &ua, retval));
4663 #else
4664 return (ENOSYS);
4665 #endif
4666 }
4667
4668 int
4669 netbsd32_msgrcv(p, v, retval)
4670 struct proc *p;
4671 void *v;
4672 register_t *retval;
4673 {
4674 #if 0
4675 struct netbsd32_msgrcv_args /* {
4676 syscallarg(int) msqid;
4677 syscallarg(netbsd32_voidp) msgp;
4678 syscallarg(netbsd32_size_t) msgsz;
4679 syscallarg(netbsd32_long) msgtyp;
4680 syscallarg(int) msgflg;
4681 } */ *uap = v;
4682 struct sys_msgrcv_args ua;
4683 ssize_t rt;
4684 int error;
4685
4686 NETBSD32TO64_UAP(msqid);
4687 NETBSD32TOP_UAP(msgp, void);
4688 NETBSD32TOX_UAP(msgsz, size_t);
4689 NETBSD32TOX_UAP(msgtyp, long);
4690 NETBSD32TO64_UAP(msgflg);
4691 error = sys_msgrcv(p, &ua, (register_t *)&rt);
4692 *retval = rt;
4693 return (error);
4694 #else
4695 return (ENOSYS);
4696 #endif
4697 }
4698 #endif /* SYSVMSG */
4699
4700 #if defined(SYSVSHM)
4701
4702 int
4703 netbsd32_shmat(p, v, retval)
4704 struct proc *p;
4705 void *v;
4706 register_t *retval;
4707 {
4708 #if 0
4709 struct netbsd32_shmat_args /* {
4710 syscallarg(int) shmid;
4711 syscallarg(const netbsd32_voidp) shmaddr;
4712 syscallarg(int) shmflg;
4713 } */ *uap = v;
4714 struct sys_shmat_args ua;
4715 void *rt;
4716 int error;
4717
4718 NETBSD32TO64_UAP(shmid);
4719 NETBSD32TOP_UAP(shmaddr, void);
4720 NETBSD32TO64_UAP(shmflg);
4721 error = sys_shmat(p, &ua, (register_t *)&rt);
4722 *retval = rt;
4723 return (error);
4724 #else
4725 return (ENOSYS);
4726 #endif
4727 }
4728
4729 int
4730 netbsd32___shmctl13(p, v, retval)
4731 struct proc *p;
4732 void *v;
4733 register_t *retval;
4734 {
4735 #if 0
4736 struct netbsd32_shmctl_args /* {
4737 syscallarg(int) shmid;
4738 syscallarg(int) cmd;
4739 syscallarg(netbsd32_shmid_dsp_t) buf;
4740 } */ *uap = v;
4741 struct sys_shmctl_args ua;
4742 struct shmid_ds ds;
4743 struct netbsd32_shmid_ds *ds32p;
4744 int error;
4745
4746 NETBSD32TO64_UAP(shmid);
4747 NETBSD32TO64_UAP(cmd);
4748 ds32p = (struct netbsd32_shmid_ds *)(u_long)SCARG(uap, buf);
4749 if (ds32p) {
4750 SCARG(&ua, buf) = NULL;
4751 netbsd32_to_shmid_ds(ds32p, &ds);
4752 } else
4753 SCARG(&ua, buf) = NULL;
4754 error = sys_shmctl(p, &ua, retval);
4755 if (error)
4756 return (error);
4757
4758 if (ds32p)
4759 netbsd32_from_shmid_ds(&ds, ds32p);
4760 return (0);
4761 #else
4762 return (ENOSYS);
4763 #endif
4764 }
4765
4766 int
4767 netbsd32_shmdt(p, v, retval)
4768 struct proc *p;
4769 void *v;
4770 register_t *retval;
4771 {
4772 #if 0
4773 struct netbsd32_shmdt_args /* {
4774 syscallarg(const netbsd32_voidp) shmaddr;
4775 } */ *uap = v;
4776 struct sys_shmdt_args ua;
4777
4778 NETBSD32TOP_UAP(shmaddr, const char);
4779 return (sys_shmdt(p, &ua, retval));
4780 #else
4781 return (ENOSYS);
4782 #endif
4783 }
4784
4785 int
4786 netbsd32_shmget(p, v, retval)
4787 struct proc *p;
4788 void *v;
4789 register_t *retval;
4790 {
4791 #if 0
4792 struct netbsd32_shmget_args /* {
4793 syscallarg(netbsd32_key_t) key;
4794 syscallarg(netbsd32_size_t) size;
4795 syscallarg(int) shmflg;
4796 } */ *uap = v;
4797 struct sys_shmget_args ua;
4798
4799 NETBSD32TOX_UAP(key, key_t)
4800 NETBSD32TOX_UAP(size, size_t)
4801 NETBSD32TO64_UAP(shmflg);
4802 return (sys_shmget(p, &ua, retval));
4803 #else
4804 return (ENOSYS);
4805 #endif
4806 }
4807 #endif /* SYSVSHM */
4808
4809 int
4810 netbsd32_clock_gettime(p, v, retval)
4811 struct proc *p;
4812 void *v;
4813 register_t *retval;
4814 {
4815 struct netbsd32_clock_gettime_args /* {
4816 syscallarg(netbsd32_clockid_t) clock_id;
4817 syscallarg(netbsd32_timespecp_t) tp;
4818 } */ *uap = v;
4819 clockid_t clock_id;
4820 struct timeval atv;
4821 struct timespec ats;
4822 struct netbsd32_timespec ts32;
4823
4824 clock_id = SCARG(uap, clock_id);
4825 if (clock_id != CLOCK_REALTIME)
4826 return (EINVAL);
4827
4828 microtime(&atv);
4829 TIMEVAL_TO_TIMESPEC(&atv,&ats);
4830 netbsd32_from_timespec(&ats, &ts32);
4831
4832 return copyout(&ts32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts32));
4833 }
4834
4835 int
4836 netbsd32_clock_settime(p, v, retval)
4837 struct proc *p;
4838 void *v;
4839 register_t *retval;
4840 {
4841 struct netbsd32_clock_settime_args /* {
4842 syscallarg(netbsd32_clockid_t) clock_id;
4843 syscallarg(const netbsd32_timespecp_t) tp;
4844 } */ *uap = v;
4845 struct netbsd32_timespec ts32;
4846 clockid_t clock_id;
4847 struct timeval atv;
4848 struct timespec ats;
4849 int error;
4850
4851 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
4852 return (error);
4853
4854 clock_id = SCARG(uap, clock_id);
4855 if (clock_id != CLOCK_REALTIME)
4856 return (EINVAL);
4857
4858 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), &ts32, sizeof(ts32))) != 0)
4859 return (error);
4860
4861 netbsd32_to_timespec(&ts32, &ats);
4862 TIMESPEC_TO_TIMEVAL(&atv,&ats);
4863 if ((error = settime(&atv)))
4864 return (error);
4865
4866 return 0;
4867 }
4868
4869 int
4870 netbsd32_clock_getres(p, v, retval)
4871 struct proc *p;
4872 void *v;
4873 register_t *retval;
4874 {
4875 struct netbsd32_clock_getres_args /* {
4876 syscallarg(netbsd32_clockid_t) clock_id;
4877 syscallarg(netbsd32_timespecp_t) tp;
4878 } */ *uap = v;
4879 struct netbsd32_timespec ts32;
4880 clockid_t clock_id;
4881 struct timespec ts;
4882 int error = 0;
4883
4884 clock_id = SCARG(uap, clock_id);
4885 if (clock_id != CLOCK_REALTIME)
4886 return (EINVAL);
4887
4888 if (SCARG(uap, tp)) {
4889 ts.tv_sec = 0;
4890 ts.tv_nsec = 1000000000 / hz;
4891
4892 netbsd32_from_timespec(&ts, &ts32);
4893 error = copyout(&ts, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts));
4894 }
4895
4896 return error;
4897 }
4898
4899 int
4900 netbsd32_nanosleep(p, v, retval)
4901 struct proc *p;
4902 void *v;
4903 register_t *retval;
4904 {
4905 struct netbsd32_nanosleep_args /* {
4906 syscallarg(const netbsd32_timespecp_t) rqtp;
4907 syscallarg(netbsd32_timespecp_t) rmtp;
4908 } */ *uap = v;
4909 static int nanowait;
4910 struct netbsd32_timespec ts32;
4911 struct timespec rqt;
4912 struct timespec rmt;
4913 struct timeval atv, utv;
4914 int error, s, timo;
4915
4916 error = copyin((caddr_t)(u_long)SCARG(uap, rqtp), (caddr_t)&ts32,
4917 sizeof(ts32));
4918 if (error)
4919 return (error);
4920
4921 netbsd32_to_timespec(&ts32, &rqt);
4922 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
4923 if (itimerfix(&atv))
4924 return (EINVAL);
4925
4926 s = splclock();
4927 timeradd(&atv,&time,&atv);
4928 timo = hzto(&atv);
4929 /*
4930 * Avoid inadvertantly sleeping forever
4931 */
4932 if (timo == 0)
4933 timo = 1;
4934 splx(s);
4935
4936 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
4937 if (error == ERESTART)
4938 error = EINTR;
4939 if (error == EWOULDBLOCK)
4940 error = 0;
4941
4942 if (SCARG(uap, rmtp)) {
4943 int error;
4944
4945 s = splclock();
4946 utv = time;
4947 splx(s);
4948
4949 timersub(&atv, &utv, &utv);
4950 if (utv.tv_sec < 0)
4951 timerclear(&utv);
4952
4953 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
4954 netbsd32_from_timespec(&rmt, &ts32);
4955 error = copyout((caddr_t)&ts32, (caddr_t)(u_long)SCARG(uap,rmtp),
4956 sizeof(ts32));
4957 if (error)
4958 return (error);
4959 }
4960
4961 return error;
4962 }
4963
4964 int
4965 netbsd32_fdatasync(p, v, retval)
4966 struct proc *p;
4967 void *v;
4968 register_t *retval;
4969 {
4970 struct netbsd32_fdatasync_args /* {
4971 syscallarg(int) fd;
4972 } */ *uap = v;
4973 struct sys_fdatasync_args ua;
4974
4975 NETBSD32TO64_UAP(fd);
4976
4977 return (sys_fdatasync(p, &ua, retval));
4978 }
4979
4980 int
4981 netbsd32___posix_rename(p, v, retval)
4982 struct proc *p;
4983 void *v;
4984 register_t *retval;
4985 {
4986 struct netbsd32___posix_rename_args /* {
4987 syscallarg(const netbsd32_charp) from;
4988 syscallarg(const netbsd32_charp) to;
4989 } */ *uap = v;
4990 struct sys___posix_rename_args ua;
4991
4992 NETBSD32TOP_UAP(from, const char);
4993 NETBSD32TOP_UAP(to, const char);
4994
4995 return (sys___posix_rename(p, &ua, retval));
4996 }
4997
4998 int
4999 netbsd32_swapctl(p, v, retval)
5000 struct proc *p;
5001 void *v;
5002 register_t *retval;
5003 {
5004 struct netbsd32_swapctl_args /* {
5005 syscallarg(int) cmd;
5006 syscallarg(const netbsd32_voidp) arg;
5007 syscallarg(int) misc;
5008 } */ *uap = v;
5009 struct sys_swapctl_args ua;
5010
5011 NETBSD32TO64_UAP(cmd);
5012 NETBSD32TOP_UAP(arg, const void);
5013 NETBSD32TO64_UAP(misc);
5014 return (sys_swapctl(p, &ua, retval));
5015 }
5016
5017 int
5018 netbsd32_getdents(p, v, retval)
5019 struct proc *p;
5020 void *v;
5021 register_t *retval;
5022 {
5023 struct netbsd32_getdents_args /* {
5024 syscallarg(int) fd;
5025 syscallarg(netbsd32_charp) buf;
5026 syscallarg(netbsd32_size_t) count;
5027 } */ *uap = v;
5028 struct file *fp;
5029 int error, done;
5030
5031 /* getvnode() will use the descriptor for us */
5032 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
5033 return (error);
5034 if ((fp->f_flag & FREAD) == 0) {
5035 error = EBADF;
5036 goto out;
5037 }
5038 error = vn_readdir(fp, (caddr_t)(u_long)SCARG(uap, buf), UIO_USERSPACE,
5039 SCARG(uap, count), &done, p, 0, 0);
5040 *retval = done;
5041 out:
5042 FILE_UNUSE(fp, p);
5043 return (error);
5044 }
5045
5046
5047 int
5048 netbsd32_minherit(p, v, retval)
5049 struct proc *p;
5050 void *v;
5051 register_t *retval;
5052 {
5053 struct netbsd32_minherit_args /* {
5054 syscallarg(netbsd32_voidp) addr;
5055 syscallarg(netbsd32_size_t) len;
5056 syscallarg(int) inherit;
5057 } */ *uap = v;
5058 struct sys_minherit_args ua;
5059
5060 NETBSD32TOP_UAP(addr, void);
5061 NETBSD32TOX_UAP(len, size_t);
5062 NETBSD32TO64_UAP(inherit);
5063 return (sys_minherit(p, &ua, retval));
5064 }
5065
5066 int
5067 netbsd32_lchmod(p, v, retval)
5068 struct proc *p;
5069 void *v;
5070 register_t *retval;
5071 {
5072 struct netbsd32_lchmod_args /* {
5073 syscallarg(const netbsd32_charp) path;
5074 syscallarg(mode_t) mode;
5075 } */ *uap = v;
5076 struct sys_lchmod_args ua;
5077
5078 NETBSD32TOP_UAP(path, const char);
5079 NETBSD32TO64_UAP(mode);
5080 return (sys_lchmod(p, &ua, retval));
5081 }
5082
5083 int
5084 netbsd32_lchown(p, v, retval)
5085 struct proc *p;
5086 void *v;
5087 register_t *retval;
5088 {
5089 struct netbsd32_lchown_args /* {
5090 syscallarg(const netbsd32_charp) path;
5091 syscallarg(uid_t) uid;
5092 syscallarg(gid_t) gid;
5093 } */ *uap = v;
5094 struct sys_lchown_args ua;
5095
5096 NETBSD32TOP_UAP(path, const char);
5097 NETBSD32TO64_UAP(uid);
5098 NETBSD32TO64_UAP(gid);
5099 return (sys_lchown(p, &ua, retval));
5100 }
5101
5102 int
5103 netbsd32_lutimes(p, v, retval)
5104 struct proc *p;
5105 void *v;
5106 register_t *retval;
5107 {
5108 struct netbsd32_lutimes_args /* {
5109 syscallarg(const netbsd32_charp) path;
5110 syscallarg(const netbsd32_timevalp_t) tptr;
5111 } */ *uap = v;
5112 int error;
5113 struct nameidata nd;
5114
5115 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, (caddr_t)(u_long)SCARG(uap, path), p);
5116 if ((error = namei(&nd)) != 0)
5117 return (error);
5118
5119 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
5120
5121 vrele(nd.ni_vp);
5122 return (error);
5123 }
5124
5125
5126 int
5127 netbsd32___msync13(p, v, retval)
5128 struct proc *p;
5129 void *v;
5130 register_t *retval;
5131 {
5132 struct netbsd32___msync13_args /* {
5133 syscallarg(netbsd32_voidp) addr;
5134 syscallarg(netbsd32_size_t) len;
5135 syscallarg(int) flags;
5136 } */ *uap = v;
5137 struct sys___msync13_args ua;
5138
5139 NETBSD32TOP_UAP(addr, void);
5140 NETBSD32TOX_UAP(len, size_t);
5141 NETBSD32TO64_UAP(flags);
5142 return (sys___msync13(p, &ua, retval));
5143 }
5144
5145 int
5146 netbsd32___stat13(p, v, retval)
5147 struct proc *p;
5148 void *v;
5149 register_t *retval;
5150 {
5151 struct netbsd32___stat13_args /* {
5152 syscallarg(const netbsd32_charp) path;
5153 syscallarg(netbsd32_statp_t) ub;
5154 } */ *uap = v;
5155 struct netbsd32_stat sb32;
5156 struct stat sb;
5157 int error;
5158 struct nameidata nd;
5159 caddr_t sg;
5160 char *path;
5161
5162 path = (char *)(u_long)SCARG(uap, path);
5163 sg = stackgap_init(p->p_emul);
5164 NETBSD32_CHECK_ALT_EXIST(p, &sg, path);
5165
5166 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5167 if ((error = namei(&nd)) != 0)
5168 return (error);
5169 error = vn_stat(nd.ni_vp, &sb, p);
5170 vput(nd.ni_vp);
5171 if (error)
5172 return (error);
5173 netbsd32_from___stat13(&sb, &sb32);
5174 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5175 return (error);
5176 }
5177
5178 int
5179 netbsd32___fstat13(p, v, retval)
5180 struct proc *p;
5181 void *v;
5182 register_t *retval;
5183 {
5184 struct netbsd32___fstat13_args /* {
5185 syscallarg(int) fd;
5186 syscallarg(netbsd32_statp_t) sb;
5187 } */ *uap = v;
5188 int fd = SCARG(uap, fd);
5189 struct filedesc *fdp = p->p_fd;
5190 struct file *fp;
5191 struct netbsd32_stat sb32;
5192 struct stat ub;
5193 int error = 0;
5194
5195 if ((u_int)fd >= fdp->fd_nfiles ||
5196 (fp = fdp->fd_ofiles[fd]) == NULL)
5197 return (EBADF);
5198 switch (fp->f_type) {
5199
5200 case DTYPE_VNODE:
5201 error = vn_stat((struct vnode *)fp->f_data, &ub, p);
5202 break;
5203
5204 case DTYPE_SOCKET:
5205 error = soo_stat((struct socket *)fp->f_data, &ub);
5206 break;
5207
5208 default:
5209 panic("fstat");
5210 /*NOTREACHED*/
5211 }
5212 if (error == 0) {
5213 netbsd32_from___stat13(&ub, &sb32);
5214 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, sb), sizeof(sb32));
5215 }
5216 return (error);
5217 }
5218
5219 int
5220 netbsd32___lstat13(p, v, retval)
5221 struct proc *p;
5222 void *v;
5223 register_t *retval;
5224 {
5225 struct netbsd32___lstat13_args /* {
5226 syscallarg(const netbsd32_charp) path;
5227 syscallarg(netbsd32_statp_t) ub;
5228 } */ *uap = v;
5229 struct netbsd32_stat sb32;
5230 struct stat sb;
5231 int error;
5232 struct nameidata nd;
5233 caddr_t sg;
5234 char *path;
5235
5236 path = (char *)(u_long)SCARG(uap, path);
5237 sg = stackgap_init(p->p_emul);
5238 NETBSD32_CHECK_ALT_EXIST(p, &sg, path);
5239
5240 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5241 if ((error = namei(&nd)) != 0)
5242 return (error);
5243 error = vn_stat(nd.ni_vp, &sb, p);
5244 vput(nd.ni_vp);
5245 if (error)
5246 return (error);
5247 netbsd32_from___stat13(&sb, &sb32);
5248 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5249 return (error);
5250 }
5251
5252 int
5253 netbsd32___sigaltstack14(p, v, retval)
5254 struct proc *p;
5255 void *v;
5256 register_t *retval;
5257 {
5258 struct netbsd32___sigaltstack14_args /* {
5259 syscallarg(const netbsd32_sigaltstackp_t) nss;
5260 syscallarg(netbsd32_sigaltstackp_t) oss;
5261 } */ *uap = v;
5262 struct netbsd32_sigaltstack s32;
5263 struct sigaltstack nss, oss;
5264 int error;
5265
5266 if (SCARG(uap, nss)) {
5267 error = copyin((caddr_t)(u_long)SCARG(uap, nss), &s32, sizeof(s32));
5268 if (error)
5269 return (error);
5270 nss.ss_sp = (void *)(u_long)s32.ss_sp;
5271 nss.ss_size = (size_t)s32.ss_size;
5272 nss.ss_flags = s32.ss_flags;
5273 }
5274 error = sigaltstack1(p,
5275 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
5276 if (error)
5277 return (error);
5278 if (SCARG(uap, oss)) {
5279 s32.ss_sp = (netbsd32_voidp)(u_long)oss.ss_sp;
5280 s32.ss_size = (netbsd32_size_t)oss.ss_size;
5281 s32.ss_flags = oss.ss_flags;
5282 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, oss), sizeof(s32));
5283 if (error)
5284 return (error);
5285 }
5286 return (0);
5287 }
5288
5289 int
5290 netbsd32___posix_chown(p, v, retval)
5291 struct proc *p;
5292 void *v;
5293 register_t *retval;
5294 {
5295 struct netbsd32___posix_chown_args /* {
5296 syscallarg(const netbsd32_charp) path;
5297 syscallarg(uid_t) uid;
5298 syscallarg(gid_t) gid;
5299 } */ *uap = v;
5300 struct sys___posix_chown_args ua;
5301
5302 NETBSD32TOP_UAP(path, const char);
5303 NETBSD32TO64_UAP(uid);
5304 NETBSD32TO64_UAP(gid);
5305 return (sys___posix_chown(p, &ua, retval));
5306 }
5307
5308 int
5309 netbsd32___posix_fchown(p, v, retval)
5310 struct proc *p;
5311 void *v;
5312 register_t *retval;
5313 {
5314 struct netbsd32___posix_fchown_args /* {
5315 syscallarg(int) fd;
5316 syscallarg(uid_t) uid;
5317 syscallarg(gid_t) gid;
5318 } */ *uap = v;
5319 struct sys___posix_fchown_args ua;
5320
5321 NETBSD32TO64_UAP(fd);
5322 NETBSD32TO64_UAP(uid);
5323 NETBSD32TO64_UAP(gid);
5324 return (sys___posix_fchown(p, &ua, retval));
5325 }
5326
5327 int
5328 netbsd32___posix_lchown(p, v, retval)
5329 struct proc *p;
5330 void *v;
5331 register_t *retval;
5332 {
5333 struct netbsd32___posix_lchown_args /* {
5334 syscallarg(const netbsd32_charp) path;
5335 syscallarg(uid_t) uid;
5336 syscallarg(gid_t) gid;
5337 } */ *uap = v;
5338 struct sys___posix_lchown_args ua;
5339
5340 NETBSD32TOP_UAP(path, const char);
5341 NETBSD32TO64_UAP(uid);
5342 NETBSD32TO64_UAP(gid);
5343 return (sys___posix_lchown(p, &ua, retval));
5344 }
5345
5346 int
5347 netbsd32_getsid(p, v, retval)
5348 struct proc *p;
5349 void *v;
5350 register_t *retval;
5351 {
5352 struct netbsd32_getsid_args /* {
5353 syscallarg(pid_t) pid;
5354 } */ *uap = v;
5355 struct sys_getsid_args ua;
5356
5357 NETBSD32TO64_UAP(pid);
5358 return (sys_getsid(p, &ua, retval));
5359 }
5360
5361 int
5362 netbsd32_fktrace(p, v, retval)
5363 struct proc *p;
5364 void *v;
5365 register_t *retval;
5366 {
5367 struct netbsd32_fktrace_args /* {
5368 syscallarg(const int) fd;
5369 syscallarg(int) ops;
5370 syscallarg(int) facs;
5371 syscallarg(int) pid;
5372 } */ *uap = v;
5373 struct sys_fktrace_args ua;
5374
5375 NETBSD32TOX_UAP(fd, int);
5376 NETBSD32TO64_UAP(ops);
5377 NETBSD32TO64_UAP(facs);
5378 NETBSD32TO64_UAP(pid);
5379 return (sys_fktrace(p, &ua, retval));
5380 }
5381
5382 int
5383 netbsd32_preadv(p, v, retval)
5384 struct proc *p;
5385 void *v;
5386 register_t *retval;
5387 {
5388 struct netbsd32_preadv_args /* {
5389 syscallarg(int) fd;
5390 syscallarg(const netbsd32_iovecp_t) iovp;
5391 syscallarg(int) iovcnt;
5392 syscallarg(int) pad;
5393 syscallarg(off_t) offset;
5394 } */ *uap = v;
5395 struct filedesc *fdp = p->p_fd;
5396 struct file *fp;
5397 struct vnode *vp;
5398 off_t offset;
5399 int error, fd = SCARG(uap, fd);
5400
5401 if ((u_int)fd >= fdp->fd_nfiles ||
5402 (fp = fdp->fd_ofiles[fd]) == NULL ||
5403 (fp->f_flag & FREAD) == 0)
5404 return (EBADF);
5405
5406 vp = (struct vnode *)fp->f_data;
5407 if (fp->f_type != DTYPE_VNODE
5408 || vp->v_type == VFIFO)
5409 return (ESPIPE);
5410
5411 offset = SCARG(uap, offset);
5412
5413 /*
5414 * XXX This works because no file systems actually
5415 * XXX take any action on the seek operation.
5416 */
5417 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5418 return (error);
5419
5420 return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5421 &offset, 0, retval));
5422 }
5423
5424 int
5425 netbsd32_pwritev(p, v, retval)
5426 struct proc *p;
5427 void *v;
5428 register_t *retval;
5429 {
5430 struct netbsd32_pwritev_args /* {
5431 syscallarg(int) fd;
5432 syscallarg(const netbsd32_iovecp_t) iovp;
5433 syscallarg(int) iovcnt;
5434 syscallarg(int) pad;
5435 syscallarg(off_t) offset;
5436 } */ *uap = v;
5437 struct filedesc *fdp = p->p_fd;
5438 struct file *fp;
5439 struct vnode *vp;
5440 off_t offset;
5441 int error, fd = SCARG(uap, fd);
5442
5443 if ((u_int)fd >= fdp->fd_nfiles ||
5444 (fp = fdp->fd_ofiles[fd]) == NULL ||
5445 (fp->f_flag & FWRITE) == 0)
5446 return (EBADF);
5447
5448 vp = (struct vnode *)fp->f_data;
5449 if (fp->f_type != DTYPE_VNODE
5450 || vp->v_type == VFIFO)
5451 return (ESPIPE);
5452
5453 offset = SCARG(uap, offset);
5454
5455 /*
5456 * XXX This works because no file systems actually
5457 * XXX take any action on the seek operation.
5458 */
5459 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5460 return (error);
5461
5462 return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5463 &offset, 0, retval));
5464 }
5465
5466 /* ARGSUSED */
5467 int
5468 netbsd32___sigaction14(p, v, retval)
5469 struct proc *p;
5470 void *v;
5471 register_t *retval;
5472 {
5473 struct netbsd32___sigaction14_args /* {
5474 syscallarg(int) signum;
5475 syscallarg(const struct sigaction *) nsa;
5476 syscallarg(struct sigaction *) osa;
5477 } */ *uap = v;
5478 struct netbsd32_sigaction sa32;
5479 struct sigaction nsa, osa;
5480 int error;
5481
5482 if (SCARG(uap, nsa)) {
5483 error = copyin((caddr_t)(u_long)SCARG(uap, nsa),
5484 &sa32, sizeof(sa32));
5485 if (error)
5486 return (error);
5487 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
5488 nsa.sa_mask = sa32.sa_mask;
5489 nsa.sa_flags = sa32.sa_flags;
5490 }
5491 error = sigaction1(p, SCARG(uap, signum),
5492 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0);
5493 if (error)
5494 return (error);
5495 if (SCARG(uap, osa)) {
5496 sa32.sa_handler = (netbsd32_voidp)(u_long)osa.sa_handler;
5497 sa32.sa_mask = osa.sa_mask;
5498 sa32.sa_flags = osa.sa_flags;
5499 error = copyout(&sa32, (caddr_t)(u_long)SCARG(uap, osa), sizeof(sa32));
5500 if (error)
5501 return (error);
5502 }
5503 return (0);
5504 }
5505
5506 int netbsd32___sigpending14(p, v, retval)
5507 struct proc *p;
5508 void *v;
5509 register_t *retval;
5510 {
5511 struct netbsd32___sigpending14_args /* {
5512 syscallarg(sigset_t *) set;
5513 } */ *uap = v;
5514 struct sys___sigpending14_args ua;
5515
5516 NETBSD32TOP_UAP(set, sigset_t);
5517 return (sys___sigpending14(p, &ua, retval));
5518 }
5519
5520 int netbsd32___sigprocmask14(p, v, retval)
5521 struct proc *p;
5522 void *v;
5523 register_t *retval;
5524 {
5525 struct netbsd32___sigprocmask14_args /* {
5526 syscallarg(int) how;
5527 syscallarg(const sigset_t *) set;
5528 syscallarg(sigset_t *) oset;
5529 } */ *uap = v;
5530 struct sys___sigprocmask14_args ua;
5531
5532 NETBSD32TO64_UAP(how);
5533 NETBSD32TOP_UAP(set, sigset_t);
5534 NETBSD32TOP_UAP(oset, sigset_t);
5535 return (sys___sigprocmask14(p, &ua, retval));
5536 }
5537
5538 int netbsd32___sigsuspend14(p, v, retval)
5539 struct proc *p;
5540 void *v;
5541 register_t *retval;
5542 {
5543 struct netbsd32___sigsuspend14_args /* {
5544 syscallarg(const sigset_t *) set;
5545 } */ *uap = v;
5546 struct sys___sigsuspend14_args ua;
5547
5548 NETBSD32TOP_UAP(set, sigset_t);
5549 return (sys___sigsuspend14(p, &ua, retval));
5550 };
5551
5552
5553 /*
5554 * Find pathname of process's current directory.
5555 *
5556 * Use vfs vnode-to-name reverse cache; if that fails, fall back
5557 * to reading directory contents.
5558 */
5559 int
5560 getcwd_common __P((struct vnode *, struct vnode *,
5561 char **, char *, int, int, struct proc *));
5562
5563 int netbsd32___getcwd(p, v, retval)
5564 struct proc *p;
5565 void *v;
5566 register_t *retval;
5567 {
5568 struct netbsd32___getcwd_args /* {
5569 syscallarg(char *) bufp;
5570 syscallarg(size_t) length;
5571 } */ *uap = v;
5572
5573 int error;
5574 char *path;
5575 char *bp, *bend;
5576 int len = (int)SCARG(uap, length);
5577 int lenused;
5578
5579 if (len > MAXPATHLEN*4)
5580 len = MAXPATHLEN*4;
5581 else if (len < 2)
5582 return ERANGE;
5583
5584 path = (char *)malloc(len, M_TEMP, M_WAITOK);
5585 if (!path)
5586 return ENOMEM;
5587
5588 bp = &path[len];
5589 bend = bp;
5590 *(--bp) = '\0';
5591
5592 /*
5593 * 5th argument here is "max number of vnodes to traverse".
5594 * Since each entry takes up at least 2 bytes in the output buffer,
5595 * limit it to N/2 vnodes for an N byte buffer.
5596 */
5597 #define GETCWD_CHECK_ACCESS 0x0001
5598 error = getcwd_common (p->p_cwdi->cwdi_cdir, NULL, &bp, path, len/2,
5599 GETCWD_CHECK_ACCESS, p);
5600
5601 if (error)
5602 goto out;
5603 lenused = bend - bp;
5604 *retval = lenused;
5605 /* put the result into user buffer */
5606 error = copyout(bp, (caddr_t)(u_long)SCARG(uap, bufp), lenused);
5607
5608 out:
5609 free(path, M_TEMP);
5610 return error;
5611 }
5612
5613 int netbsd32_fchroot(p, v, retval)
5614 struct proc *p;
5615 void *v;
5616 register_t *retval;
5617 {
5618 struct netbsd32_fchroot_args /* {
5619 syscallarg(int) fd;
5620 } */ *uap = v;
5621 struct sys_fchroot_args ua;
5622
5623 NETBSD32TO64_UAP(fd);
5624 return (sys_fchroot(p, &ua, retval));
5625 }
5626
5627 /*
5628 * Open a file given a file handle.
5629 *
5630 * Check permissions, allocate an open file structure,
5631 * and call the device open routine if any.
5632 */
5633 int
5634 netbsd32_fhopen(p, v, retval)
5635 struct proc *p;
5636 void *v;
5637 register_t *retval;
5638 {
5639 struct netbsd32_fhopen_args /* {
5640 syscallarg(const fhandle_t *) fhp;
5641 syscallarg(int) flags;
5642 } */ *uap = v;
5643 struct sys_fhopen_args ua;
5644
5645 NETBSD32TOP_UAP(fhp, fhandle_t);
5646 NETBSD32TO64_UAP(flags);
5647 return (sys_fhopen(p, &ua, retval));
5648 }
5649
5650 int netbsd32_fhstat(p, v, retval)
5651 struct proc *p;
5652 void *v;
5653 register_t *retval;
5654 {
5655 struct netbsd32_fhstat_args /* {
5656 syscallarg(const netbsd32_fhandlep_t) fhp;
5657 syscallarg(struct stat *) sb;
5658 } */ *uap = v;
5659 struct sys_fhstat_args ua;
5660
5661 NETBSD32TOP_UAP(fhp, const fhandle_t);
5662 NETBSD32TOP_UAP(sb, struct stat);
5663 return (sys_fhstat(p, &ua, retval));
5664 }
5665
5666 int netbsd32_fhstatfs(p, v, retval)
5667 struct proc *p;
5668 void *v;
5669 register_t *retval;
5670 {
5671 struct netbsd32_fhstatfs_args /* {
5672 syscallarg(const netbsd32_fhandlep_t) fhp;
5673 syscallarg(struct statfs *) buf;
5674 } */ *uap = v;
5675 struct sys_fhstatfs_args ua;
5676
5677 NETBSD32TOP_UAP(fhp, const fhandle_t);
5678 NETBSD32TOP_UAP(buf, struct statfs);
5679 return (sys_fhstatfs(p, &ua, retval));
5680 }
5681
5682 /* virtual memory syscalls */
5683 int
5684 netbsd32_ovadvise(p, v, retval)
5685 struct proc *p;
5686 void *v;
5687 register_t *retval;
5688 {
5689 struct netbsd32_ovadvise_args /* {
5690 syscallarg(int) anom;
5691 } */ *uap = v;
5692 struct sys_ovadvise_args ua;
5693
5694 NETBSD32TO64_UAP(anom);
5695 return (sys_ovadvise(p, &ua, retval));
5696 }
5697
5698