netbsd32_netbsd.c revision 1.6 1 /* $NetBSD: netbsd32_netbsd.c,v 1.6 1998/10/01 14:27:57 eeh Exp $ */
2
3 /*
4 * Copyright (c) 1998 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include "opt_ktrace.h"
32 #include "opt_ntp.h"
33 #include "fs_lfs.h"
34 #include "fs_nfs.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/ipc.h>
40 #include <sys/msg.h>
41 #include <sys/sem.h>
42 #include <sys/shm.h>
43 #include <sys/malloc.h>
44 #include <sys/mount.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/socketvar.h>
48 #include <sys/mbuf.h>
49 #include <sys/stat.h>
50 #include <sys/time.h>
51 #include <sys/timex.h>
52 #include <sys/signalvar.h>
53 #include <sys/wait.h>
54 #include <sys/ptrace.h>
55 #include <sys/ktrace.h>
56 #include <sys/trace.h>
57 #include <sys/resourcevar.h>
58 #include <sys/pool.h>
59 #include <sys/vnode.h>
60 #include <sys/file.h>
61 #include <sys/filedesc.h>
62 #include <sys/namei.h>
63
64 #include <vm/vm.h>
65 #include <sys/syscallargs.h>
66 #include <sys/proc.h>
67 #include <sys/sysctl.h>
68
69 #include <net/if.h>
70
71 #include <compat/sparc32/sparc32.h>
72 #include <compat/sparc32/sparc32_syscallargs.h>
73
74 #include <machine/frame.h>
75
76 static __inline void sparc32_from_timeval __P((struct timeval *, struct sparc32_timeval *));
77 static __inline void sparc32_to_timeval __P((struct sparc32_timeval *, struct timeval *));
78 static __inline void sparc32_from_itimerval __P((struct itimerval *, struct sparc32_itimerval *));
79 static __inline void sparc32_to_itimerval __P((struct sparc32_itimerval *, struct itimerval *));
80 static __inline void sparc32_to_timespec __P((struct sparc32_timespec *, struct timespec *));
81 static __inline void sparc32_from_timespec __P((struct timespec *, struct sparc32_timespec *));
82 static __inline void sparc32_from_rusage __P((struct rusage *, struct sparc32_rusage *));
83 static __inline void sparc32_to_rusage __P((struct sparc32_rusage *, struct rusage *));
84 static __inline int sparc32_to_iovecin __P((struct sparc32_iovec *, struct iovec *, int));
85 static __inline void sparc32_to_msghdr __P((struct sparc32_msghdr *, struct msghdr *));
86 static __inline void sparc32_from_msghdr __P((struct sparc32_msghdr *, struct msghdr *));
87 static __inline void sparc32_from_statfs __P((struct statfs *, struct sparc32_statfs *));
88 static __inline void sparc32_from_timex __P((struct timex *, struct sparc32_timex *));
89 static __inline void sparc32_to_timex __P((struct sparc32_timex *, struct timex *));
90 static __inline void sparc32_from___stat13 __P((struct stat *, struct sparc32_stat *));
91 static __inline void sparc32_to_ipc_perm __P((struct sparc32_ipc_perm *, struct ipc_perm *));
92 static __inline void sparc32_from_ipc_perm __P((struct ipc_perm *, struct sparc32_ipc_perm *));
93 static __inline void sparc32_to_msg __P((struct sparc32_msg *, struct msg *));
94 static __inline void sparc32_from_msg __P((struct msg *, struct sparc32_msg *));
95 static __inline void sparc32_to_msqid_ds __P((struct sparc32_msqid_ds *, struct msqid_ds *));
96 static __inline void sparc32_from_msqid_ds __P((struct msqid_ds *, struct sparc32_msqid_ds *));
97 static __inline void sparc32_to_shmid_ds __P((struct sparc32_shmid_ds *, struct shmid_ds *));
98 static __inline void sparc32_from_shmid_ds __P((struct shmid_ds *, struct sparc32_shmid_ds *));
99 static __inline void sparc32_to_semid_ds __P((struct sparc32_semid_ds *, struct semid_ds *));
100 static __inline void sparc32_from_semid_ds __P((struct semid_ds *, struct sparc32_semid_ds *));
101
102
103 static int recvit32 __P((struct proc *, int, struct sparc32_msghdr *, struct iovec *, caddr_t,
104 register_t *));
105 static int dofilereadv32 __P((struct proc *, int, struct file *, struct sparc32_iovec *,
106 int, off_t *, int, register_t *));
107 static int dofilewritev32 __P((struct proc *, int, struct file *, struct sparc32_iovec *,
108 int, off_t *, int, register_t *));
109 static int change_utimes32 __P((struct vnode *, struct timeval *, struct proc *));
110
111 /* converters for structures that we need */
112 static __inline void
113 sparc32_from_timeval(tv, tv32)
114 struct timeval *tv;
115 struct sparc32_timeval *tv32;
116 {
117
118 tv32->tv_sec = (sparc32_long)tv->tv_sec;
119 tv32->tv_usec = (sparc32_long)tv->tv_usec;
120 }
121
122 static __inline void
123 sparc32_to_timeval(tv32, tv)
124 struct sparc32_timeval *tv32;
125 struct timeval *tv;
126 {
127
128 tv->tv_sec = (long)tv32->tv_sec;
129 tv->tv_usec = (long)tv32->tv_usec;
130 }
131
132 static __inline void
133 sparc32_from_itimerval(itv, itv32)
134 struct itimerval *itv;
135 struct sparc32_itimerval *itv32;
136 {
137
138 sparc32_from_timeval(&itv->it_interval,
139 &itv32->it_interval);
140 sparc32_from_timeval(&itv->it_value,
141 &itv32->it_value);
142 }
143
144 static __inline void
145 sparc32_to_itimerval(itv32, itv)
146 struct sparc32_itimerval *itv32;
147 struct itimerval *itv;
148 {
149
150 sparc32_to_timeval(&itv32->it_interval, &itv->it_interval);
151 sparc32_to_timeval(&itv32->it_value, &itv->it_value);
152 }
153
154 static __inline void
155 sparc32_to_timespec(s32p, p)
156 struct sparc32_timespec *s32p;
157 struct timespec *p;
158 {
159
160 p->tv_sec = s32p->tv_sec;
161 p->tv_nsec = (long)s32p->tv_nsec;
162 }
163
164 static __inline void
165 sparc32_from_timespec(p, s32p)
166 struct timespec *p;
167 struct sparc32_timespec *s32p;
168 {
169
170 s32p->tv_sec = p->tv_sec;
171 s32p->tv_nsec = (sparc32_long)p->tv_nsec;
172 }
173
174 static __inline void
175 sparc32_from_rusage(rup, ru32p)
176 struct rusage *rup;
177 struct sparc32_rusage *ru32p;
178 {
179
180 sparc32_from_timeval(&rup->ru_utime, &ru32p->ru_utime);
181 sparc32_from_timeval(&rup->ru_stime, &ru32p->ru_stime);
182 #define C(var) ru32p->var = (sparc32_long)rup->var
183 C(ru_maxrss);
184 C(ru_ixrss);
185 C(ru_idrss);
186 C(ru_isrss);
187 C(ru_minflt);
188 C(ru_majflt);
189 C(ru_nswap);
190 C(ru_inblock);
191 C(ru_oublock);
192 C(ru_msgsnd);
193 C(ru_msgrcv);
194 C(ru_nsignals);
195 C(ru_nvcsw);
196 C(ru_nivcsw);
197 #undef C
198 }
199
200 static __inline void
201 sparc32_to_rusage(ru32p, rup)
202 struct sparc32_rusage *ru32p;
203 struct rusage *rup;
204 {
205
206 sparc32_to_timeval(&ru32p->ru_utime, &rup->ru_utime);
207 sparc32_to_timeval(&ru32p->ru_stime, &rup->ru_stime);
208 #define C(var) rup->var = (long)ru32p->var
209 C(ru_maxrss);
210 C(ru_ixrss);
211 C(ru_idrss);
212 C(ru_isrss);
213 C(ru_minflt);
214 C(ru_majflt);
215 C(ru_nswap);
216 C(ru_inblock);
217 C(ru_oublock);
218 C(ru_msgsnd);
219 C(ru_msgrcv);
220 C(ru_nsignals);
221 C(ru_nvcsw);
222 C(ru_nivcsw);
223 #undef C
224 }
225
226 static __inline int
227 sparc32_to_iovecin(iov32p, iovp, len)
228 struct sparc32_iovec *iov32p;
229 struct iovec *iovp;
230 int len;
231 {
232 int i, error=0;
233 u_int32_t iov_base;
234 u_int32_t iov_len;
235 /*
236 * We could allocate an iov32p, do a copyin, and translate
237 * each field and then free it all up, or we could copyin
238 * each field separately. I'm doing the latter to reduce
239 * the number of MALLOC()s.
240 */
241 printf("converting iovec at %p len %lx to %p\n", iov32p, len, iovp);
242 for (i = 0; i < len; i++, iovp++, iov32p++) {
243 if ((error = copyin((caddr_t)&iov32p->iov_base, &iov_base, sizeof(iov_base))))
244 return (error);
245 if ((error = copyin((caddr_t)&iov32p->iov_len, &iov_len, sizeof(iov_len))))
246 return (error);
247 iovp->iov_base = (void *)(u_long)iov_base;
248 iovp->iov_len = (size_t)iov_len;
249 printf("iovec slot %d base %p len %lx\n", i, iovp->iov_base, iovp->iov_len);
250 }
251 }
252
253 /* msg_iov must be done separately */
254 static __inline void
255 sparc32_to_msghdr(mhp32, mhp)
256 struct sparc32_msghdr *mhp32;
257 struct msghdr *mhp;
258 {
259
260 mhp->msg_name = (caddr_t)(u_long)mhp32->msg_name;
261 mhp->msg_namelen = mhp32->msg_namelen;
262 mhp->msg_iovlen = (size_t)mhp32->msg_iovlen;
263 mhp->msg_control = (caddr_t)(u_long)mhp32->msg_control;
264 mhp->msg_controllen = mhp32->msg_controllen;
265 mhp->msg_flags = mhp32->msg_flags;
266 }
267
268 /* msg_iov must be done separately */
269 static __inline void
270 sparc32_from_msghdr(mhp32, mhp)
271 struct sparc32_msghdr *mhp32;
272 struct msghdr *mhp;
273 {
274
275 mhp32->msg_name = mhp32->msg_name;
276 mhp32->msg_namelen = mhp32->msg_namelen;
277 mhp32->msg_iovlen = mhp32->msg_iovlen;
278 mhp32->msg_control = mhp32->msg_control;
279 mhp32->msg_controllen = mhp->msg_controllen;
280 mhp32->msg_flags = mhp->msg_flags;
281 }
282
283 static __inline void
284 sparc32_from_statfs(sbp, sb32p)
285 struct statfs *sbp;
286 struct sparc32_statfs *sb32p;
287 {
288
289 sb32p->f_type = sbp->f_type;
290 sb32p->f_flags = sbp->f_flags;
291 sb32p->f_bsize = (sparc32_long)sbp->f_bsize;
292 sb32p->f_iosize = (sparc32_long)sbp->f_iosize;
293 sb32p->f_blocks = (sparc32_long)sbp->f_blocks;
294 sb32p->f_bfree = (sparc32_long)sbp->f_bfree;
295 sb32p->f_bavail = (sparc32_long)sbp->f_bavail;
296 sb32p->f_files = (sparc32_long)sbp->f_files;
297 sb32p->f_ffree = (sparc32_long)sbp->f_ffree;
298 sb32p->f_fsid = sbp->f_fsid;
299 sb32p->f_owner = sbp->f_owner;
300 sb32p->f_spare[0] = 0;
301 sb32p->f_spare[1] = 0;
302 sb32p->f_spare[2] = 0;
303 sb32p->f_spare[3] = 0;
304 #if 1
305 /* May as well do the whole batch in one go */
306 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN+MNAMELEN+MNAMELEN);
307 #else
308 /* If we want to be careful */
309 memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN);
310 memcpy(sb32p->f_mntonname, sbp->f_mntonname, MNAMELEN);
311 memcpy(sb32p->f_mntfromname, sbp->f_mntfromname, MNAMELEN);
312 #endif
313 }
314
315 static __inline void
316 sparc32_from_timex(txp, tx32p)
317 struct timex *txp;
318 struct sparc32_timex *tx32p;
319 {
320
321 tx32p->modes = txp->modes;
322 tx32p->offset = (sparc32_long)txp->offset;
323 tx32p->freq = (sparc32_long)txp->freq;
324 tx32p->maxerror = (sparc32_long)txp->maxerror;
325 tx32p->esterror = (sparc32_long)txp->esterror;
326 tx32p->status = txp->status;
327 tx32p->constant = (sparc32_long)txp->constant;
328 tx32p->precision = (sparc32_long)txp->precision;
329 tx32p->tolerance = (sparc32_long)txp->tolerance;
330 tx32p->ppsfreq = (sparc32_long)txp->ppsfreq;
331 tx32p->jitter = (sparc32_long)txp->jitter;
332 tx32p->shift = txp->shift;
333 tx32p->stabil = (sparc32_long)txp->stabil;
334 tx32p->jitcnt = (sparc32_long)txp->jitcnt;
335 tx32p->calcnt = (sparc32_long)txp->calcnt;
336 tx32p->errcnt = (sparc32_long)txp->errcnt;
337 tx32p->stbcnt = (sparc32_long)txp->stbcnt;
338 }
339
340 static __inline void
341 sparc32_to_timex(tx32p, txp)
342 struct sparc32_timex *tx32p;
343 struct timex *txp;
344 {
345
346 txp->modes = tx32p->modes;
347 txp->offset = (long)tx32p->offset;
348 txp->freq = (long)tx32p->freq;
349 txp->maxerror = (long)tx32p->maxerror;
350 txp->esterror = (long)tx32p->esterror;
351 txp->status = tx32p->status;
352 txp->constant = (long)tx32p->constant;
353 txp->precision = (long)tx32p->precision;
354 txp->tolerance = (long)tx32p->tolerance;
355 txp->ppsfreq = (long)tx32p->ppsfreq;
356 txp->jitter = (long)tx32p->jitter;
357 txp->shift = tx32p->shift;
358 txp->stabil = (long)tx32p->stabil;
359 txp->jitcnt = (long)tx32p->jitcnt;
360 txp->calcnt = (long)tx32p->calcnt;
361 txp->errcnt = (long)tx32p->errcnt;
362 txp->stbcnt = (long)tx32p->stbcnt;
363 }
364
365 static __inline void
366 sparc32_from___stat13(sbp, sb32p)
367 struct stat *sbp;
368 struct sparc32_stat *sb32p;
369 {
370 sb32p->st_dev = sbp->st_dev;
371 sb32p->st_ino = sbp->st_ino;
372 sb32p->st_mode = sbp->st_mode;
373 sb32p->st_nlink = sbp->st_nlink;
374 sb32p->st_uid = sbp->st_uid;
375 sb32p->st_gid = sbp->st_gid;
376 sb32p->st_rdev = sbp->st_rdev;
377 if (sbp->st_size < (quad_t)1 << 32)
378 sb32p->st_size = sbp->st_size;
379 else
380 sb32p->st_size = -2;
381 sb32p->st_atimespec.tv_sec = sbp->st_atimespec.tv_sec;
382 sb32p->st_atimespec.tv_nsec = (sparc32_long)sbp->st_atimespec.tv_nsec;
383 sb32p->st_mtimespec.tv_sec = sbp->st_mtimespec.tv_sec;
384 sb32p->st_mtimespec.tv_nsec = (sparc32_long)sbp->st_mtimespec.tv_nsec;
385 sb32p->st_ctimespec.tv_sec = sbp->st_ctimespec.tv_sec;
386 sb32p->st_ctimespec.tv_nsec = (sparc32_long)sbp->st_ctimespec.tv_nsec;
387 sb32p->st_blksize = sbp->st_blksize;
388 sb32p->st_blocks = sbp->st_blocks;
389 sb32p->st_flags = sbp->st_flags;
390 sb32p->st_gen = sbp->st_gen;
391 }
392
393 static __inline void
394 sparc32_to_ipc_perm(ip32p, ipp)
395 struct sparc32_ipc_perm *ip32p;
396 struct ipc_perm *ipp;
397 {
398
399 ipp->cuid = ip32p->cuid;
400 ipp->cgid = ip32p->cgid;
401 ipp->uid = ip32p->uid;
402 ipp->gid = ip32p->gid;
403 ipp->mode = ip32p->mode;
404 ipp->seq = ip32p->seq;
405 ipp->key = (key_t)ip32p->key;
406 }
407
408 static __inline void
409 sparc32_from_ipc_perm(ipp, ip32p)
410 struct ipc_perm *ipp;
411 struct sparc32_ipc_perm *ip32p;
412 {
413
414 ip32p->cuid = ipp->cuid;
415 ip32p->cgid = ipp->cgid;
416 ip32p->uid = ipp->uid;
417 ip32p->gid = ipp->gid;
418 ip32p->mode = ipp->mode;
419 ip32p->seq = ipp->seq;
420 ip32p->key = (sparc32_key_t)ipp->key;
421 }
422
423 static __inline void
424 sparc32_to_msg(m32p, mp)
425 struct sparc32_msg *m32p;
426 struct msg *mp;
427 {
428
429 mp->msg_next = (struct msg *)(u_long)m32p->msg_next;
430 mp->msg_type = (long)m32p->msg_type;
431 mp->msg_ts = m32p->msg_ts;
432 mp->msg_spot = m32p->msg_spot;
433 }
434
435 static __inline void
436 sparc32_from_msg(mp, m32p)
437 struct msg *mp;
438 struct sparc32_msg *m32p;
439 {
440
441 m32p->msg_next = (sparc32_msgp_t)(u_long)mp->msg_next;
442 m32p->msg_type = (sparc32_long)mp->msg_type;
443 m32p->msg_ts = mp->msg_ts;
444 m32p->msg_spot = mp->msg_spot;
445 }
446
447 static __inline void
448 sparc32_to_msqid_ds(ds32p, dsp)
449 struct sparc32_msqid_ds *ds32p;
450 struct msqid_ds *dsp;
451 {
452
453 sparc32_to_ipc_perm(&ds32p->msg_perm, &dsp->msg_perm);
454 sparc32_to_msg((struct sparc32_msg *)(u_long)ds32p->msg_first, dsp->msg_first);
455 sparc32_to_msg((struct sparc32_msg *)(u_long)ds32p->msg_last, dsp->msg_last);
456 dsp->msg_cbytes = (u_long)ds32p->msg_cbytes;
457 dsp->msg_qnum = (u_long)ds32p->msg_qnum;
458 dsp->msg_qbytes = (u_long)ds32p->msg_qbytes;
459 dsp->msg_lspid = ds32p->msg_lspid;
460 dsp->msg_lrpid = ds32p->msg_lrpid;
461 dsp->msg_rtime = (time_t)ds32p->msg_rtime;
462 dsp->msg_stime = (time_t)ds32p->msg_stime;
463 dsp->msg_ctime = (time_t)ds32p->msg_ctime;
464 }
465
466 static __inline void
467 sparc32_from_msqid_ds(dsp, ds32p)
468 struct msqid_ds *dsp;
469 struct sparc32_msqid_ds *ds32p;
470 {
471
472 sparc32_from_ipc_perm(&dsp->msg_perm, &ds32p->msg_perm);
473 sparc32_from_msg(dsp->msg_first, (struct sparc32_msg *)(u_long)ds32p->msg_first);
474 sparc32_from_msg(dsp->msg_last, (struct sparc32_msg *)(u_long)ds32p->msg_last);
475 ds32p->msg_cbytes = (sparc32_u_long)dsp->msg_cbytes;
476 ds32p->msg_qnum = (sparc32_u_long)dsp->msg_qnum;
477 ds32p->msg_qbytes = (sparc32_u_long)dsp->msg_qbytes;
478 ds32p->msg_lspid = dsp->msg_lspid;
479 ds32p->msg_lrpid = dsp->msg_lrpid;
480 ds32p->msg_rtime = dsp->msg_rtime;
481 ds32p->msg_stime = dsp->msg_stime;
482 ds32p->msg_ctime = dsp->msg_ctime;
483 }
484
485 static __inline void
486 sparc32_to_shmid_ds(ds32p, dsp)
487 struct sparc32_shmid_ds *ds32p;
488 struct shmid_ds *dsp;
489 {
490
491 sparc32_to_ipc_perm(&ds32p->shm_perm, &dsp->shm_perm);
492 dsp->shm_segsz = ds32p->shm_segsz;
493 dsp->shm_lpid = ds32p->shm_lpid;
494 dsp->shm_cpid = ds32p->shm_cpid;
495 dsp->shm_nattch = ds32p->shm_nattch;
496 dsp->shm_atime = (long)ds32p->shm_atime;
497 dsp->shm_dtime = (long)ds32p->shm_dtime;
498 dsp->shm_ctime = (long)ds32p->shm_ctime;
499 dsp->shm_internal = (void *)(u_long)ds32p->shm_internal;
500 }
501
502 static __inline void
503 sparc32_from_shmid_ds(dsp, ds32p)
504 struct shmid_ds *dsp;
505 struct sparc32_shmid_ds *ds32p;
506 {
507
508 sparc32_from_ipc_perm(&dsp->shm_perm, &ds32p->shm_perm);
509 ds32p->shm_segsz = dsp->shm_segsz;
510 ds32p->shm_lpid = dsp->shm_lpid;
511 ds32p->shm_cpid = dsp->shm_cpid;
512 ds32p->shm_nattch = dsp->shm_nattch;
513 ds32p->shm_atime = (sparc32_long)dsp->shm_atime;
514 ds32p->shm_dtime = (sparc32_long)dsp->shm_dtime;
515 ds32p->shm_ctime = (sparc32_long)dsp->shm_ctime;
516 ds32p->shm_internal = (sparc32_voidp)(u_long)dsp->shm_internal;
517 }
518
519 static __inline void
520 sparc32_to_semid_ds(s32dsp, dsp)
521 struct sparc32_semid_ds *s32dsp;
522 struct semid_ds *dsp;
523 {
524
525 sparc32_from_ipc_perm(&dsp->sem_perm, &s32dsp->sem_perm);
526 dsp->sem_base = (struct sem *)(u_long)s32dsp->sem_base;
527 dsp->sem_nsems = s32dsp->sem_nsems;
528 dsp->sem_otime = s32dsp->sem_otime;
529 dsp->sem_ctime = s32dsp->sem_ctime;
530 }
531
532 static __inline void
533 sparc32_from_semid_ds(dsp, s32dsp)
534 struct semid_ds *dsp;
535 struct sparc32_semid_ds *s32dsp;
536 {
537
538 sparc32_to_ipc_perm(&s32dsp->sem_perm, &dsp->sem_perm);
539 s32dsp->sem_base = (sparc32_semp_t)(u_long)dsp->sem_base;
540 s32dsp->sem_nsems = dsp->sem_nsems;
541 s32dsp->sem_otime = dsp->sem_otime;
542 s32dsp->sem_ctime = dsp->sem_ctime;
543 }
544
545 /*
546 * below are all the standard NetBSD system calls, in the 32bit
547 * environment, witht he necessary conversions to 64bit before
548 * calling the real syscall.
549 */
550
551
552 int
553 compat_sparc32_exit(p, v, retval)
554 struct proc *p;
555 void *v;
556 register_t *retval;
557 {
558 struct compat_sparc32_exit_args /* {
559 syscallarg(int) rval;
560 } */ *uap = v;
561 struct sys_exit_args ua;
562
563 SPARC32TO64_UAP(rval);
564 sys_exit(p, &ua, retval);
565 }
566
567 int
568 compat_sparc32_read(p, v, retval)
569 struct proc *p;
570 void *v;
571 register_t *retval;
572 {
573 struct compat_sparc32_read_args /* {
574 syscallarg(int) fd;
575 syscallarg(sparc32_voidp) buf;
576 syscallarg(sparc32_size_t) nbyte;
577 } */ *uap = v;
578 struct sys_read_args ua;
579
580 SPARC32TO64_UAP(fd);
581 SPARC32TOP_UAP(buf, void *);
582 SPARC32TOX_UAP(nbyte, size_t);
583 return sys_read(p, &ua, retval);
584 }
585
586 int
587 compat_sparc32_write(p, v, retval)
588 struct proc *p;
589 void *v;
590 register_t *retval;
591 {
592 struct compat_sparc32_write_args /* {
593 syscallarg(int) fd;
594 syscallarg(const sparc32_voidp) buf;
595 syscallarg(sparc32_size_t) nbyte;
596 } */ *uap = v;
597 struct sys_write_args ua;
598
599 SPARC32TO64_UAP(fd);
600 SPARC32TOP_UAP(buf, void *);
601 SPARC32TOX_UAP(nbyte, size_t);
602 return sys_write(p, &ua, retval);
603 }
604
605 int
606 compat_sparc32_close(p, v, retval)
607 struct proc *p;
608 void *v;
609 register_t *retval;
610 {
611 struct compat_sparc32_close_args /* {
612 syscallarg(int) fd;
613 } */ *uap = v;
614 struct sys_close_args ua;
615
616 SPARC32TO64_UAP(fd);
617 return sys_write(p, &ua, retval);
618 }
619
620 int
621 compat_sparc32_open(p, v, retval)
622 struct proc *p;
623 void *v;
624 register_t *retval;
625 {
626 struct compat_sparc32_open_args /* {
627 syscallarg(const sparc32_charp) path;
628 syscallarg(int) flags;
629 syscallarg(mode_t) mode;
630 } */ *uap = v;
631 struct sys_open_args ua;
632 caddr_t sg;
633
634 SPARC32TOP_UAP(path, const char);
635 SPARC32TO64_UAP(flags);
636 SPARC32TO64_UAP(mode);
637 sg = stackgap_init(p->p_emul);
638 SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
639
640 return (sys_open(p, &ua, retval));
641 }
642
643 int
644 compat_sparc32_wait4(q, v, retval)
645 struct proc *q;
646 void *v;
647 register_t *retval;
648 {
649 struct compat_sparc32_wait4_args /* {
650 syscallarg(int) pid;
651 syscallarg(sparc32_intp) status;
652 syscallarg(int) options;
653 syscallarg(sparc32_rusagep_t) rusage;
654 } */ *uap = v;
655 struct sparc32_rusage ru32;
656 register int nfound;
657 register struct proc *p, *t;
658 int status, error;
659
660 if (SCARG(uap, pid) == 0)
661 SCARG(uap, pid) = -q->p_pgid;
662 if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG))
663 return (EINVAL);
664
665 loop:
666 nfound = 0;
667 for (p = q->p_children.lh_first; p != 0; p = p->p_sibling.le_next) {
668 if (SCARG(uap, pid) != WAIT_ANY &&
669 p->p_pid != SCARG(uap, pid) &&
670 p->p_pgid != -SCARG(uap, pid))
671 continue;
672 nfound++;
673 if (p->p_stat == SZOMB) {
674 retval[0] = p->p_pid;
675
676 if (SCARG(uap, status)) {
677 status = p->p_xstat; /* convert to int */
678 error = copyout((caddr_t)&status,
679 (caddr_t)(u_long)SCARG(uap, status),
680 sizeof(status));
681 if (error)
682 return (error);
683 }
684 if (SCARG(uap, rusage)) {
685 sparc32_from_rusage(p->p_ru, &ru32);
686 if ((error = copyout((caddr_t)&ru32,
687 (caddr_t)(u_long)SCARG(uap, rusage),
688 sizeof(struct sparc32_rusage))))
689 return (error);
690 }
691 /*
692 * If we got the child via ptrace(2) or procfs, and
693 * the parent is different (meaning the process was
694 * attached, rather than run as a child), then we need
695 * to give it back to the old parent, and send the
696 * parent a SIGCHLD. The rest of the cleanup will be
697 * done when the old parent waits on the child.
698 */
699 if ((p->p_flag & P_TRACED) &&
700 p->p_oppid != p->p_pptr->p_pid) {
701 t = pfind(p->p_oppid);
702 proc_reparent(p, t ? t : initproc);
703 p->p_oppid = 0;
704 p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
705 psignal(p->p_pptr, SIGCHLD);
706 wakeup((caddr_t)p->p_pptr);
707 return (0);
708 }
709 p->p_xstat = 0;
710 ruadd(&q->p_stats->p_cru, p->p_ru);
711 pool_put(&rusage_pool, p->p_ru);
712
713 /*
714 * Finally finished with old proc entry.
715 * Unlink it from its process group and free it.
716 */
717 leavepgrp(p);
718
719 LIST_REMOVE(p, p_list); /* off zombproc */
720
721 LIST_REMOVE(p, p_sibling);
722
723 /*
724 * Decrement the count of procs running with this uid.
725 */
726 (void)chgproccnt(p->p_cred->p_ruid, -1);
727
728 /*
729 * Free up credentials.
730 */
731 if (--p->p_cred->p_refcnt == 0) {
732 crfree(p->p_cred->pc_ucred);
733 pool_put(&pcred_pool, p->p_cred);
734 }
735
736 /*
737 * Release reference to text vnode
738 */
739 if (p->p_textvp)
740 vrele(p->p_textvp);
741
742 /*
743 * Give machine-dependent layer a chance
744 * to free anything that cpu_exit couldn't
745 * release while still running in process context.
746 */
747 cpu_wait(p);
748 pool_put(&proc_pool, p);
749 nprocs--;
750 return (0);
751 }
752 if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
753 (p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
754 p->p_flag |= P_WAITED;
755 retval[0] = p->p_pid;
756
757 if (SCARG(uap, status)) {
758 status = W_STOPCODE(p->p_xstat);
759 error = copyout((caddr_t)&status,
760 (caddr_t)(u_long)SCARG(uap, status),
761 sizeof(status));
762 } else
763 error = 0;
764 return (error);
765 }
766 }
767 if (nfound == 0)
768 return (ECHILD);
769 if (SCARG(uap, options) & WNOHANG) {
770 retval[0] = 0;
771 return (0);
772 }
773 if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
774 return (error);
775 goto loop;
776 }
777
778 int
779 compat_sparc32_link(p, v, retval)
780 struct proc *p;
781 void *v;
782 register_t *retval;
783 {
784 struct compat_sparc32_link_args /* {
785 syscallarg(const sparc32_charp) path;
786 syscallarg(const sparc32_charp) link;
787 } */ *uap = v;
788 struct sys_link_args ua;
789
790 SPARC32TOP_UAP(path, const char);
791 SPARC32TOP_UAP(link, const char);
792 return (sys_link(p, &ua, retval));
793 }
794
795 int
796 compat_sparc32_unlink(p, v, retval)
797 struct proc *p;
798 void *v;
799 register_t *retval;
800 {
801 struct compat_sparc32_unlink_args /* {
802 syscallarg(const sparc32_charp) path;
803 } */ *uap = v;
804 struct sys_unlink_args ua;
805
806 SPARC32TOP_UAP(path, const char);
807
808 return (sys_unlink(p, &ua, retval));
809 }
810
811 int
812 compat_sparc32_chdir(p, v, retval)
813 struct proc *p;
814 void *v;
815 register_t *retval;
816 {
817 struct compat_sparc32_chdir_args /* {
818 syscallarg(const sparc32_charp) path;
819 } */ *uap = v;
820 struct sys_chdir_args ua;
821
822 SPARC32TOP_UAP(path, const char);
823
824 return (sys_chdir(p, &ua, retval));
825 }
826
827 int
828 compat_sparc32_fchdir(p, v, retval)
829 struct proc *p;
830 void *v;
831 register_t *retval;
832 {
833 struct compat_sparc32_fchdir_args /* {
834 syscallarg(int) fd;
835 } */ *uap = v;
836 struct sys_fchdir_args ua;
837
838 SPARC32TO64_UAP(fd);
839
840 return (sys_fchdir(p, &ua, retval));
841 }
842
843 int
844 compat_sparc32_mknod(p, v, retval)
845 struct proc *p;
846 void *v;
847 register_t *retval;
848 {
849 struct compat_sparc32_mknod_args /* {
850 syscallarg(const sparc32_charp) path;
851 syscallarg(mode_t) mode;
852 syscallarg(dev_t) dev;
853 } */ *uap = v;
854 struct sys_mknod_args ua;
855
856 SPARC32TOP_UAP(path, const char);
857 SPARC32TO64_UAP(dev);
858 SPARC32TO64_UAP(mode);
859
860 return (sys_mknod(p, &ua, retval));
861 }
862
863 int
864 compat_sparc32_chmod(p, v, retval)
865 struct proc *p;
866 void *v;
867 register_t *retval;
868 {
869 struct compat_sparc32_chmod_args /* {
870 syscallarg(const sparc32_charp) path;
871 syscallarg(mode_t) mode;
872 } */ *uap = v;
873 struct sys_chmod_args ua;
874
875 SPARC32TOP_UAP(path, const char);
876 SPARC32TO64_UAP(mode);
877
878 return (sys_chmod(p, &ua, retval));
879 }
880
881 int
882 compat_sparc32_chown(p, v, retval)
883 struct proc *p;
884 void *v;
885 register_t *retval;
886 {
887 struct compat_sparc32_chown_args /* {
888 syscallarg(const sparc32_charp) path;
889 syscallarg(uid_t) uid;
890 syscallarg(gid_t) gid;
891 } */ *uap = v;
892 struct sys_chown_args ua;
893
894 SPARC32TOP_UAP(path, const char);
895 SPARC32TO64_UAP(uid);
896 SPARC32TO64_UAP(gid);
897
898 return (sys_chown(p, &ua, retval));
899 }
900
901 int
902 compat_sparc32_break(p, v, retval)
903 struct proc *p;
904 void *v;
905 register_t *retval;
906 {
907 struct compat_sparc32_break_args /* {
908 syscallarg(sparc32_charp) nsize;
909 } */ *uap = v;
910 struct sys_obreak_args ua;
911
912 SCARG(&ua, nsize) = (char *)(u_long)SCARG(uap, nsize);
913 SPARC32TOP_UAP(nsize, char);
914 return (sys_obreak(p, &ua, retval));
915 }
916
917 int
918 compat_sparc32_getfsstat(p, v, retval)
919 struct proc *p;
920 void *v;
921 register_t *retval;
922 {
923 struct compat_sparc32_getfsstat_args /* {
924 syscallarg(sparc32_statfsp_t) buf;
925 syscallarg(sparc32_long) bufsize;
926 syscallarg(int) flags;
927 } */ *uap = v;
928 struct sys_getfsstat_args ua;
929 struct statfs sb;
930 struct sparc32_statfs *sb32p;
931 int error;
932
933 sb32p = (struct sparc32_statfs *)(u_long)SCARG(uap, buf);
934 if (sb32p)
935 SCARG(&ua, buf) = &sb;
936 else
937 SCARG(&ua, buf) = NULL;
938 SPARC32TOX_UAP(bufsize, long);
939 SPARC32TO64_UAP(flags);
940 error = sys_getfsstat(p, &ua, retval);
941 if (error)
942 return (error);
943
944 if (sb32p) {
945 struct sparc32_statfs sb32;
946 sparc32_from_statfs(&sb, &sb32);
947 if (copyout(&sb32, sb32p, sizeof(sb32)))
948 return EFAULT;
949 }
950 return (0);
951 }
952
953 int
954 compat_sparc32_mount(p, v, retval)
955 struct proc *p;
956 void *v;
957 register_t *retval;
958 {
959 struct compat_sparc32_mount_args /* {
960 syscallarg(const sparc32_charp) type;
961 syscallarg(const sparc32_charp) path;
962 syscallarg(int) flags;
963 syscallarg(sparc32_voidp) data;
964 } */ *uap = v;
965 struct sys_mount_args ua;
966
967 SPARC32TOP_UAP(type, const char);
968 SPARC32TOP_UAP(path, const char);
969 SPARC32TO64_UAP(flags);
970 SPARC32TOP_UAP(data, void);
971 return (sys_mount(p, &ua, retval));
972 }
973
974 int
975 compat_sparc32_unmount(p, v, retval)
976 struct proc *p;
977 void *v;
978 register_t *retval;
979 {
980 struct compat_sparc32_unmount_args /* {
981 syscallarg(const sparc32_charp) path;
982 syscallarg(int) flags;
983 } */ *uap = v;
984 struct sys_unmount_args ua;
985
986 SPARC32TOP_UAP(path, const char);
987 SPARC32TO64_UAP(flags);
988 return (sys_unmount(p, &ua, retval));
989 }
990
991 int
992 compat_sparc32_setuid(p, v, retval)
993 struct proc *p;
994 void *v;
995 register_t *retval;
996 {
997 struct compat_sparc32_setuid_args /* {
998 syscallarg(uid_t) uid;
999 } */ *uap = v;
1000 struct sys_setuid_args ua;
1001
1002 SPARC32TO64_UAP(uid);
1003 return (sys_setuid(p, &ua, retval));
1004 }
1005
1006 int
1007 compat_sparc32_ptrace(p, v, retval)
1008 struct proc *p;
1009 void *v;
1010 register_t *retval;
1011 {
1012 struct compat_sparc32_ptrace_args /* {
1013 syscallarg(int) req;
1014 syscallarg(pid_t) pid;
1015 syscallarg(sparc32_caddr_t) addr;
1016 syscallarg(int) data;
1017 } */ *uap = v;
1018 struct sys_ptrace_args ua;
1019
1020 SPARC32TO64_UAP(req);
1021 SPARC32TO64_UAP(pid);
1022 SPARC32TOX64_UAP(addr, caddr_t);
1023 SPARC32TO64_UAP(data);
1024 return (sys_ptrace(p, &ua, retval));
1025 }
1026
1027 int
1028 compat_sparc32_recvmsg(p, v, retval)
1029 struct proc *p;
1030 void *v;
1031 register_t *retval;
1032 {
1033 struct compat_sparc32_recvmsg_args /* {
1034 syscallarg(int) s;
1035 syscallarg(sparc32_msghdrp_t) msg;
1036 syscallarg(int) flags;
1037 } */ *uap = v;
1038 struct sparc32_msghdr msg;
1039 struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
1040 register int error;
1041
1042 error = copyin((caddr_t)(u_long)SCARG(uap, msg), (caddr_t)&msg,
1043 sizeof(msg));
1044 /* sparc32_msghdr needs the iov pre-allocated */
1045 if (error)
1046 return (error);
1047 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1048 if ((u_int)msg.msg_iovlen > IOV_MAX)
1049 return (EMSGSIZE);
1050 MALLOC(iov, struct iovec *,
1051 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1052 M_WAITOK);
1053 } else if ((u_int)msg.msg_iovlen > 0)
1054 iov = aiov;
1055 else
1056 return (EMSGSIZE);
1057 #ifdef COMPAT_OLDSOCK
1058 msg.msg_flags = SCARG(uap, flags) &~ MSG_COMPAT;
1059 #else
1060 msg.msg_flags = SCARG(uap, flags);
1061 #endif
1062 uiov = (struct iovec *)(u_long)msg.msg_iov;
1063 error = sparc32_to_iovecin((struct sparc32_iovec *)uiov,
1064 iov, msg.msg_iovlen);
1065 if (error)
1066 goto done;
1067 if ((error = recvit32(p, SCARG(uap, s), &msg, iov, (caddr_t)0, retval)) == 0) {
1068 error = copyout((caddr_t)&msg, (caddr_t)(u_long)SCARG(uap, msg),
1069 sizeof(msg));
1070 }
1071 done:
1072 if (iov != aiov)
1073 FREE(iov, M_IOV);
1074 return (error);
1075 }
1076
1077 int
1078 recvit32(p, s, mp, iov, namelenp, retsize)
1079 struct proc *p;
1080 int s;
1081 struct sparc32_msghdr *mp;
1082 struct iovec *iov;
1083 caddr_t namelenp;
1084 register_t *retsize;
1085 {
1086 struct file *fp;
1087 struct uio auio;
1088 register int i;
1089 int len, error;
1090 struct mbuf *from = 0, *control = 0;
1091 struct socket *so;
1092 #ifdef KTRACE
1093 struct iovec *ktriov = NULL;
1094 #endif
1095
1096 if ((error = getsock(p->p_fd, s, &fp)) != 0)
1097 return (error);
1098 auio.uio_iov = (struct iovec *)(u_long)mp->msg_iov;
1099 auio.uio_iovcnt = mp->msg_iovlen;
1100 auio.uio_segflg = UIO_USERSPACE;
1101 auio.uio_rw = UIO_READ;
1102 auio.uio_procp = p;
1103 auio.uio_offset = 0; /* XXX */
1104 auio.uio_resid = 0;
1105 for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1106 #if 0
1107 /* cannot happen iov_len is unsigned */
1108 if (iov->iov_len < 0)
1109 return (EINVAL);
1110 #endif
1111 /*
1112 * Reads return ssize_t because -1 is returned on error.
1113 * Therefore we must restrict the length to SSIZE_MAX to
1114 * avoid garbage return values.
1115 */
1116 auio.uio_resid += iov->iov_len;
1117 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX)
1118 return (EINVAL);
1119 }
1120 #ifdef KTRACE
1121 if (KTRPOINT(p, KTR_GENIO)) {
1122 int iovlen = auio.uio_iovcnt * sizeof(struct iovec);
1123
1124 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
1125 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
1126 }
1127 #endif
1128 len = auio.uio_resid;
1129 so = (struct socket *)fp->f_data;
1130 error = (*so->so_receive)(so, &from, &auio, NULL,
1131 mp->msg_control ? &control : NULL, &mp->msg_flags);
1132 if (error) {
1133 if (auio.uio_resid != len && (error == ERESTART ||
1134 error == EINTR || error == EWOULDBLOCK))
1135 error = 0;
1136 }
1137 #ifdef KTRACE
1138 if (ktriov != NULL) {
1139 if (error == 0)
1140 ktrgenio(p->p_tracep, s, UIO_READ,
1141 ktriov, len - auio.uio_resid, error);
1142 FREE(ktriov, M_TEMP);
1143 }
1144 #endif
1145 if (error)
1146 goto out;
1147 *retsize = len - auio.uio_resid;
1148 if (mp->msg_name) {
1149 len = mp->msg_namelen;
1150 if (len <= 0 || from == 0)
1151 len = 0;
1152 else {
1153 #ifdef COMPAT_OLDSOCK
1154 if (mp->msg_flags & MSG_COMPAT)
1155 mtod(from, struct osockaddr *)->sa_family =
1156 mtod(from, struct sockaddr *)->sa_family;
1157 #endif
1158 if (len > from->m_len)
1159 len = from->m_len;
1160 /* else if len < from->m_len ??? */
1161 error = copyout(mtod(from, caddr_t),
1162 (caddr_t)(u_long)mp->msg_name, (unsigned)len);
1163 if (error)
1164 goto out;
1165 }
1166 mp->msg_namelen = len;
1167 if (namelenp &&
1168 (error = copyout((caddr_t)&len, namelenp, sizeof(int)))) {
1169 #ifdef COMPAT_OLDSOCK
1170 if (mp->msg_flags & MSG_COMPAT)
1171 error = 0; /* old recvfrom didn't check */
1172 else
1173 #endif
1174 goto out;
1175 }
1176 }
1177 if (mp->msg_control) {
1178 #ifdef COMPAT_OLDSOCK
1179 /*
1180 * We assume that old recvmsg calls won't receive access
1181 * rights and other control info, esp. as control info
1182 * is always optional and those options didn't exist in 4.3.
1183 * If we receive rights, trim the cmsghdr; anything else
1184 * is tossed.
1185 */
1186 if (control && mp->msg_flags & MSG_COMPAT) {
1187 if (mtod(control, struct cmsghdr *)->cmsg_level !=
1188 SOL_SOCKET ||
1189 mtod(control, struct cmsghdr *)->cmsg_type !=
1190 SCM_RIGHTS) {
1191 mp->msg_controllen = 0;
1192 goto out;
1193 }
1194 control->m_len -= sizeof(struct cmsghdr);
1195 control->m_data += sizeof(struct cmsghdr);
1196 }
1197 #endif
1198 len = mp->msg_controllen;
1199 if (len <= 0 || control == 0)
1200 len = 0;
1201 else {
1202 struct mbuf *m = control;
1203 caddr_t p = (caddr_t)(u_long)mp->msg_control;
1204
1205 do {
1206 i = m->m_len;
1207 if (len < i) {
1208 mp->msg_flags |= MSG_CTRUNC;
1209 i = len;
1210 }
1211 error = copyout(mtod(m, caddr_t), p,
1212 (unsigned)i);
1213 if (m->m_next)
1214 i = ALIGN(i);
1215 p += i;
1216 len -= i;
1217 if (error != 0 || len <= 0)
1218 break;
1219 } while ((m = m->m_next) != NULL);
1220 len = p - (caddr_t)(u_long)mp->msg_control;
1221 }
1222 mp->msg_controllen = len;
1223 }
1224 out:
1225 if (from)
1226 m_freem(from);
1227 if (control)
1228 m_freem(control);
1229 return (error);
1230 }
1231
1232
1233 int
1234 compat_sparc32_sendmsg(p, v, retval)
1235 struct proc *p;
1236 void *v;
1237 register_t *retval;
1238 {
1239 struct compat_sparc32_sendmsg_args /* {
1240 syscallarg(int) s;
1241 syscallarg(const sparc32_msghdrp_t) msg;
1242 syscallarg(int) flags;
1243 } */ *uap = v;
1244 struct msghdr msg;
1245 struct sparc32_msghdr msg32;
1246 struct iovec aiov[UIO_SMALLIOV], *iov;
1247 int error;
1248
1249 error = copyin((caddr_t)(u_long)SCARG(uap, msg),
1250 (caddr_t)&msg32, sizeof(msg32));
1251 if (error)
1252 return (error);
1253 sparc32_to_msghdr(&msg32, &msg);
1254 if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1255 if ((u_int)msg.msg_iovlen > IOV_MAX)
1256 return (EMSGSIZE);
1257 MALLOC(iov, struct iovec *,
1258 sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1259 M_WAITOK);
1260 } else if ((u_int)msg.msg_iovlen > 0)
1261 iov = aiov;
1262 else
1263 return (EMSGSIZE);
1264 error = sparc32_to_iovecin((struct sparc32_iovec *)msg.msg_iov,
1265 iov, msg.msg_iovlen);
1266 if (error)
1267 goto done;
1268 msg.msg_iov = iov;
1269 #ifdef COMPAT_OLDSOCK
1270 msg.msg_flags = 0;
1271 #endif
1272 /* Luckily we can use this directly */
1273 error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval);
1274 done:
1275 if (iov != aiov)
1276 FREE(iov, M_IOV);
1277 return (error);
1278 }
1279
1280 int
1281 compat_sparc32_recvfrom(p, v, retval)
1282 struct proc *p;
1283 void *v;
1284 register_t *retval;
1285 {
1286 struct compat_sparc32_recvfrom_args /* {
1287 syscallarg(int) s;
1288 syscallarg(sparc32_voidp) buf;
1289 syscallarg(sparc32_size_t) len;
1290 syscallarg(int) flags;
1291 syscallarg(sparc32_sockaddrp_t) from;
1292 syscallarg(sparc32_intp) fromlenaddr;
1293 } */ *uap = v;
1294 struct sparc32_msghdr msg;
1295 struct iovec aiov;
1296 int error;
1297
1298 if (SCARG(uap, fromlenaddr)) {
1299 error = copyin((caddr_t)(u_long)SCARG(uap, fromlenaddr),
1300 (caddr_t)&msg.msg_namelen,
1301 sizeof(msg.msg_namelen));
1302 if (error)
1303 return (error);
1304 } else
1305 msg.msg_namelen = 0;
1306 msg.msg_name = SCARG(uap, from);
1307 msg.msg_iov = NULL; /* We can't store a real pointer here */
1308 msg.msg_iovlen = 1;
1309 aiov.iov_base = (caddr_t)(u_long)SCARG(uap, buf);
1310 aiov.iov_len = (u_long)SCARG(uap, len);
1311 msg.msg_control = 0;
1312 msg.msg_flags = SCARG(uap, flags);
1313 return (recvit32(p, SCARG(uap, s), &msg, &aiov,
1314 (caddr_t)(u_long)SCARG(uap, fromlenaddr), retval));
1315 }
1316
1317 int
1318 compat_sparc32_sendto(p, v, retval)
1319 struct proc *p;
1320 void *v;
1321 register_t *retval;
1322 {
1323 struct compat_sparc32_sendto_args /* {
1324 syscallarg(int) s;
1325 syscallarg(const sparc32_voidp) buf;
1326 syscallarg(sparc32_size_t) len;
1327 syscallarg(int) flags;
1328 syscallarg(const sparc32_sockaddrp_t) to;
1329 syscallarg(int) tolen;
1330 } */ *uap = v;
1331 struct msghdr msg;
1332 struct iovec aiov;
1333
1334 msg.msg_name = (caddr_t)(u_long)SCARG(uap, to); /* XXX kills const */
1335 msg.msg_namelen = SCARG(uap, tolen);
1336 msg.msg_iov = &aiov;
1337 msg.msg_iovlen = 1;
1338 msg.msg_control = 0;
1339 #ifdef COMPAT_OLDSOCK
1340 msg.msg_flags = 0;
1341 #endif
1342 aiov.iov_base = (char *)(u_long)SCARG(uap, buf); /* XXX kills const */
1343 aiov.iov_len = SCARG(uap, len);
1344 return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval));
1345 }
1346
1347 int
1348 compat_sparc32_accept(p, v, retval)
1349 struct proc *p;
1350 void *v;
1351 register_t *retval;
1352 {
1353 struct compat_sparc32_accept_args /* {
1354 syscallarg(int) s;
1355 syscallarg(sparc32_sockaddrp_t) name;
1356 syscallarg(sparc32_intp) anamelen;
1357 } */ *uap = v;
1358 struct sys_accept_args ua;
1359
1360 SPARC32TO64_UAP(s);
1361 SPARC32TOP_UAP(name, struct sockaddr);
1362 SPARC32TOP_UAP(anamelen, int);
1363 return (sys_accept(p, &ua, retval));
1364 }
1365
1366 int
1367 compat_sparc32_getpeername(p, v, retval)
1368 struct proc *p;
1369 void *v;
1370 register_t *retval;
1371 {
1372 struct compat_sparc32_getpeername_args /* {
1373 syscallarg(int) fdes;
1374 syscallarg(sparc32_sockaddrp_t) asa;
1375 syscallarg(sparc32_intp) alen;
1376 } */ *uap = v;
1377 struct sys_getpeername_args ua;
1378
1379 SPARC32TO64_UAP(fdes);
1380 SPARC32TOP_UAP(asa, struct sockaddr);
1381 SPARC32TOP_UAP(alen, int);
1382 /* NB: do the protocol specific sockaddrs need to be converted? */
1383 return (sys_getpeername(p, &ua, retval));
1384 }
1385
1386 int
1387 compat_sparc32_getsockname(p, v, retval)
1388 struct proc *p;
1389 void *v;
1390 register_t *retval;
1391 {
1392 struct compat_sparc32_getsockname_args /* {
1393 syscallarg(int) fdes;
1394 syscallarg(sparc32_sockaddrp_t) asa;
1395 syscallarg(sparc32_intp) alen;
1396 } */ *uap = v;
1397 struct sys_getsockname_args ua;
1398
1399 SPARC32TO64_UAP(fdes);
1400 SPARC32TOP_UAP(asa, struct sockaddr);
1401 SPARC32TOP_UAP(alen, int);
1402 return (sys_getsockname(p, &ua, retval));
1403 }
1404
1405 int
1406 compat_sparc32_access(p, v, retval)
1407 struct proc *p;
1408 void *v;
1409 register_t *retval;
1410 {
1411 struct compat_sparc32_access_args /* {
1412 syscallarg(const sparc32_charp) path;
1413 syscallarg(int) flags;
1414 } */ *uap = v;
1415 struct sys_access_args ua;
1416 caddr_t sg;
1417
1418 SPARC32TOP_UAP(path, const char);
1419 SPARC32TO64_UAP(flags);
1420 sg = stackgap_init(p->p_emul);
1421 SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1422
1423 return (sys_access(p, &ua, retval));
1424 }
1425
1426 int
1427 compat_sparc32_chflags(p, v, retval)
1428 struct proc *p;
1429 void *v;
1430 register_t *retval;
1431 {
1432 struct compat_sparc32_chflags_args /* {
1433 syscallarg(const sparc32_charp) path;
1434 syscallarg(sparc32_u_long) flags;
1435 } */ *uap = v;
1436 struct sys_chflags_args ua;
1437
1438 SPARC32TOP_UAP(path, const char);
1439 SPARC32TO64_UAP(flags);
1440
1441 return (sys_chflags(p, &ua, retval));
1442 }
1443
1444 int
1445 compat_sparc32_fchflags(p, v, retval)
1446 struct proc *p;
1447 void *v;
1448 register_t *retval;
1449 {
1450 struct compat_sparc32_fchflags_args /* {
1451 syscallarg(int) fd;
1452 syscallarg(sparc32_u_long) flags;
1453 } */ *uap = v;
1454 struct sys_fchflags_args ua;
1455
1456 SPARC32TO64_UAP(fd);
1457 SPARC32TO64_UAP(flags);
1458
1459 return (sys_fchflags(p, &ua, retval));
1460 }
1461
1462 int
1463 compat_sparc32_kill(p, v, retval)
1464 struct proc *p;
1465 void *v;
1466 register_t *retval;
1467 {
1468 struct compat_sparc32_kill_args /* {
1469 syscallarg(int) pid;
1470 syscallarg(int) signum;
1471 } */ *uap = v;
1472 struct sys_kill_args ua;
1473
1474 SPARC32TO64_UAP(pid);
1475 SPARC32TO64_UAP(signum);
1476
1477 return (sys_kill(p, &ua, retval));
1478 }
1479
1480 int
1481 compat_sparc32_dup(p, v, retval)
1482 struct proc *p;
1483 void *v;
1484 register_t *retval;
1485 {
1486 struct compat_sparc32_dup_args /* {
1487 syscallarg(int) fd;
1488 } */ *uap = v;
1489 struct sys_dup_args ua;
1490
1491 SPARC32TO64_UAP(fd);
1492
1493 return (sys_dup(p, &ua, retval));
1494 }
1495
1496 int
1497 compat_sparc32_profil(p, v, retval)
1498 struct proc *p;
1499 void *v;
1500 register_t *retval;
1501 {
1502 struct compat_sparc32_profil_args /* {
1503 syscallarg(sparc32_caddr_t) samples;
1504 syscallarg(sparc32_size_t) size;
1505 syscallarg(sparc32_u_long) offset;
1506 syscallarg(u_int) scale;
1507 } */ *uap = v;
1508 struct sys_profil_args ua;
1509
1510 SPARC32TOX64_UAP(samples, caddr_t);
1511 SPARC32TOX_UAP(size, size_t);
1512 SPARC32TOX_UAP(offset, u_long);
1513 SPARC32TO64_UAP(scale);
1514 return (sys_profil(p, &ua, retval));
1515 }
1516
1517 int
1518 compat_sparc32_ktrace(p, v, retval)
1519 struct proc *p;
1520 void *v;
1521 register_t *retval;
1522 {
1523 struct compat_sparc32_ktrace_args /* {
1524 syscallarg(const sparc32_charp) fname;
1525 syscallarg(int) ops;
1526 syscallarg(int) facs;
1527 syscallarg(int) pid;
1528 } */ *uap = v;
1529 struct sys_ktrace_args ua;
1530
1531 SPARC32TOP_UAP(fname, const char);
1532 SPARC32TO64_UAP(ops);
1533 SPARC32TO64_UAP(facs);
1534 SPARC32TO64_UAP(pid);
1535 return (sys_ktrace(p, &ua, retval));
1536 }
1537
1538 int
1539 compat_sparc32_sigaction(p, v, retval)
1540 struct proc *p;
1541 void *v;
1542 register_t *retval;
1543 {
1544 struct compat_sparc32_sigaction_args /* {
1545 syscallarg(int) signum;
1546 syscallarg(const sparc32_sigactionp_t) nsa;
1547 syscallarg(sparc32_sigactionp_t) osa;
1548 } */ *uap = v;
1549 struct sigaction nsa, osa;
1550 struct sparc32_sigaction *sa32p, sa32;
1551 int error;
1552
1553 if (SCARG(uap, nsa)) {
1554 sa32p = (struct sparc32_sigaction *)(u_long)SCARG(uap, nsa);
1555 if (copyin(sa32p, &sa32, sizeof(sa32)))
1556 return EFAULT;
1557 nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
1558 nsa.sa_mask = sa32.sa_mask;
1559 nsa.sa_flags = sa32.sa_flags;
1560 }
1561 error = sigaction1(p, SCARG(uap, signum),
1562 SCARG(uap, nsa) ? &nsa : 0,
1563 SCARG(uap, osa) ? &osa : 0);
1564
1565 if (error)
1566 return (error);
1567
1568 if (SCARG(uap, osa)) {
1569 sa32.sa_handler = (sparc32_sigactionp_t)(u_long)osa.sa_handler;
1570 sa32.sa_mask = osa.sa_mask;
1571 sa32.sa_flags = osa.sa_flags;
1572 sa32p = (struct sparc32_sigaction *)(u_long)SCARG(uap, osa);
1573 if (copyout(&sa32, sa32p, sizeof(sa32)))
1574 return EFAULT;
1575 }
1576
1577 return (0);
1578 }
1579
1580 int
1581 compat_sparc32___getlogin(p, v, retval)
1582 struct proc *p;
1583 void *v;
1584 register_t *retval;
1585 {
1586 struct compat_sparc32___getlogin_args /* {
1587 syscallarg(sparc32_charp) namebuf;
1588 syscallarg(u_int) namelen;
1589 } */ *uap = v;
1590 struct sys___getlogin_args ua;
1591
1592 SPARC32TOP_UAP(namebuf, char);
1593 SPARC32TO64_UAP(namelen);
1594 return (sys___getlogin(p, &ua, retval));
1595 }
1596
1597 int
1598 compat_sparc32_setlogin(p, v, retval)
1599 struct proc *p;
1600 void *v;
1601 register_t *retval;
1602 {
1603 struct compat_sparc32_setlogin_args /* {
1604 syscallarg(const sparc32_charp) namebuf;
1605 } */ *uap = v;
1606 struct sys_setlogin_args ua;
1607
1608 SPARC32TOP_UAP(namebuf, char);
1609 return (sys_setlogin(p, &ua, retval));
1610 }
1611
1612 int
1613 compat_sparc32_acct(p, v, retval)
1614 struct proc *p;
1615 void *v;
1616 register_t *retval;
1617 {
1618 struct compat_sparc32_acct_args /* {
1619 syscallarg(const sparc32_charp) path;
1620 } */ *uap = v;
1621 struct sys_acct_args ua;
1622
1623 SPARC32TOP_UAP(path, const char);
1624 return (sys_acct(p, &ua, retval));
1625 }
1626
1627 int
1628 compat_sparc32_revoke(p, v, retval)
1629 struct proc *p;
1630 void *v;
1631 register_t *retval;
1632 {
1633 struct compat_sparc32_revoke_args /* {
1634 syscallarg(const sparc32_charp) path;
1635 } */ *uap = v;
1636 struct sys_revoke_args ua;
1637 caddr_t sg;
1638
1639 SPARC32TOP_UAP(path, const char);
1640 sg = stackgap_init(p->p_emul);
1641 SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1642
1643 return (sys_revoke(p, &ua, retval));
1644 }
1645
1646 int
1647 compat_sparc32_symlink(p, v, retval)
1648 struct proc *p;
1649 void *v;
1650 register_t *retval;
1651 {
1652 struct compat_sparc32_symlink_args /* {
1653 syscallarg(const sparc32_charp) path;
1654 syscallarg(const sparc32_charp) link;
1655 } */ *uap = v;
1656 struct sys_symlink_args ua;
1657
1658 SPARC32TOP_UAP(path, const char);
1659 SPARC32TOP_UAP(link, const char);
1660
1661 return (sys_symlink(p, &ua, retval));
1662 }
1663
1664 int
1665 compat_sparc32_readlink(p, v, retval)
1666 struct proc *p;
1667 void *v;
1668 register_t *retval;
1669 {
1670 struct compat_sparc32_readlink_args /* {
1671 syscallarg(const sparc32_charp) path;
1672 syscallarg(sparc32_charp) buf;
1673 syscallarg(sparc32_size_t) count;
1674 } */ *uap = v;
1675 struct sys_readlink_args ua;
1676 caddr_t sg;
1677
1678 SPARC32TOP_UAP(path, const char);
1679 SPARC32TOP_UAP(buf, char);
1680 SPARC32TOX_UAP(count, size_t);
1681 sg = stackgap_init(p->p_emul);
1682 SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1683
1684 return (sys_readlink(p, &ua, retval));
1685 }
1686
1687 int
1688 compat_sparc32_execve(p, v, retval)
1689 struct proc *p;
1690 void *v;
1691 register_t *retval;
1692 {
1693 struct compat_sparc32_execve_args /* {
1694 syscallarg(const sparc32_charp) path;
1695 syscallarg(sparc32_charpp) argp;
1696 syscallarg(sparc32_charpp) envp;
1697 } */ *uap = v;
1698 struct sys_execve_args ua;
1699 caddr_t sg;
1700
1701 SPARC32TOP_UAP(path, const char);
1702 SPARC32TOP_UAP(argp, char *);
1703 SPARC32TOP_UAP(envp, char *);
1704 sg = stackgap_init(p->p_emul);
1705 SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1706
1707 return (sys_execve(p, &ua, retval));
1708 }
1709
1710 int
1711 compat_sparc32_umask(p, v, retval)
1712 struct proc *p;
1713 void *v;
1714 register_t *retval;
1715 {
1716 struct compat_sparc32_umask_args /* {
1717 syscallarg(mode_t) newmask;
1718 } */ *uap = v;
1719 struct sys_umask_args ua;
1720
1721 SPARC32TO64_UAP(newmask);
1722 return (sys_umask(p, &ua, retval));
1723 }
1724
1725 int
1726 compat_sparc32_chroot(p, v, retval)
1727 struct proc *p;
1728 void *v;
1729 register_t *retval;
1730 {
1731 struct compat_sparc32_chroot_args /* {
1732 syscallarg(const sparc32_charp) path;
1733 } */ *uap = v;
1734 struct sys_chroot_args ua;
1735
1736 SPARC32TOP_UAP(path, const char);
1737 return (sys_chroot(p, &ua, retval));
1738 }
1739
1740 int
1741 compat_sparc32_sbrk(p, v, retval)
1742 struct proc *p;
1743 void *v;
1744 register_t *retval;
1745 {
1746 struct compat_sparc32_sbrk_args /* {
1747 syscallarg(int) incr;
1748 } */ *uap = v;
1749 struct sys_sbrk_args ua;
1750
1751 SPARC32TO64_UAP(incr);
1752 return (sys_sbrk(p, &ua, retval));
1753 }
1754
1755 int
1756 compat_sparc32_sstk(p, v, retval)
1757 struct proc *p;
1758 void *v;
1759 register_t *retval;
1760 {
1761 struct compat_sparc32_sstk_args /* {
1762 syscallarg(int) incr;
1763 } */ *uap = v;
1764 struct sys_sstk_args ua;
1765
1766 SPARC32TO64_UAP(incr);
1767 return (sys_sstk(p, &ua, retval));
1768 }
1769
1770 int
1771 compat_sparc32_munmap(p, v, retval)
1772 struct proc *p;
1773 void *v;
1774 register_t *retval;
1775 {
1776 struct compat_sparc32_munmap_args /* {
1777 syscallarg(sparc32_voidp) addr;
1778 syscallarg(sparc32_size_t) len;
1779 } */ *uap = v;
1780 struct sys_munmap_args ua;
1781
1782 SPARC32TOP_UAP(addr, void);
1783 SPARC32TOX_UAP(len, size_t);
1784 return (sys_munmap(p, &ua, retval));
1785 }
1786
1787 int
1788 compat_sparc32_mprotect(p, v, retval)
1789 struct proc *p;
1790 void *v;
1791 register_t *retval;
1792 {
1793 struct compat_sparc32_mprotect_args /* {
1794 syscallarg(sparc32_voidp) addr;
1795 syscallarg(sparc32_size_t) len;
1796 syscallarg(int) prot;
1797 } */ *uap = v;
1798 struct sys_mprotect_args ua;
1799
1800 SPARC32TOP_UAP(addr, void);
1801 SPARC32TOX_UAP(len, size_t);
1802 SPARC32TO64_UAP(prot);
1803 return (sys_mprotect(p, &ua, retval));
1804 }
1805
1806 int
1807 compat_sparc32_madvise(p, v, retval)
1808 struct proc *p;
1809 void *v;
1810 register_t *retval;
1811 {
1812 struct compat_sparc32_madvise_args /* {
1813 syscallarg(sparc32_voidp) addr;
1814 syscallarg(sparc32_size_t) len;
1815 syscallarg(int) behav;
1816 } */ *uap = v;
1817 struct sys_madvise_args ua;
1818
1819 SPARC32TOP_UAP(addr, void);
1820 SPARC32TOX_UAP(len, size_t);
1821 SPARC32TO64_UAP(behav);
1822 return (sys_madvise(p, &ua, retval));
1823 }
1824
1825 int
1826 compat_sparc32_mincore(p, v, retval)
1827 struct proc *p;
1828 void *v;
1829 register_t *retval;
1830 {
1831 struct compat_sparc32_mincore_args /* {
1832 syscallarg(sparc32_caddr_t) addr;
1833 syscallarg(sparc32_size_t) len;
1834 syscallarg(sparc32_charp) vec;
1835 } */ *uap = v;
1836 struct sys_mincore_args ua;
1837
1838 SPARC32TOX64_UAP(addr, caddr_t);
1839 SPARC32TOX_UAP(len, size_t);
1840 SPARC32TOP_UAP(vec, char);
1841 return (sys_mincore(p, &ua, retval));
1842 }
1843
1844 int
1845 compat_sparc32_getgroups(p, v, retval)
1846 struct proc *p;
1847 void *v;
1848 register_t *retval;
1849 {
1850 struct compat_sparc32_getgroups_args /* {
1851 syscallarg(int) gidsetsize;
1852 syscallarg(sparc32_gid_tp) gidset;
1853 } */ *uap = v;
1854 register struct pcred *pc = p->p_cred;
1855 register int ngrp;
1856 int error;
1857
1858 ngrp = SCARG(uap, gidsetsize);
1859 if (ngrp == 0) {
1860 *retval = pc->pc_ucred->cr_ngroups;
1861 return (0);
1862 }
1863 if (ngrp < pc->pc_ucred->cr_ngroups)
1864 return (EINVAL);
1865 ngrp = pc->pc_ucred->cr_ngroups;
1866 /* Should convert gid_t to sparc32_gid_t, but they're the same */
1867 error = copyout((caddr_t)pc->pc_ucred->cr_groups,
1868 (caddr_t)(u_long)SCARG(uap, gidset),
1869 ngrp * sizeof(gid_t));
1870 if (error)
1871 return (error);
1872 *retval = ngrp;
1873 return (0);
1874 }
1875
1876 int
1877 compat_sparc32_setgroups(p, v, retval)
1878 struct proc *p;
1879 void *v;
1880 register_t *retval;
1881 {
1882 struct compat_sparc32_setgroups_args /* {
1883 syscallarg(int) gidsetsize;
1884 syscallarg(const sparc32_gid_tp) gidset;
1885 } */ *uap = v;
1886 struct sys_setgroups_args ua;
1887
1888 SPARC32TO64_UAP(gidsetsize);
1889 SPARC32TOP_UAP(gidset, gid_t);
1890 return (sys_setgroups(p, &ua, retval));
1891 }
1892
1893 int
1894 compat_sparc32_setpgid(p, v, retval)
1895 struct proc *p;
1896 void *v;
1897 register_t *retval;
1898 {
1899 struct compat_sparc32_setpgid_args /* {
1900 syscallarg(int) pid;
1901 syscallarg(int) pgid;
1902 } */ *uap = v;
1903 struct sys_setpgid_args ua;
1904
1905 SPARC32TO64_UAP(pid);
1906 SPARC32TO64_UAP(pgid);
1907 return (sys_setpgid(p, &ua, retval));
1908 }
1909
1910 int
1911 compat_sparc32_setitimer(p, v, retval)
1912 struct proc *p;
1913 void *v;
1914 register_t *retval;
1915 {
1916 struct compat_sparc32_setitimer_args /* {
1917 syscallarg(int) which;
1918 syscallarg(const sparc32_itimervalp_t) itv;
1919 syscallarg(sparc32_itimervalp_t) oitv;
1920 } */ *uap = v;
1921 struct sparc32_itimerval s32it, *itvp;
1922 int which = SCARG(uap, which);
1923 struct compat_sparc32_getitimer_args getargs;
1924 struct itimerval aitv;
1925 int s, error;
1926
1927 if ((u_int)which > ITIMER_PROF)
1928 return (EINVAL);
1929 itvp = (struct sparc32_itimerval *)(u_long)SCARG(uap, itv);
1930 if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
1931 return (error);
1932 sparc32_to_itimerval(&s32it, &aitv);
1933 if (SCARG(uap, oitv) != NULL) {
1934 SCARG(&getargs, which) = which;
1935 SCARG(&getargs, itv) = SCARG(uap, oitv);
1936 if ((error = compat_sparc32_getitimer(p, &getargs, retval)) != 0)
1937 return (error);
1938 }
1939 if (itvp == 0)
1940 return (0);
1941 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
1942 return (EINVAL);
1943 s = splclock();
1944 if (which == ITIMER_REAL) {
1945 untimeout(realitexpire, p);
1946 if (timerisset(&aitv.it_value)) {
1947 timeradd(&aitv.it_value, &time, &aitv.it_value);
1948 timeout(realitexpire, p, hzto(&aitv.it_value));
1949 }
1950 p->p_realtimer = aitv;
1951 } else
1952 p->p_stats->p_timer[which] = aitv;
1953 splx(s);
1954 return (0);
1955 }
1956
1957 int
1958 compat_sparc32_getitimer(p, v, retval)
1959 struct proc *p;
1960 void *v;
1961 register_t *retval;
1962 {
1963 struct compat_sparc32_getitimer_args /* {
1964 syscallarg(int) which;
1965 syscallarg(sparc32_itimervalp_t) itv;
1966 } */ *uap = v;
1967 int which = SCARG(uap, which);
1968 struct sparc32_itimerval s32it;
1969 struct itimerval aitv;
1970 int s;
1971
1972 if ((u_int)which > ITIMER_PROF)
1973 return (EINVAL);
1974 s = splclock();
1975 if (which == ITIMER_REAL) {
1976 /*
1977 * Convert from absolute to relative time in .it_value
1978 * part of real time timer. If time for real time timer
1979 * has passed return 0, else return difference between
1980 * current time and time for the timer to go off.
1981 */
1982 aitv = p->p_realtimer;
1983 if (timerisset(&aitv.it_value)) {
1984 if (timercmp(&aitv.it_value, &time, <))
1985 timerclear(&aitv.it_value);
1986 else
1987 timersub(&aitv.it_value, &time, &aitv.it_value);
1988 }
1989 } else
1990 aitv = p->p_stats->p_timer[which];
1991 splx(s);
1992 sparc32_from_itimerval(&aitv, &s32it);
1993 return (copyout(&s32it, (caddr_t)(u_long)SCARG(uap, itv), sizeof(s32it)));
1994 }
1995
1996 int
1997 compat_sparc32_fcntl(p, v, retval)
1998 struct proc *p;
1999 void *v;
2000 register_t *retval;
2001 {
2002 struct compat_sparc32_fcntl_args /* {
2003 syscallarg(int) fd;
2004 syscallarg(int) cmd;
2005 syscallarg(sparc32_voidp) arg;
2006 } */ *uap = v;
2007 struct sys_fcntl_args ua;
2008
2009 SPARC32TO64_UAP(fd);
2010 SPARC32TO64_UAP(cmd);
2011 SPARC32TOP_UAP(arg, void);
2012 /* XXXX we can do this 'cause flock doesn't change */
2013 return (sys_fcntl(p, &ua, retval));
2014 }
2015
2016 int
2017 compat_sparc32_dup2(p, v, retval)
2018 struct proc *p;
2019 void *v;
2020 register_t *retval;
2021 {
2022 struct compat_sparc32_dup2_args /* {
2023 syscallarg(int) from;
2024 syscallarg(int) to;
2025 } */ *uap = v;
2026 struct sys_dup2_args ua;
2027
2028 SPARC32TO64_UAP(from);
2029 SPARC32TO64_UAP(to);
2030 return (sys_dup2(p, &ua, retval));
2031 }
2032
2033 int
2034 compat_sparc32_select(p, v, retval)
2035 struct proc *p;
2036 void *v;
2037 register_t *retval;
2038 {
2039 struct compat_sparc32_select_args /* {
2040 syscallarg(int) nd;
2041 syscallarg(sparc32_fd_setp_t) in;
2042 syscallarg(sparc32_fd_setp_t) ou;
2043 syscallarg(sparc32_fd_setp_t) ex;
2044 syscallarg(sparc32_timevalp_t) tv;
2045 } */ *uap = v;
2046 /* This one must be done in-line 'cause of the timeval */
2047 struct sparc32_timeval tv32;
2048 caddr_t bits;
2049 char smallbits[howmany(FD_SETSIZE, NFDBITS) * sizeof(fd_mask) * 6];
2050 struct timeval atv;
2051 int s, ncoll, error = 0, timo;
2052 size_t ni;
2053 extern int selwait, nselcoll;
2054 extern int selscan __P((struct proc *, fd_mask *, fd_mask *, int, register_t *));
2055
2056 if (SCARG(uap, nd) < 0)
2057 return (EINVAL);
2058 if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {
2059 /* forgiving; slightly wrong */
2060 SCARG(uap, nd) = p->p_fd->fd_nfiles;
2061 }
2062 ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);
2063 if (ni * 6 > sizeof(smallbits))
2064 bits = malloc(ni * 6, M_TEMP, M_WAITOK);
2065 else
2066 bits = smallbits;
2067
2068 #define getbits(name, x) \
2069 if (SCARG(uap, name)) { \
2070 error = copyin((caddr_t)(u_long)SCARG(uap, name), bits + ni * x, ni); \
2071 if (error) \
2072 goto done; \
2073 } else \
2074 memset(bits + ni * x, 0, ni);
2075 getbits(in, 0);
2076 getbits(ou, 1);
2077 getbits(ex, 2);
2078 #undef getbits
2079
2080 if (SCARG(uap, tv)) {
2081 error = copyin((caddr_t)(u_long)SCARG(uap, tv), (caddr_t)&tv32,
2082 sizeof(tv32));
2083 if (error)
2084 goto done;
2085 sparc32_to_timeval(&tv32, &atv);
2086 if (itimerfix(&atv)) {
2087 error = EINVAL;
2088 goto done;
2089 }
2090 s = splclock();
2091 timeradd(&atv, &time, &atv);
2092 timo = hzto(&atv);
2093 /*
2094 * Avoid inadvertently sleeping forever.
2095 */
2096 if (timo == 0)
2097 timo = 1;
2098 splx(s);
2099 } else
2100 timo = 0;
2101 retry:
2102 ncoll = nselcoll;
2103 p->p_flag |= P_SELECT;
2104 error = selscan(p, (fd_mask *)(bits + ni * 0),
2105 (fd_mask *)(bits + ni * 3), SCARG(uap, nd), retval);
2106 if (error || *retval)
2107 goto done;
2108 s = splhigh();
2109 if (timo && timercmp(&time, &atv, >=)) {
2110 splx(s);
2111 goto done;
2112 }
2113 if ((p->p_flag & P_SELECT) == 0 || nselcoll != ncoll) {
2114 splx(s);
2115 goto retry;
2116 }
2117 p->p_flag &= ~P_SELECT;
2118 error = tsleep((caddr_t)&selwait, PSOCK | PCATCH, "select", timo);
2119 splx(s);
2120 if (error == 0)
2121 goto retry;
2122 done:
2123 p->p_flag &= ~P_SELECT;
2124 /* select is not restarted after signals... */
2125 if (error == ERESTART)
2126 error = EINTR;
2127 if (error == EWOULDBLOCK)
2128 error = 0;
2129 if (error == 0) {
2130 #define putbits(name, x) \
2131 if (SCARG(uap, name)) { \
2132 error = copyout(bits + ni * x, (caddr_t)(u_long)SCARG(uap, name), ni); \
2133 if (error) \
2134 goto out; \
2135 }
2136 putbits(in, 3);
2137 putbits(ou, 4);
2138 putbits(ex, 5);
2139 #undef putbits
2140 }
2141 out:
2142 if (ni * 6 > sizeof(smallbits))
2143 free(bits, M_TEMP);
2144 return (error);
2145 }
2146
2147 int
2148 compat_sparc32_fsync(p, v, retval)
2149 struct proc *p;
2150 void *v;
2151 register_t *retval;
2152 {
2153 struct compat_sparc32_fsync_args /* {
2154 syscallarg(int) fd;
2155 } */ *uap = v;
2156 struct sys_fsync_args ua;
2157
2158 SPARC32TO64_UAP(fd);
2159 return (sys_fsync(p, &ua, retval));
2160 }
2161
2162 int
2163 compat_sparc32_setpriority(p, v, retval)
2164 struct proc *p;
2165 void *v;
2166 register_t *retval;
2167 {
2168 struct compat_sparc32_setpriority_args /* {
2169 syscallarg(int) which;
2170 syscallarg(int) who;
2171 syscallarg(int) prio;
2172 } */ *uap = v;
2173 struct sys_setpriority_args ua;
2174
2175 SPARC32TO64_UAP(which);
2176 SPARC32TO64_UAP(who);
2177 SPARC32TO64_UAP(prio);
2178 return (sys_setpriority(p, &ua, retval));
2179 }
2180
2181 int
2182 compat_sparc32_socket(p, v, retval)
2183 struct proc *p;
2184 void *v;
2185 register_t *retval;
2186 {
2187 struct compat_sparc32_socket_args /* {
2188 syscallarg(int) domain;
2189 syscallarg(int) type;
2190 syscallarg(int) protocol;
2191 } */ *uap = v;
2192 struct sys_socket_args ua;
2193
2194 SPARC32TO64_UAP(domain);
2195 SPARC32TO64_UAP(type);
2196 SPARC32TO64_UAP(protocol);
2197 return (sys_socket(p, &ua, retval));
2198 }
2199
2200 int
2201 compat_sparc32_connect(p, v, retval)
2202 struct proc *p;
2203 void *v;
2204 register_t *retval;
2205 {
2206 struct compat_sparc32_connect_args /* {
2207 syscallarg(int) s;
2208 syscallarg(const sparc32_sockaddrp_t) name;
2209 syscallarg(int) namelen;
2210 } */ *uap = v;
2211 struct sys_connect_args ua;
2212
2213 SPARC32TO64_UAP(s);
2214 SPARC32TOP_UAP(name, struct sockaddr);
2215 SPARC32TO64_UAP(namelen);
2216 return (sys_connect(p, &ua, retval));
2217 }
2218
2219 int
2220 compat_sparc32_getpriority(p, v, retval)
2221 struct proc *p;
2222 void *v;
2223 register_t *retval;
2224 {
2225 struct compat_sparc32_getpriority_args /* {
2226 syscallarg(int) which;
2227 syscallarg(int) who;
2228 } */ *uap = v;
2229 struct sys_getpriority_args ua;
2230
2231 SPARC32TO64_UAP(which);
2232 SPARC32TO64_UAP(who);
2233 return (sys_getpriority(p, &ua, retval));
2234 }
2235
2236 #undef DEBUG
2237 int
2238 compat_sparc32_sigreturn(p, v, retval)
2239 struct proc *p;
2240 void *v;
2241 register_t *retval;
2242 {
2243 struct compat_sparc32_sigreturn_args /* {
2244 syscallarg(struct sparc32_sigcontext *) sigcntxp;
2245 } */ *uap = v;
2246 struct sparc32_sigcontext *scp;
2247 struct sparc32_sigcontext sc;
2248 register struct trapframe *tf;
2249 struct rwindow32 *rwstack, *kstack;
2250 sigset_t mask;
2251
2252 /* First ensure consistent stack state (see sendsig). */
2253 write_user_windows();
2254 if (rwindow_save(p)) {
2255 #ifdef DEBUG
2256 printf("sigreturn: rwindow_save(%p) failed, sending SIGILL\n", p);
2257 Debugger();
2258 #endif
2259 sigexit(p, SIGILL);
2260 }
2261 #ifdef DEBUG
2262 if (sigdebug & SDB_FOLLOW) {
2263 printf("sigreturn: %s[%d], sigcntxp %p\n",
2264 p->p_comm, p->p_pid, SCARG(uap, sigcntxp));
2265 if (sigdebug & SDB_DDB) Debugger();
2266 }
2267 #endif
2268 scp = (struct sparc32_sigcontext *)(u_long)SCARG(uap, sigcntxp);
2269 if ((vaddr_t)scp & 3 || (copyin((caddr_t)scp, &sc, sizeof sc) != 0))
2270 #ifdef DEBUG
2271 {
2272 printf("sigreturn: copyin failed\n");
2273 Debugger();
2274 return (EINVAL);
2275 }
2276 #else
2277 return (EINVAL);
2278 #endif
2279 tf = p->p_md.md_tf;
2280 /*
2281 * Only the icc bits in the psr are used, so it need not be
2282 * verified. pc and npc must be multiples of 4. This is all
2283 * that is required; if it holds, just do it.
2284 */
2285 if (((sc.sc_pc | sc.sc_npc) & 3) != 0)
2286 #ifdef DEBUG
2287 {
2288 printf("sigreturn: pc %p or npc %p invalid\n", sc.sc_pc, sc.sc_npc);
2289 Debugger();
2290 return (EINVAL);
2291 }
2292 #else
2293 return (EINVAL);
2294 #endif
2295 /* take only psr ICC field */
2296 tf->tf_tstate = (int64_t)(tf->tf_tstate & ~TSTATE_CCR) | PSRCC_TO_TSTATE(sc.sc_psr);
2297 tf->tf_pc = (int64_t)sc.sc_pc;
2298 tf->tf_npc = (int64_t)sc.sc_npc;
2299 tf->tf_global[1] = (int64_t)sc.sc_g1;
2300 tf->tf_out[0] = (int64_t)sc.sc_o0;
2301 tf->tf_out[6] = (int64_t)sc.sc_sp;
2302 rwstack = (struct rwindow32 *)tf->tf_out[6];
2303 kstack = (struct rwindow32 *)(((caddr_t)tf)-CCFSZ);
2304 #ifdef DEBUG
2305 if (sigdebug & SDB_FOLLOW) {
2306 printf("sys_sigreturn: return trapframe pc=%p sp=%p tstate=%x\n",
2307 (int)tf->tf_pc, (int)tf->tf_out[6], (int)tf->tf_tstate);
2308 if (sigdebug & SDB_DDB) Debugger();
2309 }
2310 #endif
2311 if (scp->sc_onstack & SS_ONSTACK)
2312 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
2313 else
2314 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
2315
2316 /* Restore signal mask */
2317 native_sigset13_to_sigset(&scp->sc_mask, &mask);
2318 (void) sigprocmask1(p, SIG_SETMASK, &mask, 0);
2319 return (EJUSTRETURN);
2320 }
2321
2322
2323 int
2324 compat_sparc32_bind(p, v, retval)
2325 struct proc *p;
2326 void *v;
2327 register_t *retval;
2328 {
2329 struct compat_sparc32_bind_args /* {
2330 syscallarg(int) s;
2331 syscallarg(const sparc32_sockaddrp_t) name;
2332 syscallarg(int) namelen;
2333 } */ *uap = v;
2334 struct sys_bind_args ua;
2335
2336 SPARC32TO64_UAP(s);
2337 SPARC32TOP_UAP(name, struct sockaddr);
2338 SPARC32TO64_UAP(namelen);
2339 return (sys_bind(p, &ua, retval));
2340 }
2341
2342 int
2343 compat_sparc32_setsockopt(p, v, retval)
2344 struct proc *p;
2345 void *v;
2346 register_t *retval;
2347 {
2348 struct compat_sparc32_setsockopt_args /* {
2349 syscallarg(int) s;
2350 syscallarg(int) level;
2351 syscallarg(int) name;
2352 syscallarg(const sparc32_voidp) val;
2353 syscallarg(int) valsize;
2354 } */ *uap = v;
2355 struct sys_setsockopt_args ua;
2356
2357 SPARC32TO64_UAP(s);
2358 SPARC32TO64_UAP(level);
2359 SPARC32TO64_UAP(name);
2360 SPARC32TOP_UAP(val, void);
2361 SPARC32TO64_UAP(valsize);
2362 /* may be more efficient to do this inline. */
2363 return (sys_setsockopt(p, &ua, retval));
2364 }
2365
2366 int
2367 compat_sparc32_listen(p, v, retval)
2368 struct proc *p;
2369 void *v;
2370 register_t *retval;
2371 {
2372 struct compat_sparc32_listen_args /* {
2373 syscallarg(int) s;
2374 syscallarg(int) backlog;
2375 } */ *uap = v;
2376 struct sys_listen_args ua;
2377
2378 SPARC32TO64_UAP(s);
2379 SPARC32TO64_UAP(backlog);
2380 return (sys_listen(p, &ua, retval));
2381 }
2382
2383 int
2384 compat_sparc32_vtrace(p, v, retval)
2385 struct proc *p;
2386 void *v;
2387 register_t *retval;
2388 {
2389 #ifdef TRACE
2390 struct compat_sparc32_vtrace_args /* {
2391 syscallarg(int) request;
2392 syscallarg(int) value;
2393 } */ *uap = v;
2394 struct sys_vtrace_args ua;
2395
2396 SPARC32TO64_UAP(request);
2397 SPARC32TO64_UAP(value);
2398 return (vtrace(p, &ua, retval));
2399 #else
2400 return (ENOSYS);
2401 #endif
2402 }
2403
2404 int
2405 compat_sparc32_gettimeofday(p, v, retval)
2406 struct proc *p;
2407 void *v;
2408 register_t *retval;
2409 {
2410 struct compat_sparc32_gettimeofday_args /* {
2411 syscallarg(sparc32_timevalp_t) tp;
2412 syscallarg(sparc32_timezonep_t) tzp;
2413 } */ *uap = v;
2414 struct timeval atv;
2415 struct sparc32_timeval tv32;
2416 int error = 0;
2417 struct sparc32_timezone tzfake;
2418
2419 if (SCARG(uap, tp)) {
2420 microtime(&atv);
2421 sparc32_from_timeval(&atv, &tv32);
2422 error = copyout(&tv32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tv32));
2423 if (error)
2424 return (error);
2425 }
2426 if (SCARG(uap, tzp)) {
2427 /*
2428 * NetBSD has no kernel notion of time zone, so we just
2429 * fake up a timezone struct and return it if demanded.
2430 */
2431 tzfake.tz_minuteswest = 0;
2432 tzfake.tz_dsttime = 0;
2433 error = copyout(&tzfake, (caddr_t)(u_long)SCARG(uap, tzp), sizeof(tzfake));
2434 }
2435 return (error);
2436 }
2437
2438 static int settime __P((struct timeval *));
2439 /* This function is used by clock_settime and settimeofday */
2440 static int
2441 settime(tv)
2442 struct timeval *tv;
2443 {
2444 struct timeval delta;
2445 int s;
2446
2447 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
2448 s = splclock();
2449 timersub(tv, &time, &delta);
2450 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
2451 return (EPERM);
2452 #ifdef notyet
2453 if ((delta.tv_sec < 86400) && securelevel > 0)
2454 return (EPERM);
2455 #endif
2456 time = *tv;
2457 (void) splsoftclock();
2458 timeradd(&boottime, &delta, &boottime);
2459 timeradd(&runtime, &delta, &runtime);
2460 # if defined(NFS) || defined(NFSSERVER)
2461 nqnfs_lease_updatetime(delta.tv_sec);
2462 # endif
2463 splx(s);
2464 resettodr();
2465 return (0);
2466 }
2467
2468
2469 int
2470 compat_sparc32_settimeofday(p, v, retval)
2471 struct proc *p;
2472 void *v;
2473 register_t *retval;
2474 {
2475 struct compat_sparc32_settimeofday_args /* {
2476 syscallarg(const sparc32_timevalp_t) tv;
2477 syscallarg(const sparc32_timezonep_t) tzp;
2478 } */ *uap = v;
2479 struct sparc32_timeval atv32;
2480 struct timeval atv;
2481 struct sparc32_timezone atz;
2482 int error;
2483
2484 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
2485 return (error);
2486 /* Verify all parameters before changing time. */
2487 if (SCARG(uap, tv) && (error = copyin((caddr_t)(u_long)SCARG(uap, tv),
2488 &atv32, sizeof(atv32))))
2489 return (error);
2490 sparc32_to_timeval(&atv32, &atv);
2491 /* XXX since we don't use tz, probably no point in doing copyin. */
2492 if (SCARG(uap, tzp) && (error = copyin((caddr_t)(u_long)SCARG(uap, tzp),
2493 &atz, sizeof(atz))))
2494 return (error);
2495 if (SCARG(uap, tv))
2496 if ((error = settime(&atv)))
2497 return (error);
2498 /*
2499 * NetBSD has no kernel notion of time zone, and only an
2500 * obsolete program would try to set it, so we log a warning.
2501 */
2502 if (SCARG(uap, tzp))
2503 printf("pid %d attempted to set the "
2504 "(obsolete) kernel time zone\n", p->p_pid);
2505 return (0);
2506 }
2507
2508 int
2509 compat_sparc32_fchown(p, v, retval)
2510 struct proc *p;
2511 void *v;
2512 register_t *retval;
2513 {
2514 struct compat_sparc32_fchown_args /* {
2515 syscallarg(int) fd;
2516 syscallarg(uid_t) uid;
2517 syscallarg(gid_t) gid;
2518 } */ *uap = v;
2519 struct sys_fchown_args ua;
2520
2521 SPARC32TO64_UAP(fd);
2522 SPARC32TO64_UAP(uid);
2523 SPARC32TO64_UAP(gid);
2524 return (sys_fchown(p, &ua, retval));
2525 }
2526
2527 int
2528 compat_sparc32_fchmod(p, v, retval)
2529 struct proc *p;
2530 void *v;
2531 register_t *retval;
2532 {
2533 struct compat_sparc32_fchmod_args /* {
2534 syscallarg(int) fd;
2535 syscallarg(mode_t) mode;
2536 } */ *uap = v;
2537 struct sys_fchmod_args ua;
2538
2539 SPARC32TO64_UAP(fd);
2540 SPARC32TO64_UAP(mode);
2541 return (sys_fchmod(p, &ua, retval));
2542 }
2543
2544 int
2545 compat_sparc32_setreuid(p, v, retval)
2546 struct proc *p;
2547 void *v;
2548 register_t *retval;
2549 {
2550 struct compat_sparc32_setreuid_args /* {
2551 syscallarg(uid_t) ruid;
2552 syscallarg(uid_t) euid;
2553 } */ *uap = v;
2554 struct sys_setreuid_args ua;
2555
2556 SPARC32TO64_UAP(ruid);
2557 SPARC32TO64_UAP(euid);
2558 return (sys_setreuid(p, &ua, retval));
2559 }
2560
2561 int
2562 compat_sparc32_setregid(p, v, retval)
2563 struct proc *p;
2564 void *v;
2565 register_t *retval;
2566 {
2567 struct compat_sparc32_setregid_args /* {
2568 syscallarg(gid_t) rgid;
2569 syscallarg(gid_t) egid;
2570 } */ *uap = v;
2571 struct sys_setregid_args ua;
2572
2573 SPARC32TO64_UAP(rgid);
2574 SPARC32TO64_UAP(egid);
2575 return (sys_setregid(p, &ua, retval));
2576 }
2577
2578 int
2579 compat_sparc32_getrusage(p, v, retval)
2580 struct proc *p;
2581 void *v;
2582 register_t *retval;
2583 {
2584 struct compat_sparc32_getrusage_args /* {
2585 syscallarg(int) who;
2586 syscallarg(sparc32_rusagep_t) rusage;
2587 } */ *uap = v;
2588 struct rusage *rup;
2589 struct sparc32_rusage ru;
2590
2591 switch (SCARG(uap, who)) {
2592
2593 case RUSAGE_SELF:
2594 rup = &p->p_stats->p_ru;
2595 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
2596 break;
2597
2598 case RUSAGE_CHILDREN:
2599 rup = &p->p_stats->p_cru;
2600 break;
2601
2602 default:
2603 return (EINVAL);
2604 }
2605 sparc32_from_rusage(rup, &ru);
2606 return (copyout(&ru, (caddr_t)(u_long)SCARG(uap, rusage), sizeof(ru)));
2607 }
2608
2609 int
2610 compat_sparc32_getsockopt(p, v, retval)
2611 struct proc *p;
2612 void *v;
2613 register_t *retval;
2614 {
2615 struct compat_sparc32_getsockopt_args /* {
2616 syscallarg(int) s;
2617 syscallarg(int) level;
2618 syscallarg(int) name;
2619 syscallarg(sparc32_voidp) val;
2620 syscallarg(sparc32_intp) avalsize;
2621 } */ *uap = v;
2622 struct sys_getsockopt_args ua;
2623
2624 SPARC32TO64_UAP(s);
2625 SPARC32TO64_UAP(level);
2626 SPARC32TO64_UAP(name);
2627 SPARC32TOP_UAP(val, void);
2628 SPARC32TOP_UAP(avalsize, int);
2629 return (sys_getsockopt(p, &ua, retval));
2630 }
2631
2632 int
2633 compat_sparc32_readv(p, v, retval)
2634 struct proc *p;
2635 void *v;
2636 register_t *retval;
2637 {
2638 struct compat_sparc32_readv_args /* {
2639 syscallarg(int) fd;
2640 syscallarg(const sparc32_iovecp_t) iovp;
2641 syscallarg(int) iovcnt;
2642 } */ *uap = v;
2643 int fd = SCARG(uap, fd);
2644 register struct file *fp;
2645 register struct filedesc *fdp = p->p_fd;
2646
2647 if ((u_int)fd >= fdp->fd_nfiles ||
2648 (fp = fdp->fd_ofiles[fd]) == NULL ||
2649 (fp->f_flag & FREAD) == 0)
2650 return (EBADF);
2651
2652 return (dofilereadv32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp),
2653 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
2654 }
2655
2656 /* Damn thing copies in the iovec! */
2657 int
2658 dofilereadv32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
2659 struct proc *p;
2660 int fd;
2661 struct file *fp;
2662 struct sparc32_iovec *iovp;
2663 int iovcnt;
2664 off_t *offset;
2665 int flags;
2666 register_t *retval;
2667 {
2668 struct uio auio;
2669 register struct iovec *iov;
2670 struct iovec *needfree;
2671 struct iovec aiov[UIO_SMALLIOV];
2672 long i, cnt, error = 0;
2673 u_int iovlen;
2674 #ifdef KTRACE
2675 struct iovec *ktriov = NULL;
2676 #endif
2677
2678 /* note: can't use iovlen until iovcnt is validated */
2679 iovlen = iovcnt * sizeof(struct iovec);
2680 if ((u_int)iovcnt > UIO_SMALLIOV) {
2681 if ((u_int)iovcnt > IOV_MAX)
2682 return (EINVAL);
2683 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
2684 needfree = iov;
2685 } else if ((u_int)iovcnt > 0) {
2686 iov = aiov;
2687 needfree = NULL;
2688 } else
2689 return (EINVAL);
2690
2691 auio.uio_iov = iov;
2692 auio.uio_iovcnt = iovcnt;
2693 auio.uio_rw = UIO_READ;
2694 auio.uio_segflg = UIO_USERSPACE;
2695 auio.uio_procp = p;
2696 error = sparc32_to_iovecin(iovp, iov, iovcnt);
2697 if (error)
2698 goto done;
2699 auio.uio_resid = 0;
2700 for (i = 0; i < iovcnt; i++) {
2701 auio.uio_resid += iov->iov_len;
2702 /*
2703 * Reads return ssize_t because -1 is returned on error.
2704 * Therefore we must restrict the length to SSIZE_MAX to
2705 * avoid garbage return values.
2706 */
2707 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
2708 error = EINVAL;
2709 goto done;
2710 }
2711 iov++;
2712 }
2713 #ifdef KTRACE
2714 /*
2715 * if tracing, save a copy of iovec
2716 */
2717 if (KTRPOINT(p, KTR_GENIO)) {
2718 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
2719 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
2720 }
2721 #endif
2722 cnt = auio.uio_resid;
2723 error = (*fp->f_ops->fo_read)(fp, offset, &auio, fp->f_cred, flags);
2724 if (error)
2725 if (auio.uio_resid != cnt && (error == ERESTART ||
2726 error == EINTR || error == EWOULDBLOCK))
2727 error = 0;
2728 cnt -= auio.uio_resid;
2729 #ifdef KTRACE
2730 if (KTRPOINT(p, KTR_GENIO))
2731 if (error == 0) {
2732 ktrgenio(p->p_tracep, fd, UIO_READ, ktriov, cnt,
2733 error);
2734 FREE(ktriov, M_TEMP);
2735 }
2736 #endif
2737 *retval = cnt;
2738 done:
2739 if (needfree)
2740 FREE(needfree, M_IOV);
2741 return (error);
2742 }
2743
2744
2745 int
2746 compat_sparc32_writev(p, v, retval)
2747 struct proc *p;
2748 void *v;
2749 register_t *retval;
2750 {
2751 struct compat_sparc32_writev_args /* {
2752 syscallarg(int) fd;
2753 syscallarg(const sparc32_iovecp_t) iovp;
2754 syscallarg(int) iovcnt;
2755 } */ *uap = v;
2756 int fd = SCARG(uap, fd);
2757 register struct file *fp;
2758 register struct filedesc *fdp = p->p_fd;
2759
2760 if ((u_int)fd >= fdp->fd_nfiles ||
2761 (fp = fdp->fd_ofiles[fd]) == NULL ||
2762 (fp->f_flag & FWRITE) == 0)
2763 return (EBADF);
2764
2765 return (dofilewritev32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp),
2766 SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
2767 }
2768
2769 int
2770 dofilewritev32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
2771 struct proc *p;
2772 int fd;
2773 struct file *fp;
2774 struct sparc32_iovec *iovp;
2775 int iovcnt;
2776 off_t *offset;
2777 int flags;
2778 register_t *retval;
2779 {
2780 struct uio auio;
2781 register struct iovec *iov;
2782 struct iovec *needfree;
2783 struct iovec aiov[UIO_SMALLIOV];
2784 long i, cnt, error = 0;
2785 u_int iovlen;
2786 #ifdef KTRACE
2787 struct iovec *ktriov = NULL;
2788 #endif
2789
2790 /* note: can't use iovlen until iovcnt is validated */
2791 iovlen = iovcnt * sizeof(struct iovec);
2792 if ((u_int)iovcnt > UIO_SMALLIOV) {
2793 if ((u_int)iovcnt > IOV_MAX)
2794 return (EINVAL);
2795 MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
2796 needfree = iov;
2797 } else if ((u_int)iovcnt > 0) {
2798 iov = aiov;
2799 needfree = NULL;
2800 } else
2801 return (EINVAL);
2802
2803 auio.uio_iov = iov;
2804 auio.uio_iovcnt = iovcnt;
2805 auio.uio_rw = UIO_WRITE;
2806 auio.uio_segflg = UIO_USERSPACE;
2807 auio.uio_procp = p;
2808 error = sparc32_to_iovecin(iovp, iov, iovcnt);
2809 if (error)
2810 goto done;
2811 auio.uio_resid = 0;
2812 for (i = 0; i < iovcnt; i++) {
2813 auio.uio_resid += iov->iov_len;
2814 /*
2815 * Writes return ssize_t because -1 is returned on error.
2816 * Therefore we must restrict the length to SSIZE_MAX to
2817 * avoid garbage return values.
2818 */
2819 if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
2820 error = EINVAL;
2821 goto done;
2822 }
2823 iov++;
2824 }
2825 #ifdef KTRACE
2826 /*
2827 * if tracing, save a copy of iovec
2828 */
2829 if (KTRPOINT(p, KTR_GENIO)) {
2830 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
2831 memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
2832 }
2833 #endif
2834 cnt = auio.uio_resid;
2835 error = (*fp->f_ops->fo_write)(fp, offset, &auio, fp->f_cred, flags);
2836 if (error) {
2837 if (auio.uio_resid != cnt && (error == ERESTART ||
2838 error == EINTR || error == EWOULDBLOCK))
2839 error = 0;
2840 if (error == EPIPE)
2841 psignal(p, SIGPIPE);
2842 }
2843 cnt -= auio.uio_resid;
2844 #ifdef KTRACE
2845 if (KTRPOINT(p, KTR_GENIO))
2846 if (error == 0) {
2847 ktrgenio(p->p_tracep, fd, UIO_WRITE, ktriov, cnt,
2848 error);
2849 FREE(ktriov, M_TEMP);
2850 }
2851 #endif
2852 *retval = cnt;
2853 done:
2854 if (needfree)
2855 FREE(needfree, M_IOV);
2856 return (error);
2857 }
2858
2859
2860 int
2861 compat_sparc32_rename(p, v, retval)
2862 struct proc *p;
2863 void *v;
2864 register_t *retval;
2865 {
2866 struct compat_sparc32_rename_args /* {
2867 syscallarg(const sparc32_charp) from;
2868 syscallarg(const sparc32_charp) to;
2869 } */ *uap = v;
2870 struct sys_rename_args ua;
2871
2872 SPARC32TOP_UAP(from, const char *);
2873 SPARC32TOP_UAP(to, const char *)
2874
2875 return (sys_rename(p, &ua, retval));
2876 }
2877
2878 int
2879 compat_sparc32_flock(p, v, retval)
2880 struct proc *p;
2881 void *v;
2882 register_t *retval;
2883 {
2884 struct compat_sparc32_flock_args /* {
2885 syscallarg(int) fd;
2886 syscallarg(int) how;
2887 } */ *uap = v;
2888 struct sys_flock_args ua;
2889
2890 SPARC32TO64_UAP(fd);
2891 SPARC32TO64_UAP(how)
2892
2893 return (sys_flock(p, &ua, retval));
2894 }
2895
2896 int
2897 compat_sparc32_mkfifo(p, v, retval)
2898 struct proc *p;
2899 void *v;
2900 register_t *retval;
2901 {
2902 struct compat_sparc32_mkfifo_args /* {
2903 syscallarg(const sparc32_charp) path;
2904 syscallarg(mode_t) mode;
2905 } */ *uap = v;
2906 struct sys_mkfifo_args ua;
2907
2908 SPARC32TOP_UAP(path, const char)
2909 SPARC32TO64_UAP(mode);
2910 return (sys_mkfifo(p, &ua, retval));
2911 }
2912
2913 int
2914 compat_sparc32_shutdown(p, v, retval)
2915 struct proc *p;
2916 void *v;
2917 register_t *retval;
2918 {
2919 struct compat_sparc32_shutdown_args /* {
2920 syscallarg(int) s;
2921 syscallarg(int) how;
2922 } */ *uap = v;
2923 struct sys_shutdown_args ua;
2924
2925 SPARC32TO64_UAP(s)
2926 SPARC32TO64_UAP(how);
2927 return (sys_shutdown(p, &ua, retval));
2928 }
2929
2930 int
2931 compat_sparc32_socketpair(p, v, retval)
2932 struct proc *p;
2933 void *v;
2934 register_t *retval;
2935 {
2936 struct compat_sparc32_socketpair_args /* {
2937 syscallarg(int) domain;
2938 syscallarg(int) type;
2939 syscallarg(int) protocol;
2940 syscallarg(sparc32_intp) rsv;
2941 } */ *uap = v;
2942 struct sys_socketpair_args ua;
2943
2944 SPARC32TO64_UAP(domain);
2945 SPARC32TO64_UAP(type);
2946 SPARC32TO64_UAP(protocol);
2947 SPARC32TOP_UAP(rsv, int);
2948 /* Since we're just copying out two `int's we can do this */
2949 return (sys_socketpair(p, &ua, retval));
2950 }
2951
2952 int
2953 compat_sparc32_mkdir(p, v, retval)
2954 struct proc *p;
2955 void *v;
2956 register_t *retval;
2957 {
2958 struct compat_sparc32_mkdir_args /* {
2959 syscallarg(const sparc32_charp) path;
2960 syscallarg(mode_t) mode;
2961 } */ *uap = v;
2962 struct sys_mkdir_args ua;
2963
2964 SPARC32TOP_UAP(path, const char)
2965 SPARC32TO64_UAP(mode);
2966 return (sys_mkdir(p, &ua, retval));
2967 }
2968
2969 int
2970 compat_sparc32_rmdir(p, v, retval)
2971 struct proc *p;
2972 void *v;
2973 register_t *retval;
2974 {
2975 struct compat_sparc32_rmdir_args /* {
2976 syscallarg(const sparc32_charp) path;
2977 } */ *uap = v;
2978 struct sys_rmdir_args ua;
2979
2980 SPARC32TOP_UAP(path, const char);
2981 return (sys_rmdir(p, &ua, retval));
2982 }
2983
2984 int
2985 compat_sparc32_utimes(p, v, retval)
2986 struct proc *p;
2987 void *v;
2988 register_t *retval;
2989 {
2990 struct compat_sparc32_utimes_args /* {
2991 syscallarg(const sparc32_charp) path;
2992 syscallarg(const sparc32_timevalp_t) tptr;
2993 } */ *uap = v;
2994 int error;
2995 struct nameidata nd;
2996
2997 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
2998 if ((error = namei(&nd)) != 0)
2999 return (error);
3000
3001 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
3002
3003 vrele(nd.ni_vp);
3004 return (error);
3005 }
3006
3007 /*
3008 * Common routine to set access and modification times given a vnode.
3009 */
3010 static int
3011 change_utimes32(vp, tptr, p)
3012 struct vnode *vp;
3013 struct timeval *tptr;
3014 struct proc *p;
3015 {
3016 struct sparc32_timeval tv32[2];
3017 struct timeval tv[2];
3018 struct vattr vattr;
3019 int error;
3020
3021 VATTR_NULL(&vattr);
3022 if (tptr == NULL) {
3023 microtime(&tv[0]);
3024 tv[1] = tv[0];
3025 vattr.va_vaflags |= VA_UTIMES_NULL;
3026 } else {
3027 error = copyin(tptr, tv, sizeof(tv));
3028 if (error)
3029 return (error);
3030 }
3031 sparc32_to_timeval(&tv32[0], &tv[0]);
3032 sparc32_to_timeval(&tv32[1], &tv[1]);
3033 VOP_LEASE(vp, p, p->p_ucred, LEASE_WRITE);
3034 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3035 vattr.va_atime.tv_sec = tv[0].tv_sec;
3036 vattr.va_atime.tv_nsec = tv[0].tv_usec * 1000;
3037 vattr.va_mtime.tv_sec = tv[1].tv_sec;
3038 vattr.va_mtime.tv_nsec = tv[1].tv_usec * 1000;
3039 error = VOP_SETATTR(vp, &vattr, p->p_ucred, p);
3040 VOP_UNLOCK(vp, 0);
3041 return (error);
3042 }
3043
3044 int
3045 compat_sparc32_adjtime(p, v, retval)
3046 struct proc *p;
3047 void *v;
3048 register_t *retval;
3049 {
3050 struct compat_sparc32_adjtime_args /* {
3051 syscallarg(const sparc32_timevalp_t) delta;
3052 syscallarg(sparc32_timevalp_t) olddelta;
3053 } */ *uap = v;
3054 struct sparc32_timeval atv;
3055 int32_t ndelta, ntickdelta, odelta;
3056 int s, error;
3057 extern long bigadj, timedelta;
3058 extern int tickdelta;
3059
3060 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
3061 return (error);
3062
3063 error = copyin((caddr_t)(u_long)SCARG(uap, delta), &atv, sizeof(struct timeval));
3064 if (error)
3065 return (error);
3066 /*
3067 * Compute the total correction and the rate at which to apply it.
3068 * Round the adjustment down to a whole multiple of the per-tick
3069 * delta, so that after some number of incremental changes in
3070 * hardclock(), tickdelta will become zero, lest the correction
3071 * overshoot and start taking us away from the desired final time.
3072 */
3073 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
3074 if (ndelta > bigadj)
3075 ntickdelta = 10 * tickadj;
3076 else
3077 ntickdelta = tickadj;
3078 if (ndelta % ntickdelta)
3079 ndelta = ndelta / ntickdelta * ntickdelta;
3080
3081 /*
3082 * To make hardclock()'s job easier, make the per-tick delta negative
3083 * if we want time to run slower; then hardclock can simply compute
3084 * tick + tickdelta, and subtract tickdelta from timedelta.
3085 */
3086 if (ndelta < 0)
3087 ntickdelta = -ntickdelta;
3088 s = splclock();
3089 odelta = timedelta;
3090 timedelta = ndelta;
3091 tickdelta = ntickdelta;
3092 splx(s);
3093
3094 if (SCARG(uap, olddelta)) {
3095 atv.tv_sec = odelta / 1000000;
3096 atv.tv_usec = odelta % 1000000;
3097 (void) copyout(&atv, (caddr_t)(u_long)SCARG(uap, olddelta),
3098 sizeof(struct timeval));
3099 }
3100 return (0);
3101 }
3102
3103 int
3104 compat_sparc32_quotactl(p, v, retval)
3105 struct proc *p;
3106 void *v;
3107 register_t *retval;
3108 {
3109 struct compat_sparc32_quotactl_args /* {
3110 syscallarg(const sparc32_charp) path;
3111 syscallarg(int) cmd;
3112 syscallarg(int) uid;
3113 syscallarg(sparc32_caddr_t) arg;
3114 } */ *uap = v;
3115 struct sys_quotactl_args ua;
3116
3117 SPARC32TOP_UAP(path, const char);
3118 SPARC32TO64_UAP(cmd);
3119 SPARC32TO64_UAP(uid);
3120 SPARC32TOX64_UAP(arg, caddr_t);
3121 return (sys_quotactl(p, &ua, retval));
3122 }
3123
3124 #if defined(NFS) || defined(NFSSERVER)
3125 int
3126 compat_sparc32_nfssvc(p, v, retval)
3127 struct proc *p;
3128 void *v;
3129 register_t *retval;
3130 {
3131 #if 0
3132 struct compat_sparc32_nfssvc_args /* {
3133 syscallarg(int) flag;
3134 syscallarg(sparc32_voidp) argp;
3135 } */ *uap = v;
3136 struct sys_nfssvc_args ua;
3137
3138 SPARC32TO64_UAP(flag);
3139 SPARC32TOP_UAP(argp, void);
3140 return (sys_nfssvc(p, &ua, retval));
3141 #else
3142 /* Why would we want to support a 32-bit nfsd? */
3143 return (ENOSYS);
3144 #endif
3145 }
3146 #endif
3147
3148 int
3149 compat_sparc32_statfs(p, v, retval)
3150 struct proc *p;
3151 void *v;
3152 register_t *retval;
3153 {
3154 struct compat_sparc32_statfs_args /* {
3155 syscallarg(const sparc32_charp) path;
3156 syscallarg(sparc32_statfsp_t) buf;
3157 } */ *uap = v;
3158 register struct mount *mp;
3159 register struct statfs *sp;
3160 struct sparc32_statfs s32;
3161 int error;
3162 struct nameidata nd;
3163
3164 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3165 if ((error = namei(&nd)) != 0)
3166 return (error);
3167 mp = nd.ni_vp->v_mount;
3168 sp = &mp->mnt_stat;
3169 vrele(nd.ni_vp);
3170 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3171 return (error);
3172 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3173 sparc32_from_statfs(sp, &s32);
3174 return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3175 }
3176
3177 int
3178 compat_sparc32_fstatfs(p, v, retval)
3179 struct proc *p;
3180 void *v;
3181 register_t *retval;
3182 {
3183 struct compat_sparc32_fstatfs_args /* {
3184 syscallarg(int) fd;
3185 syscallarg(sparc32_statfsp_t) buf;
3186 } */ *uap = v;
3187 struct file *fp;
3188 register struct mount *mp;
3189 register struct statfs *sp;
3190 struct sparc32_statfs s32;
3191 int error;
3192
3193 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3194 return (error);
3195 mp = ((struct vnode *)fp->f_data)->v_mount;
3196 sp = &mp->mnt_stat;
3197 if ((error = VFS_STATFS(mp, sp, p)) != 0)
3198 return (error);
3199 sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3200 sparc32_from_statfs(sp, &s32);
3201 return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3202 }
3203
3204 #if defined(NFS) || defined(NFSSERVER)
3205 int
3206 compat_sparc32_getfh(p, v, retval)
3207 struct proc *p;
3208 void *v;
3209 register_t *retval;
3210 {
3211 struct compat_sparc32_getfh_args /* {
3212 syscallarg(const sparc32_charp) fname;
3213 syscallarg(sparc32_fhandlep_t) fhp;
3214 } */ *uap = v;
3215 struct sys_getfh_args ua;
3216
3217 SPARC32TOP_UAP(fname, const char);
3218 SPARC32TOP_UAP(fhp, struct fhandle);
3219 /* Lucky for us a fhandlep_t doesn't change sizes */
3220 return (sys_getfh(p, &ua, retval));
3221 }
3222 #endif
3223
3224 int
3225 compat_sparc32_sysarch(p, v, retval)
3226 struct proc *p;
3227 void *v;
3228 register_t *retval;
3229 {
3230 struct compat_sparc32_sysarch_args /* {
3231 syscallarg(int) op;
3232 syscallarg(sparc32_voidp) parms;
3233 } */ *uap = v;
3234
3235 switch (SCARG(uap, op)) {
3236 default:
3237 printf("(sparc64) compat_sparc32_sysarch(%d)\n", SCARG(uap, op));
3238 return EINVAL;
3239 }
3240 }
3241
3242 int
3243 compat_sparc32_pread(p, v, retval)
3244 struct proc *p;
3245 void *v;
3246 register_t *retval;
3247 {
3248 struct compat_sparc32_pread_args /* {
3249 syscallarg(int) fd;
3250 syscallarg(sparc32_voidp) buf;
3251 syscallarg(sparc32_size_t) nbyte;
3252 syscallarg(int) pad;
3253 syscallarg(off_t) offset;
3254 } */ *uap = v;
3255 struct sys_pread_args ua;
3256 ssize_t rt;
3257 int error;
3258
3259 SPARC32TO64_UAP(fd);
3260 SPARC32TOP_UAP(buf, void);
3261 SPARC32TOX_UAP(nbyte, size_t);
3262 SPARC32TO64_UAP(pad);
3263 SPARC32TO64_UAP(offset);
3264 error = sys_pread(p, &ua, (register_t *)&rt);
3265 *(sparc32_ssize_t *)retval = rt;
3266 return (error);
3267 }
3268
3269 int
3270 compat_sparc32_pwrite(p, v, retval)
3271 struct proc *p;
3272 void *v;
3273 register_t *retval;
3274 {
3275 struct compat_sparc32_pwrite_args /* {
3276 syscallarg(int) fd;
3277 syscallarg(const sparc32_voidp) buf;
3278 syscallarg(sparc32_size_t) nbyte;
3279 syscallarg(int) pad;
3280 syscallarg(off_t) offset;
3281 } */ *uap = v;
3282 struct sys_pwrite_args ua;
3283 ssize_t rt;
3284 int error;
3285
3286 SPARC32TO64_UAP(fd);
3287 SPARC32TOP_UAP(buf, void);
3288 SPARC32TOX_UAP(nbyte, size_t);
3289 SPARC32TO64_UAP(pad);
3290 SPARC32TO64_UAP(offset);
3291 error = sys_pwrite(p, &ua, (register_t *)&rt);
3292 *(sparc32_ssize_t *)retval = rt;
3293 return (error);
3294 }
3295
3296 #ifdef NTP
3297 int
3298 compat_sparc32_ntp_gettime(p, v, retval)
3299 struct proc *p;
3300 void *v;
3301 register_t *retval;
3302 {
3303 struct compat_sparc32_ntp_gettime_args /* {
3304 syscallarg(sparc32_ntptimevalp_t) ntvp;
3305 } */ *uap = v;
3306 struct sparc32_ntptimeval ntv32;
3307 struct timeval atv;
3308 struct ntptimeval ntv;
3309 int error = 0;
3310 int s;
3311
3312 /* The following are NTP variables */
3313 extern long time_maxerror;
3314 extern long time_esterror;
3315 extern int time_status;
3316 extern int time_state; /* clock state */
3317 extern int time_status; /* clock status bits */
3318
3319 if (SCARG(uap, ntvp)) {
3320 s = splclock();
3321 #ifdef EXT_CLOCK
3322 /*
3323 * The microtime() external clock routine returns a
3324 * status code. If less than zero, we declare an error
3325 * in the clock status word and return the kernel
3326 * (software) time variable. While there are other
3327 * places that call microtime(), this is the only place
3328 * that matters from an application point of view.
3329 */
3330 if (microtime(&atv) < 0) {
3331 time_status |= STA_CLOCKERR;
3332 ntv.time = time;
3333 } else
3334 time_status &= ~STA_CLOCKERR;
3335 #else /* EXT_CLOCK */
3336 microtime(&atv);
3337 #endif /* EXT_CLOCK */
3338 ntv.time = atv;
3339 ntv.maxerror = time_maxerror;
3340 ntv.esterror = time_esterror;
3341 (void) splx(s);
3342
3343 sparc32_from_timeval(&ntv.time, &ntv32.time);
3344 ntv32.maxerror = (sparc32_long)ntv.maxerror;
3345 ntv32.esterror = (sparc32_long)ntv.esterror;
3346 error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, ntvp),
3347 sizeof(ntv32));
3348 }
3349 if (!error) {
3350
3351 /*
3352 * Status word error decode. If any of these conditions
3353 * occur, an error is returned, instead of the status
3354 * word. Most applications will care only about the fact
3355 * the system clock may not be trusted, not about the
3356 * details.
3357 *
3358 * Hardware or software error
3359 */
3360 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3361
3362 /*
3363 * PPS signal lost when either time or frequency
3364 * synchronization requested
3365 */
3366 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3367 !(time_status & STA_PPSSIGNAL)) ||
3368
3369 /*
3370 * PPS jitter exceeded when time synchronization
3371 * requested
3372 */
3373 (time_status & STA_PPSTIME &&
3374 time_status & STA_PPSJITTER) ||
3375
3376 /*
3377 * PPS wander exceeded or calibration error when
3378 * frequency synchronization requested
3379 */
3380 (time_status & STA_PPSFREQ &&
3381 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3382 *retval = TIME_ERROR;
3383 else
3384 *retval = (register_t)time_state;
3385 }
3386 return(error);
3387 }
3388
3389 int
3390 compat_sparc32_ntp_adjtime(p, v, retval)
3391 struct proc *p;
3392 void *v;
3393 register_t *retval;
3394 {
3395 struct compat_sparc32_ntp_adjtime_args /* {
3396 syscallarg(sparc32_timexp_t) tp;
3397 } */ *uap = v;
3398 struct sparc32_timex ntv32;
3399 struct timex ntv;
3400 int error = 0;
3401 int modes;
3402 int s;
3403 extern long time_freq; /* frequency offset (scaled ppm) */
3404 extern long time_maxerror;
3405 extern long time_esterror;
3406 extern int time_state; /* clock state */
3407 extern int time_status; /* clock status bits */
3408 extern long time_constant; /* pll time constant */
3409 extern long time_offset; /* time offset (us) */
3410 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
3411 extern long time_precision; /* clock precision (us) */
3412
3413 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), (caddr_t)&ntv32,
3414 sizeof(ntv32))))
3415 return (error);
3416 sparc32_to_timex(&ntv32, &ntv);
3417
3418 /*
3419 * Update selected clock variables - only the superuser can
3420 * change anything. Note that there is no error checking here on
3421 * the assumption the superuser should know what it is doing.
3422 */
3423 modes = ntv.modes;
3424 if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
3425 return (error);
3426
3427 s = splclock();
3428 if (modes & MOD_FREQUENCY)
3429 #ifdef PPS_SYNC
3430 time_freq = ntv.freq - pps_freq;
3431 #else /* PPS_SYNC */
3432 time_freq = ntv.freq;
3433 #endif /* PPS_SYNC */
3434 if (modes & MOD_MAXERROR)
3435 time_maxerror = ntv.maxerror;
3436 if (modes & MOD_ESTERROR)
3437 time_esterror = ntv.esterror;
3438 if (modes & MOD_STATUS) {
3439 time_status &= STA_RONLY;
3440 time_status |= ntv.status & ~STA_RONLY;
3441 }
3442 if (modes & MOD_TIMECONST)
3443 time_constant = ntv.constant;
3444 if (modes & MOD_OFFSET)
3445 hardupdate(ntv.offset);
3446
3447 /*
3448 * Retrieve all clock variables
3449 */
3450 if (time_offset < 0)
3451 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
3452 else
3453 ntv.offset = time_offset >> SHIFT_UPDATE;
3454 #ifdef PPS_SYNC
3455 ntv.freq = time_freq + pps_freq;
3456 #else /* PPS_SYNC */
3457 ntv.freq = time_freq;
3458 #endif /* PPS_SYNC */
3459 ntv.maxerror = time_maxerror;
3460 ntv.esterror = time_esterror;
3461 ntv.status = time_status;
3462 ntv.constant = time_constant;
3463 ntv.precision = time_precision;
3464 ntv.tolerance = time_tolerance;
3465 #ifdef PPS_SYNC
3466 ntv.shift = pps_shift;
3467 ntv.ppsfreq = pps_freq;
3468 ntv.jitter = pps_jitter >> PPS_AVG;
3469 ntv.stabil = pps_stabil;
3470 ntv.calcnt = pps_calcnt;
3471 ntv.errcnt = pps_errcnt;
3472 ntv.jitcnt = pps_jitcnt;
3473 ntv.stbcnt = pps_stbcnt;
3474 #endif /* PPS_SYNC */
3475 (void)splx(s);
3476
3477 sparc32_from_timeval(&ntv, &ntv32);
3478 error = copyout((caddr_t)&ntv32, (caddr_t)SCARG(uap, tp), sizeof(ntv32));
3479 if (!error) {
3480
3481 /*
3482 * Status word error decode. See comments in
3483 * ntp_gettime() routine.
3484 */
3485 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3486 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3487 !(time_status & STA_PPSSIGNAL)) ||
3488 (time_status & STA_PPSTIME &&
3489 time_status & STA_PPSJITTER) ||
3490 (time_status & STA_PPSFREQ &&
3491 time_status & (STA_PPSWANDER | STA_PPSERROR)))
3492 *retval = TIME_ERROR;
3493 else
3494 *retval = (register_t)time_state;
3495 }
3496 return error;
3497 }
3498 #endif
3499
3500 int
3501 compat_sparc32_setgid(p, v, retval)
3502 struct proc *p;
3503 void *v;
3504 register_t *retval;
3505 {
3506 struct compat_sparc32_setgid_args /* {
3507 syscallarg(gid_t) gid;
3508 } */ *uap = v;
3509 struct sys_setgid_args ua;
3510
3511 SPARC32TO64_UAP(gid);
3512 return (sys_setgid(p, v, retval));
3513 }
3514
3515 int
3516 compat_sparc32_setegid(p, v, retval)
3517 struct proc *p;
3518 void *v;
3519 register_t *retval;
3520 {
3521 struct compat_sparc32_setegid_args /* {
3522 syscallarg(gid_t) egid;
3523 } */ *uap = v;
3524 struct sys_setegid_args ua;
3525
3526 SPARC32TO64_UAP(egid);
3527 return (sys_setegid(p, v, retval));
3528 }
3529
3530 int
3531 compat_sparc32_seteuid(p, v, retval)
3532 struct proc *p;
3533 void *v;
3534 register_t *retval;
3535 {
3536 struct compat_sparc32_seteuid_args /* {
3537 syscallarg(gid_t) euid;
3538 } */ *uap = v;
3539 struct sys_seteuid_args ua;
3540
3541 SPARC32TO64_UAP(euid);
3542 return (sys_seteuid(p, v, retval));
3543 }
3544
3545 #ifdef LFS
3546 int
3547 compat_sparc32_lfs_bmapv(p, v, retval)
3548 struct proc *p;
3549 void *v;
3550 register_t *retval;
3551 {
3552 #if 0
3553 struct compat_sparc32_lfs_bmapv_args /* {
3554 syscallarg(sparc32_fsid_tp_t) fsidp;
3555 syscallarg(sparc32_block_infop_t) blkiov;
3556 syscallarg(int) blkcnt;
3557 } */ *uap = v;
3558 struct sys_lfs_bmapv_args ua;
3559
3560 SPARC32TOP_UAP(fdidp, struct fsid);
3561 SPARC32TO64_UAP(blkcnt);
3562 /* XXX finish me */
3563 #else
3564
3565 return (ENOSYS); /* XXX */
3566 #endif
3567 }
3568
3569 int
3570 compat_sparc32_lfs_markv(p, v, retval)
3571 struct proc *p;
3572 void *v;
3573 register_t *retval;
3574 {
3575 struct compat_sparc32_lfs_markv_args /* {
3576 syscallarg(sparc32_fsid_tp_t) fsidp;
3577 syscallarg(sparc32_block_infop_t) blkiov;
3578 syscallarg(int) blkcnt;
3579 } */ *uap = v;
3580
3581 return (ENOSYS); /* XXX */
3582 }
3583
3584 int
3585 compat_sparc32_lfs_segclean(p, v, retval)
3586 struct proc *p;
3587 void *v;
3588 register_t *retval;
3589 {
3590 struct compat_sparc32_lfs_segclean_args /* {
3591 syscallarg(sparc32_fsid_tp_t) fsidp;
3592 syscallarg(sparc32_u_long) segment;
3593 } */ *uap = v;
3594 return (ENOSYS); /* XXX */
3595 }
3596
3597 int
3598 compat_sparc32_lfs_segwait(p, v, retval)
3599 struct proc *p;
3600 void *v;
3601 register_t *retval;
3602 {
3603 struct compat_sparc32_lfs_segwait_args /* {
3604 syscallarg(sparc32_fsid_tp_t) fsidp;
3605 syscallarg(sparc32_timevalp_t) tv;
3606 } */ *uap = v;
3607 return (ENOSYS); /* XXX */
3608 }
3609 #endif
3610
3611 int
3612 compat_sparc32_pathconf(p, v, retval)
3613 struct proc *p;
3614 void *v;
3615 register_t *retval;
3616 {
3617 struct compat_sparc32_pathconf_args /* {
3618 syscallarg(int) fd;
3619 syscallarg(int) name;
3620 } */ *uap = v;
3621 struct sys_pathconf_args ua;
3622 long rt;
3623 int error;
3624
3625 SPARC32TOP_UAP(path, const char);
3626 SPARC32TO64_UAP(name);
3627 error = sys_pathconf(p, &ua, (register_t *)&rt);
3628 *(sparc32_long *)retval = (sparc32_long)rt;
3629 return (error);
3630 }
3631
3632 int
3633 compat_sparc32_fpathconf(p, v, retval)
3634 struct proc *p;
3635 void *v;
3636 register_t *retval;
3637 {
3638 struct compat_sparc32_fpathconf_args /* {
3639 syscallarg(int) fd;
3640 syscallarg(int) name;
3641 } */ *uap = v;
3642 struct sys_fpathconf_args ua;
3643 long rt;
3644 int error;
3645
3646 SPARC32TO64_UAP(fd);
3647 SPARC32TO64_UAP(name);
3648 error = sys_fpathconf(p, &ua, (register_t *)&rt);
3649 *(sparc32_long *)retval = (sparc32_long)rt;
3650 return (error);
3651 }
3652
3653 int
3654 compat_sparc32_getrlimit(p, v, retval)
3655 struct proc *p;
3656 void *v;
3657 register_t *retval;
3658 {
3659 struct compat_sparc32_getrlimit_args /* {
3660 syscallarg(int) which;
3661 syscallarg(sparc32_rlimitp_t) rlp;
3662 } */ *uap = v;
3663 int which = SCARG(uap, which);
3664
3665 if ((u_int)which >= RLIM_NLIMITS)
3666 return (EINVAL);
3667 return (copyout(&p->p_rlimit[which], (caddr_t)(u_long)SCARG(uap, rlp),
3668 sizeof(struct rlimit)));
3669 }
3670
3671 int
3672 compat_sparc32_setrlimit(p, v, retval)
3673 struct proc *p;
3674 void *v;
3675 register_t *retval;
3676 {
3677 struct compat_sparc32_setrlimit_args /* {
3678 syscallarg(int) which;
3679 syscallarg(const sparc32_rlimitp_t) rlp;
3680 } */ *uap = v;
3681 int which = SCARG(uap, which);
3682 struct rlimit alim;
3683 int error;
3684
3685 error = copyin((caddr_t)(u_long)SCARG(uap, rlp), &alim, sizeof(struct rlimit));
3686 if (error)
3687 return (error);
3688 return (dosetrlimit(p, which, &alim));
3689 }
3690
3691 int
3692 compat_sparc32_mmap(p, v, retval)
3693 struct proc *p;
3694 void *v;
3695 register_t *retval;
3696 {
3697 struct compat_sparc32_mmap_args /* {
3698 syscallarg(sparc32_voidp) addr;
3699 syscallarg(sparc32_size_t) len;
3700 syscallarg(int) prot;
3701 syscallarg(int) flags;
3702 syscallarg(int) fd;
3703 syscallarg(sparc32_long) pad;
3704 syscallarg(off_t) pos;
3705 } */ *uap = v;
3706 struct sys_mmap_args ua;
3707 void *rt;
3708 int error;
3709
3710 SPARC32TOP_UAP(addr, void);
3711 SPARC32TOX_UAP(len, size_t);
3712 SPARC32TO64_UAP(prot);
3713 SPARC32TO64_UAP(flags);
3714 SPARC32TO64_UAP(fd);
3715 SPARC32TOX_UAP(pad, long);
3716 SPARC32TOX_UAP(pos, off_t);
3717 error = sys_mmap(p, &ua, (register_t *)&rt);
3718 if ((long)rt > (long)UINT_MAX)
3719 printf("compat_sparc32_mmap: retval out of range: 0x%qx",
3720 rt);
3721 *retval = (sparc32_voidp)(u_long)rt;
3722 return (error);
3723 }
3724
3725 int
3726 compat_sparc32_lseek(p, v, retval)
3727 struct proc *p;
3728 void *v;
3729 register_t *retval;
3730 {
3731 struct compat_sparc32_lseek_args /* {
3732 syscallarg(int) fd;
3733 syscallarg(int) pad;
3734 syscallarg(off_t) offset;
3735 syscallarg(int) whence;
3736 } */ *uap = v;
3737 struct sys_lseek_args ua;
3738
3739 SPARC32TO64_UAP(fd);
3740 SPARC32TO64_UAP(pad);
3741 SPARC32TO64_UAP(offset);
3742 SPARC32TO64_UAP(whence);
3743 return (sys_lseek(p, &ua, retval));
3744 }
3745
3746 int
3747 compat_sparc32_truncate(p, v, retval)
3748 struct proc *p;
3749 void *v;
3750 register_t *retval;
3751 {
3752 struct compat_sparc32_truncate_args /* {
3753 syscallarg(const sparc32_charp) path;
3754 syscallarg(int) pad;
3755 syscallarg(off_t) length;
3756 } */ *uap = v;
3757 struct sys_truncate_args ua;
3758
3759 SPARC32TOP_UAP(path, const char);
3760 SPARC32TO64_UAP(pad);
3761 SPARC32TO64_UAP(length);
3762 return (sys_truncate(p, &ua, retval));
3763 }
3764
3765 int
3766 compat_sparc32_ftruncate(p, v, retval)
3767 struct proc *p;
3768 void *v;
3769 register_t *retval;
3770 {
3771 struct compat_sparc32_ftruncate_args /* {
3772 syscallarg(int) fd;
3773 syscallarg(int) pad;
3774 syscallarg(off_t) length;
3775 } */ *uap = v;
3776 struct sys_ftruncate_args ua;
3777
3778 SPARC32TO64_UAP(fd);
3779 SPARC32TO64_UAP(pad);
3780 SPARC32TO64_UAP(length);
3781 return (sys_ftruncate(p, &ua, retval));
3782 }
3783
3784 int
3785 compat_sparc32___sysctl(p, v, retval)
3786 struct proc *p;
3787 void *v;
3788 register_t *retval;
3789 {
3790 struct compat_sparc32___sysctl_args /* {
3791 syscallarg(sparc32_intp) name;
3792 syscallarg(u_int) namelen;
3793 syscallarg(sparc32_voidp) old;
3794 syscallarg(sparc32_size_tp) oldlenp;
3795 syscallarg(sparc32_voidp) new;
3796 syscallarg(sparc32_size_t) newlen;
3797 } */ *uap = v;
3798 int error, dolock = 1;
3799 sparc32_size_t savelen = 0;
3800 size_t oldlen = 0;
3801 sysctlfn *fn;
3802 int name[CTL_MAXNAME];
3803
3804 /*
3805 * Some of these sysctl functions do their own copyin/copyout.
3806 * We need to disable or emulate the ones that need their
3807 * arguments converted.
3808 */
3809
3810 if (SCARG(uap, new) != NULL &&
3811 (error = suser(p->p_ucred, &p->p_acflag)))
3812 return (error);
3813 /*
3814 * all top-level sysctl names are non-terminal
3815 */
3816 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
3817 return (EINVAL);
3818 error = copyin((caddr_t)(u_long)SCARG(uap, name), &name,
3819 SCARG(uap, namelen) * sizeof(int));
3820 if (error)
3821 return (error);
3822
3823 switch (name[0]) {
3824 case CTL_KERN:
3825 fn = kern_sysctl;
3826 if (name[2] != KERN_VNODE) /* XXX */
3827 dolock = 0;
3828 break;
3829 case CTL_HW:
3830 fn = hw_sysctl;
3831 break;
3832 case CTL_VM:
3833 #if defined(UVM)
3834 fn = uvm_sysctl;
3835 #else
3836 fn = vm_sysctl;
3837 #endif
3838 break;
3839 case CTL_NET:
3840 fn = net_sysctl;
3841 break;
3842 case CTL_VFS:
3843 fn = vfs_sysctl;
3844 break;
3845 case CTL_MACHDEP:
3846 fn = cpu_sysctl;
3847 break;
3848 #ifdef DEBUG
3849 case CTL_DEBUG:
3850 fn = debug_sysctl;
3851 break;
3852 #endif
3853 #ifdef DDB
3854 case CTL_DDB:
3855 fn = ddb_sysctl;
3856 break;
3857 #endif
3858 default:
3859 return (EOPNOTSUPP);
3860 }
3861
3862 if (SCARG(uap, oldlenp) &&
3863 (error = copyin((caddr_t)(u_long)SCARG(uap, oldlenp), &savelen, sizeof(savelen))))
3864 return (error);
3865 if (SCARG(uap, old) != NULL) {
3866 #if defined(UVM)
3867 if (!uvm_useracc((caddr_t)(u_long)SCARG(uap, old), savelen, B_WRITE))
3868 #else
3869 if (!useracc(SCARG(uap, old), savelen, B_WRITE))
3870 #endif
3871 return (EFAULT);
3872 #if 0 /* XXXXXXXX */
3873 while (memlock.sl_lock) {
3874 memlock.sl_want = 1;
3875 sleep((caddr_t)&memlock, PRIBIO+1);
3876 memlock.sl_locked++;
3877 }
3878 memlock.sl_lock = 1;
3879 #endif /* XXXXXXXX */
3880 if (dolock)
3881 #if defined(UVM)
3882 uvm_vslock(p, SCARG(uap, old), savelen);
3883 #else
3884 vslock(p, SCARG(uap, old), savelen);
3885 #endif
3886 oldlen = savelen;
3887 }
3888 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
3889 &oldlen, SCARG(uap, new), SCARG(uap, newlen), p);
3890 if (SCARG(uap, old) != NULL) {
3891 if (dolock)
3892 #if defined(UVM)
3893 uvm_vsunlock(p, SCARG(uap, old), savelen);
3894 #else
3895 vsunlock(p, SCARG(uap, old), savelen);
3896 #endif
3897 #if 0 /* XXXXXXXXXXX */
3898 memlock.sl_lock = 0;
3899 if (memlock.sl_want) {
3900 memlock.sl_want = 0;
3901 wakeup((caddr_t)&memlock);
3902 }
3903 #endif /* XXXXXXXXX */
3904 }
3905 savelen = oldlen;
3906 if (error)
3907 return (error);
3908 if (SCARG(uap, oldlenp))
3909 error = copyout(&savelen, (caddr_t)(u_long)SCARG(uap, oldlenp), sizeof(savelen));
3910 return (error);
3911 }
3912
3913 int
3914 compat_sparc32_mlock(p, v, retval)
3915 struct proc *p;
3916 void *v;
3917 register_t *retval;
3918 {
3919 struct compat_sparc32_mlock_args /* {
3920 syscallarg(const sparc32_voidp) addr;
3921 syscallarg(sparc32_size_t) len;
3922 } */ *uap = v;
3923 struct sys_mlock_args ua;
3924
3925 SPARC32TOP_UAP(addr, const void);
3926 SPARC32TO64_UAP(len);
3927 return (sys_mlock(p, &ua, retval));
3928 }
3929
3930 int
3931 compat_sparc32_munlock(p, v, retval)
3932 struct proc *p;
3933 void *v;
3934 register_t *retval;
3935 {
3936 struct compat_sparc32_munlock_args /* {
3937 syscallarg(const sparc32_voidp) addr;
3938 syscallarg(sparc32_size_t) len;
3939 } */ *uap = v;
3940 struct sys_munlock_args ua;
3941
3942 SPARC32TOP_UAP(addr, const void);
3943 SPARC32TO64_UAP(len);
3944 return (sys_munlock(p, &ua, retval));
3945 }
3946
3947 int
3948 compat_sparc32_undelete(p, v, retval)
3949 struct proc *p;
3950 void *v;
3951 register_t *retval;
3952 {
3953 struct compat_sparc32_undelete_args /* {
3954 syscallarg(const sparc32_charp) path;
3955 } */ *uap = v;
3956 struct sys_undelete_args ua;
3957
3958 SPARC32TOP_UAP(path, const char);
3959 return (sys_undelete(p, &ua, retval));
3960 }
3961
3962 int
3963 compat_sparc32_futimes(p, v, retval)
3964 struct proc *p;
3965 void *v;
3966 register_t *retval;
3967 {
3968 struct compat_sparc32_futimes_args /* {
3969 syscallarg(int) fd;
3970 syscallarg(const sparc32_timevalp_t) tptr;
3971 } */ *uap = v;
3972 int error;
3973 struct file *fp;
3974
3975 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3976 return (error);
3977
3978 return (change_utimes32((struct vnode *)fp->f_data,
3979 (struct timeval *)(u_long)SCARG(uap, tptr), p));
3980 }
3981
3982 int
3983 compat_sparc32_getpgid(p, v, retval)
3984 struct proc *p;
3985 void *v;
3986 register_t *retval;
3987 {
3988 struct compat_sparc32_getpgid_args /* {
3989 syscallarg(pid_t) pid;
3990 } */ *uap = v;
3991 struct sys_getpgid_args ua;
3992
3993 SPARC32TO64_UAP(pid);
3994 return (sys_getpgid(p, &ua, retval));
3995 }
3996
3997 int
3998 compat_sparc32_reboot(p, v, retval)
3999 struct proc *p;
4000 void *v;
4001 register_t *retval;
4002 {
4003 struct compat_sparc32_reboot_args /* {
4004 syscallarg(int) opt;
4005 syscallarg(sparc32_charp) bootstr;
4006 } */ *uap = v;
4007 struct sys_reboot_args ua;
4008
4009 SPARC32TO64_UAP(opt);
4010 SPARC32TOP_UAP(bootstr, char);
4011 return (sys_reboot(p, &ua, retval));
4012 }
4013
4014 int
4015 compat_sparc32_poll(p, v, retval)
4016 struct proc *p;
4017 void *v;
4018 register_t *retval;
4019 {
4020 struct compat_sparc32_poll_args /* {
4021 syscallarg(sparc32_pollfdp_t) fds;
4022 syscallarg(u_int) nfds;
4023 syscallarg(int) timeout;
4024 } */ *uap = v;
4025 struct sys_poll_args ua;
4026
4027 SPARC32TOP_UAP(fds, struct pollfd);
4028 SPARC32TO64_UAP(nfds);
4029 SPARC32TO64_UAP(timeout);
4030 return (sys_poll(p, &ua, retval));
4031 }
4032
4033 /*
4034 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4035 *
4036 * This is BSD. We won't support System V IPC.
4037 * Too much work.
4038 *
4039 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4040 */
4041 int
4042 compat_sparc32___semctl(p, v, retval)
4043 struct proc *p;
4044 void *v;
4045 register_t *retval;
4046 {
4047 #if 0
4048 struct compat_sparc32___semctl_args /* {
4049 syscallarg(int) semid;
4050 syscallarg(int) semnum;
4051 syscallarg(int) cmd;
4052 syscallarg(sparc32_semunu_t) arg;
4053 } */ *uap = v;
4054 union sparc32_semun sem32;
4055 int semid = SCARG(uap, semid);
4056 int semnum = SCARG(uap, semnum);
4057 int cmd = SCARG(uap, cmd);
4058 union sparc32_semun *arg = (void*)(u_long)SCARG(uap, arg);
4059 union sparc32_semun real_arg;
4060 struct ucred *cred = p->p_ucred;
4061 int i, rval, eval;
4062 struct sparc32_semid_ds sbuf;
4063 register struct semid_ds *semaptr;
4064
4065 semlock(p);
4066
4067 semid = IPCID_TO_IX(semid);
4068 if (semid < 0 || semid >= seminfo.semmsl)
4069 return(EINVAL);
4070
4071 semaptr = &sema[semid];
4072 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
4073 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
4074 return(EINVAL);
4075
4076 eval = 0;
4077 rval = 0;
4078
4079 switch (cmd) {
4080 case IPC_RMID:
4081 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
4082 return(eval);
4083 semaptr->sem_perm.cuid = cred->cr_uid;
4084 semaptr->sem_perm.uid = cred->cr_uid;
4085 semtot -= semaptr->sem_nsems;
4086 for (i = semaptr->sem_base - sem; i < semtot; i++)
4087 sem[i] = sem[i + semaptr->sem_nsems];
4088 for (i = 0; i < seminfo.semmni; i++) {
4089 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
4090 sema[i].sem_base > semaptr->sem_base)
4091 sema[i].sem_base -= semaptr->sem_nsems;
4092 }
4093 semaptr->sem_perm.mode = 0;
4094 semundo_clear(semid, -1);
4095 wakeup((caddr_t)semaptr);
4096 break;
4097
4098 case IPC_SET:
4099 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
4100 return(eval);
4101 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4102 return(eval);
4103 if ((eval = copyin((caddr_t)(u_long)real_arg.buf, (caddr_t)&sbuf,
4104 sizeof(sbuf))) != 0)
4105 return(eval);
4106 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
4107 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
4108 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
4109 (sbuf.sem_perm.mode & 0777);
4110 semaptr->sem_ctime = time.tv_sec;
4111 break;
4112
4113 case IPC_STAT:
4114 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4115 return(eval);
4116 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4117 return(eval);
4118 eval = copyout((caddr_t)semaptr, (caddr_t)(u_long)real_arg.buf,
4119 sizeof(struct semid_ds));
4120 break;
4121
4122 case GETNCNT:
4123 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4124 return(eval);
4125 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4126 return(EINVAL);
4127 rval = semaptr->sem_base[semnum].semncnt;
4128 break;
4129
4130 case GETPID:
4131 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4132 return(eval);
4133 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4134 return(EINVAL);
4135 rval = semaptr->sem_base[semnum].sempid;
4136 break;
4137
4138 case GETVAL:
4139 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4140 return(eval);
4141 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4142 return(EINVAL);
4143 rval = semaptr->sem_base[semnum].semval;
4144 break;
4145
4146 case GETALL:
4147 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4148 return(eval);
4149 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4150 return(eval);
4151 for (i = 0; i < semaptr->sem_nsems; i++) {
4152 eval = copyout((caddr_t)&semaptr->sem_base[i].semval,
4153 &real_arg.array[i], sizeof(real_arg.array[0]));
4154 if (eval != 0)
4155 break;
4156 }
4157 break;
4158
4159 case GETZCNT:
4160 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4161 return(eval);
4162 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4163 return(EINVAL);
4164 rval = semaptr->sem_base[semnum].semzcnt;
4165 break;
4166
4167 case SETVAL:
4168 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4169 return(eval);
4170 if (semnum < 0 || semnum >= semaptr->sem_nsems)
4171 return(EINVAL);
4172 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4173 return(eval);
4174 semaptr->sem_base[semnum].semval = real_arg.val;
4175 semundo_clear(semid, semnum);
4176 wakeup((caddr_t)semaptr);
4177 break;
4178
4179 case SETALL:
4180 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4181 return(eval);
4182 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4183 return(eval);
4184 for (i = 0; i < semaptr->sem_nsems; i++) {
4185 eval = copyin(&real_arg.array[i],
4186 (caddr_t)&semaptr->sem_base[i].semval,
4187 sizeof(real_arg.array[0]));
4188 if (eval != 0)
4189 break;
4190 }
4191 semundo_clear(semid, -1);
4192 wakeup((caddr_t)semaptr);
4193 break;
4194
4195 default:
4196 return(EINVAL);
4197 }
4198
4199 if (eval == 0)
4200 *retval = rval;
4201 return(eval);
4202 #else
4203 return (ENOSYS);
4204 #endif
4205 }
4206
4207 int
4208 compat_sparc32_semget(p, v, retval)
4209 struct proc *p;
4210 void *v;
4211 register_t *retval;
4212 {
4213 struct compat_sparc32_semget_args /* {
4214 syscallarg(sparc32_key_t) key;
4215 syscallarg(int) nsems;
4216 syscallarg(int) semflg;
4217 } */ *uap = v;
4218 struct sys_semget_args ua;
4219
4220 SPARC32TOX_UAP(key, key_t);
4221 SPARC32TO64_UAP(nsems);
4222 SPARC32TO64_UAP(semflg);
4223 return (sys_semget(p, &ua, retval));
4224 }
4225
4226 int
4227 compat_sparc32_semop(p, v, retval)
4228 struct proc *p;
4229 void *v;
4230 register_t *retval;
4231 {
4232 struct compat_sparc32_semop_args /* {
4233 syscallarg(int) semid;
4234 syscallarg(sparc32_sembufp_t) sops;
4235 syscallarg(sparc32_size_t) nsops;
4236 } */ *uap = v;
4237 struct sys_semop_args ua;
4238
4239 SPARC32TO64_UAP(semid);
4240 SPARC32TOP_UAP(sops, struct sembuf);
4241 SPARC32TOX_UAP(nsops, size_t);
4242 return (sys_semop(p, &ua, retval));
4243 }
4244
4245 int
4246 compat_sparc32_semconfig(p, v, retval)
4247 struct proc *p;
4248 void *v;
4249 register_t *retval;
4250 {
4251 struct compat_sparc32_semconfig_args /* {
4252 syscallarg(int) flag;
4253 } */ *uap = v;
4254 struct sys_semconfig_args ua;
4255
4256 SPARC32TO64_UAP(flag);
4257 return (sys_semconfig(p, &ua, retval));
4258 }
4259
4260 int
4261 compat_sparc32_msgctl(p, v, retval)
4262 struct proc *p;
4263 void *v;
4264 register_t *retval;
4265 {
4266 #if 0
4267 struct compat_sparc32_msgctl_args /* {
4268 syscallarg(int) msqid;
4269 syscallarg(int) cmd;
4270 syscallarg(sparc32_msqid_dsp_t) buf;
4271 } */ *uap = v;
4272 struct sys_msgctl_args ua;
4273 struct msqid_ds ds;
4274 struct sparc32_msqid_ds *ds32p;
4275 int error;
4276
4277 SPARC32TO64_UAP(msqid);
4278 SPARC32TO64_UAP(cmd);
4279 ds32p = (struct sparc32_msqid_ds *)(u_long)SCARG(uap, buf);
4280 if (ds32p) {
4281 SCARG(&ua, buf) = NULL;
4282 sparc32_to_msqid_ds(ds32p, &ds);
4283 } else
4284 SCARG(&ua, buf) = NULL;
4285 error = sys_msgctl(p, &ua, retval);
4286 if (error)
4287 return (error);
4288
4289 if (ds32p)
4290 sparc32_from_msqid_ds(&ds, ds32p);
4291 return (0);
4292 #else
4293 return (ENOSYS);
4294 #endif
4295 }
4296
4297 int
4298 compat_sparc32_msgget(p, v, retval)
4299 struct proc *p;
4300 void *v;
4301 register_t *retval;
4302 {
4303 #if 0
4304 struct compat_sparc32_msgget_args /* {
4305 syscallarg(sparc32_key_t) key;
4306 syscallarg(int) msgflg;
4307 } */ *uap = v;
4308 struct sys_msgget_args ua;
4309
4310 SPARC32TOX_UAP(key, key_t);
4311 SPARC32TO64_UAP(msgflg);
4312 return (sys_msgget(p, &ua, retval));
4313 #else
4314 return (ENOSYS);
4315 #endif
4316 }
4317
4318 int
4319 compat_sparc32_msgsnd(p, v, retval)
4320 struct proc *p;
4321 void *v;
4322 register_t *retval;
4323 {
4324 #if 0
4325 struct compat_sparc32_msgsnd_args /* {
4326 syscallarg(int) msqid;
4327 syscallarg(const sparc32_voidp) msgp;
4328 syscallarg(sparc32_size_t) msgsz;
4329 syscallarg(int) msgflg;
4330 } */ *uap = v;
4331 struct sys_msgsnd_args ua;
4332
4333 SPARC32TO64_UAP(msqid);
4334 SPARC32TOP_UAP(msgp, void);
4335 SPARC32TOX_UAP(msgsz, size_t);
4336 SPARC32TO64_UAP(msgflg);
4337 return (sys_msgsnd(p, &ua, retval));
4338 #else
4339 return (ENOSYS);
4340 #endif
4341 }
4342
4343 int
4344 compat_sparc32_msgrcv(p, v, retval)
4345 struct proc *p;
4346 void *v;
4347 register_t *retval;
4348 {
4349 #if 0
4350 struct compat_sparc32_msgrcv_args /* {
4351 syscallarg(int) msqid;
4352 syscallarg(sparc32_voidp) msgp;
4353 syscallarg(sparc32_size_t) msgsz;
4354 syscallarg(sparc32_long) msgtyp;
4355 syscallarg(int) msgflg;
4356 } */ *uap = v;
4357 struct sys_msgrcv_args ua;
4358 ssize_t rt;
4359 int error;
4360
4361 SPARC32TO64_UAP(msqid);
4362 SPARC32TOP_UAP(msgp, void);
4363 SPARC32TOX_UAP(msgsz, size_t);
4364 SPARC32TOX_UAP(msgtyp, long);
4365 SPARC32TO64_UAP(msgflg);
4366 error = sys_msgrcv(p, &ua, (register_t *)&rt);
4367 *(sparc32_ssize_t *)retval = rt;
4368 return (error);
4369 #else
4370 return (ENOSYS);
4371 #endif
4372 }
4373
4374 int
4375 compat_sparc32_shmat(p, v, retval)
4376 struct proc *p;
4377 void *v;
4378 register_t *retval;
4379 {
4380 #if 0
4381 struct compat_sparc32_shmat_args /* {
4382 syscallarg(int) shmid;
4383 syscallarg(const sparc32_voidp) shmaddr;
4384 syscallarg(int) shmflg;
4385 } */ *uap = v;
4386 struct sys_shmat_args ua;
4387 void *rt;
4388 int error;
4389
4390 SPARC32TO64_UAP(shmid);
4391 SPARC32TOP_UAP(shmaddr, void);
4392 SPARC32TO64_UAP(shmflg);
4393 error = sys_shmat(p, &ua, (register_t *)&rt);
4394 *retval = (sparc32_voidp)(u_long)rt;
4395 return (error);
4396 #else
4397 return (ENOSYS);
4398 #endif
4399 }
4400
4401 int
4402 compat_sparc32_shmctl(p, v, retval)
4403 struct proc *p;
4404 void *v;
4405 register_t *retval;
4406 {
4407 #if 0
4408 struct compat_sparc32_shmctl_args /* {
4409 syscallarg(int) shmid;
4410 syscallarg(int) cmd;
4411 syscallarg(sparc32_shmid_dsp_t) buf;
4412 } */ *uap = v;
4413 struct sys_shmctl_args ua;
4414 struct shmid_ds ds;
4415 struct sparc32_shmid_ds *ds32p;
4416 int error;
4417
4418 SPARC32TO64_UAP(shmid);
4419 SPARC32TO64_UAP(cmd);
4420 ds32p = (struct sparc32_shmid_ds *)(u_long)SCARG(uap, buf);
4421 if (ds32p) {
4422 SCARG(&ua, buf) = NULL;
4423 sparc32_to_shmid_ds(ds32p, &ds);
4424 } else
4425 SCARG(&ua, buf) = NULL;
4426 error = sys_shmctl(p, &ua, retval);
4427 if (error)
4428 return (error);
4429
4430 if (ds32p)
4431 sparc32_from_shmid_ds(&ds, ds32p);
4432 return (0);
4433 #else
4434 return (ENOSYS);
4435 #endif
4436 }
4437
4438 int
4439 compat_sparc32_shmdt(p, v, retval)
4440 struct proc *p;
4441 void *v;
4442 register_t *retval;
4443 {
4444 #if 0
4445 struct compat_sparc32_shmdt_args /* {
4446 syscallarg(const sparc32_voidp) shmaddr;
4447 } */ *uap = v;
4448 struct sys_shmdt_args ua;
4449
4450 SPARC32TOP_UAP(shmaddr, const char);
4451 return (sys_shmdt(p, &ua, retval));
4452 #else
4453 return (ENOSYS);
4454 #endif
4455 }
4456
4457 int
4458 compat_sparc32_shmget(p, v, retval)
4459 struct proc *p;
4460 void *v;
4461 register_t *retval;
4462 {
4463 #if 0
4464 struct compat_sparc32_shmget_args /* {
4465 syscallarg(sparc32_key_t) key;
4466 syscallarg(sparc32_size_t) size;
4467 syscallarg(int) shmflg;
4468 } */ *uap = v;
4469 struct sys_shmget_args ua;
4470
4471 SPARC32TOX_UAP(key, key_t)
4472 SPARC32TOX_UAP(size, size_t)
4473 SPARC32TO64_UAP(shmflg);
4474 return (sys_shmget(p, &ua, retval));
4475 #else
4476 return (ENOSYS);
4477 #endif
4478 }
4479
4480 int
4481 compat_sparc32_clock_gettime(p, v, retval)
4482 struct proc *p;
4483 void *v;
4484 register_t *retval;
4485 {
4486 struct compat_sparc32_clock_gettime_args /* {
4487 syscallarg(sparc32_clockid_t) clock_id;
4488 syscallarg(sparc32_timespecp_t) tp;
4489 } */ *uap = v;
4490 clockid_t clock_id;
4491 struct timeval atv;
4492 struct timespec ats;
4493 struct sparc32_timespec ts32;
4494
4495 clock_id = SCARG(uap, clock_id);
4496 if (clock_id != CLOCK_REALTIME)
4497 return (EINVAL);
4498
4499 microtime(&atv);
4500 TIMEVAL_TO_TIMESPEC(&atv,&ats);
4501 sparc32_from_timespec(&ats, &ts32);
4502
4503 return copyout(&ts32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts32));
4504 }
4505
4506 int
4507 compat_sparc32_clock_settime(p, v, retval)
4508 struct proc *p;
4509 void *v;
4510 register_t *retval;
4511 {
4512 struct compat_sparc32_clock_settime_args /* {
4513 syscallarg(sparc32_clockid_t) clock_id;
4514 syscallarg(const sparc32_timespecp_t) tp;
4515 } */ *uap = v;
4516 struct sparc32_timespec ts32;
4517 clockid_t clock_id;
4518 struct timeval atv;
4519 struct timespec ats;
4520 int error;
4521
4522 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
4523 return (error);
4524
4525 clock_id = SCARG(uap, clock_id);
4526 if (clock_id != CLOCK_REALTIME)
4527 return (EINVAL);
4528
4529 if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), &ts32, sizeof(ts32))) != 0)
4530 return (error);
4531
4532 sparc32_to_timespec(&ts32, &ats);
4533 TIMESPEC_TO_TIMEVAL(&atv,&ats);
4534 if ((error = settime(&atv)))
4535 return (error);
4536
4537 return 0;
4538 }
4539
4540 int
4541 compat_sparc32_clock_getres(p, v, retval)
4542 struct proc *p;
4543 void *v;
4544 register_t *retval;
4545 {
4546 struct compat_sparc32_clock_getres_args /* {
4547 syscallarg(sparc32_clockid_t) clock_id;
4548 syscallarg(sparc32_timespecp_t) tp;
4549 } */ *uap = v;
4550 struct sparc32_timespec ts32;
4551 clockid_t clock_id;
4552 struct timespec ts;
4553 int error = 0;
4554
4555 clock_id = SCARG(uap, clock_id);
4556 if (clock_id != CLOCK_REALTIME)
4557 return (EINVAL);
4558
4559 if (SCARG(uap, tp)) {
4560 ts.tv_sec = 0;
4561 ts.tv_nsec = 1000000000 / hz;
4562
4563 sparc32_from_timespec(&ts, &ts32);
4564 error = copyout(&ts, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts));
4565 }
4566
4567 return error;
4568 }
4569
4570 int
4571 compat_sparc32_nanosleep(p, v, retval)
4572 struct proc *p;
4573 void *v;
4574 register_t *retval;
4575 {
4576 struct compat_sparc32_nanosleep_args /* {
4577 syscallarg(const sparc32_timespecp_t) rqtp;
4578 syscallarg(sparc32_timespecp_t) rmtp;
4579 } */ *uap = v;
4580 static int nanowait;
4581 struct sparc32_timespec ts32;
4582 struct timespec rqt;
4583 struct timespec rmt;
4584 struct timeval atv, utv;
4585 int error, s, timo;
4586
4587 error = copyin((caddr_t)(u_long)SCARG(uap, rqtp), (caddr_t)&ts32,
4588 sizeof(ts32));
4589 if (error)
4590 return (error);
4591
4592 sparc32_to_timespec(&ts32, &rqt);
4593 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
4594 if (itimerfix(&atv))
4595 return (EINVAL);
4596
4597 s = splclock();
4598 timeradd(&atv,&time,&atv);
4599 timo = hzto(&atv);
4600 /*
4601 * Avoid inadvertantly sleeping forever
4602 */
4603 if (timo == 0)
4604 timo = 1;
4605 splx(s);
4606
4607 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
4608 if (error == ERESTART)
4609 error = EINTR;
4610 if (error == EWOULDBLOCK)
4611 error = 0;
4612
4613 if (SCARG(uap, rmtp)) {
4614 int error;
4615
4616 s = splclock();
4617 utv = time;
4618 splx(s);
4619
4620 timersub(&atv, &utv, &utv);
4621 if (utv.tv_sec < 0)
4622 timerclear(&utv);
4623
4624 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
4625 sparc32_from_timespec(&rmt, &ts32);
4626 error = copyout((caddr_t)&ts32, (caddr_t)(u_long)SCARG(uap,rmtp),
4627 sizeof(ts32));
4628 if (error)
4629 return (error);
4630 }
4631
4632 return error;
4633 }
4634
4635 int
4636 compat_sparc32_fdatasync(p, v, retval)
4637 struct proc *p;
4638 void *v;
4639 register_t *retval;
4640 {
4641 struct compat_sparc32_fdatasync_args /* {
4642 syscallarg(int) fd;
4643 } */ *uap = v;
4644 struct sys_fdatasync_args ua;
4645
4646 SPARC32TO64_UAP(fd);
4647
4648 return (sys_fdatasync(p, &ua, retval));
4649 }
4650
4651 int
4652 compat_sparc32___posix_rename(p, v, retval)
4653 struct proc *p;
4654 void *v;
4655 register_t *retval;
4656 {
4657 struct compat_sparc32___posix_rename_args /* {
4658 syscallarg(const sparc32_charp) from;
4659 syscallarg(const sparc32_charp) to;
4660 } */ *uap = v;
4661 struct sys___posix_rename_args ua;
4662
4663 SPARC32TOP_UAP(from, const char *);
4664 SPARC32TOP_UAP(to, const char *);
4665
4666 return (sys___posix_rename(p, &ua, retval));
4667 }
4668
4669 int
4670 compat_sparc32_swapctl(p, v, retval)
4671 struct proc *p;
4672 void *v;
4673 register_t *retval;
4674 {
4675 struct compat_sparc32_swapctl_args /* {
4676 syscallarg(int) cmd;
4677 syscallarg(const sparc32_voidp) arg;
4678 syscallarg(int) misc;
4679 } */ *uap = v;
4680 struct sys_swapctl_args ua;
4681
4682 SPARC32TO64_UAP(cmd);
4683 SPARC32TOP_UAP(arg, const void);
4684 SPARC32TO64_UAP(misc);
4685 return (sys_swapctl(p, &ua, retval));
4686 }
4687
4688 int
4689 compat_sparc32_getdents(p, v, retval)
4690 struct proc *p;
4691 void *v;
4692 register_t *retval;
4693 {
4694 struct compat_sparc32_getdents_args /* {
4695 syscallarg(int) fd;
4696 syscallarg(sparc32_charp) buf;
4697 syscallarg(sparc32_size_t) count;
4698 } */ *uap = v;
4699 struct file *fp;
4700 int error, done;
4701
4702 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
4703 return (error);
4704 if ((fp->f_flag & FREAD) == 0)
4705 return (EBADF);
4706 error = vn_readdir(fp, (caddr_t)(u_long)SCARG(uap, buf), UIO_USERSPACE,
4707 SCARG(uap, count), &done, p, 0, 0);
4708 *retval = done;
4709 return (error);
4710 }
4711
4712
4713 int
4714 compat_sparc32_minherit(p, v, retval)
4715 struct proc *p;
4716 void *v;
4717 register_t *retval;
4718 {
4719 struct compat_sparc32_minherit_args /* {
4720 syscallarg(sparc32_voidp) addr;
4721 syscallarg(sparc32_size_t) len;
4722 syscallarg(int) inherit;
4723 } */ *uap = v;
4724 struct sys_minherit_args ua;
4725
4726 SPARC32TOP_UAP(addr, void);
4727 SPARC32TOX_UAP(len, size_t);
4728 SPARC32TO64_UAP(inherit);
4729 return (sys_minherit(p, &ua, retval));
4730 }
4731
4732 int
4733 compat_sparc32_lchmod(p, v, retval)
4734 struct proc *p;
4735 void *v;
4736 register_t *retval;
4737 {
4738 struct compat_sparc32_lchmod_args /* {
4739 syscallarg(const sparc32_charp) path;
4740 syscallarg(mode_t) mode;
4741 } */ *uap = v;
4742 struct sys_lchmod_args ua;
4743
4744 SPARC32TOP_UAP(path, const char);
4745 SPARC32TO64_UAP(mode);
4746 return (sys_lchmod(p, &ua, retval));
4747 }
4748
4749 int
4750 compat_sparc32_lchown(p, v, retval)
4751 struct proc *p;
4752 void *v;
4753 register_t *retval;
4754 {
4755 struct compat_sparc32_lchown_args /* {
4756 syscallarg(const sparc32_charp) path;
4757 syscallarg(uid_t) uid;
4758 syscallarg(gid_t) gid;
4759 } */ *uap = v;
4760 struct sys_lchown_args ua;
4761
4762 SPARC32TOP_UAP(path, const char);
4763 SPARC32TO64_UAP(uid);
4764 SPARC32TO64_UAP(gid);
4765 return (sys_lchown(p, &ua, retval));
4766 }
4767
4768 int
4769 compat_sparc32_lutimes(p, v, retval)
4770 struct proc *p;
4771 void *v;
4772 register_t *retval;
4773 {
4774 struct compat_sparc32_lutimes_args /* {
4775 syscallarg(const sparc32_charp) path;
4776 syscallarg(const sparc32_timevalp_t) tptr;
4777 } */ *uap = v;
4778 int error;
4779 struct nameidata nd;
4780
4781 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, (caddr_t)(u_long)SCARG(uap, path), p);
4782 if ((error = namei(&nd)) != 0)
4783 return (error);
4784
4785 error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
4786
4787 vrele(nd.ni_vp);
4788 return (error);
4789 }
4790
4791
4792 int
4793 compat_sparc32___msync13(p, v, retval)
4794 struct proc *p;
4795 void *v;
4796 register_t *retval;
4797 {
4798 struct compat_sparc32___msync13_args /* {
4799 syscallarg(sparc32_voidp) addr;
4800 syscallarg(sparc32_size_t) len;
4801 syscallarg(int) flags;
4802 } */ *uap = v;
4803 struct sys___msync13_args ua;
4804
4805 SPARC32TOP_UAP(addr, void);
4806 SPARC32TOX_UAP(len, size_t);
4807 SPARC32TO64_UAP(flags);
4808 return (sys___msync13(p, &ua, retval));
4809 }
4810
4811 int
4812 compat_sparc32___stat13(p, v, retval)
4813 struct proc *p;
4814 void *v;
4815 register_t *retval;
4816 {
4817 struct compat_sparc32___stat13_args /* {
4818 syscallarg(const sparc32_charp) path;
4819 syscallarg(sparc32_statp_t) ub;
4820 } */ *uap = v;
4821 struct sparc32_stat sb32;
4822 struct stat sb;
4823 int error;
4824 struct nameidata nd;
4825
4826 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE,
4827 (caddr_t)(u_long)SCARG(uap, path), p);
4828 if ((error = namei(&nd)) != 0)
4829 return (error);
4830 error = vn_stat(nd.ni_vp, &sb, p);
4831 vput(nd.ni_vp);
4832 if (error)
4833 return (error);
4834 sparc32_from___stat13(&sb, &sb32);
4835 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
4836 return (error);
4837 }
4838
4839 int
4840 compat_sparc32___fstat13(p, v, retval)
4841 struct proc *p;
4842 void *v;
4843 register_t *retval;
4844 {
4845 struct compat_sparc32___fstat13_args /* {
4846 syscallarg(int) fd;
4847 syscallarg(sparc32_statp_t) sb;
4848 } */ *uap = v;
4849 int fd = SCARG(uap, fd);
4850 register struct filedesc *fdp = p->p_fd;
4851 register struct file *fp;
4852 struct sparc32_stat sb32;
4853 struct stat ub;
4854 int error = 0;
4855
4856 if ((u_int)fd >= fdp->fd_nfiles ||
4857 (fp = fdp->fd_ofiles[fd]) == NULL)
4858 return (EBADF);
4859 switch (fp->f_type) {
4860
4861 case DTYPE_VNODE:
4862 error = vn_stat((struct vnode *)fp->f_data, &ub, p);
4863 break;
4864
4865 case DTYPE_SOCKET:
4866 error = soo_stat((struct socket *)fp->f_data, &ub);
4867 break;
4868
4869 default:
4870 panic("fstat");
4871 /*NOTREACHED*/
4872 }
4873 if (error == 0) {
4874 sparc32_from___stat13(&ub, &sb32);
4875 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, sb), sizeof(sb32));
4876 }
4877 return (error);
4878 }
4879
4880 int
4881 compat_sparc32___lstat13(p, v, retval)
4882 struct proc *p;
4883 void *v;
4884 register_t *retval;
4885 {
4886 struct compat_sparc32___lstat13_args /* {
4887 syscallarg(const sparc32_charp) path;
4888 syscallarg(sparc32_statp_t) ub;
4889 } */ *uap = v;
4890 struct sparc32_stat sb32;
4891 struct stat sb;
4892 int error;
4893 struct nameidata nd;
4894
4895 NDINIT(&nd, LOOKUP, NOFOLLOW | LOCKLEAF, UIO_USERSPACE,
4896 (caddr_t)(u_long)SCARG(uap, path), p);
4897 if ((error = namei(&nd)) != 0)
4898 return (error);
4899 error = vn_stat(nd.ni_vp, &sb, p);
4900 vput(nd.ni_vp);
4901 if (error)
4902 return (error);
4903 sparc32_from___stat13(&sb, &sb32);
4904 error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
4905 return (error);
4906 }
4907
4908 int
4909 compat_sparc32___sigaltstack14(p, v, retval)
4910 struct proc *p;
4911 void *v;
4912 register_t *retval;
4913 {
4914 struct compat_sparc32___sigaltstack14_args /* {
4915 syscallarg(const sparc32_sigaltstackp_t) nss;
4916 syscallarg(sparc32_sigaltstackp_t) oss;
4917 } */ *uap = v;
4918 struct sparc32_sigaltstack s32;
4919 struct sigaltstack nss, oss;
4920 int error;
4921
4922 if (SCARG(uap, nss)) {
4923 error = copyin((caddr_t)(u_long)SCARG(uap, nss), &s32, sizeof(s32));
4924 if (error)
4925 return (error);
4926 nss.ss_sp = (void *)(u_long)s32.ss_sp;
4927 nss.ss_size = (size_t)s32.ss_size;
4928 nss.ss_flags = s32.ss_flags;
4929 }
4930 error = sigaltstack1(p,
4931 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
4932 if (error)
4933 return (error);
4934 if (SCARG(uap, oss)) {
4935 s32.ss_sp = (sparc32_voidp)(u_long)oss.ss_sp;
4936 s32.ss_size = (sparc32_size_t)oss.ss_size;
4937 s32.ss_flags = oss.ss_flags;
4938 error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, oss), sizeof(s32));
4939 if (error)
4940 return (error);
4941 }
4942 return (0);
4943 }
4944
4945 int
4946 compat_sparc32___posix_chown(p, v, retval)
4947 struct proc *p;
4948 void *v;
4949 register_t *retval;
4950 {
4951 struct compat_sparc32___posix_chown_args /* {
4952 syscallarg(const sparc32_charp) path;
4953 syscallarg(uid_t) uid;
4954 syscallarg(gid_t) gid;
4955 } */ *uap = v;
4956 struct sys___posix_chown_args ua;
4957
4958 SPARC32TOP_UAP(path, const char);
4959 SPARC32TO64_UAP(uid);
4960 SPARC32TO64_UAP(gid);
4961 return (sys___posix_chown(p, &ua, retval));
4962 }
4963
4964 int
4965 compat_sparc32___posix_fchown(p, v, retval)
4966 struct proc *p;
4967 void *v;
4968 register_t *retval;
4969 {
4970 struct compat_sparc32___posix_fchown_args /* {
4971 syscallarg(int) fd;
4972 syscallarg(uid_t) uid;
4973 syscallarg(gid_t) gid;
4974 } */ *uap = v;
4975 struct sys___posix_fchown_args ua;
4976
4977 SPARC32TO64_UAP(fd);
4978 SPARC32TO64_UAP(uid);
4979 SPARC32TO64_UAP(gid);
4980 return (sys___posix_fchown(p, &ua, retval));
4981 }
4982
4983 int
4984 compat_sparc32___posix_lchown(p, v, retval)
4985 struct proc *p;
4986 void *v;
4987 register_t *retval;
4988 {
4989 struct compat_sparc32___posix_lchown_args /* {
4990 syscallarg(const sparc32_charp) path;
4991 syscallarg(uid_t) uid;
4992 syscallarg(gid_t) gid;
4993 } */ *uap = v;
4994 struct sys___posix_lchown_args ua;
4995
4996 SPARC32TOP_UAP(path, const char);
4997 SPARC32TO64_UAP(uid);
4998 SPARC32TO64_UAP(gid);
4999 return (sys___posix_lchown(p, &ua, retval));
5000 }
5001
5002 int
5003 compat_sparc32_getsid(p, v, retval)
5004 struct proc *p;
5005 void *v;
5006 register_t *retval;
5007 {
5008 struct compat_sparc32_getsid_args /* {
5009 syscallarg(pid_t) pid;
5010 } */ *uap = v;
5011 struct sys_getsid_args ua;
5012
5013 SPARC32TO64_UAP(pid);
5014 return (sys_getsid(p, &ua, retval));
5015 }
5016
5017 int
5018 compat_sparc32_fktrace(p, v, retval)
5019 struct proc *p;
5020 void *v;
5021 register_t *retval;
5022 {
5023 struct compat_sparc32_fktrace_args /* {
5024 syscallarg(const int) fd;
5025 syscallarg(int) ops;
5026 syscallarg(int) facs;
5027 syscallarg(int) pid;
5028 } */ *uap = v;
5029 struct sys_fktrace_args ua;
5030
5031 SPARC32TO64_UAP(fd);
5032 SPARC32TO64_UAP(ops);
5033 SPARC32TO64_UAP(facs);
5034 SPARC32TO64_UAP(pid);
5035 return (sys_fktrace(p, &ua, retval));
5036 }
5037
5038 int
5039 compat_sparc32_preadv(p, v, retval)
5040 struct proc *p;
5041 void *v;
5042 register_t *retval;
5043 {
5044 struct compat_sparc32_preadv_args /* {
5045 syscallarg(int) fd;
5046 syscallarg(const sparc32_iovecp_t) iovp;
5047 syscallarg(int) iovcnt;
5048 syscallarg(int) pad;
5049 syscallarg(off_t) offset;
5050 } */ *uap = v;
5051 struct filedesc *fdp = p->p_fd;
5052 struct file *fp;
5053 struct vnode *vp;
5054 off_t offset;
5055 int error, fd = SCARG(uap, fd);
5056
5057 if ((u_int)fd >= fdp->fd_nfiles ||
5058 (fp = fdp->fd_ofiles[fd]) == NULL ||
5059 (fp->f_flag & FREAD) == 0)
5060 return (EBADF);
5061
5062 vp = (struct vnode *)fp->f_data;
5063 if (fp->f_type != DTYPE_VNODE
5064 || vp->v_type == VFIFO)
5065 return (ESPIPE);
5066
5067 offset = SCARG(uap, offset);
5068
5069 /*
5070 * XXX This works because no file systems actually
5071 * XXX take any action on the seek operation.
5072 */
5073 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5074 return (error);
5075
5076 return (dofilereadv32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5077 &offset, 0, retval));
5078 }
5079
5080 int
5081 compat_sparc32_pwritev(p, v, retval)
5082 struct proc *p;
5083 void *v;
5084 register_t *retval;
5085 {
5086 struct compat_sparc32_pwritev_args /* {
5087 syscallarg(int) fd;
5088 syscallarg(const sparc32_iovecp_t) iovp;
5089 syscallarg(int) iovcnt;
5090 syscallarg(int) pad;
5091 syscallarg(off_t) offset;
5092 } */ *uap = v;
5093 struct filedesc *fdp = p->p_fd;
5094 struct file *fp;
5095 struct vnode *vp;
5096 off_t offset;
5097 int error, fd = SCARG(uap, fd);
5098
5099 if ((u_int)fd >= fdp->fd_nfiles ||
5100 (fp = fdp->fd_ofiles[fd]) == NULL ||
5101 (fp->f_flag & FWRITE) == 0)
5102 return (EBADF);
5103
5104 vp = (struct vnode *)fp->f_data;
5105 if (fp->f_type != DTYPE_VNODE
5106 || vp->v_type == VFIFO)
5107 return (ESPIPE);
5108
5109 offset = SCARG(uap, offset);
5110
5111 /*
5112 * XXX This works because no file systems actually
5113 * XXX take any action on the seek operation.
5114 */
5115 if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5116 return (error);
5117
5118 return (dofilewritev32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5119 &offset, 0, retval));
5120 }
5121
5122
5123
5124 int
5125 compat_13_compat_sparc32_sigprocmask(p, v, retval)
5126 register struct proc *p;
5127 void *v;
5128 register_t *retval;
5129 {
5130 struct compat_13_compat_sparc32_sigprocmask_args /* {
5131 syscallarg(int) how;
5132 syscallarg(int) mask;
5133 } */ *uap = v;
5134 sigset13_t ness, oess;
5135 sigset_t nbss, obss;
5136 int error;
5137
5138 ness = SCARG(uap, mask);
5139 native_sigset13_to_sigset(&ness, &nbss);
5140 error = sigprocmask1(p, SCARG(uap, how), &nbss, &obss);
5141 if (error)
5142 return (error);
5143 native_sigset_to_sigset13(&obss, &oess);
5144 *retval = oess;
5145 return (0);
5146 }
5147
5148
5149 int
5150 compat_13_compat_sparc32_sigsuspend(p, v, retval)
5151 register struct proc *p;
5152 void *v;
5153 register_t *retval;
5154 {
5155 struct compat_13_compat_sparc32_sigsuspend_args /* {
5156 syscallarg(sigset13_t) mask;
5157 } */ *uap = v;
5158 sigset13_t ess;
5159 sigset_t bss;
5160
5161 ess = SCARG(uap, mask);
5162 native_sigset13_to_sigset(&ess, &bss);
5163 return (sigsuspend1(p, &bss));
5164 }
5165